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Resumo
Os métodos de regiões de confiança baseados em interpolação poli-

nomial constituem uma classe de algoritmos importante em Optimiza-
ção Sem Derivadas. Estes métodos dependem de aproximações locais da
função objectivo, feitas por modelos de interpolação polinomial quadráti-
ca, construídos, frequentemente, com menos pontos do que elementos das
respectivas bases.

Em muitas aplicações práticas, a contribuição das variáveis do proble-
ma para a função é tal que a correlação entre vários pares de variáveis se
revela nula ou quase nula, o que implica, no caso suave, uma estrutura
de esparsidade na matriz Hessiana.

Por outro lado, a teoria sobre recuperação esparsa desenvolvida re-
centemente na área de Compressed Sensing caracteriza condições sob as
quais um vector esparso pode ser recuperado, de modo preciso, usando
um número reduzido de leituras aleatórias. Tal recuperação é alcançada
minimizando a norma `1 de um vector sujeito às restrições impostas pelas
leituras.

Nesta dissertação, sugerimos uma abordagem para a construção de
modelos de interpolação quadrática no caso indeterminado, através da
minimização da norma `1 das entradas da matriz Hessiana do modelo.
Mostramos que tal procedimento ‘recupera’ modelos precisos quando a
matriz Hessiana da função é esparsa, recorrendo a amostragem aleatória
e utilizando consideravelmente menos pontos de amostragem do que ele-
mentos nas respectivas bases.

Este resultado serviu de motivação para o desenvolvimento de um
método de regiões de confiança baseado em interpolação polinomial, com
características mais práticas, nos quais se utilizam modelos quadráticos
(determinísticos) de norma `1 mínima. Os resultados numéricos relatados
na tese mostram um desempenho promissor desta abordagem, tanto no
caso geral como no esparso.

Palavras Chave: Optimização sem derivadas, métodos de regiões de confiança

baseados em interpolação polinomial, amostragem aleatória, recuperação esparsa,
compressed sensing, minimização `1.
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Abstract
Interpolation-based trust-region methods are an important class of

algorithms for Derivative-Free Optimization which rely on locally ap-
proximating an objective function by quadratic polynomial interpolation
models, frequently built from less points than bases components.

Often, in practical applications, the contribution of the problem vari-
ables to the function is such that several pairwise correlations between
variables is zero or negligible, implying, in the smooth case, a sparse
structure in the Hessian matrix.

On the other hand, the sparse recovery theory developed recently
in the field of Compressed Sensing characterizes conditions under which
a sparse vector can be accurately recovered from few random measure-
ments. Such a recovery is achieved by minimizing the `1-norm of a vector
subject to the measurements constraints.

We suggest an approach for building quadratic polynomial interpola-
tion models in the underdetermined case by minimizing the `1-norm of
the entries of the Hessian model. We show that this procedure recov-
ers accurate models when the function Hessian is sparse, using random
sampling and considerably less sample points than bases components.

Motivated by this result, we developed a practical interpolation-based
trust-region method using deterministic minimum `1-norm quadratic mod-
els and showed that it exhibits a promising numerical performance both
in general and in the sparse case.

Keywords: Derivative-free optimization, interpolation-based trust-region methods,

random sampling, sparse recovery, compressed sensing, `1-minimization.
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Chapter 1

Introduction

Optimization is an important field of Applied Mathematics supported by a compre-

hensive theory and offering a wide range of applications, recently enriched by the

developments in emerging areas such as Machine Learning and Compressed Sensing.

A single-objective optimization problem basically consists of minimizing or maxi-

mizing a function (usually referred to as the objective function) in a set or region

(typically called the feasible region). The mathematical or numerical difficulties of

optimization problems are related to the structure of the objective function and the

functions defining the feasible region. The least difficult cases occur when these

functions are smooth and lead to convexity and when one can access their first and

second order derivatives. However, in many real-world applications, the objective

function is calculated by some costly black-box simulation which does not provide

information about its derivatives. Although one could estimate the derivatives, e.g.,

by finite differences, such a process often renders too expensive and can produce mis-

leading results in the presence of noise. An alternative is to consider methods that

do not require derivative information, and such methods are the subject of study in

Derivative-Free Optimization (DFO).

One important class of methods in DFO are interpolation-based trust-region

methods. At each iteration, these methods build models of the objective function

that locally approximate it in some trust region centered at the current iterate point.

The model is then minimized in the trust region, and the corresponding minimizer

is, hopefully, a better candidate for being a minimizer of the objective function in

the trust region, and thus possibly taken as the next iterate. The minimization of

the model in the trust region should, however, be relatively easy. The simplest class

of models one can think of are the linear ones but they do not capture the curvature

of the objective function and thus slow down the convergence of the method. A

natural and convenient non-linear class of models are the quadratic ones, being often

efficiently used.
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Chapter 1 Introduction

In order to compute models of the objective function, one usually uses inter-

polation techniques. In a general scenario, if one wants to build a good quadratic

model, then one needs to interpolate using a sample set of cardinality approximately

equal to the square of the dimension of the domain of the objective function, which

may turn out to be too costly if the objective function is expensive to evaluate.

One alternative is to consider underdetermined models, using a sample set of much

smaller size than the one needed for determined interpolation. The main idea for

building underdetermined quadratic interpolation models is to minimize a norm of

the Hessian of the model subject to the interpolating conditions. The use of the

vector `1-norm in this procedure is the main subject of this thesis.

In most applications, the objective function is defined in a high-dimensional space

and very often pairs of variables have no correlation, meaning that the corresponding

second order derivatives are zero. Thus, one frequently deals with objective functions

for which the Hessian exhibits some level or pattern of sparsity. The main idea of our

work is to implicitly and automatically take advantage of the sparsity of the Hessian

to build accurate underdetermined models by minimizing the `1-norm of the Hessian

model coefficients.

In fact, our work is inspired from the sparse solution recovery theory developed

recently in the field of Compressed Sensing, where one characterizes conditions under

which a sparse signal can be accurately recovered from very few random measure-

ments. Such type of recovery is achieved by minimizing the `1-norm of the unknown

signal and can be accomplished in polynomial time.

The contribution of this thesis is twofold. First, we show that it is possible

to compute fully quadratic models (i.e., models with the same accuracy as second

order Taylor models) for functions with sparse Hessians using much less points than

the number required for determined quadratic interpolation, when minimizing the

`1-norm of the Hessian model coefficients to build the underdetermined quadratic

models [2]. Essentially, letting n be the dimension of the domain of the function, we

will show that one can build fully quadratic models based on random sampling by

this approach using only O(n(log n)4) sample points (instead of the O(n2) required

for the determined case) when the number of non-zero elements in the Hessian of the

function is O(n).

Second, we introduce a practical interpolation-based trust-region DFO algorithm

exhibiting a competitive numerical performance when compared to the state-of-the-
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art DFO software. We have tested our algorithm using both minimum Frobenius and

`1-norm quadratic underdetermined models, showing the ability of the `1-approach

to improve the results of the Frobenius one in the presence of some form of sparsity

in the Hessian of the objective function [2].

This thesis is organized as follows. In Chapter 2, we introduce background mate-

rial about interpolation models. We give a brief introduction to Compressed Sensing

in Chapter 3, introducing also a new concept related to partial sparse recovery (in

Section 3.2). In Chapter 4, we obtain the main result mentioned above for sparse

construction of models for functions with sparse Hessians. The proof of this result

is based on sparse bounded orthogonal expansions which are briefly described in the

beginning of this chapter. In Chapter 5, we introduce our practical interpolation-

based trust-region method and present numerical results for the two underdetermined

quadratic model variants, defined by minimum Frobenius and `1-norm minimization.

Finally, in Chapter 6 we draw some conclusions and discuss possible avenues for fu-

ture research.

The thesis makes extensive use of vector, matrix, and functional norms. We

have used `p and ‖ · ‖p for vector and matrix norms, whenever the arguments are,

respectively, vectors or matrices. The notation Bp(x;∆) will represent a closed ball

in Rn, centered at x and of radius ∆, in the `p-norm, i.e., Bp(x;∆) = {y ∈ Rn :

‖y − x‖p ≤ ∆}. For norms of functions on normed spaces L, we have used ‖ · ‖L.
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Chapter 2

Use of models in DFO trust-region
methods

2.1. Fully linear and fully quadratic models

One of the main techniques used in Derivative-Free Optimization (DFO) consists of

modeling an objective function f : D ⊂ Rn → R, replacing it locally by models that

are ‘simple’ enough to be optimized and sufficiently ‘complex’ to well approximate f .

If one was given the derivatives of the function, then one could use Taylor approxima-

tions as polynomial models for f . However, in DFO one has no access to derivatives

or accurate derivatives, and so broader classes of models must be consider. As the

simplest kind of Taylor approximations in Optimization with derivatives are linear

approximations, in DFO the simplest class of models are the so-called fully linear

models. Its definition requires f to be smooth up to the first order.

Assumption 2.1.1 Assume that f is continuously differentiable with Lipschitz con-

tinuous gradient (on an open set containing D).

One does not restrict fully linear models to linear functions, but instead consider

models that approximate f as well as the linear Taylor approximations. The follow-

ing definition reduces essentially to the first part of [13, Definition 6.1] and is stated

using balls in an arbitrary `p-norm, with p ∈ (0,+∞].

Definition 2.1.1 Let a function f : D → R satisfying Assumption 2.1.1 be given.

A set of model functions M = {m : Rn → R, m ∈ C1} is called a fully linear class

of models if the following holds:

There exist positive constants κef , κeg, and νm1 , such that for any x0 ∈ D and

∆ ∈ (0,∆max] there exists a model function m in M, with Lipschitz continuous

gradient and corresponding Lipschitz constant bounded by νm1 , and such that

• the error between the gradient of the model and the gradient of the function

5
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satisfies

‖∇f(u)−∇m(u)‖2 ≤ κeg ∆, ∀u ∈ Bp(x0;∆),

• and the error between the model and the function satisfies

|f(u)−m(u)| ≤ κef ∆2, ∀u ∈ Bp(x0;∆).

Such a model m is called fully linear on Bp(x0;∆).

Linear models such as linear Taylor approximations do not necessarily capture

the curvature information of the function they are approximating. To achieve better

practical local convergence rates in general it is essential to consider nonlinear models.

Quadratic models can be considered the simplest nonlinear models and are widely

used and studied in Optimization.

Analogously to the linear case, one can consider a wider class of models not

necessarily quadratic. For this purpose, the function f has to exhibit smoothness up

to the second order.

Assumption 2.1.2 Assume that f is twice differentiable with Lipschitz continuous

Hessian (on an open set containing D).

Below we state the first part of the definition of fully quadratic models given in

[13, Definition 6.2], again using balls in an `p-norm, with arbitrary p ∈ (0,+∞].

Definition 2.1.2 Let a function f : D → R satisfying Assumption 2.1.2 be given.

A set of model functions M = {m : Rn → R, m ∈ C2} is called a fully quadratic

class of models if the following holds:

There exist positive constants κef , κeg, κeh, and νm2 , such that for any x0 ∈ D

and ∆ ∈ (0,∆max] there exists a model function m in M, with Lipschitz continuous

Hessian and corresponding Lipschitz constant bounded by νm2 , and such that

• the error between the Hessian of the model and the Hessian of the function

satisfies

‖∇2f(u)−∇2m(u)‖2 ≤ κeh ∆, ∀u ∈ Bp(x0;∆),

• the error between the gradient of the model and the gradient of the function

satisfies

‖∇f(u)−∇m(u)‖2 ≤ κeg ∆2, ∀u ∈ Bp(x0;∆),
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• and the error between the model and the function satisfies

|f(u)−m(u)| ≤ κef ∆3, ∀u ∈ Bp(x0;∆).

Such a model m is called fully quadratic on Bp(x0;∆).

The definition of fully quadratic model, introduced in [13, Section 6.1], requires

further that a finite algorithm exists for building such models. However, a less

strict Definition 2.1.2 will be adequate to us since, in Chapter 4, we will use random

sample sets to build fully quadratic models, and for that reason we are not interested

in introducing such an additional requirement. We will return to this subject in

Chapter 5 when covering interpolation-based trust-region methods.

The next proposition justifies the fact that the fully quadratic models are gener-

alizations of Taylor approximations of order 2 (the proof is simple and omitted).

Proposition 2.1.1 Let f satisfy Assumption 2.1.2. Let T be the Taylor approxi-

mation of order 2 of f centered at x0. Then, for any ∆ ∈ (0,∆max], T is a fully

quadratic model for f on Bp(x0;∆) with νm2 = 0 and some positive constants κ′ef ,

κ′eg, and κ′eh.

2.2. Quadratic polynomial interpolation models

Now, a natural question that arises is how one can find a fully quadratic model

for f on some Bp(x0;∆). In DFO such task is usually achieved by interpolation, in

particular by quadratic polynomial interpolation. In order to present the techniques

for quadratic polynomial interpolation used in DFO, we need to first introduce some

basic facts about quadratic bases.

Let P2
n be the space of polynomials of degree less than or equal to 2 in Rn. The

dimension of this space is (n + 1)(n + 2)/2. A basis φ for P2
n will be denoted by

φ = {φι} with ι belonging to a set Υ of indices of cardinality (n+ 1)(n+ 2)/2. The

most natural basis is the one consisting of the monomials, or the canonical basis.

This basis appears naturally in Taylor models and is given by

φ̄ =
{

1, u1, ..., un,
1
2
u2

1, ...,
1
2
u2
n, u1u2, ..., un−1un

}
. (2.1)

We say that the quadratic function q interpolates f at a given point w if q(w) =

f(w). Assume that we are given a set W = {w1, ..., wk} ⊂ Rn of interpolation points.

7
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A quadratic function q that interpolates f at the points in W , written as

q(u) =
∑
ι∈Υ

αιφι(u),

must satisfy the following k interpolation conditions
∑

ι∈Υ αιφι(w
i) = f(wi),

i = 1, ..., k. These conditions form a linear system,

M(φ,W )α = f(W ), (2.2)

where M(φ,W ) is the interpolation matrix and f(W )i = f(wi), i = 1, ..., k.

2.2.1. Determined models

A sample set W is poised for (determined) quadratic interpolation if the correspond-

ing interpolation matrix M(φ,W ) is non-singular, guaranteeing that there exists one

and only one quadratic polynomial q such that q(W ) = f(W ). It is not hard to

prove that this definition of poisedness does not depend on f nor on the basis φ (see

[13, Chapter 3]). Roughly speaking, W is well poised for (determined) quadratic

interpolation if the condition number of a scaled version of M(φ̄,W ) is relatively

small (see [13, Section 3.4]). The next theorem, rigorously stated and proved in [13,

Chapter 3 and 6], justifies the use of interpolation for building quadratic models.

Theorem 2.2.1 If W ⊂ B2(x0;∆) is a well poised sample set for quadratic inter-

polation, then the quadratic function q that interpolates f in W is a fully quadratic

model for f on B2(x0;∆).

For a sample set W to be poised for quadratic interpolation, it has to be of size

(n+ 1)(n+ 2)/2, since M(φ,W ) needs to be non-singular. However, building such a

sample set costs (n+ 1)(n+ 2)/2 evaluations of the function f and that is often too

expensive in ‘real-world’ scenarios. One way of lowering this cost is by considering

smaller sample sets, which makes the linear system in (2.2) underdetermined.

2.2.2. Underdetermined interpolating models

To properly introduce the underdetermined case, we need to recall first from [13,

Section 2.3] the notions of poisedness for linear interpolation and regression. For this

purpose, let us split the basis φ̄ in (2.1) into its linear and quadratic components:

φ̄L = {1, u1, ..., un} and φ̄Q = φ̄ \ φ̄L. A sample set W with |W | = n + 1 is said

to be poised for linear interpolation if M(φ̄L,W ) is non-singular. Also, a sample

set W with |W | > n + 1 is said to be poised for linear regression when M(φ̄L,W )

8
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is full column rank. Roughly speaking, well poisedness, in both cases, means that

one has a relatively small condition number of a scaled version of M(φ̄L,W ), see [13,

Section 4.4].

Let us now consider a sample set W , with |W | ∈ [n + 2, (n + 1)(n + 2)/2], for

quadratic underdetermined interpolation. Since, often, such sample sets are poised

for linear regression, one could compute linear regression models, possibly leading

to fully linear models (see [13, Theorem 2.13]). However, the next theorem (see [13,

Theorem 5.4] for a rigorous statement and proof) will guarantee that underdeter-

mined quadratic interpolation will work, at least, as well as linear regression in this

respect.

Theorem 2.2.2 Let q be a quadratic function that interpolates f in W , where W ⊂

B2(x0;∆) is a sample set well poised for linear regression. Then, q is a fully linear

model (see Definition 2.1.1) for f on B2(x0;∆), and the error constants κef and κeg

are O(1 + ‖∇2q‖2).

Since the system (2.2) is now possibly underdetermined, one needs a criterion for

choosing the best solution amongst the possible ones. Theorem 2.2.2 suggests that

one should build underdetermined quadratic models with ‘small’ model Hessians.

Keeping this in mind, we will describe two underdetermined models that consist in

considering the best solution of (2.2) as a solution with a ‘smallest’ model Hessian.

One such underdetermined interpolation model consists of minimizing the Frobe-

nius norm of the Hessian model subject to (2.2). Recalling the split of the basis φ̄

into the linear and the quadratic parts, one can write the interpolation model as

q(u) = αTLφ̄L(u) + αTQφ̄Q(u),

where αL and αQ are the appropriate parts of the coefficient vector α. The minimum

Frobenius norm solution [13, Section 5.3] can now be defined as the solution to the

following optimization problem

min 1
2‖αQ‖

2
2

s. t. M(φ̄L,W )αL +M(φ̄Q,W )αQ = f(W ).
(2.3)

(If |W | = (n + 1)(n + 2)/2, this reduces to determined quadratic interpolation.)

Note that (2.3) is a convex quadratic program and thus equivalent to its first order

necessary conditions, which can be written in the form (λ being the corresponding

9
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multipliers) M(φ̄Q,W )M(φ̄Q,W )T M(φ̄L,W )

M(φ̄L,W )T 0

 λ

αL

 =

 f(W )

0

 (2.4)

and αQ = M(φ̄Q,W )Tλ. One says that a set W is poised for minimum Frobenius

norm interpolation if problem (2.4) has a unique solution or, equivalently, if the ma-

trix in (2.4) is non-singular. Note also that, due to the choice of φ̄, minimizing ‖αQ‖2

is equivalent to minimizing the Frobenius norm of the upper or lower triangular parts

of the Hessian of the model.

From [13, Section 5.3], if a sample set W is (well) poised for minimum Frobe-

nius norm interpolation, one automatically has that W is (well) poised for linear

regression. Thus, from Theorem 2.2.2, if W if well poised for minimum Frobenius

norm interpolation, then the minimum Frobenius norm interpolating model can be

fully linear with error constants κef and κeg of the order of O(1 + ‖∇2q‖2) — so, by

minimizing the Frobenius norm of the (upper/lower triangular part of the) Hessian

of the model, one is also lowering the error constants.

Powell [27] has rather considered the minimization of the Frobenius norm of

the difference between the model of the Hessian and a reference matrix. Conn,

Scheinberg, and Vicente [13, Section 5.3] have studied version (2.3) in detail.

The second approach to build underdetermined quadratic models, which will

be studied in Chapter 4 and is the main object of study of this thesis, consists in

considering the solution to the following optimization problem

min ‖αQ‖1

s. t. M(φ̄L,W )αL +M(φ̄Q,W )αQ = f(W ),
(2.5)

where αL, αQ, φ̄L, φ̄Q are defined as in (2.3). As we will show later, in Chapter 4, this

approach is appealing when there is no correlation between some of the variables of

the objective function f , meaning that the Hessian of f has several zero elements in its

non-diagonal part. In such functions, with sparse Hessian, we will be able to recover,

with high probability, fully quadratic models with much less than (n + 1)(n + 2)/2

random points. One other advantage of this approach is that minimizing the `1-

norm subject to linear constraints is also tractable, since (2.5) is equivalent to a

linear program (see, e.g., Section 5.3). Obviously, by minimizing the `1-norm of the

entries of the Hessian model one is also lowering its `2-norm and therefore there is

also a direct connection between posing (2.5) and aiming at Theorem 2.2.2.

10



Chapter 3

Compressed Sensing

3.1. General concepts and properties

In Discrete Signal Processing one is often interested in an inverse problem consisting

of recovering a signal (i.e., a vector) x from its discrete Fourier transform x̂ (also a

vector). If all the components of x̂ are available, then this can be easily accomplished

by the inverse Fourier transform. However, if only a portion of x̂ is known, this

problem becomes an underdetermined inverse one. The usual technique to solve this

kind of problems is to determine the corresponding best solution z such that the

corresponding ẑ coincides with the known part of x̂, whatever best solution means

in each context, and hope that it is close to, or even coincides with, x. When one

has no additional information on x, the classical approach is to find the least squares

solution z, in other words the solution with least `2-norm1. However, in many real

applications the signals in question are known to be sparse, in the sense of having

many zero components (a fact that seems to be heavily explored in modern data

compression techniques such as JPEG2000 [33]), and it turns out that the `2-norm is

not appropriate to recover sparse signals. Since we are trying to find sparse solutions

to an inverse problem, the naive approach would be to consider the sparsest solution

instead of the one with minimal energy, but this problem turns out to be highly

combinatorial and NP-Hard [14, 24] and thus a cheaper alternative is desirable.

As the discrete Fourier transform is a linear operator, it can be represented by

an N × N complex matrix F , yielding then x̂ = Fx. If only a subset Ω ⊂ [N ]

(here [N ] denotes the set {1, ..., N}) of the entries of x̂ are known, then all vectors z

such that F[Ω·]z = x̂[Ω·] are possible solutions to the inverse problem (here F[Ω·] is

the submatrix of F formed by its rows in Ω; x̂[Ω·] is the subvector of x̂ formed by

the indices in Ω). Since minimizing the number of non-zero components, i.e., its

1The `2-norm of a signal is often referred to as the energy of the signal.
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`0-norm2,

min ‖z‖0 s. t. F[Ω·]z = x̂[Ω·], (3.1)

is NP-Hard, one must consider a tractable approximation to this problem. The

approach that we will consider here is generally referred to as a convex relaxation,

since one substitutes the non-convex `0-norm by a convex underestimating function

that is close to it. Recent results suggest that `1-norm works well in practice (see [7]

for a survey on some of this material). In fact, the `1-norm is the convex relaxation

of the function g(u) = ‖u‖0 restricted to B∞(0; 1) (see [22]). Formally, this strategy

consists of solving the optimization problem

min ‖z‖1 s. t. F[Ω·]z = x̂[Ω·]. (3.2)

This optimization problem is much easier to solve than (3.1). In fact, (3.2) is equiv-

alent to a linear program (see, e.g., Section 5.3) and, therefore, it can be solved

efficiently with state of the art Linear Programming software based on the simplex

method or on interior-point methods [25].

One can now consider a much broader setting where the available information

about the sparse vector to be recovered is not necessarily of the form x̂[Ω·] = F[Ω·]x

but, more generally, of the form y = Ax, where x ∈ RN , y ∈ Rk, and A is a k ×N

matrix (here considered real) with far fewer rows than columns (k � N). A measure

of sparsity is now in order and we will say that a vector x is s−sparse if ‖x‖0 ≤ s.

One is interested in measurements matrices A such that, for every s−sparse vector

x, the information given by y = Ax is enough to recover x and, moreover, that such

recovery can be accomplished by solving the problem

min ‖z‖1 s. t. Az = y. (3.3)

The next definition will provide an alternative characterization for such matrices.

Given v ∈ RN and S ∈ [N ], vS ∈ RN is a vector defined by (vS)i = vi, i ∈ S and

(vS)i = 0, i /∈ S. Also, [N ](s) is the set of subsets of [N ] with size s.

Definition 3.1.1 (Null Space Property) The matrix A ∈ Rk×N is said to satisfy

the Null Space Property (NSP) of order s if, for every v ∈ N (A) \ {0} and for every

S ∈ [N ](s), one has

‖vS‖1 <
1
2
‖v‖1. (3.4)

2The `0-norm is defined by ‖u‖0 = |{i : ui 6= 0}| but, strictly speaking, is not a norm.
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3.1 General concepts and properties

The term Null Space Property was introduced in [8]. However, we note that the char-

acterization mentioned above and formalized in the following theorem had already

been implicitly used in [18].

Theorem 3.1.1 The matrix A satisfies the Null Space Property of order s if and

only if, for every s−sparse vector x, problem (3.3) with y = Ax has an unique

solution and it is given by x.

Proof. Let us assume first that every s−sparse vector x is the unique minimizer

of ‖z‖1 subject to Az = Ax. Then, in particular, for any v ∈ N (A) \ {0} and for

any S ∈ [N ](s), the s−sparse vector vS is the unique minimizer of ‖z‖1 subject to

Az = AvS . As −vSc is a solution of Az = AvS , where Sc = [N ] \ S, one must have

‖vSc‖1 > ‖vS‖1, and then

2‖vS‖1 < ‖vSc‖1 + ‖vS‖1 = ‖v‖1,

and thus (3.4) holds.

To show the other implication, let us now assume that A satisfies the NSP of

order s. Then, given an s−sparse vector x and a vector z not equal to x and satisfying

Ax = Az, consider v = x − z ∈ N (A) \ {0} and S = supp(x) = {i : xi 6= 0} the

support of x. One has that

‖x‖1 ≤ ‖x− zS‖1 + ‖zS‖1

= ‖vS‖1 + ‖zS‖1

< ‖vSc‖1 + ‖zS‖1

= ‖ − zSc‖1 + ‖zS‖1

= ‖z‖1,

(the strict inequality coming from (3.4)), guaranteeing that x is the unique solution

of (3.3) with y = Ax.

The NSP is difficult to be directly verified. On the other hand, the Restricted

Isometry Property (RIP), introduced in [6] under a different term, has become very

popular. The RIP is considerable more useful, although it provides only sufficient

conditions for every s−sparse vector x to be the unique solution of (3.3) when y = Ax.

An intuitive reason for being more useful, in opposition to the NSP which exhibits an

algebraic and combinatorial nature, is that the RIP is connected to arguments from

13



Chapter 3 Compressed Sensing

Analysis and Operator Theory. The recovery results that we will use later in Chap-

ter 4 in our sparse Hessian recovery setting are obtained by proving that the under-

lying matrices satisfy the RIP. We present now the definition of Restricted Isometry

Property Constant, known in the literature as the Restricted Isometry Property.

Definition 3.1.2 (Restricted Isometry Property) One says that δs > 0 is the

Restricted Isometry Property Constant, or RIP constant, of order s of the matrix

A ∈ Rk×N if δs is the smallest positive real such that:

(1− δs) ‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + δs) ‖x‖2
2 (3.5)

for every s−sparse vector x.

The following theorem (see, e.g., [29]) provides a useful sufficient condition for

successful recovery by (3.3) with y = Ax.

Theorem 3.1.2 Let A ∈ Rk×N . If

2δ2s + δs < 1, (3.6)

where δs and δ2s are the RIP constants of order, respectively, s and 2s of A, then,

for every s−sparse vector x, problem (3.3) with y = Ax has an unique solution and

it is given by x.

The following proposition will be needed to prove the theorem.

Proposition 3.1.1 Let A be a real k×N matrix with RIP constant δr and u and v

be two vectors with disjoint support such that | supp(u)|+ | supp(v)| = r. Then,

|〈Au,Av〉| ≤ δr‖u‖2‖v‖2.

Proof. First we note that the inequality (3.5) is equivalent to

∣∣‖Ax‖2
2 − ‖x‖2

2

∣∣ ≤ δr‖x‖2
2.

If supp(x) = S ∈ [N ](r), then

‖Ax‖2
2 − ‖x‖2

2 =
∥∥A[·S]x[S·]

∥∥2

2
−
∥∥x[S·]

∥∥2

2
=
〈((

A[·S]

)T
A[·S] − I

)
x[S·], x[S·]

〉
,

where A[·S] denotes the submatrix of A formed by the columns in S. Then,

∣∣‖Ax‖2
2 − ‖x‖2

2

∣∣ = ∣∣∣〈((A[·S]

)T
A[·S] − I

)
x[S·], x[S·]

〉∣∣∣ ≤ ∥∥∥AT[·S]A[·S] − I
∥∥∥

2
‖x‖2

2

14



3.1 General concepts and properties

and the above inequality is satisfied as equality for some x ∈ RN supported on S,

given the definition of the `2-norm of the real and symmetric matrix
(
A[·S]

)T
A[·S]−I.

Thus, the RIP constant of order r can be given as

δr = max
S∈[N ](r)

∥∥∥AT[·S]A[·S] − I
∥∥∥

2
. (3.7)

Now, let S1 and S2 be, respectively, the support of u and v. From the assumptions

of the proposition, |S1|+|S2| = r. It is easy to see from the disjunction of the supports

of u and v that

〈Au,Av〉 =
(
u[(S1∪S2)·]

)T (
A[·(S1∪S2)]

)T
A[·(S1∪S2)]v[(S1∪S2)·]

=
(
u[(S1∪S2)·]

)T ((
A[·(S1∪S2)]

)T
A[·(S1∪S2)] − I

)
v[(S1∪S2)·].

Thus,

〈Au,Av〉 ≤
∥∥∥AT[·(S1∪S2)]A[·(S1∪S2)] − I

∥∥∥
2
‖u‖2‖v‖2

≤ δr‖u‖2‖v‖2.

An interesting fact that can be deduced from (3.7) is that the RIP requires, in

particular, that all submatrices of A, obtained considering r columns of A, are well-

conditioned, in the sense that the condition number of
(
A[·S]

)T
A[·S] is bounded by

(1 + δr)/(1− δr).

Theorem 3.1.2 can now be proved.

Proof. (of Theorem 3.1.2) The strategy is to prove that 2δ2s + δs < 1 implies

that A satisfies the NSP of order s. Let v ∈ N (A) \ {0} be given and consider the

index set S0 of the s largest entries of v in absolute value. Recursively, consider also

the index sets Si, with i ≥ 1, given by the indices corresponding to the largest s

entries in absolute value of v in [N ] \ (S0 ∪ · · · ∪ Si−1), until this set is empty3. We

have that A(vS0) = −A(vS1 + vS2 + · · · ). From Definition 3.1.2

‖vS0‖2
2 ≤ 1

1− δs
‖A(vS0)‖2

2

=
1

1− δs
〈A(vS0), A(−vS1) +A(−vS2) + · · · 〉

=
1

1− δs

∑
i≥1

〈A(vS0), A(−vSi)〉.

From Proposition 3.1.1, with r = 2s, one has 〈A(vS0), A(−vSi)〉 ≤ δ2s‖vS0‖2‖vSi‖2.

Substituting this latter inequality in the inequality above and dividing both members
3The last index set to be chosen will, in general, have less than s elements.
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Chapter 3 Compressed Sensing

by ‖vS0‖2, one obtains

‖vS0‖2 ≤
δ2s

1− δs

∑
i≥1

‖vSi‖2. (3.8)

In addition, one also has that

|vj | ≤
1
s

∑
l∈Si−1

|vl| for all j ∈ Si, (3.9)

because the absolute values of the nonzero entries of vSi do not exceed the ones

of vSi−1 , i ≥ 1. Hence, from (3.9),

‖vSi‖2 =

∑
j∈Si

|vj |2
 1

2

≤

 s

s2

 ∑
l∈Si−1

|vl|

2
1
2

≤ 1√
s
‖vSi−1‖1,

and, using (3.8),

‖vS0‖2 ≤
δ2s

1− δs

∑
i≥1

‖vSi‖2 ≤
δ2s

1− δs

∑
i≥1

1√
s
‖vSi−1‖1 ≤

1√
s

δ2s
1− δs

‖v‖1.

Since ‖vS0‖1 ≤
√
s‖vS0‖2, one has, from (3.6),

‖vS0‖1 ≤
δ2s

1− δs
‖v‖1 <

1
2
‖v‖1. (3.10)

The proof can now be completed since the indices in S0 correspond to the largest

entries of v in absolute value. In fact from (3.10) we then have

‖vS‖1 ≤ ‖vS0‖1 <
1
2
‖v‖1,

for any S ∈ [N ](s). Thus A satisfies the NSP of order s and the proof is completed

by appealing to Theorem 3.1.1.

Note that, since δ2s < 1/3 trivially implies (together with δs ≤ δ2s) the inequal-

ity (3.6), the assumptions in Theorem 3.1.2 are often written in the literature as

δ2s < 1/3. However, we chose to present, in Theorem 3.1.2, a slightly stronger

version.

Although the RIP provides useful sufficient conditions for sparse recovery, it is

a difficult and still open problem to find deterministic matrices which satisfy such

property when the underlying system is highly underdetermined (see [32] for an

interesting discussion on this topic). Intuitively, the difficulty arises from the fact

that it is not sufficient to estimate the entries of the matrices in absolute values,

since cancellations by the different signs play a vital role. It turns out that random

matrices provide a better ground for this analysis because one can use central limit
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3.2 RIP and NSP for partial sparse recovery

type theorems and other concentration of measure results that take into account

possible cancelations.

We now state one of the classic results in Compressed Sensing. There are many

proofs of this result now available (see, e.g., [3] for a particularly interesting one).

Theorem 3.1.3 Consider the setting of Definition 3.1.2 and ε ∈ (0, 1). Let A ∈

Rk×N be now a normalized Gaussian or Bernoulli random matrix, whose entries are,

respectively Gaussian or Bernoulli jointly independent random variables with mean 0

and variance 1/k, and assume that

k ≥ Cδ−2

(
s log

(
N

s

)
+ log

(
ε−1
))

, (3.11)

for some δ > 0 and some universal4 constant C > 0. Then, with probability at least

1− ε, the RIP constant of A satisfies δs ≤ δ.

The sparse Hessian recovery result that we will derive in Section 4.3 uses a differ-

ent characterization of RIP involving bounded orthonormal expansions, which will

be introduced in Section 4.1. As we will see then, such characterization is a natural

generalization of the Discrete Fourier Transform setting mentioned in the beginning

of this chapter.

3.2. RIP and NSP for partial sparse recovery

One natural question arising from Chapter 2 (see problem (2.5)) is the existence of a

partial recovery result in the sense that sparsity is of interest for only a subset of the

vector components. Formally, one has x = (w, z)T , where w ∈ RN−r is (s−r)−sparse

and z ∈ Rr. A natural generalization of problem (3.3) to this setting of partial sparse

recovery is given by

min ‖w‖1 s. t. A

 w

z

 = y. (3.12)

We can also define a similar null space property as described in the next definition.

Definition 3.2.1 (Null Space Property for Partial Sparse Recovery) Let us

write A = (A1 A2) where A1 has the first N − r columns of A and A2 the last r. We

say that A satisfies the Null Space Property (NSP) of order s− r for Partial Sparse

4By universal constant we mean a constant independent of all the problem data, as defined in

the literature of Compressed Sensing [4, 5, 6, 17, 29].
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Chapter 3 Compressed Sensing

Recovery of size N−r with r ≤ s if, for every v ∈ RN−r \{0} such that A1v ∈ R(A2)

and every S ∈ [N − r](s−r), we have

‖vS‖1 <
1
2
‖v‖1. (3.13)

Note that when r = 0 the NSP for Partial Sparse Recovery reduces to the NSP

of Definition 3.1.1. We will be able to reconstruct the part of a vector for which

sparsity is of interest if and only if the matrix satisfies the corresponding null space

property.

Theorem 3.2.1 The matrix A satisfies the Null Space Property of order s − r for

Partial Sparse Recovery of size N − r if and only if for every x = (x1, x2)T such that

x1 ∈ RN−r is (s − r)−sparse and x2 ∈ Rr, all solutions (x̃1, x̃2)T of problem (3.12)

with A(w, z)T = A(x1, x2)T satisfy x̃1 = x1.

Proof. The proof follows the one of Theorem 3.1.1 with appropriate modifi-

cations. Let us assume first that for every vector (x1, x2)T ∈ RN , where x1 is

an (s − r)−sparse vector and x2 ∈ Rr, every minimizer (x̃1, x̃2)T of ‖w‖1 sub-

ject to A(w, z)T = A(x1, x2)T satisfies x̃1 = x1. Define A1 and A2 as in Def-

inition 3.2.1. Then, in particular, for any u1 ∈ Rr and any v 6= 0 such that

A1v ∈ R(A2) and for any S ∈ [N−r](r−s), every minimizer (x̃1, x̃2)T of ‖w‖1 subject

to A(w, z)T = A(vS , u1)T satisfies x̃1 = vS . Since A1v ∈ R(A2), there exists u2 such

that (−vSc , u2)T is a solution of A(w, z)T = A(vS , u1)T . As −vSc 6= vS , (−vSc , u2)T

is not a minimizer of ‖w‖1 subject to A(w, z)T = A(vS , u1)T , so ‖vSc‖1 > ‖vS‖1 and,

as in the proof of Theorem 3.1.1,

‖vS‖1 <
1
2
‖v‖1.

On the other hand, let us assume that A satisfies the NSP of order s − r for

Partial Sparse Recovery of size N − r (Definition 3.2.1). Then, given a vector

(x1, x2)T ∈ RN , with x1 an (s − r)−sparse vector and x2 ∈ Rr and a given vec-

tor (w, z)T ∈ RN with w 6= x1 and satisfying A(x1, x2)T = A(w, z)T , we con-

sider (v, u)T = ((x1 − w), (x2 − z))T ∈ N (A) which, together with w 6= x1, implies
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3.2 RIP and NSP for partial sparse recovery

A1v ∈ R(A2) \ {0}. Thus, setting S = supp(x), one has that

‖x1‖1 ≤ ‖x1 − wS‖1 + ‖wS‖1

= ‖vS‖1 + ‖wS‖1

< ‖vSc‖1 + ‖wS‖1

= ‖ − wSc‖1 + ‖wS‖1

= ‖w‖1,

(the strict inequality coming from (3.13)), guaranteeing that all solutions (x̃1, x̃2) of

problem (3.12) with A(w, z)T = A(x1, x2)T satisfy x̃1 = x1.

Note that Theorem 3.2.1 guarantees that, if A satisfies the NSP of order s − r

for Partial Sparse Recovery of size N − r, given a vector x = (x1, x2)T such that

x1 ∈ RN−r is (s− r)−sparse and x2 ∈ Rr, one is able to recover x1 solving problem

(3.12). This automatically implies that if A2 (as defined in Definition 3.2.1) is full

column rank, then the entire vector is recovered, since then x2 is uniquely determined

by A2x2 = A1x1 − y, where y is given by y = Ax. Such an assumption on A2 is

reasonable in the applications we will consider in Chapter 4, where r is typically

much smaller than N .

We can also define an analogous extension of the RIP to the partial sparse recov-

ery setting but, for that purpose, we will first consider an alternative way to study

partial sparsity.

For this purpose, let A = (A1 A2) as considered above, with the additional

reasonable assumption that A2 has full column rank. Let

P = I −A2

(
AT2A2

)−1
AT2 (3.14)

be the matrix representing the projection from RN onto R (A2)
⊥ . Then, the problem

of recovering (x1, x2)T , where x1 is an (s−r)−sparse vector satisfying A1x1+A2x2 =

y, can be stated as the problem of recovering an (s− r)−sparse vector x1 satisfying

(PA1)x1 = Py and then recovering x2 satisfying A2x2 = A1x1 − y. The latter

task results in the solution of a linear system of unique solution given that A2 has

full column rank and (PA1)x1 = Py. Note that the former task resumes to the

classical setting of Compressed Sensing. These considerations motivate the following

definition of RIP for partial sparse recovery.

Definition 3.2.2 (Partial RIP) We say that δrs−r > 0 is the Partial Restricted

Isometry Property Constant of order s − r for recovery of size N − r of the matrix
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Chapter 3 Compressed Sensing

A = (A1 A2) ∈ Rk×N with r ≤ s if δrs−r is the RIP constant of order s − r (see

Definition 3.1.2) of the matrix PA1, where P is given by (3.14).

Again, when r = 0 the Partial RIP reduces to the RIP of Definition 3.1.2. We

also note that, given a matrix A = (A1 A2) ∈ Rk×N with Partial RIP constants of

order s − r and 2(s − r), for recovery of size N − r, satisfying 2δr2(s−r) + δrs−r < 1,

then, by Theorem 3.1.2, we have that PA1 satisfies the NSP of order s − r. Thus,

given x = (x1, x2)T such that x1 ∈ RN−r is (s − r)−sparse and x2 ∈ Rr, x1 can be

recovered by minimizing the `1-norm of z subject to (PA1)z = PAx and, recalling

that A2 is full-column rank, x2 is uniquely determined by A2x2 = Ax − A1x1. (In

particular, this implies that A satisfies the NSP of order s − r for Partial Sparse

Recover of size N − r.)

It is still under investigation the advantages of partial recovery (i.e., of the so-

lution of problem (3.12)) over the recovery given by (3.3), in the general setting of

Compressed Sensing. In particular it is not known if results similar to Theorem 3.1.3

are possible to obtain, and if so, how would the bound (3.11) be affected — it is clear

that Theorem 3.1.3 can be directly applied, ignoring the partial sparsity structure,

but one would hope that such result could be improved using the extra information

on the structure of the sparsity. Numerical results in the setting of sparse Hessian

approximation of Chapter 4 indicate that partial recovery is worth considering.
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Chapter 4

Recovery of Sparse Hessians

4.1. Sparse recovery using orthonormal expansions

Let us start by recalling the discrete Fourier transform setting, discussed in the

beginning of Chapter 3. One can consider now the vector x̂ ∈ CN as a function

x̂ : [N ] → C given by

x̂(k) =
N∑
j=1

xjFj(k),

where Fj(k) = (1
√
N)e2πijk/N is the (j, k) entry of the discrete Fourier transform

matrix.

The problem of recovering x from partial information about x̂ (of the form x̂[Ω·]

with Ω ⊂ [N ]) can now be stated as recovering the function x̂ knowing its values

in a subset Ω ⊂ [N ], and can be accomplished by minimizing the `1-norm of the

vector x of the expansion coefficients. Keeping in mind this point of view, one natural

generalization is to consider a function g : D → R belonging to a finite dimensional

functional space (with a known basis φ = {φ1, ..., φN} of functions defined in D), so

that g can be written as

g =
N∑
j=1

αjφj ,

for some expansion coefficients α1, ..., αN . We are interested in the problem of re-

covering g from its values in some finite subset W = {w1, ..., wk} ⊂ D with k ≤ N ,

with the additional assumption that g is s−sparse, meaning that the expansion co-

efficients vector α is s−sparse. Moreover, one would expect that this task could be

accomplished by minimizing the `1-norm of α, subject to the interpolation conditions,

M(φ,W )α = g(W ),

with M(φ,W ) the interpolation matrix of elements [M(φ,W )]ij = φj(wi) (see (2.2))

and g(W ) the vector of components g(wi), i = 1, ..., k, j = 1, ..., N .

The purpose of this section is to describe such form of recovery for a certain type

of bases. Although the results of this section hold also for complex valued functions,
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Chapter 4 Recovery of Sparse Hessians

we will restrict ourselves to the real case, because the functions we are interested in

Derivative-Free Optimization are real valued. We consider a probability measure µ

defined in D (having in mind that D ⊂ Rn). The basis φ will be required to satisfy

the following orthogonality property [29].

Definition 4.1.1 (K-bounded orthonormal basis) A basis φ = {φ1, ..., φN} is

said to be an orthonormal basis satisfying the K-boundedness condition (in the do-

main D for the measure µ) if∫
D
φi(u)φj(u)dµ(u) = δij

and ‖φj‖L∞(D) ≤ K, for all i, j ∈ [N ].

As in Compressed Sensing, randomness will play a key role to provide recovery

with less points than basis coefficients as it is described in the following theorem,

whose proof [29] we omit for the sake of brevity.

Theorem 4.1.1 (Rauhut [29]) Let M(φ,W ) ∈ Rk×N be the interpolation matrix

associated with an orthonormal basis satisfying the K-boundedness condition. As-

sume that the sample set W = {w1, ..., wk} ⊂ D is chosen randomly where each

point is drawn independently according to the probability measure µ. Further assume

that

k

log k
≥ c1K

2s(log s)2 logN (4.1)

k ≥ c2K
2s log

(
1
ε

)
, (4.2)

where c1, c2 > 0 are universal constants and s ∈ [N ]. Then, with probability at least

1−ε, ε ∈ (0, 1), every s−sparse vector z is the unique solution to the `1-minimization

problem (3.3), with A = M(φ,W ) and y = g(W ), where g(u) =
∑N

j=1 zjφj(u).

This result is also true for complex valued matrices [29] but we are only interested

in the real case. The theorem is proved by showing that M(φ,W ) satisfies the RIP

(Definition 3.1.2). It is worth noting that an optimal result is obtained if one sets

ε = e
− k

c2K2s in the sense that (4.2) is satisfied as equality. Also, from (4.1) and using

log s ≥ 1, we obtain k ≥ (log k)c1K2s(log s)2 logN , so 1 − e
− k

c2K2s ≥ 1 − N−γ log k,

for the universal constant γ = c1/c2. Thus, ε can be set such that the probability of

success 1− ε satisfies

1− ε ≥ 1−N−γ log k, (4.3)
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4.2 Sparse recovery using polynomial orthonormal expansions

showing that this probability of success grows with N and k.

As it will be seen later in this chapter, we will not be able to use y = g(W ) but a

noisy version y = g(W )+ ε, with a known bound on the size of ε. In order to extend

this approach to handle noise, some modifications of problem (3.3) are needed. Since

we are trying to find a sparse solution z to the problem Az− y = ε with ε unknown,

it is natural to consider, instead of the formulation (3.3), the following optimization

problem:

min ‖z‖1 s. t. ‖Az − y‖2 ≤ η, (4.4)

where η is a positive number. We now present a recovery result, analogous to The-

orem 4.1.1, based on the formulation (4.4) and thus appropriate to the noisy case.

The proof is available in [29].

Theorem 4.1.2 (Rauhut [29]) Under the same assumptions of Theorem 4.1.1,

with probability at least 1 − ε, ε ∈ (0, 1), the following holds for every s−sparse

vector z:

Let noisy samples y = M(φ,W )z + ε with

‖ε‖2 ≤ η

be given, for any positive η, and let z∗ be the solution of the `1-minimization problem

(4.4) with A = M(φ,W ) and y = g(W ), where g(u) =
∑N

j=1 zjφj(u). Then,

‖z − z∗‖2 ≤
d√
k
η

for some universal constant d > 0.

4.2. Sparse recovery using polynomial orthonormal expansions

As mentioned in Chapter 2, we will be interested in recovering first and second order

information about an objective function f : D ⊂ Rn → R in the form of a local

quadratic model near a point x0. Therefore we will be interested in the space of

quadratic functions defined in B(x0;∆). The purpose of this section is to build

orthonormal bases for the space of quadratic functions in B(x0;∆), appropriate for

the application of Theorem 4.1.2. Since the sparsity of f will appear on its Hessian,

one needs an orthonormal basis such that this sparsity is carried to the basis. Thus,

such a basis should include multiples of the polynomials (ui − x0) (uj − x0) which, in

turn, should not appear in other elements of the basis (later we will set x0 = 0 without

23



Chapter 4 Recovery of Sparse Hessians

lost of generality). The orthonormal basis should also satisfy the K-boundedness

condition for a K not depending on the dimension of the domain of the function,

since otherwise the results from Theorems 4.1.1 and 4.1.2 would be much weaker.

(Recently, progress has been made to deal with this problem when K grows with the

dimension, where the main idea is to pre-condition the interpolation matrix, see [30]).

Moreover, the orthonormal basis should preferably be structured in a way that a fast

basis change algorithm is available to change it to φ̄ in (2.1), to accommodate the

case where one is interested in performing this operation relatively fast.

We will start by building such an orthonormal basis for the ball in the infinity

norm centered at the origin, D = B∞(0;∆) = [−∆,∆]n, considering there the

uniform measure µ normalized as a probability measure (i.e., µ ([−∆,∆]n) = 1) .

4.2.1. Orthogonal expansions on hypercubes

Let µ be the uniform probability measure on B∞(0;∆). Note that due to the features

of B∞(0;∆) = [−∆,∆]n, one has∫
[−∆,∆]n

g(ui)h(u1, ..., ui−1, ui+1, ..., un)du = (4.5)

=
∫ ∆

−∆
g(ui)dui

∫
[−∆,∆]n−1

h(u1, ..., ui−1, ui+1, ..., un)du1 · · · dui−1dui+1 · · · dun,

for appropriate integrable functions g and h.

We want to find an orthonormal basis, with respect to µ, of the second degree

polynomials on B∞(0;∆) that contains multiples of the polynomials {uiuj}i6=j . Note

that we are considering first the non-diagonal part of the Hessian since it has almost

all the entries, and, as we will see later, this approach will not jeopardize the possible

sparsity in the diagonal. We thus start our process of finding the desirable basis

by considering the n(n − 1)/2 polynomials {k2uiuj}i6=j , where k2 is a normalizing

constant. Now, note that from (4.5), for different indices i, j, l,∫
B∞(0;∆)

uiujuldµ =
∫
B∞(0;∆)

uiujdµ =
∫
B∞(0;∆)

uiu
2
jdµ = 0.

As a result, we can add to the set {k2uiuj}i6=j the polynomials {k1ui}1≤i≤n and k0,

where k1 and k0 are normalizing constants, forming a set of n(n − 1)/2 + (n + 1)

orthogonal polynomials.

It remains to find n quadratic polynomials, which will be written in the form

k3(u2
i −α1ui−α0). We will choose the constants α0 and α1 such that these polyno-

mials are orthogonal to the remaining ones. As we need orthogonality with respect
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4.2 Sparse recovery using polynomial orthonormal expansions

to a multiple of the polynomial ui,∫
B∞(0;∆)

ui(u2
i − α1ui − α0)dµ = 0,

we must have α1 = 0. Then, orthogonality with respect to a multiple of the polyno-

mial 1 means ∫
B∞(0;∆)

u2
i − α0dµ = 0.

Thus,

α0 =
1

2∆

∫ ∆

−∆
u2du =

1
2∆

(
2
3
∆3

)
=

1
3
∆2.

Finally, let us calculate the normalization constants. From∫
B∞(0;∆)

k2
0dµ = 1

we set k0 = 1. From the equivalent statements∫
B∞(0;∆)

(k1ui)
2 dµ = 1,

k2
1

|[−∆,∆]n|

∫
B∞(0;∆)

u2
i du = 1,

k2
1

(2∆)n

∫ ∆

−∆
u2du

∫
[−∆,∆]n−1

1du = 1,

k2
1

∫ ∆

−∆
u2 du

2∆
= 1,

we obtain k1 =
√

3/∆. From the equivalent statements∫
B∞(0;∆)

(k2uiuj)
2 dµ = 1,

k2
2

(∫ ∆

−∆
u2 du

2∆

)2

= 1,

we conclude that k2 = 3/∆2. And from the equivalent statements∫
B∞(0;∆)

(
k3

(
u2
i −

1
3
∆2

))2

dµ = 1,

k2
3

∫ ∆

−∆

(
u2 − 1

3
∆2

)2 1
2∆

du = 1,

we obtain

k3 =
3
√

5
2

1
∆2

We have thus arrived to the following orthonormal basis.
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Chapter 4 Recovery of Sparse Hessians

Definition 4.2.1 We define the basis ψ as the following (n+1)(n+2)/2 polynomials:

ψ0(u) = 1

ψ1,i(u) =
√

3
∆ ui

ψ2,ij(u) = 3
∆2uiuj (for i 6= j)

ψ2,i(u) = 3
√

5
2

1
∆2u

2
i −

√
5

2 ,

(4.6)

for i = 1, ..., n and j = 1, ..., n. We will now slightly abuse of notation and represent

any of the ‘indices’ (0), (1, i), (2, ij) or (2, i) by the letter ι. We will also consider

ψL the subset of ψ consisting of the polynomials with degree 0 or 1 and ψQ the ones

with degree 2, as we did in Chapter 2 for φ̄. The basis ψ satisfies the assumptions

of Theorems 4.1.1 and 4.1.2, as stated in the following theorem.

Theorem 4.2.1 The basis ψ (see Definition 4.2.1) is orthonormal and satisfies the

K-boundedness condition (see Definition 4.1.1) in D = B∞(0;∆) for the uniform

probability measure with K = 3.

Proof. From the above derivation and (4.5) one can easily show that ψ is

orthonormal in D = B∞(0;∆) with respect to the uniform probability measure.

So, the only thing left to prove is the boundedness condition with K = 3. In fact, it

is easy to check that 

‖ψ0‖L∞(B∞(0;∆)) = 1 ≤ 3

‖ψ1,i‖L∞(B∞(0;∆)) =
√

3 ≤ 3

‖ψ2,ij‖L∞(B∞(0;∆)) = 3 ≤ 3

‖ψ2,i‖L∞(B∞(0;∆)) =
√

5 ≤ 3.

(4.7)

We will later be interested in quadratic functions g =
∑

ι αιψι (see Defini-

tion 4.2.1) which are s−sparse in the coefficients that correspond to the polynomials

in ψQ, meaning that only s coefficients with respect to this polynomials are non-zero,

with s a number between 1 and n(n + 1)/2. In such cases, the correspondent vec-

tor α of coefficients is (s+n+1)−sparse. We now state a corollary of Theorem 4.1.2

for sparse recovery in the orthonormal basis ψ which will then be used in the next

section. Note that we will write the probability of success in the form 1 − n−γ log k

which can be derived from (4.3) using N = O(n2) and a simple modification of the

universal constant γ.

Corollary 4.2.1 Let M(ψ,W ) ∈ Rk×N be the matrix of entries [M(ψ,W )]ij =

ψj(wi), i = 1, ..., k, j = 1, ..., N , with N = (n+ 1)(n+ 2)/2.
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4.3 Recovery of functions with sparse Hessian using quadratic models

Assume that the sample set W = {w1, ..., wk} ⊂ B∞(0;∆) is chosen randomly

where each point is drawn independently according to the probability uniform measure

µ in B∞(0;∆). Further assume that

k

log k
≥ 9c (s+ n+ 1) (log (s+ n+ 1))2 log

(
(n+ 1)(n+ 2)

2

)
,

for some universal constant c > 0 and s ∈ {1, ..., n(n+1)/2}. Then, with probability

at least 1−n−γ log k, for some universal constant γ > 0, the following holds for every

vector z, having at most s+ n+ 1 non-zero expansion coefficients in the basis ψ:

Let noisy samples y = M(ψ,W )z + ε with

‖ε‖2 ≤ η

be given (for any positive η) and let z∗ be the solution of the `1-minimization prob-

lem (4.4) with A = M(ψ,W ). Then,

‖z − z∗‖2 ≤
d√
k
η

for some universal constant d > 0.

4.2.2. Orthogonal expansions on Euclidian balls

It would also be natural to consider the ball B(0;∆) in the classical `2-norm, but

as we will explain now it does not work as well as using an hypercube, i.e., the

`∞-norm. The first step one would have to take is to select a probability measure.

A possible choice would be the uniform measure, especially since the radial measure

brings difficulties due to the singularity at the origin. However, one problem with

the uniform measure in the `2-ball is that we no longer have a formula like (4.5),

which was heavily used for achieving the orthogonality conditions on the hypercube.

It would be possible to construct an orthogonal basis, using, e.g., Gram-Schmidt,

but it would most likely lead to some of the following 3 problems:

• The fact that the Hessian is sparse might not necessarily imply sparsity of the

expansion coefficients in that basis.

• The basis may be too unstructured to allow a fast basis change algorithm in

case we are interested in changing to another basis like φ̄ in (2.1).

• The constant K in the K-boundedness condition might grow with n.

Due to these difficulties we will restrict ourselves to the hypercube, B∞(0;∆).
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Chapter 4 Recovery of Sparse Hessians

4.3. Recovery of functions with sparse Hessian using quadratic
models

We are interested in recovering first and second order information of a twice con-

tinuously differentiable objective function f : D → R near a point x0, with sparse

Hessian at the point x0. First of all, we will need to formalize the sparsity assump-

tion to be made on f . From the motivation given in Chapter 2, sparsity is only

considered in the Hessian.

Assumption 4.3.1 (Hessian sparsity) Assume that f : D → R satisfies Assump-

tion 2.1.2 and furthermore that for every x0 ∈ D the Hessian ∇2f(x0) of f at x0

has at most s non-zero entries, where s is a number between 1 and n(n + 1)/2. If

this is the case, then f is said to satisfy Hessian sparsity of order s.

We are essentially targeting at functions where the corresponding Hessian matri-

ces are sparse in the non-diagonal parts but our results are general enough to also

consider sparsity in the diagonal Hessian components.

The information recovered will come in the form of quadratic models of f near x0

that are fully quadratic models of f (see Definition 2.1.2), thus yielding the same

accuracy of second order Taylor models. Given the result in Section 4.2, we will

consider the norm p = ∞ in Definition 2.1.2, thus considering there balls of the form

B∞(x0;∆).

To find a quadratic interpolating model in B∞(x0;∆) with the guarantee of being

fully quadratic, the number of points required is (n + 1)(n + 2)/2, but evaluating

the function at such a number of points can be too expensive. One is typically

interested, in Derivative-Free Optimization, in constructing quadratic models with

much less sample points. In particular, when f is known to have a sparse Hessian,

this information could be used in our favor to significantly reduce the cardinality of

the sample set.

Clearly, when f satisfies Hessian sparsity of order s, the second order Taylor

expansion of f at x0 is a quadratic function T with sparse Hessian (and a fully

quadratic model of f), thus writing such T as a linear combination of the canonical

basis φ̄ for the quadratic functions in Rn (see (2.1)) yields a sparse representation

in φ̄. Derivatives are not available for recovery in Derivative-Free Optimization, but

this argument still suggests to use the canonical basis φ̄. However, according to

the derivations of Sections 4.1 and 4.2, the basis φ̄ seems not to be a suitable one
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4.3 Recovery of functions with sparse Hessian using quadratic models

for theoretical sparse recovery because it is not orthogonal in an appropriate form.

Alternatively, we will consider the orthogonal basis ψ of Definition 4.2.1.

Although the basis ψ is different from the canonical one, it will serve us well as

it keeps many properties of the latter one, and can be obtained from it through a

few simple transformations. In particular, the sparsity in the Hessian of a quadratic

model q will be carried over to sparsity in the representation of q in ψ, since, due

to the particular structure of ψ, the expansion coefficients in ψQ will be multiples of

the ones in φ̄Q, thus guaranteeing that if the coefficients in the latter are s−sparse,

so are the ones in the former.

We are now able to use the material developed in Section 4.2 to guarantee the

construction, for each x0 and ∆, and with high probability, of a fully quadratic

model of f in B∞(x0;∆) using a random sample set of only O(n(log n)4) points,

instead of the classical O(n2) points. In fact, to find such a fully quadratic model

q(u) =
∑

ι α
q
ιψι(u) (if x0 = 0), one can use problem (4.4) with z = αq, A = M(ψ,W ),

and y = f(W ), written now in the form

min ‖αq‖1

s. t. ‖M(ψ,W )αq − f(W )‖2 ≤ η
(4.8)

where η is some appropriate positive quantity. Corollary 4.2.1 can then be used to

ensure, see (4.15) below, that only O(n(log n)4) points are necessary for recovery

around x0 = 0, when the number s of non-zero components of the Hessian of f at

x0 = 0 is of the order of n.

Note that we are in fact considering ‘noisy’ measurements, due to the limitations

of only being able to evaluate the function f and to recover quadratics. We will

say that a function q∗ is the solution to the minimization problem (4.8) if q∗(u) =∑
ι α

∗ψι(u), where α∗ is the minimizer of (4.8).

Since we are interested in finding a fully quadratic model q for f around x0,

we could consider a translation to reduce the problem to the previous one, writing

instead
min ‖αq‖1

s. t. ‖M(ψ,W − x0)αq − f(W − x0)‖2 ≤ η
(4.9)

Thus, without loss of generality, we can consider x0 = 0 and work with the `1-

minimization problem (4.8).

We are finally ready to present our main result.
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Chapter 4 Recovery of Sparse Hessians

Theorem 4.3.1 Let f : D → R satisfy Hessian sparsity of order s (see Assump-

tion 4.3.1). For any ∆ ∈ (0,∆max] and given k random points, W = {w1, ..., wk},

chosen jointly independent with respect to the uniform measure on B∞(0;∞), with

k

log k
≥ 9c (s+ n+ 1) log2 (s+ n+ 1) logN, (4.10)

for some universal constant c > 0, then, with probability larger than 1−n−γ log k, for

some universal constant γ > 0, the solution q∗ to the `1-minimization problem (4.8),

for some η depending on ∆3 and on the Lipschitz constants of f , is a fully quadratic

model of f (see Definition 2.1.2) on B∞(0;∆) with νm2 = 0 and constants κef , κeg,

and κeh not depending on ∆.

Corollary 4.2.1 will provide an L2 estimate of the difference between the quadratic

that one is trying to recover and the one recovered. As one wants L∞ estimations

between the quadratics values, their gradients and their Hessians to satisfy the re-

quirements of fully quadratic models, one needs first to bound these norms by the

L2 norm in the space of quadratic functions in B∞(0;∆). So, the next lemma will

be needed before proving the theorem.

Lemma 4.3.1 Let q be a quadratic function. Then

|q(u)| ≤

(
3

√
(n+ 1)(n+ 2)

2

)
‖q‖L2(B∞(0;∆),µ) (4.11)

‖∇q(u)‖2 ≤
(
3
√

5
√
n+ 1

√
n
) 1

∆
‖q‖L2(B∞(0;∆),µ) (4.12)∥∥∇2q(u)

∥∥
2
≤

(
3
√

5n
) 1

∆2
‖q‖L2(B∞(0;∆),µ) (4.13)

for all u ∈ B∞(0;∆), where ‖q‖L2(B∞(0;∆),µ) =
(∫

B∞(0;∆) |q(u)|
2 du

(2∆)n

)1/2
.

Proof. Recall the orthonormal basis ψ given in (4.6). Let α be a vector in

R(n+1)(n+2)/2 such that

q(u) =
∑
ι

αιψι(u)

(see the notation introduced in Definition 4.2.1). Since ψ is orthonormal (with respect

to µ), we have that ‖α‖2 = ‖q‖L2(B∞(0;∆),µ).

Hence, from (4.7),

‖q‖L∞(B∞(0;∆)) ≤
∑
ι

|αι|‖ψι‖L∞(B∞(0;∆)) ≤ 3‖α‖1 ≤ 3

√
(n+ 1)(n+ 2)

2
‖α‖2.

So, ‖q‖L∞(B∞(0;∆)) ≤ 3
√

(n+ 1)(n+ 2)/2 ‖q‖L2(B∞(0;∆),µ), which establishes (4.11).
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4.3 Recovery of functions with sparse Hessian using quadratic models

Also, from (4.6),∥∥∥∥ ∂q∂ui
∥∥∥∥
L∞(B∞(0;∆))

≤
∑
ι

|αι|
∥∥∥∥∂ψι∂ui

∥∥∥∥
L∞(B∞(0;∆))

= |α1,i|

∥∥∥∥∥
√

3
∆

∥∥∥∥∥
L∞(B∞(0;∆))

+
∑

j∈[n]\{i}

|α2,ij |
∥∥∥∥ 3
∆2

uj

∥∥∥∥
L∞(B∞(0;∆))

+ |α2,i|

∥∥∥∥∥3
√

5
∆2

ui

∥∥∥∥∥
L∞(B∞(0;∆))

=
√

3
∆
|α1,i|+

∑
j∈[n]\{i}

3
∆
|α2,ij |+

3
√

5
∆

|α2,i|

≤ 3
√

5
∆

∑
ι∈Gi

|αι|,

where Gi is the set of indexes (1, i), (2, i), and (2, ij) for every j ∈ [n] \ {i}, with

|Gi| = n+ 1. Then, by the known relations between the norms `1 and `2,

3
√

5
∆

∑
ι∈Gi

|αι| ≤ 3
√

5
∆

√
n+ 1

√∑
ι∈Gi

|αι|2

≤ 3
√

5
∆

√
n+ 1‖α‖2.

Since the gradient has n components one has

‖∇q(u)‖2 ≤
√
n
(
3
√

5
√
n+ 1

) 1
∆
‖q‖L2(B∞(0;∆),µ)

for all u ∈ B∞(0;∆), showing (4.12).

For the estimation of the Hessian, we need to separate the diagonal from the

non-diagonal part. For the non-diagonal part, with i 6= j,∥∥∥ ∂2q
∂ui∂uj

∥∥∥
L∞(B∞(0;∆))

≤
∑

ι |αι|
∥∥∥ ∂2ψι

∂ui∂uj

∥∥∥
L∞(B∞(0;∆))

= |α2,ij |
∥∥ 3

∆2

∥∥
L∞(B∞(0;∆))

= |α2,ij | 3
∆2 ≤ 3

∆2 ‖α‖2.

For the diagonal part, with i ∈ [n],∥∥∥ ∂2q
∂u2

i

∥∥∥
L∞(B∞(0;∆))

≤
∑

ι |αι|
∥∥∥∂2ψι

∂u2
i

∥∥∥
L∞(B∞(0;∆))

= |α2,i|
∥∥∥3

√
5

∆2

∥∥∥
L∞(B∞(0;∆))

= |α2,i|3
√

5
∆2 ≤ 3

√
5

∆2 ‖α‖2.

Since the Hessian has n2 components one has

∥∥∇2q(u)
∥∥

2
≤
∥∥∇2q(u)

∥∥
F
≤ n

(
3
√

5
)( 1

∆

)2

‖q‖L2(B∞(0;∆),µ)

for all u ∈ B∞(0;∆), which proves (4.13).
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Remark 4.3.1 Although the estimates in Lemma 4.3.1 are possibly not sharp, the

dependency of the error bounds on n cannot be eliminated. In fact, the function

χ(u) =
∑

i,j∈[n], i 6=j

√
2

n(n− 1)
3

∆2
uiuj

satisfies ‖χ‖L2(B∞(0;∆),µ) = 1 and χ(∆, ...,∆) = 3√
2

√
n(n− 1).

Proof. (of Theorem 4.3.1) Let T be the second order Taylor model of f centered

at 0,

T (u) = f(0) +∇f(0)Tu+
1
2
uT∇2f(0)u.

Since f satisfies Assumption 4.3.1 we know, by Proposition 2.1.1, that, for any

∆ ∈ (0,∆max], T is a fully quadratic model for f on B∞(0;∆) with νm2 = 0 and

some constants κ′ef , κ
′
eg, and κ′eh. Moreover, ∇2T (0) = ∇2f(0), and so T is a

quadratic function in B∞(0;∆) whose Hessian has at most s non-zero entries. Let

W = {w1, ..., wk} be a random sample set where each point is drawn independently

according to the uniform probability measure in B∞(0;∆) such that (4.10) is sat-

isfied. The polynomial T satisfies the assumptions of Corollary 4.2.1 and, for the

purpose of the proof, is the quadratic that will be approximately recovered. Now,

since T is a fully quadratic model, we have |f(wi)− T (wi)| ≤ κ′ef∆
3. Therefore

‖f(W )− T (W )‖2 ≤
√
k κ′ef∆

3. (4.14)

Note that one can only recover T approximately given that the values of T (W ) '

f(W ) are ‘noisy’.

Then, by Corollary 4.2.1, with probability larger than 1−n−γ log k, for a universal

constant γ > 0, the solution q∗ to the `1-minimization problem (4.8) with η =
√
k κ′ef∆

3 satisfies

‖α∗ − αT ‖2 ≤ d κ′ef∆
3,

where α∗ and αT are the coefficients of q∗ and T in the basis ψ given by (4.6),

respectively. Since ψ is an orthonormal basis in L2(B∞(0;∆), µ),

‖q∗ − T‖L2(B∞(0;∆),µ) = ‖α∗ − αT ‖2 ≤ d κ′ef∆
3.

So, by Lemma 4.3.1,

|q∗(u)− T (u)| ≤ d

(
3

√
(n+ 1)(n+ 2)

2

)
κ′ef∆

3,

‖∇q∗(u)−∇T (u)‖2 ≤ d
(
3
√

5
√
n+ 1

√
n
)
κ′ef∆

2,∥∥∇2q∗(u)−∇2T (u)
∥∥

2
≤ d

(
3
√

5n
)
κ′ef∆,
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4.3 Recovery of functions with sparse Hessian using quadratic models

for all u ∈ B∞(0;∆). Therefore, using (4.14), more specifically |f(wi) − T (wi)| ≤

κ′ef∆
3, one has

|q∗(u)− f(u)| ≤

(
d

(
3

√
(n+ 1)(n+ 2)

2

)
κ′ef + κ′ef

)
∆3,

‖∇q∗(u)−∇f(u)‖2 ≤
(
d
(
3
√

5
√
n+ 1

√
n
)
κ′ef + κ′eg

)
∆2,∥∥∇2q∗(u)−∇2f(u)

∥∥
2
≤

(
d
(
3
√

5n
)
κ′ef + κ′eh

)
∆,

for all u ∈ B∞(0;∆).

Since q∗ is a quadratic function, its Hessian is Lipschitz continuous with Lipschitz

constant 0, so one has that νm2 = 0. Hence q∗ is a fully quadratic model of f on

B∞(0;∆) as we wanted to prove.

Note that the result of Theorem 4.3.1 is obtained when the number k of sampling

points satisfies (see (4.10) and recall that N = O(n2))

k

log k
= O(n(log n)2 log n)

when s = O(n), i.e., when the number of non-zero elements of the Hessian of f at x0,

given by s, is of the order of n. Since k < (n+ 1)(n+ 2)/2, one obtains

k = O
(
n(log n)4

)
. (4.15)

Another interesting fact about Theorem 4.3.1 is that it is established under no

conditions on the sparsity pattern of the Hessian.

Since the sparsity of f is only in the Hessian and keeping in mind the formu-

lation (2.5) and the discussion in Section 3.2, it is desirable to remove from the

objective function in (4.8) or (4.9) the coefficients corresponding to ψL (ψ1,i for

i ∈ [n] and ψ0). The version corresponding to (4.8) would then become

min
∥∥∥αqQ∥∥∥

1

s. t.
∥∥∥M(ψL,W )αqL +M(ψQ,W )αqQ − f(W )

∥∥∥
2
≤ η.

(4.16)

Problem (4.8) and (4.16) can be solved in polynomial time (with Second-Order

Cone Programming software [1]), however they are not linear programs because

of their constraints. As one knows that the second order Taylor model T satisfies

‖T (W )− f(W )‖∞ ≤ η/
√
k (where η =

√
k κ′ef ), because T is fully quadratic for f ,

one could consider

min
∥∥∥αqQ∥∥∥

1

s. t.
∥∥∥M(ψL,W )αqL +M(ψQ,W )αqQ − f(W )

∥∥∥
∞
≤ 1√

k
η,
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Chapter 4 Recovery of Sparse Hessians

instead of (4.16), which is equivalent to a linear program. In practice, as we have seen

in Chapter 2, one imposes the interpolation constrains exactly which corresponds to

setting η = 0 in the above formulations.

Finally, independently of the form of the `1-recovery problem used, of the slight

discrepancy between the bases φ̄ and ψ, and of setting η to zero or not, one must un-

derstand that the result of Theorem 4.3.1 cannot strictly validate a practical setting

in Derivative-Free Optimization (DFO) but rather provide motivation and insight on

the use of `1-minimization to build underdetermined quadratic models for functions

with sparse Hessians. In fact, not only most of the sampling is done deterministically

in DFO (as will see in the next chapter) but, also, the constants in the bound (4.10)

(and thus in (4.15)) render impractical. In fact, the best known upper bound (see

[29]) for the universal constant c appearing in (4.10) is c < 17190, making (4.10)

only applicable if n is much greater than the values for which DFO problems are

tractable (which is of the order of a few dozens). However, such bound is, most

likely, not sharp, and, in fact, similar universal constants appearing in the setting of

Compressed Sensing are known to be much smaller.
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Chapter 5

A practical interpolation-based
trust-region method

5.1. Interpolation-based trust-region algorithms for DFO

Trust-region methods are a well known class of algorithms for the numerical solution

of nonlinear programming problems [10, 25]. In this section we will give a brief

summary of these methods when applied to the unconstrained minimization of a

smooth function f : D = Rn → R,

min
x∈Rn

f(x), (5.1)

without using the derivatives of the objective function f .

At each iteration k, these methods build a model m(xk + s) of the objective

function around the current iterate xk and assess how well such model approximates

the function in a trust region of the form Bp(xk;∆k), typically with p = 2, where ∆k

is the so-called trust-region radius. For this purpose, one has to first determine a

step sk from the solution of the trust-region subproblem

min
s∈B2(0;∆k)

mk(xk + s). (5.2)

Then, one compares the actual reduction in the objective function (aredk = f(xk)−

f(xk+sk)) to the predicted reduction in the model (predk = mk(xk)−mk(xk+sk)).

If the comparison is good (ρk = aredk/predk ≥ η1 ∈ (0, 1)), then one takes the

step and (possibly) increases the trust-region radius (successful iterations). If the

comparison is bad (ρk < η0 ∈ [0, η1]), then one rejects the step and decreases the

trust-region radius (unsuccessful iterations). New iterates might be only accepted

based on a sufficient decrease condition of the form ρk ≥ η1, in which case one

sets η0 = η1 ∈ (0, 1). In the setting of Derivative-Free Optimization (DFO) one

is interested in accepting new iterates yielding a weaker decrease (so that function

evaluations are not unnecessarily wasted), such as a simple decrease ρk ≥ η0 = 0.
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Chapter 5 A practical interpolation-based trust-region method

Then, one needs to consider an intermediate case (acceptable iterations) of the form

η1 > ρk ≥ η0, where the step is accepted and the trust-region radius is decreased.

The global convergence properties of these methods are strongly dependent from

the requirement that, as the trust region becomes smaller, the model becomes more

accurate, implying in particular that the trust-region radius is bounded away from

zero, away from stationarity. Taylor based-models, when derivatives are known,

naturally satisfy this requirement. However, in the DFO setting, some provision has

to be taken in the model and sample set management to ensure global convergence.

One provision (which have been shown recently by Scheinberg and Toint [31] to

be in fact necessary) is the inclusion of the so-called criticality (or stationarity) step,

originally introduced by Conn, Scheinberg, and Toint [11]. Essentially, this step

(see [13, Section 10.3]) ensures that when a measure of model stationarity is small,

the model and the trust region must be changed so that the model becomes fully

linear/quadratic in a trust region where the radius is of the order of the measure of

model stationarity — and thus guaranteeing that model stationarity happens due to

true function stationarity rather than due to badly poised sample sets.

The other provision is the inclusion of model-improvement iterations (see [13,

Section 10.3]) when η1 > ρk and one cannot certify that the model is fully lin-

ear/quadratic. In this case, the trust-region radius is not reduced and one calls a

model-improving algorithm to improve the well poisedness of the sample set. Model-

improving iterations ensure that acceptable and unsuccessful iterations, where the

trust-region radius is decreased, do not occur without model accuracy.

Considering these adaptations, Conn, Scheinberg, and Vicente [12] proved global

convergence for first or second order stationary points depending on the use of fully

linear or fully quadratic models, making the theory also valid under the more difficult

case where acceptance of new iterates is based on simple decrease (η0 = 0). It is also

shown in [12] that (due to the inclusion of the criticality step) the trust-region radius

converges to zero. Scheinberg and Toint [31] have recently shown global convergence

to first order stationary points for their self-correcting geometry approach which

replaces model-improving iterations by an appropriate update of the sample set using

only the new trust-region iterates.
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5.2 A practical interpolation-based trust-region method

5.2. A practical interpolation-based trust-region method

We now introduce a more practical algorithm following some of the basic ideas of the

approach introduced by Fasano, Morales, and Nocedal [19], which have also inspired

the authors in [31]. The main idea in [19] is to ignore poisedness as much as possible,

updating the sample set in successful iterations by including in it the new trust-region

iterate and removing from it an appropriate point. However, unlike [19], we discard

the sample point farthest away from the new iterate (rather than the sample point

farthest away from the current iterate).

In our approach we allow the algorithm to start with less points than those

needed to build a determined quadratic model. Whenever there are less points

than pmax = (n + 1)(n + 2)/2, we use minimum Frobenius or `1 norm interpola-

tion to build our models. This poses additional issues to those considered in [19],

where pmax points are always used. For instance, until the cardinality of the sample

set reaches pmax, we never discard points from the sample set and always add new

trial points independently of whether or not they are accepted as new iterates, in an

attempt to be as greedy as possible when taking advantage of function evaluations.

Another difference from [19] is that we discard points that are too far from

the current iterate when the trust-region radius becomes small (this is a kind of

weak criticality condition), hoping that the next iterations will refill the sample set

resulting in a similar effect as a criticality step. Thus, the cardinality of our sample

set might fall below pmin = n + 1, the number required to build fully linear models

in general. In such situations, we never reduce the trust-region radius.

Algorithm 5.2.1 (A practical DFO trust-region algorithm)

Step 0: Initialization.

Initial values. Select values for the constants εg(= 10−5) > 0, δ(= 10−5) > 0,

0 < η0(= 10−3) < η1(= 0.25) < 1, η2(= 0.75) > η1, and 0 < γ1(= 0.5) < 1 <

γ2(= 2). Set pmin = n + 1 and pmax = (n + 1)(n + 2)/2. Set the initial trust

radius ∆0(= 1) > 0.

Initial sample set. Let the starting point x0 be given. Select as an initial

sample set Y0 = {x0, x0±∆0ei, i = 1, . . . , n}, where the ei’s are the columns of

the identity matrix or order n.

Function evaluations. Evaluate the objective function at all y ∈ Y0.
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Chapter 5 A practical interpolation-based trust-region method

Set k = 0.

Step 1: Model building.

Form a quadratic model mk(xk+s) of the objective function from Yk. If |Yk| =

pmax, use determined quadratic interpolation. If |Yk| < pmax, use minimum

Frobenius (p = 2), or minimum `1 (p = 1), norm quadratic interpolation, by

solving the problem

min 1
p‖αQ‖

p
p

s. t. M(φ̄L, Yk)αL +M(φ̄Q, Yk)αQ = f(Yk),
(5.3)

where αQ and αL are, respectively, the coefficients of order 2 and order less

than 2 of the model.

Step 2: Stopping criteria.

Stop if ‖gk‖ ≤ εg or ∆k ≤ δ.

Step 3: Step calculation.

Compute a step sk by solving (approximately) the trust-region subproblem (5.2).

Step 4: Function evaluation.

Evaluate the objective function at xk + sk.

Step 5: Selection of the next iterate and trust radius update.

If ρk < η0, reject the trial step, set xk+1 = xk, and reduce the trust-region

radius, if |Yk| ≥ pmin, by setting ∆k = γ1∆k (unsuccessful iteration).

If ρk ≥ η0, accept the trial step xk+1 = xk + sk (successful and acceptable

iterations).

(Possibly decrease trust-region radius, ∆k = γ1∆k, if ρk < η1 and |Yk| ≥ pmin.)

Increase the trust-region radius, ∆k+1 = γ2∆k, if ρk > η2.

Step 6: Update the sample set.

If |Yk| = pmax, set youtk ∈ argmax‖y − xk+1‖2 (break ties arbitrarily).

If the iteration was successful:

If |Yk| = pmax, Yk+1 = Yk ∪ {xk+1} \ {youtk }.
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If |Yk| < pmax, Yk+1 = Yk ∪ {xk+1}.

If the iteration was unsuccessful:

If |Yk| = pmax, Yk+1 = Yk ∪ {xk + sk} \ {youtk } if ‖(xk + sk) − xk‖2 ≤

‖youtk − xk‖2.

If |Yk| < pmax, Yk+1 = Yk ∪ {xk + sk}.

Step 7: Model improvement.

When ∆k+1 < 10−3, discard from Yk+1 all the points outside B(xk+1; r∆k+1),

where r is chosen as the smallest number in {100, 200, 400, 800, ...} for which

at least three sample points from Yk+1 are contained in B(xk+1; r∆k+1).

Increment k by 1 and return to Step 1.

5.3. Numerical results

In this section we will describe some of the numerical experiments which have been

conducted to test the performance of Algorithm 5.2.1 implemented in MATLAB. We

were particularly interested in testing two variants of Algorithm 5.2.1 defined by the

norm used to compute the model in (5.3). The first variant makes use of the `2-norm

and leads to minimum Frobenius norm models. As we have seen in Chapter 2, the

solution of (5.3) with p = 2 is equivalent to the solution of a linear system of the

form (2.4) with W = Yk. We solved this system using SVD, regularizing extremely

small singular values after the decomposition and before performing the backward

solves, in an attempt to remediate extreme ill conditioning caused by nearly poised

sample sets. The second approach consisted in using p = 1, leading to minimum

`1-norm models and attempting to recover sparsity in the Hessian of the objective

function. To solve problem (5.3) with p = 1 we first converted it to an equivalent

linear program of the form

min
n(n+1)/2∑

i=1

(
α+
Q

)
i
+
(
α−Q

)
i

s. t. M(φ̄L, Yk)αL +M(φ̄Q, Yk)
(
α+
Q − α−Q

)
= f(Yk)

α+
Q, α

−
Q ≥ 0,

(5.4)

where α−Q and α+
Q correspond, respectively, to the negative and the positive part

of αQ (both problems are equivalent because the optimal solution of (5.4) will satisfy,
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Chapter 5 A practical interpolation-based trust-region method

for every i, (α−Q)i = 0 or (α+
Q)i = 0). In both cases, p = 1, 2, we first scaled the

corresponding problems by shifting the sample set to the origin (i.e., translating

all the sample points such that the current iterate coincides with the origin) and

then scaling the points so that they lie in B2(0; 1) with at least one scaled point at

the border of this ball. This procedure, suggested in [13, Section 6.3], leads to an

improvement of the numerical results, especially in the minimum Frobenius norm

case.

The trust-region subproblems (5.2) have been solved using the routine trust.m

from the MATLAB Optimization Toolbox which corresponds essentially to the al-

gorithm of Moré and Sorensen [23]. To solve the linear programs (5.4) we have used

the routine linprog.m from the same MATLAB toolbox. In turn, linprog.m uses

in most of the instances considered in our optimization runs the interior-point solver

lipsol.m developed by Zhang [34]. Also, we have chosen to keep the trust-region

radius constant when ρk < η1 and |Yk| ≥ pmin.

In a first set of experiments, we considered the test set of unconstrained problems

from the CUTEr collection [20] used in the paper [21], which in turn has also been

the one used before in the paper [19]. We kept the problem dimensions from [21]

but remove all problems considered there with less than 5 variables. This procedure

resulted in the test set described in Table 5.1. Most of this problems exhibit some

form of sparsity in the Hessian of the objective function like, for instance, a banded

format.

In order to present the numerical results for all problems and all methods (and

variants) considered, we have used the so-called performance profiles, as suggested

in [15]. Performance profiles are, essentially, plots of a cumulative distribution func-

tions ρ(τ) representing a performance ratio for the different solvers. Let S be the

set of solvers and P the set of problems. Let tp,s denote the performance of the

solver s ∈ S on the problem p ∈ P — lower values of tp,s indicate better performance.

This performance ratio, ρ(τ), is defined by first setting rp,s = tp,s/min{tp,s : s ∈ S},

for p ∈ P and s ∈ S. Then, one defines ρs(τ) = (1/|P|)|{p ∈ P : rp,s ≤ τ}|. Thus,

the value of ρs(1) is the probability of the solver s having a better performance over

the remaining ones. If we are only interested in determining which solver is the most

efficient (in the sense of winning the most), we compare the values of ρs(1) for all the

solvers. At the other end, solvers with the largest values of ρs(τ) for large τ are the

ones who solved the largest number of problems in P. As we are particularly inter-
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problem n DFO-TR Frob (acc = 6) DFO-TR l1 (acc = 6)

ARGLINB 10 57 59

ARGLINC 8 56 57

ARWHEAD 15 195 143

BDQRTIC 10 276 257

BIGGS6 6 485 483

BROWNAL 10 437 454

CHNROSNB 15 993 1004

CRAGGLVY 10 548 392

DIXMAANC 15 330 515

DIXMAANG 15 395 451

DIXMAANI 15 429 361

DIXMAANK 15 727 527

DIXON3DQ 10 – –

DQDRTIC 10 25 25

FREUROTH 10 249 252

GENHUMPS 5 1449 979

HILBERTA 10 8 8

MANCINO 10 106 73

MOREBV 10 111 105

OSBORNEB 11 1363 1023

PALMER1C 8 – –

PALMER3C 8 56 53

PALMER5C 6 29 29

PALMER8C 8 60 55

POWER 10 466 428

VARDIM 10 502 314

Table 5.1: The test set used in the first set of experiments and the corresponding

dimensions (first two columns). The last two columns report the total number of

function evaluations required by Algorithm 5.2.1 to achieve an accuracy of 10−6 on

the objective function value (versions DFO-TR Frob and DFO-TR l1). In both cases

no success was achieved for two of the problems.

ested in considering a wide range of values for τ , we plot the performance profiles in

a log-scale (now, the value at 0 represents the probability of winning over the other

solvers).

In the specific case of our experiments, we took the best objective function value

from [21] (obtained by applying a derivative-based Non-Linear Programming solver),

to declare whether a problem was successfully solved or not up to a certain accu-

racy 10−acc. The number tp,s is then the number of function evaluations needed to

achieve an objective function value within an absolute error of 10−acc of the best

objective function value; otherwise a failure occurs and the value of rp,s used to

build the profiles is set to a significantly large number (see [15]). Other measures of

performance could be used for tp,s but the number of function evaluations is the most

popular in DFO, being also the most appropriate for expensive objective functions.

In Figure 5.1, we plot performance profiles for the two variants of Algorithm 5.2.1
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Chapter 5 A practical interpolation-based trust-region method

Figure 5.1: Performance profiles comparing Algorithm 5.2.1 (minimum Frobenius

and `1 norm versions) and NEWUOA, on the test set of Table 5.1, for two levels of

accuracy (10−4 above and 10−6 below).

mentioned above and for the state-of-the-art solver NEWUOA [26, 28]. Follow-

ing [16], and in order to provide a fair comparison, solvers are run first with their

own default stopping criterion and if convergence can not be declared another run

is repeated with tighter tolerances. In the case of Algorithm 5.2.1, this procedure

led to εg = δ = 10−7 and a maximum number of 15000 function evaluations, and for

NEWUOA we used the data prepared for [21] also for a maximum number of 15000

function evaluations.

Note that NEWUOA requires an interpolation of fixed cardinality in the interval

[2n+ 1, (n+ 1)(n+ 2)/2] throughout the entire optimization procedure. We plotted
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5.3 Numerical results

the extreme possibilities, 2n+ 1 and (n+ 1)(n+ 2)/2, and are reporting results only

with the latter one (NEWUOA quad in the plots) since it was the one which gave the

best results. The two variants of Algorithm 5.2.1, are referred to as DFO-TR Frob

(minimum Frobenius norm models) and DFO-TR l1 (minimum `1-norm models). Two

levels of accuracy (10−4 and 10−6) are considered in Figure 5.1. One can observe

that DFO-TR l1 is the most efficient version (τ = 0 in the log scale) and basically as

robust as the DFO-TR Frob version (large values of τ), and that both versions of the

Algorithm 5.2.1 seem to outperform NEWUOA quad in efficiency and robustness.

problem n type of sparsity

ARWHEAD 20 sparse

BDQRTIC 20 banded

BDVALUE 22 banded

BRYDN3D 20 banded

CHNROSNB 20 banded

CRAGGLVY 22 banded

DQDRTIC 20 banded

EXTROSNB 20 sparse

GENHUMPS 20 sparse

LIARWHD 20 sparse

MOREBV 20 banded

POWELLSG 20 sparse

SCHMVETT 20 banded

SROSENBR 20 banded

WOODS 20 sparse

Table 5.2: The test set used in the second set of experiments. For each problem we

include the number of variables and the type of sparsity, as described in [9].

In a second set of experiments we ran Algorithm 5.2.1 for the two variants (min-

imum Frobenius and `1 norm models) on the test set of CUTEr unconstrained prob-

lems used in the paper [9]. These problems are known to have a significant amount

of sparsity in the Hessian (this information as well as the dimensions selected is de-

scribed in Table 5.2). The algorithm has been run now with εg = δ = 10−5 and a

maximum number of 5000 function evaluations. In Table 5.3, we report the number

of objective function evaluations taken as well as the final objective function value

obtained. In terms of function evaluations, one can observe that DFO-TR l1 has ap-

proximately 8/9 wins when compared to the DFO-TR Frob version, suggesting that

the former is more efficient than the latter in the presence of Hessian sparsity. An-

other interesting aspect of the DFO-TR l1 version is some apparent ability to produce

final model gradients of smaller size.
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problem DFO-TR Frob/l1 # f eval f val model ∇ norm

ARWHEAD Frob 338 3.044e-07 3.627e-03

ARWHEAD l1 218 9.168e-11 7.651e-07

BDQRTIC Frob 794 5.832e+01 5.419e+05

BDQRTIC l1 528 5.832e+01 6.770e-02

BDVALUE Frob 45 0.000e+00 0.000e+00

BDVALUE l1 45 0.000e+00 1.297e-22

BRYDN3D Frob 41 0.000e+00 0.000e+00

BRYDN3D l1 41 0.000e+00 0.000e+00

CHNROSNB Frob 2772 3.660e-03 2.025e+03

CHNROSNB l1 2438 2.888e-03 1.505e-01

CRAGGLVY Frob 1673 5.911e+00 1.693e+05

CRAGGLVY l1 958 5.910e+00 8.422e-01

DQDRTIC Frob 72 8.709e-11 6.300e+05

DQDRTIC l1 45 8.693e-13 1.926e-06

EXTROSNB Frob 1068 6.465e-02 3.886e+02

EXTROSNB l1 2070 1.003e-02 6.750e-02

GENHUMPS Frob 5000 4.534e+05 7.166e+02

GENHUMPS l1 5000 3.454e+05 3.883e+02

LIARWHD Frob 905 1.112e-12 9.716e-06

LIARWHD l1 744 4.445e-08 2.008e-02

MOREBV Frob 539 1.856e-04 2.456e-03

MOREBV l1 522 1.441e-04 3.226e-03

POWELLSG Frob 1493 1.616e-03 2.717e+01

POWELLSG l1 5000 1.733e-04 2.103e-01

SCHMVETT Frob 506 -5.400e+01 1.016e-02

SCHMVETT l1 434 -5.400e+01 7.561e-03

SROSENBR Frob 456 2.157e-03 4.857e-02

SROSENBR l1 297 1.168e-02 3.144e-01

WOODS Frob 5000 1.902e-01 8.296e-01

WOODS l1 5000 1.165e+01 1.118e+01

Table 5.3: Results obtained by DFO-TR Frob and DFO-TR l1 on the problems of

Table 5.2 (number of evaluations of the objective function, final value of the objective

function, and the norm of the final model gradient).
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Chapter 6

Conclusion

Since Compressed Sensing emerged, it has been deeply connected to Optimization,

using it as a fundamental tool (in particular, to solve `1-minimization problems). In

this thesis, however, we have shown that Compressed Sensing methodology can also

serve as a powerful tool for Optimization, in particular for Derivative-Free Optimiza-

tion (DFO). Namely, we were interested in knowing if it was possible to construct

fully quadratic models (essentially models with an accuracy as good as second order

Taylor models; see Definition 2.1.2) of a function with sparse Hessian using underde-

termined quadratic interpolation on a sample set with much less than O(n2) points.

We were able to provide, in Theorem 4.3.1, a positive answer to such a question,

by considering a random setting and proving that it is possible to construct such

models with only O(n(log n)4) points when the number of non-zero components of

the Hessian is O(n). The corresponding quadratic interpolation models were built by

minimizing the `1-norm of the entries of the Hessian model. Our approach was then

experimented on a more realistic, deterministic setting, by using these minimum `1-

norm quadratic models in a practical interpolation-based trust-region method (see

Algorithm 5.2.1). Our algorithm was able to outperform state-of-the-art DFO meth-

ods as shown in the numerical experiments reported in Section 5.3.

One possible way of solving the `1-minimization problem (2.5) in the context of

interpolation-based trust-region methods is to rewrite it as a linear program. This

approach was used to numerically test Algorithm 5.2.1 when solving problems (5.3)

for p = 1. For problems of up to n = 20, 30 variables, this way of solving the `1-

minimization problems has produced excellent results in terms of the derivative-free

solution of the original minimization problems (5.1) and is still doable in terms of

the overall CPU time.

However, for larger values of n, the repeated solution of the linear programs (5.4)

becomes significantly heavier. Besides the obvious increase in the dimension in (5.4)

and in the number of trust-region iterations, one also has to deal with ill conditioning
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due to badly poised sample sets, and it is unclear how to properly regularize. More-

over, it is not simple to warmstart these linear programs. In fact, the number of rows

in (5.4) changes frequently making it difficult to warmstart simplex-based methods,

and, on the other hand, the difficulties in warmstarting interior-point methods are

well known. An alternative is to attempt to approximately solve problem (2.5) by

solving min ‖M(φ̄,W )α − f(W )‖2 + τ‖αQ‖1 for appropriate values of τ > 0. We

did some preliminary numerical testing along this avenue but did not succeed in over

performing the linear programming approach in any respect. However, it is out of the

scope of this thesis a deeper study of the numerical solution of the `1-minimization

problem (2.5) in the context of interpolation-based trust-region methods.

Finally, we would like to stress that building accurate quadratic models for func-

tions with sparse Hessians from function samples could be of interest outside the

field of Optimization. The techniques and theory developed in Chapter 4 could also

be applicable in other settings of Approximation Theory and Numerical Analysis.
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