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1. INTRODUCTION

Let M be a compact, connected, 2d-dimensional manifold equipped with
a symplectic form, |, and with a Hermitian line bundle, L, and an almost-
complex structure, J, which are compatible with |. (By compatible we
mean that

c(L)=[|] (1.1)

and that the bilinear form

gp(v, w)=|p(Jpv, w); v, w # TpM, (1.2)

is symmetric and positive definite.) From Jp one gets a Dolbeault structure
on the exterior algebra of Tp :

�i (Tp)�C= :
i=j+k

� j, k
p .

For ! # T*p , let !0, 1 be the �0, 1-component of !, and let

#p(!): Lp � �0, i
p � Lp��0, i+1

p

be the map,

#p(!) w=!0, 1 7 w.

The compatibility condition (1.2) implies that gp and |p are the real and
imaginary parts of a Hermitian inner product; and from this inner product
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and the inner product on Lp one gets inner products on the domain and
range of #p(!). Let #p(!)* be the transpose of #p(!), and let

_p(!): Lp ��0, even
p � Lp ��0, odd

p (1.3)

be the sum of #p(!) and #p(!)*. For !{0 this map is bijective; so there
exists a first order elliptic differential operator, D, whose symbol is (1.3).
We will denote by Ind(D) the virtual vector space

kernel(D)&cokernel(D). (1.4)

Now let G be a compact connected Lie group, and let { be an effective
action of G on M which preserves | and J. We will assume that there is
an action, {1 , of G on L which is compatible with { and hence, in particular
(see [GS]) that { is a Hamiltonian action with moment map, ,: M � g*.
From {1 one gets an induced action of G on the sections of L��0, * and,
by averaging, one can make D commute with this action. Thus one gets a
representation of G on Ind(D) which, up to isomorphism, is a Hamiltonian
invariant of M, i.e., depends on ({, ,) but doesn't depend on J or D. To
compute this invariant, one can, without loss of generality, assume that G
is abelian (see appendix A) in which case this representation is completely
determined by its weight multiplicities. If M G is finite, these are given by
the Kostant multiplicity formula:

*(:, Ind(D))=� (&1)_i Ni (:) (1.5)

the left hand side being the multiplicity of the weight, :, and Ni being the
``Kostant partition function'' associated with the isotropy representation of
G at the i th fixed point.1, 2

In this article we will show that a formula of this type is true when MG

isn't finite. Let's denote the connected components of MG by Fi , i=1, . . .N,
and let NFi be the normal bundle of Fi . NFi splits into a direct sum of
vector subbundles

Ei, 1 � } } } �E i, m , (1.6)

m depending on i, such that the isotropy representation of g on Ei, j is mul-
tiplication by a fixed weight, :i, j (where :i, j {:i, k for j{k). We will

2 DA SILVA AND GUILLEMIN

1 For the definition of Ni and _i , see below.
2 This formula was discovered by Kostant [Ko] in the middle fifties in the setting of coad-

joint orbits and, in the late eighties, extended by Guillemin, Lerman and Sternberg [GLS]
to the setting above.
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polarize these weights as in [GLS] by choosing an element, v, of g such
that :i, j (v){0 for all i, j, and setting

:*

i, j==i, j:i, j (1.7)

where

=i, j=sign :i, j (v). (1.8)

(These polarized weights have the property that they all lie in the half-
space 0<(!, v).) Let ni, j be the rank of the vector bundle, Ei, j , and let

$i= :
=i, j= &1

ni, j:*

i, j and _i= :
=i, j=&1

ni, j . (1.9)

For every m-tuple of non-negative integers, k=(k1 , ..., km), let Ei (k) be the
tensor product

\}

m

j=1

Skj (E*

i, j)+�\ }
=i, j=&1

�ni, j (E*

i, j)+ (1.10)

where E*

i, j=Ei, j or E*i, j depending on whether =i, j is 1 or &1. Finally let
2i (:) be the convex polytope in Rm consisting of all m-tuples, (s1 , ..., sm),
si�0, for which

:
j

sj :*

i, j+,i=: (1.11)

where ,i is the value of , on Fi . (The fact that the :*

i, j 's are polarized
implies that 2i (:) is compact.) Our generalization of the Kostant formula
is the following:

Theorem 1. The multiplicity with which : occurs as a weight of the
representation of G on Ind(D) is equal to the sum (1.5) where

Ni (:)= :
k # 2i (:&$i)

|
Fi

Ch(Ei (k)�L) Todd(Fi) (1.12)

Todd(Fi) being the Todd class of Fi (with the almost-complex structure
induced on Fi by J) and Ch(Ei (k)�L) being the Chern character of
Ei (k)�L.

Remark. If MG is finite (1.12) reduces to

Ni (:)= :
k # 2i (:&$i)

\k1+ni, 1&1
ni, 1&1 + } } } \km+ni, m&1

ni, m&1 + . (1.13)

3KOSTANT MULTIPLICITY FORMULA
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The formula (1.12) has an interesting ``semi-classical'' limit. Replacing
the line bundle, L, by its nth tensor power, one gets, in analogy with (1.3),
an elliptic symbol

_ (n)
p (!): Ln

p ��0, even
p � Ln

p ��0, odd
p .

Let Dn be a G-invariant elliptic operator with this as its symbol and let
#=dim G.

Theorem 2. As n tends to infinity, the quantity n&(d&#)*(n:, Ind(Dn))
tends to

� (&1)_i |
2i (:)

Resi (s) ds (1.14)

where Resi (s) is the residue at z=0 of

exp \� sjzj+ |
Fi

exp[|]
ci, 1(z1) } } } ci, m(zm)

(1.15)

and ci, j (z) is the Chern polynomial of E*

i, j .

For the case of isolated fixed points (1.14) reduces to:

� (&1)_i |
2i (:)

sni, 1&1
1 } } } sni, m&1

m

(ni, 1&1)! } } } (ni, m&1)!
. (1.16)

In [GLS] it was proved that the function of : defined by (1.16) is the
Radon�Nikodym derivative

d+DH

d+Leb
(1.17)

where +DH is the Duistermaat�Heckman measure and +Leb is the standard
Lebesgue measure on g* (suitably normalized). It turns out that the same
is true for (1.14):

Theorem 3. The piece-wise polynomial function of : defined by (1.14) is
the Radon�Nikodym derivative, (1.17).

The results above are true, with small modifications, for orbifolds. In
particular in Theorem 1, the integral

|
Fi

Ch(Ei (k)�L) Todd(Fi)

4 DA SILVA AND GUILLEMIN
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is the ``Riemann�Roch'' number of the vector bundle Ei (k)�L, and the
orbifold version of Theorem 1 is true if one replaces this by the Kawasaki
Riemann�Roch number (see [Ka]).

We will conclude this summary of our results by saying a few words
about the proofs: It was shown by Cartier in [Ca] that the Kostant mul-
tiplicity formula can be derived from the Weyl character formula by
expanding the Weyl denominator into a trigonometric series and computing
the coefficient of ei:.3 In this article we will show that (1.12) can be derived,
by essentially the same argument, from the equivariant index theorem of
Atiyah�Segal�Singer for spinc-Dirac (see [AS]). Duistermaat [Du] has
recently proved that the orbifold analogue of this theorem is true4; and, as
a consequence, the proof which we give of Theorem 1 in Section 2 can
easily be adapted to the orbifold setting.5

2. THE PROOF OF THEOREM 1

The equivariant index theorem says that for x # - &1 g, x close to zero,
the trace of exp - &1 x on the virtual vector space (1.4) is equal to the
sum over the fixed point components, Fi , of local traces, /Fi (x), where

/Fi (x)=e,i (x) |
Fi

e[|] Todd(Fi)
>j det(I&exp(:i, j (x) I+0(Ei, j)))

(2.1)

0(E i, j) being the curvature form associated with a connection on Ei, j . To
simplify notation in the paragraph below we omit the subscript i 's in (2.1)
and set Fi=F, Ei, j=Ej , :i, j=:j , ,i=,F , =i, j==j , etc. If =j= &1, the j th
term in the denominator can be rewritten:

(&1)nj enj:j (x) det exp 0(Ej) det(I&e&:j (x) exp(&0(Ej)))

and if we substitute this into (2.1) and let D be the line bundle

}
=j= &1

�nj (E*

j )

5KOSTANT MULTIPLICITY FORMULA

3 This is less trivial than it sounds: There are several ways of expanding the Weyl
denominator into a trigonometric series, and for some of these expansions the coefficient of
ei: will be given by a divergent infinite sum.

4 He has, in fact, proved a somewhat deeper result of which this is a consequence: that the
``local'' version of Atiyah�Segal�Singer is true for spinc-Dirac.

5 For a more detailed account of the orbifold versions of theorems 1 to 3, see [CG].
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we can rewrite (2.1) in ``polarized'' form

(&1)_ e($+,F )(x) |
F

exp[|] exp 0(D) Todd(F )

>j det(I&e:j
*(x) exp 0(E*

j ))
.

By Theorem 1 of appendix B this can be expanded into an infinite
trigonometric series.

(&1)_ :
k

ckek1 :1
*+ } } } +km :m

*+$+,F (2.2)

summed over all non-negative integer m-tuples, k, where ck is equal to

|
F

trace {k1
(exp 0(E*

1 )) } } } trace {km(exp 0(E*

m )) exp(|+0(D)) Todd(F )

(2.3)
or

|
F

Ch(E(k)�L) Todd(F ). (2.4)

(Notice that since the :*

i are polarized, the quantity

k1 :*

1 (v)+ } } } +km:*

m (v)+$(v)+,F (v)

tends to +� as k1+ } } } +km tends to +�. Thus for any constant, C,
there are only a finite number of k's for which this quantity is less than C.)
On the other hand, for x # - &1 g the trace of exp- &1 x on the vector
space (1.4) is equal to

� *(:, Ind(D)) e:(x) (2.5)

and by comparing (2.2) with (2.5) one gets the identity (1.12).

3. THE PROOF OF THEOREM 2

By Theorem 1, *(n:, Ind(Dn)) is equal to the sum

� (&1)_i N (n)
i (n:) (3.1)

where

N (n)
i (n:)=:

k
|

Fi

Ch(Ei (k)�Ln) Todd(Fi) (3.2)

6 DA SILVA AND GUILLEMIN
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summed over all non-negative integral solutions, k, of the equation

k1 :*

i, 1+ } } } +km:*

i, m+$i+n,i=n:. (3.3)

(Notice that if we replace L by Ln we must replace | by n| and , by n,.)
As in Section 2 we will omit all subscript i 's from now on and let Fi=F,
:i, j=:j , etc. Let 2p=dim F and q=dim 2(:). By (3.2)

n&(d&#)N (n)(n:)=n&(d&#&p) :
k
|

F
n&pCh(E(k)�Ln) Todd(F )

which is equal to

n&(d&#&p) :
k
|

F
exp[|] trace {k1

(exp 0(E*
1 )�n) } } } trace {km(exp 0(E*

m )�n)

(3.4)

up to an error of order O(1�n). (Proof: With | replaced by n| in (2.3), the
integrand in this expression can be expanded into a sum of terms of the
form

n&p(n|)r 7 0i1 7 } } } 7 0is 7 0(D) l 7 T+

where 0ia is a coefficient of the curvature form, 0(E*

ia ), and T+ is the com-
ponent of degree 2+ of Todd(F ). However this term can only contribute to
the integral if r+s+l++=p in which case it can be rewritten as

|r 7 (0i1 �n) 7 } } } 7 (0is �n) 7 (0(D)�n) l 7 T+�n+.

Moreover, the terms in this sum for which l or + is positive can be dis-
carded since they contribute errors of order O(1�n).)

By Theorem 2 of Appendix B, (3.4) is equal, up to an error of order
O(1�n), to

n&q Resz=0 :
k

e (k1�n) z1+ } } } +(km�n) zm |
F

exp[|]
det(zI&0(E*

1 )) } } } det(zI&0(E*

m ))

summed over all k satisfying

k1

n
:1+ } } } +

km

n
:m+,F+

$
n

=:

7KOSTANT MULTIPLICITY FORMULA
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and as n tends to infinity this tends to the integral

|
2(:)

Resz=0 esz \|F

exp[|]
cE1

*(z1) } } } cEm
*(zm)+ ds.

4. THE PROOF OF THEOREM 3

By definition the Duistermaat�Heckman measure is the ``push-forward''
by the moment map of the symplectic measure on M, i.e., for a Borel
subset, B, of g*

+DH(B)=|
,&1(B)

|d

d!
.

The inverse Fourier transform of +DH is the function

+� DH(x)=|
M

e- &1 (,, x) |d

d!

and by the ``exact stationary phase'' formula [DH] this is equal to the sum
over fixed point components

:
i

e- &1 ,i (x) |
Fi

exp[|]

>j det(- &1 :ij (x) I+0(E ij))
(4.1)

providing :ij (x){0 for all i and j. Dropping the subscript i 's and setting
y=- &1 x, the ith summand becomes

e,F ( y) |
F

exp[|]
>j det(:j ( y) I+0(E j))

(4.2)

or

(&1)_ e,F ( y) |
F

exp[|]
>j det(:*

j ( y)+0(E*

j ))
. (4.3)

By Theorem 1 of Appendix B this is equal to

(&1)_ e,F ( y)

e[|] >j :*
j ( y)nj

:
�

k=0

1
>j :*

j ( y)kj |
F

`
j

trace {kj (&0(E*

j )). (4.4)

(Note that this sum is finite. The terms on the right are zero if 2 � nj kj>
dim F.) By the Fourier inversion formula the Radon�Nikodym derivative

8 DA SILVA AND GUILLEMIN
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(1.17) is the Fourier transform of (4.1), and we can compute this by com-
puting the Fourier transforms of the summands in (4.4) and summing over
k and the fixed point components. By formula C9 of Appendix C, the
Fourier transform of

e,F ( y)

>j :*
j ( y)kj+nj

, y=- &1 x,

is the function

fk(:)=|
2(:)

sk1+n1&1
1

(k1+n1&1)!
} } }

skm+nm&1
m

(km+nm&1)!
ds. (4.5)

Substituting this into (4.4) one gets

(&1)_ |
2(:)

ds \|F
e[|] `

j

skj+nj&1
j

(kj+nj&1)!
trace {kj (&0(E*

j ))+ . (4.6)

However, by formula B3 of Appendix B,

trace {kj (&0(E*

j ))=
1

2?i |
1j

znj+kj&1

det(zI+0(E*

j ))
(4.7)

1j being a small contour about the origin in the zj plane. If kj<0 the
integral on the right is zero, so by substituting (4.7) into (4.6) and
summing over all kj�0 (or, equivalently, over all kj+nj&1�0) one gets
for the Fourier transform of (4.4):

(&1)_ |
2(:)

ds \Resz=0 esz |
F

exp[|]
>j cE j

* (zj)+ . (4.8)

APPENDIX A

By the ``shifting trick'' (see [GS], Section 6) it suffices to compute the
multiplicity with which the trivial representation occurs in the representa-
tion of G on the space (1.4) and (as was pointed out to us by Miche� le
Vergne) this can easily be computed from the weight multiplicities of the
representation of the Cartan subgroup, T, of G on the space (1.4). More
explicitly the following result is true: Let G be a compact semi-simple Lie
group and \: G � U(Q) a representation of G on a finite dimensional
Hilbert space, Q. Restricting \ to T, Q breaks up into weight spaces

Q! , ! # ZT

9KOSTANT MULTIPLICITY FORMULA
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(ZT being the weight lattice of T ). Then

dim QG=
1

|W|
� C! dim Q! , (A1)

the C! 's being the Fourier coefficients of the function, >: # 2 (1&ei:). In
other words,

`
: # 2

(1&ei:(x))=:
!

C!ei!(x), x # t. (A2)

(Here 2 is the set of roots of G.)

Proof. (A1) can be extracted from the following result of Weyl (see
[He], page 194, Corollary 5.16).

Theorem. Let / # C�(G) be a class function (i.e., /(aga&1)=/(g) for all
a and g.) Then

|
G

/(g) dg=
1

|W| |T
%(x) /(x) dx (A3)

dg and dx being Haar measures on G and T, %(x) being the function (A2)
and |W| being the cardinality of the Weyl group.

Comments. 1. %(x) is real and non-negative, as one can see by writing
it as the product of the function

`
: # 2+

(1&ei:) (A4)

times its conjugate. In particular, %=%� , i.e., C!=C&! .

2. Let $ be half the sum of the positive roots. It is clear from (A4)
that C! {0 O !�2 lies in the convex hull of [|$, w # W].

Let's apply (A3) to the character, /, of representation \. Noting that for
x # t:

/(exp x)=� ei!(x) dim Q! (A5)

one gets, by Schur's lemma

dim QG=| /(g) dg=(/, 1) L2 (A6)

10 DA SILVA AND GUILLEMIN
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(1 being the character of the trivial representation), and hence, by (A3) and
(A4)

dim QG=
1

|W| | /(exp x) %(x) dx

=
1

|W| | \:
!

ei!(x) dim Q!+\:
!

C!e&i!(x)+ dx

=
1

|W|
� C! dim Q! .

APPENDIX B

Let V be a d-dimensional vector space over the complex numbers and let
{k be the standard representation of GL(V) on the kth symmetric product,
Sk(V).

Theorem (B1). For z # C, z large, and B # GL(V),

det(z&B)&1=z&d :
�

k=0

s&k trace {k(B) (B1)

Proof. Without loss of generality we can assume that B is diago-
nalizable with eigenvalues, *1 , ..., *d ; in which case the left hand side of
(B1) becomes

z&d `
d

j=1

(1&*j z&1)&1. (B2)

Expanding each of the factors (1&*j z&1)&1 into a geometric series one
can rewrite (B2) in the form

z&d \� z&ktk+
where

tk= :
|I |=k

*i1
1 } } } *id

d ,

and the right hand side of this expression is trace {k(B). Q.E.D

11KOSTANT MULTIPLICITY FORMULA
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Corollary. Let 1 be a contour about the origin containing the zeroes of
det(z&B). Then

1
2?i |1

zd+k&1 det(z&B)&1 dz=trace {k(B). (B3)

Remark. By analyticity, (B1) and (B3) are valid for any endomor-
phism, B: V � V; i.e., B doesn't necessarily have to be in GL(V).

From (B3) we will deduce the following useful estimate:

Theorem (B2). Let A be an endomorphism of V. Then

n&(d&1) trace {k(exp A�n)

=
1

2?i \|1
e((d+k&1)�n) z det(z&A)&1 dz+\1+O \1

n++ (B4)

the O(1�n) being uniform in k.

Proof. Without loss of generality we can assume that A is diago-
nalizable with eigenvalues +1 , ..., +d and that e+1, ..., e+d are distinct. Then by
(B3) trace {k(exp A�n) is equal to the contour integral

1
2?i |1

zd+k&1(z&e+1�n)&1 } } } (z&e+d�n)&1 dz

which, by the residue formula, is equal to

:
d

i=1

e(d+k&1) +i�n `
j{i

(e+i�n&e+j�n)&1

or

nd&1 \ :
d

i=1

e(d+k&1) +i�n `
j{i

(+i&+j)
&1+\1+O \1

n++
and, again by the residue formula, this is equal to:

nd&1 \ 1
2?i |1

e((d+k&1)�n) z `
d

i=1

(z&+i)
&1+\1+O \1

n++ .

Dividing by nd&1 and replacing > (z&+i) by det(z&A) we obtain (B4).

12 DA SILVA AND GUILLEMIN



File: 607J 157713 . By:BV . Date:26:09:96 . Time:10:08 LOP8M. V8.0. Page 01:01
Codes: 2161 Signs: 984 . Length: 45 pic 0 pts, 190 mm

APPENDIX C

Let :1 , ..., :d be vectors in Rn which are ``polarized'' in the sense that, for
some v # Rn, the inner products, (:i , v), are all positive. Given , # Rn

consider the function

ei(,, x) `
d

j=1

(:j , x)&1. (C1)

Since this function isn't well-defined on all of Rn, its Fourier transform is
also not well-defined. However, there is a unique measure, +, on Rn, with
the following two properties:

1. The inverse Fourier transform of + is equal to (C1) on the set

(:j , v){0, j=1, ..., d.

2. + is supported in the half space

(!, v)�0.

Proof. One can take for + the measure

H:1
V } } } V H:d V $, (C2)

where $, is the delta-measure at , and

H:i ( f )=|
�

0
f (t:i) dt (C3)

for continuous functions of compact support, f. Q.E.D

Another description of this measure is the following: Let

Rd
+=[(s1 , ..., sd), si�0]

be the positive orthant in Rd and let L: Rd
+ � Rn be the map

L(s1 , ..., sd)=� si:i+,.

The assumption that the :i 's are polarized implies that this is a proper
mapping so the measure

L
*

ds1 } } } dsd (C4)

is well defined.

13KOSTANT MULTIPLICITY FORMULA
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Theorem (C1). The measures (C2) and (C4) are equal.

Proof. In the special case of Rn=Rd and :i=ei (the i th standard basis
vector) this is just the Fubini theorem. Thus one can write Lebesgue
measure on Rd

+ as the convolution product

He1
V } } } V Hed .

The theorem follows from the fact that L
*

(Hei)=H:i , and the fact that, for
any pair of measures, +1 and +2 , with support in Rd

+ ,

L
*

(+1 V +2)=L
*

(+1) V L
*

(+2). Q.E.D

Corollary (C2). If the vectors, :1 , ..., :d , span Rn the measure (C2) is
absolutely continuous with respect to Lebesgue measure.

Proof. If suffices to prove that the set of critical points of the map, L,
is of measure zero, which will be the case if and only if :1 , ..., :d span Rn.

Q.E.D

Thus, if these hypotheses are satisfied, one can write the measure (C2) in
the form

f (!) d!1 } } } d!n (C5)

the function f being in L1
loc . In fact it is easy to see that, up to a scalar

multiple,6

f (!)=volume 2(!), (C6)

2(!) being the convex polytope:

{s # Rd
+ , � si:i+,=!= . (C7)

By abuse of notation we will refer to (C6) as the Fourier transform of the
function (C1). Let us compute, in the same spirit, the Fourier transform,
g, of the function

ei(,, x) `
d

j=1

(:j , x)&Nj. (C8)

14 DA SILVA AND GUILLEMIN

6 By an appropriate normalization of Lebesgue measure in the space, � si:i=0, one can
make this scalar equal to one.
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Letting N=N1+ } } } +Nd , it follows from what we've just proved that g(!)
is the volume of the polytope consisting of all N-tuples

t=(t1, 1 , ..., t1, N1
, ..., td, 1 , ..., td, Nd)

in RN
+ satisfying

:
d

i=1
\ :

Ni

j=1

ti, j+ :i+,=!.

Let's denote this polytope by 2� (!). From the mapping

RN
+ � Rd

+ , si= :
Ni

j=1

ti, j ,

one gets a fibration of 2� (!) over 2(!), the volume of the fiber over s being

sNi&1
1

(N1&1)!
} } }

sNd&1
d

(Nd&1)!
.

Hence

g(!)=volume 2� (!)=|
2(!)

sN1&1
1

(N1&1)!
} } }

sNd&1
d

(Nd&1)!
ds. (C9)
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