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First of all, it is an honor to receive the INFORMS
Optimization Society best student paper award. Before going
into the content of the paper, I want to give a bit of context
in which I did this research. This paper was essentially my
master thesis work in the University of Coimbra, in Portugal,
back in 2009-2010 (In fact, my master thesis has the same
title [Ban10]). Katya Scheinbery and Luis Nunes Vicente
proposed me to work on the connection between the, then
recent, developments in sparse recovery and Compressed
Sensing (subject I was, and still am, quite interested in) and
Derivative-Free Optimization, a subject I was not familiar
with at the time but which I very quickly learned to enjoy.
During this period I was extremely fortunate to have had
the opportunity to work with both Luis and Katya and, to-
gether, we wrote the awarded paper, “Computation of sparse
low degree interpolating polynomials and their application
to derivative-free optimization” [BSV12]. This work has
spurred both parallel [BSV11] and future research [BSV13]
that I will also briefly describe below.

The framework is unconstrained optimization: one wants
to minimize a (sufficiently smooth) function f: R"™ — R
over R™. In many applications function evaluations are
particularly expensive and one has no access to function
derivatives (an important example is when the goal is to
do parameter optimization and each evaluation requires
an expensive simulation). These applications motivate the
interest in optimizing f without using its derivatives and
using as few function evaluations as possible, this is known
as Derivative-Free Optimization. An excellent introduction
to the topic is given in the book [CSV09].

One type of algorithms used in DFO are the, so called,
model-based trust-region methods. Essentially, they operate
by iteratively picking a small region, known as the trust-
region, B C R" (say a ball) and build (via approximation
on samples of f) a model m: B — R of f in B. The idea is
for m(x) to be easier to optimize in B while being a reliable
model of f, and for minimizer of m(z) to be an estimate
for the minimizer of f in B. Depending on the location of
the minimizer and its value on f the trust-region is updated
and the procedure repeated.

A very popular class of models used is the quadratic
polynomials, as these are reasonably simple while being able
capturing curvature of the function (unlike linear models).
For the sake of simplicity, let us suppose for the moment
that f is itself a quadratic and we want to find the model
m = f. Constructing m(x) from p function evaluations of f

corresponds to solving a linear system. Let ¢1,...,¢x be a
basis for the quadratic polynomials of n variables (meaning
N = %). We can write m(z) = Zfil a;¢;(x)
and focus on estimating the {a;}Y . In fact, a function

evaluation of f at y; gives a linear constraint on a,

Zambi(yj) = f(yj)-

A sample set Y of p points corresponds to p linear con-
straints on o which we represent by an interpolation matrix
M(,Y)

M(6,Y)a = f(Y). (1)

In order for (1) to be a determined system one needs
p>N = W function evaluations in each iterations,
which is very often too expensive.

Indeed, without any extra information on the structure of
f, this is the best one can do. Fortunately, most functions
that arise from applications have special structures. For
example, in the parameter estimation problem, it is rather
unlikely that every pair of parameters is interacting (in a
relevant way). Pairs of parameters not interacting should
correspond to zero joint derivatives which suggests sparsity
of the function’s Hessian. This motivated us to pursue
techniques that exploited the Hessian sparsity in order to
construct reliable models with far fewer samples, which is
precisely the subject of the paper [BSV12].

Provided we choose a basis {¢}X, such that Hessian
sparsity translates into sparsity in «, the Hessian sparsity
of f corresponds to sparsity of the solution of the linear
system (1). Around a decade ago, the seminal work of
Candes, Donoho, and others [CRTO06a], [CRT06b], [CTO05],
[CTO06], [Don06], spurred a vast body of exciting research
in the area of sparse recovery (also known as Compressed
Sensing) which provides very good understanding of when
one is able to recover a sparse vector « from a underdeter-
mined linear system. The main contribution of this paper is
leveraging, and adapting, these results to estimate o (which
gives a model m(x)), via (1), using significantly less than
N = O(n?) function evaluations.

In a nutshell, the theory of Compressed Sensing tells
us that, if M(¢,Y) satisfies a certain property (known as
the Restricted Isometry Property (RIP) [Can08]), the sparse
vector o can be recovered by ¢; minimization (essentially,
it is the vector with minimum #; norm which still satisfies
the linear constraints). Matrices satisfying the Restricted



Isometry Property are notably difficult to build and com-
putationally hard to certify [BDMS13] (I have spent some
time thinking about this myself [BFMW13]) but random
constructions are known to yield RIP matrices for a number
of rows (corresponding to samples) p on the order of
p = O(klogN), where k is the sparsity of the vector,
and N the ambient dimension (in our case N = O(n?)).
This means that, as long as M(¢,Y) is RIP, the number
of samples needed is no longer on the order of vector
dimension but instead, on the order of the sparsity of «
(with a small logarithmic loss). Moreover, ¢; minimization
can be formulated as a linear program thus enjoying many
efficient algorithms.

Classically, the results in Compressed Sensing guarantee-
ing the RIP property for random matrices mostly concern
matrices with independent entries. In our setting, however,
we are constrained to a very structured interpolation matrix
M(,Y). Knowing how difficult constructing good deter-
ministic RIP matrices seems to be, we opted to “inject
randomness” in the matrix by taking the sample set Y to be
random (while the basis {¢}}¥; is fixed and deterministic).
In fact, provided that the basis {¢}Y  satisfies certain
properties, a sufficiently large random sample set Y gives
an interpolation matrix M (¢, Y") which is known [Raul0] to
be RIP with high probability. In our paper [BSV12], we are
able to build a basis {¢}¥, both inheriting sparsity from
Hessian sparsity and satisfying the properties needed to yield
RIP interpolation matrices. This, together with a particular
choice of trust-region and sampling measure for Y allowed
us to show that, with high probability, ¢; minimization
succeeds in recovering « from the linear measurements (1)
with as few as

p = O(nlog'(n))

samples, provided that the Hessian of f has O(n) non-zero
entries. Note that this number of samples (corresponding to
function evaluations) is considerably less than the O(n?)
samples that would be needed in the classical case.

In general, f is not a quadratic polynomial. However,
as long as f is sufficiently smooth, one can show that the
procedure sketched above gives, with the same number of
samples, a model m that approximates f in B essentially
as well as its second-order Taylor approximation (these are
known as fully-quadratic models). The idea is to replace f
with its second-order Taylor approximation in the arguments
above. In that case, each sample of f can be regarded as
a noisy sample of the quadratic approximation. Fortunately,
the guarantees given in the theory of sparse recovery often
come with robustness to noise and, in this case, we can
leverage such results to ensure the recovery of a fully-
quadratic model of f, with high probability.

The sparsity assumption used is on the Hessian of the
function, however the coefficients a also describe the gradi-
ent and constant term which may not be sparse. This means
that there are some entries of the vector « that are not
believed to be sparse. Motivated by this fact, we investi-

gated the problem of sparse recovery for partially sparse
vectors [BSV11]. We showed that, not very surprisingly,
one should do ¢; minimization only on the entries that are
believed to be sparse.

Using the machinery described above, we developed a
model-based trust-region method based on minimum ¢;
model construction. In our experiments, this method was
able to compete with state of the art Derivative-Free meth-
ods, such as NEWUOA [Pow06], [Pow03] on the standard
problem data base CUTEr [GOTO03].

A natural question raised by this work regard the con-
vergence of methods based on this type of random models.
Recall that recovery is only ensured with high probability
at each iteration and so it will likely fail on some iterations.
This question was the target of further research [BSV13]
where we showed that, under somewhat general conditions,
the convergence guarantees for model-based trust-region
methods can be adapted to handle this uncertainty in the
model construction step. Essentially, we showed that, as
long as the probability of constructing a good model on
each iteration is over one half, these methods still converge.
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