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Abstract. A folded symplectic structure is a closed 2-form which
is nondegenerate except on a hypersurface, and whose restriction
to that hypersurface has maximal rank. We show how a compact
manifold equipped with a folded symplectic structure can some-
times be broken apart, or “unfolded”, into honest compact sym-
plectic orbifolds.

A folded symplectic structure induces a spin-c structure which
is canonical (up to homotopy). We describe how the index of the
spin-c Dirac operator behaves with respect to unfolding.

1. Introduction

Two manifolds can be summed along diffeomorphic submanifolds,
provided that we are given an orientation-reversing isomorphism of the
normal bundles of the submanifolds. When the submanifolds are single
points, the sum is the usual connected sum.

The sum operation is more subtle in a symplectic setting. Let
(M1, ω1) and (M2, ω2) be compact symplectic manifolds of dimension
2d and with orientations induced by the symplectic forms. In [1] Audin
showed that, with some rare exceptions, there is no way of equipping
the connected sum M1#M2 with a symplectic structure that is com-
patible with ω1 and ω2. (She showed even more: there is no almost
complex structure on M1#M2 which is compatible with ω1 and ω2.)
On the other hand, connected sums of the form M = M1#M2, where
M2 has the opposite of the symplectic orientation, can sometimes be
performed symplectically; for instance, in dimension 4, M1#CP2 is the
(complex) blow-up of M1 at a point.
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2 UNFOLDING

Grossberg and Karshon proved that M = M1#M2 can be equipped
with a spin-c structure that is compatible with ω1 in the usual sense
and with ω2 under the negative orientation (see [6]). One of the goals
of this paper is to show that the Grossberg-Karshon result is related to
the existence of a certain type of presymplectic structure on M which
is compatible with the ωi’s.

A folded symplectic form1 on a compact 2d-dimensional mani-
fold, M , is a closed two-form, ω, which is symplectic except along a
hypersurface, Z, (called the folding hypersurface) and, for p ∈ Z, is
equal to the two-form

(1.1) x1dx1 ∧ dy1 + dx2 ∧ dy2 + . . .+ dxd ∧ dyd
in an appropriate Darboux coordinate system. (Thus, in particular, Z
is defined in this coordinate system by the equation x1 = 0.) The basic
facts about folded symplectic forms (most of which are well-known) are
collected in §2; and in §3 we will give some examples of these forms, the
simplest of which exist on the even-dimensional spheres; the question
of which manifolds admit folded symplectic structures will be tackled
in future work.

In §5 we will prove that if M is oriented and the cohomology class
[ω] is the image in H2(M ; R) of an integer cohomology class, there is a
natural way of associating with ω a spin-c structure. More explicitly,
in §4 we will prove the following: Let M+ (respectively, M−) be the
set of points where ωd agrees (resp., disagrees) with the orientation of
M . Let J0 be a complex structure on the tangent bundle T (M \ Z)
(i.e. an almost complex structure on M \ Z) which is compatible with
ω. Let U be a neighborhood of Z. Then the complex structure

(1.2)

{
J0 ⊕ (rotation by 90o) on M+ \ U
J0 ⊕ (rotation by− 90o) on M− \ U .

on the vector bundle

T (M \ U)⊕ R2 ,

extends over M . In other words, there exists a complex structure, J ,
on the real vector bundle TM ⊕ R2, whose restriction to M \ U is
the complex structure (1.2). Of course, the complex structures in R2

induced by rotations by +90o or −90o are isomorphic, hence indistin-
guishable. By using these signs in formula (1.2) we mean to stress that
the restriction of J to the trivial R2-bundle over M cannot induce a

1Many “folded” symplectic forms arise as pull-backs of symplectic forms under
maps with only folding singularities [4, 15].
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complex structure on this bundle since it matches opposite orientations
over the subsets M+ \ U and M− \ U .

It is not hard to see that ω and J give rise in a natural way to a spin-
c structure on M (see §5 for details) and in §6 we will show that the
Grossberg-Karshon result can be regarded as a consequence of this fact
by proving that a connected sum, M1#M2, of two symplectic manifolds
possesses a folded symplectic structure.

The folding hypersurface, Z, in the definition above is equipped with
a canonical null-foliation whose leaves are one-dimensional. In §7 we
will prove the result below (which is one of the two main results of this
paper):

If the null-foliation on Z is fibrating, then the folded
symplectic structure on M can be “unfolded”.

By this we mean the following: Let W 0
i , i = 1, . . . , N , be the con-

nected components of M \ Z and let Wi be the closure of W 0
i . From

Wi one gets a topological space, Mi, by identifying points, p1 and p2,
on the boundary of Wi if p1 and p2 are on the same leaf of the null-
foliation. We will prove that Mi is a compact manifold and that the
folded symplectic structure on M induces a symplectic structure (of
the usual kind) on Mi. The “unfolding” of M is, by definition, the
operation M  tMi. For example, let M be the connected sum of
compact connected 2d-dimensional symplectic manifolds,

(1.3) M = M1#M2 .

Then by unfolding one recovers M1 and M2.

Coming back to the spin-c structure on M which we described above,
let ∂/ be the spin-c Dirac operator. Since the index of this operator only
depends on ω, we will denote it by Ind(M). The second main result of
this paper is the following formula for this index:

(1.4) Ind(M) =
∑

(−1)σi

∫
Mi

exp(ωi) Todd(Mi) ,

where we orient the Mi’s symplectically, σi = 0 if the orientation in-
duced on Mi by M agrees with its symplectic orientation and σi = 1 if
not. For example, for the connected sum (1.3), this formula reduces to

Ind(M) = Ind(M1)− Ind(M2) .
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We will prove the formula above in §8. For the connected sum (1.3), an
equivariant version of this formula is closely related to the equivariant
index theorem proved by Grossberg and Karshon in [6, §12].

Acknowledgements: Cannas, Karshon and Tolman have recently
proved in [2] an analogue for spin-c manifolds of the “quantization
commutes with reduction” theorems of [3], [7], [13, 14] and [16, 17], and
there is some overlap between their results and the results reported on
here. The proof of (1.4) is partly modeled on Meinrenken’s proof of a
similar result in [14]. We are grateful to the referee who made several
corrections and pertinent remarks, and to Allen Knutson who alerted
us to a serious sign mistake on an earlier version of this paper. Finally,
we are indebted to Michèle Vergne for her kindness to us during our
stay at the École Normale in June of 1995 (during which the first draft
of this paper was written).

2. Folded Symplectic Structures

Let M be a 2d-dimensional manifold and ω ∈ Ω2(M) a closed two-
form. Let Z be the set of points where ωd is zero. If ωd intersects
the zero section of ∧2dT ∗M tranversally, Z will be a codimension one
submanifold of M . Let us assume that ωd has this property. We denote
by ι the inclusion map of Z into M .

Definition. If the form (ι∗ω)d−1 ∈ Ω2d−2(Z) is non-vanishing, ω is
said to be a folded symplectic form and Z its folding hypersur-
face.

For a proof that this definition is equivalent to the definition in §1,
see the comments at the end of this section or see [11, p.157].

It is clear that the property of being folded is an open property: if
ω0 is folded and ω is a closed two-form which is C1-close to ω0, then
ω is also folded. However, this property is far from being generic: In
dimension 4 it is generically true that ω2 is transverse to zero, but not
that ι∗ω is non-vanishing; in dimensions 6 and higher even the first
assertion is false. (In particular, the set Z is not a manifold generically
except in dimension 4. See [11] for a discussion of generic singularities
of closed two-forms.)

Suppose now that M is oriented. Then Z acquires from M a canon-
ical orientation in the following manner: Let M+ be the set of points,
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p, where ωdp > 0 and M− the set where ωdp < 0. Then

(2.1) M \ Z = M+ ∪M−

and by the tubular neighborhood theorem one gets from (2.1) an ori-
entation of the normal bundle of Z and hence of Z itself.

Let E → Z be the rank 2 vector bundle whose fiber at z is the
annihilator of ω in TzM . From the (2d − 2)-form ωd−1 one gets an
orientation of the quotient bundle (ι∗TM)/E, and hence, from the ori-
entation of TM , an orientation of E. Moreover, from the orientations
of E and of TZ, one gets an orientation of the intersection of these two
bundles, which is a rank-one subbundle, F , of TZ. Let v be an oriented
non-vanishing section of F (i.e. a vector field with the property that
vz ∈ F+

z for all z ∈ Z) and let α ∈ Ω1(Z) be a one-form for which
ıvα = 1. We will need in §8 the following global variant of (1.1).

Theorem 1. Suppose that Z is compact. Then there exists a neigh-
borhood, U , of Z and an orientation preserving diffeomorphism,

(2.2) ϕ : Z × (−ε, ε) −→ U ,

such that

(2.3) ϕ ◦ ι0 = ι

and

(2.4) ϕ∗ω = π∗ι∗ω + d(t2π∗α) ,

ι0 being the inclusion map z 7→ (z, 0), π the projection (z, t) 7→ z, and
t the coordinate function on (−ε, ε).

Proof. Let w be a vector field on M such that, for all z ∈ Z, (wz, vz)
is an oriented basis of Ez, and for the moment let the map ϕ in (2.2)
be the map which takes lines (z, t), −ε < t < ε onto the integral
curves of w. If we require that (2.3) hold, this ϕ will be unique. (It
will not be the ϕ that we want, but will turn out to be a good first
approximation to it.) Via ϕ we can identify U with Z × (−ε, ε) and w
with the vector field ∂

∂t
. Moreover, we can extend v to all of U via the

inclusion TzZ ↪→ T(z,t)U . Let π as above be the projection of U onto
Z which maps (z, t) to z. We will prove the theorem by applying the
“Moser trick” to the forms

(2.5) ω0 := π∗ι∗ω + d(t2π∗α)

and

(2.6) ω1 := ω .
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For this we will need the following “folding” criterion:

Lemma 2.7. Let µ be a closed two-form on U . Then the form π∗ι∗ω+
tµ is a folded symplectic form on a possibly smaller open neighborhood,
U1 = Z × (−ε, ε), of Z if and only if µ(w, v) is nonvanishing on Z.

Proof of Lemma 2.7. This follows from the fact that the d-th
exterior power of this form is

(d− 1)t(π∗ι∗ω)d−1 ∧ µ+O(t2) ,

so this form is folded if and only if (π∗ι∗ω)d−1 ∧ µ is nonvanishing on
Z. However, the annihilator of π∗ι∗ωz in TzU is spanned by wz and vz;
so the nonvanishing of this form is equivalent to the nonvanishing of
µ(w, v). �

It is clear from (2.5) that ω0 is of the form above, i.e.

ω0 = π∗ι∗ω + tµ0

where

(2.8) µ0 := 2dtπ∗α+ td(π∗α) ;

and the same is also true of ω. To see this note that, since w = ∂
∂t

,
ıwπ

∗ι∗ω = 0. On the other hand, ıwω = 0 on Z, so ω−π∗ι∗ω is zero at
all points of Z. Since Z is defined by the equation t = 0, we conclude
that ω − π∗ι∗ω = tµ1, for µ1 ∈ Ω2(U).

By (2.8), µ0(w, v) = 2 on Z; so, by Lemma 2.7, ω0 is folded. More-
over, since ω is folded, µ1(w, v) is nonvanishing on Z. In fact, because
of the orientation conventions discussed above, µ1(w, v) is positive on
Z.

We will next show that ω0 can be deformed into ω1 by a “folded”
homotopy:

Lemma 2.9. For 0 ≤ s ≤ 1, the form

ωs := (1− s)ω0 + sω1

is folded (with folding hypersurface Z).

Proof of Lemma 2.9. ωs is of the form ωs = π∗ι∗ω + tµs where
µs = (1 − s)µ0 + sµ1. Hence, the function µs(w, v) is positive on Z,
and so, by Lemma 2.7, ωs is folded. �

Therefore, ıvωs and ıwωs vanish on Z, and the following is an easy
corollary of Lemma 2.9.
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Lemma 2.10. Given ν ∈ Ω1(U), one can find a vector field, u, with
the property

ıuωs = ν

if and only if ıvν and ıwν vanish on Z.

Remark. Since ωs is symplectic on the complement of Z, this vector
field, if it exists, is unique.

To prove Theorem 1, recall that by the “Moser trick” the proof can
be reduced to finding a vector field, vs, on U which vanishes on Z,
depends smoothly on s, and satisfies

(2.11) Dvsωs = − ·
ωs = ω0 − ω1 .

Indeed, if such a vector field exists, one can integrate the equation

dϕs
ds

◦ ϕ−1
s = vs

with ϕ0 equal to the identity and ϕs ◦ ι0 = ι0, to get a diffeomorphism,
ϕs, satisfying ϕ∗sωs = ω0. To solve (2.11), one observes that ω0 − ω1 is
closed and vanishes on Z. Therefore, since Z is a deformation retract of
U , there exists a one-form, ν, which satisfies dν = ω0−ω1 and vanishes
to the second order on Z. Hence, (2.11) is equivalent to

dıvsωs = dν ,

so it suffices to solve

(2.12) ıvsωs = ν

and, by Lemma 2.10, there exists a unique vs satisfying (2.12) (and vs
has to vanish to first order on Z.) �

Remarks.

(1) From Theorem 1 and the classical Darboux theorem, one gets
another proof of (1.1). (By the classical Darboux theorem,
i∗ω = dx2dy2 + . . .+dxddyd. Now apply Theorem 1 with x1 = t
and α = dy1.)

(2) Let G be a compact Lie group. If G acts on M and this action
preserves ω, one can arrange for α to be G-invariant and the
map (2.2) to be G-equivariant.

(3) If Z is not compact, the assertion of Theorem 1 is still true
provided we replace ε by an appropriate continuous function
ε : Z → R+.
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3. Examples

(1) If we regard the even-dimensional sphere S2d as the set of unit
vectors in R2d+1, we obtain a folded symplectic form on S2d by
restricting to S2d the form

dx1 ∧ dy1 + . . .+ dxd ∧ dyd .
The folding hypersurface is the equator S2d ∩ {xd+1 = 0}.

Alternatively, this folded symplectic form on S2d may be ob-
tained by doubling a 2d-dimensional disk equipped with the
standard symplectic form, dx1∧dy1 + . . .+dxd∧dyd, i.e. gluing
two 2d-dimensional disks equipped with standard symplectic
forms along their sphere boundaries, after reversing the orien-
tation on one of the disks.

Yet a third way to construct this folded symplectic structure
on S2d justifies the name “folded”. Consider the folding map
from the sphere to the disk,

π : S2d −→ D2d ,

folding along the equator. Let ν = dx1 ∧ dy1 + . . . + dxd ∧ dyd
be the standard symplectic form on D2d. Then ω = π∗ν is a
folded symplectic form on S2d.

(2) Let (M1, ω1) and (M2, ω2) be compact symplectic manifolds of
dimension 2d and with orientations induced by the symplectic
forms. Let

M = M1#M2

be the connected sum, where M2 has the opposite of the sym-
plectic orientation. Then M has a folded symplectic form which
coincides with the ωi’s away from a tubular neighborhood of
the surgery. To see this, concentrate on the small annuli Ai '
S2d−1 × I, i = 1, 2, where the surgery occurs. The symplec-
tic form ωi restricted to Ai is diffeomorphic to d(ri ∧ π∗α),
i = 1, 2, where ri is a coordinate on I, π is the projection
S2d−1 × I → S2d−1 and α is the standard contact one-form on
S2d−1. Choose coordinates t1, t2 such that ri = 1+ t2i for ti > ε.
Finally, extend ω across the connected sum by defining it to be

ω = d[(1 + t2) ∧ π∗α] ,

where t = −t1 on the interval t < −ε and t = t2 on the interval
t > ε. The folding hypersurface of ω is given by t = 0. For a
generalization of this folding construction, see §6.
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(3) The product of any contact manifold with the circle admits a
folded symplectic form. This can be seen by doubling a sym-
plectization of the contact manifold.

In particular, since Martinet [10] proved that any orientable
3-manifold admits a contact form, we conclude that the product
of any orientable 3-manifold with the circle admits a folded
symplectic form.

More generally, given a contactomorphism ψ of a contact
manifold X, consider the mapping torus Mψ = X × [0, 1]/ ∼,
where (p, 0) ∼ (ψ(p), 1). The symplectization X × [0, 1] has a
ω-concave boundary, say X × {0}, and a ω-convex boundary,
say X×{1}. There is a folded symplectic form on Mψ obtained

by gluing X× [0, 1] to X × [0, 1] under the identification by ψ of
the ω-convex boundaries and the identity identification of the
ω-concave boundaries.

(4) The notion of folded symplectic form holds for arbitrary even-
dimensional manifolds, not necessarily orientable. For instance,
the folded symplectic form on S2d which we first described is
invariant under the involution x 7→ −x, and hence induces a
folded symplectic form on the real even-dimensional projective
spaces, RP2d.

It follows that the real blow-up of a folded symplectic man-
ifold at a point (away from the folding hypersurface) admits a
folded symplectic form. In fact, the real blow-up at a point of
a 2d-dimensional manifold M amounts to taking the connected
sum of M with RP2d.

4. Stable Complex Structures

Let U be a neighborhood of the folding hypersurface in M as in
Theorem 1. Since ω is symplectic on M \ U , there exists an almost
complex structure, J0, on M \ U which is compatible with ω, in the
sense that, for all p ∈M \ U , the map

r, s ∈ TpM 7−→ ωp(Jr, s)

is a positive definite symmetric bilinear form. It is clear from the
orientation considerations that J0 cannot be extended to all of M ;
however, we will prove that one can add a trivial R2 bundle to TM
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and extend the complex structure

(4.1)

{
J0 ⊕ (rotation by 90o) on M+ \ U
J0 ⊕ (rotation by− 90o) on M− \ U .

to all of M :

Theorem 2. There exists a complex structure, J , on the real (2d+2)-
dimensional vector bundle TM ⊕ R2, and a C-linear isomorphism

(TM ⊕ R2)M\U ' T (M \ U)⊕ C .

Moreover, TM ⊕R2 has a structure of symplectic vector bundle which
is canonical up to homotopy, and the homotopy class of J is unique
provided J is compatible with the symplectic structure on TM ⊕ R2.

Proof. Let E be the vector subbundle of TU spanned by the vector
fields w and v, as in §2. This is a symplectic subbundle of TU , and
we will denote by E⊥ its symplectic orthocomplement. Without loss
of generality, one can assume that J0 extends over the set |t| ≥ ε

2
, and,

on this set, is the sum of complex structures on E and E⊥. One can
also assume that the complex structure on E⊥ extends over all of U
and that on the set t ≤ − ε

2
the complex structure on E is given by

(4.2) J0w = −v and J0v = w

and on the set t ≥ ε
2

by

(4.3) J0w = v and J0v = −w .

Consider, for 0 ≤ θ ≤ π, the 4× 4 matrix:

Aθ :=


0 cos θ 0 sin θ

− cos θ 0 sin θ 0
0 − sin θ 0 cos θ

− sin θ 0 − cos θ 0

 .

It is easy to check that A2
θ = −Id, Atθ = −Aθ and A0 = −Aπ. Let

Bt = Aθ where θ = π
ε
t + π

2
. By (4.2) and (4.3), Bt defines a complex

structure on the bundle E ⊕R2 over the set |t| ≤ ε
2
, which agrees with

the complex structure (4.1) on |t| = ε
2

provided one identifies R2 with
C over t ≤ − ε

2
by the map (x, y) 7→ x+ iy, and over t ≥ ε

2
by the map

(x, y) 7→ x − iy. (This structure can be made to depend smoothly on
t by modifying the parametrization slightly in the vicinity of t = ± ε

2
.)

Since the complex structure on E⊥ is already defined on all of U , this
concludes the proof of the first assertion of Theorem 2.
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Let Ω0 be the standard symplectic structure on R2. Over M \U , the
canonical symplectic structure, Ω, on TM ⊕ R2 is

Ω =

{
ω ⊕ Ω0 on M+ \ U
ω ⊕ (−Ω0) on M− \ U .

On U consider the splitting (canonically unique up to homotopy)

TU ⊕ R2 = E⊥ ⊕ E ⊕ R2 .

On E⊥, the form Ω is the restriction of ω, and E⊥ is Ω-orthogonal to
E ⊕ R2. Let (w, v, e, f) be an oriented orthonormal basis of E ⊕ R2

with respect to a metric 〈·, ·〉. We can assume that for t ≤ − ε
2

the
canonical symplectic structure on E⊕R2 is given relative to this basis
by

Ω(a, b) = 〈A0a, b〉 ,
and on the set t ≥ ε

2
by

Ω(a, b) = 〈Aπa, b〉 ,

where Aθ is as above. When |t| ≤ ε
2
, we declare the canonical symplec-

tic structure on E ⊕ R2 to be given by

Ω(a, b) = 〈Bta, b〉 ,

where Bt = Aθ for θ = π
ε
t+π

2
. (In order to have smoothness in t we need

to modify the parametrization slightly in the vicinity of t = ± ε
2
.) This

defines a canonical symplectic structure on the vector bundle TM⊕R2,
which is unique up to homotopy.2

The set of all J ’s compatible with a symplectic structure on TM⊕R2

is contractible (see, for instance, [12, p.67]). �

Remark. The Z-tangent bundle of M , ZTM , is the vector bundle
over M whose sections are the vector fields on M which over Z are
tangent to Z. In coordinates x1, . . . , x2d for an open subset U of M , if
the equation x1 = 0 describes Z ∩ U , then the vector fields

x1
∂

∂x1

,
∂

∂x2

, . . . ,
∂

∂x2d

span the space of sections of ZTM over U as a C∞(U)-module. When
Z is separating, the Z-tangent bundle of M is stably isomorphic to

2Since π1(SO(4)) = Z2, there are two non-homotopic paths connecting A0 to Aπ;
the other choice is given by matrices analogous to the Aθ’s but with opposite signs
along the anti-diagonal. We are declaring the canonical path Aθ to be as above.
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TM , where the isomorphism is canonical up to homotopy.3 A folded
symplectic form on M induces a structure of complex vector bundle on
ZTM which is canonical up to homotopy.

A canonical stable complex structure on TM induced by the folded
symplectic form is homotopic to a canonical stable almost complex
structure induced by the stable isomorphism ZTM 's TM .

5. Spin-c Structures

We will next describe how Theorem 2 can be used to define a spin-c
structure on M . Recall that a spin-c structure is defined as follows.
The spin group is the connected double covering

Spin(2d)
p−→ SO(2d)

with kernel Z2 = {1,−1}. One takes the central extension of this:

Spinc(2d) := Spin(2d)×Z2 U(1) ,

U(1) being the group of complex numbers of modulus one, and Z2 the
subgroup generated by (−1,−1). The map (A, λ) 7→ (p(A), λ2) defines
a double covering

(5.1) Spinc(2d)
ξ−→ SO(2d)× U(1) .

Suppose now that the manifold M is oriented, and is equipped with
a riemannian metric and a hermitian line bundle. From the orientation
and the metric, one gets a principal SO(2d) bundle, PSO(2d), namely
the bundle of oriented orthonormal frames, and from the hermitian
line bundle one gets an associated circle bundle, PU(1).

Definition. A spin-c structure is a principal Spinc(2d)-bundle,
PSpinc(2d) →M , and a double covering4

PSpinc(2d) −→ PSO(2d) × PU(1)

which is equivariant with respect to (5.1).

3The construction of the Z-tangent bundle makes sense for Z not necessarily
separating. In general, ZTM ⊕R ' TM ⊕Z L where ZL is the line bundle dual to
Z (whose sections are the real functions on M which are zero over Z). Therefore,
the total Stiefel-Whitney class of ZTM is w(TM)(1 + [Z]∨), where w(TM) is the
total Stiefel-Whitney class of M and [Z]∨ is the reduction modulo 2 of the Poincaré
dual of the homology class of Z.

4The product × is the fiber product here and elsewhere in the paragraphs below.
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Let us now see how the complex structure on TM ⊕ R2 enables us
to get such a double covering.5 By [8, appendix D], there are canonical
morphisms of Lie groups

(5.2)

Spinc(2d+ 2)

�
�

�
�

�
�

�
�

�

j

3

U(d+ 1)
ρ

- SO(2d+ 2)× U(1)

ξ

?

ξ being the standard two-fold covering of SO(2d+2)×U(1) by Spinc(2d+
2), ρ the map “inclusion × det” and j its canonical lifting to Spinc(2d+
2) (loc. cit., formula D.10).

Let H be a hermitian inner product on TM⊕R2 which is compatible
with J and let PU(d+1) be the corresponding unitary frame bundle.
Setting

(5.3)

PU(1) := PU(d+1) ×det U(1) ,

PSO(2d+2) := PU(d+1) ×inclusion SO(2d+ 2) , and

PSpinc(2d+2) := PU(d+1) ×j Spinc(2d+ 2) ,

one gets from (5.2) morphisms of bundles

PSpinc(2d+2)

�
�

�
�

�
�

�
�

�

j

3

PU(d+1)
ρ

- PSO(2d+2) × PU(1)

ξ

?

On the other hand, by restricting ReH to TM , one gets a riemannian
metric on M and a bundle of oriented orthonormal frames, PSO(2d).
Moreover, there is a natural inclusion

η : PSO(2d) × PU(1) −→ PSO(2d+2) × PU(1) .

Let PSpinc(2d) be the set of all pairs (z, w), z in PSO(2d)×PU(1) and w in
PSpinc(2d+2), such that η(z) = ξ(w), and let κ be the map

(5.4) PSpinc(2d) −→ PSO(2d) × PU(1)

5A similar argument is contained in [2].



14 UNFOLDING

mapping (z, w) to z. This map is a double covering. Furthermore,
because of the commutativity of the maps

Spinc(2d)
incl−→ Spinc(2d+ 2)

ξ ↓ ↓ ξ

SO(2d)× U(1)
incl−→ SO(2d+ 2)× U(1)

the action of Spinc(2d) on PSpinc(2d+2) leaves PSpinc(2d) fixed (as a set)
and makes PSpinc(2d) into a principal Spinc(2d)-bundle. Thus (5.4) de-
fines a spin-c structure on M . By (5.3), the line bundle associated with
this spin-c structure, i.e. the line bundle corresponding to PU(1), is

(5.5)
d+1∧
C

(TM ⊕ R2) .

From this spin-c structure one can get other spin-c structures by
twisting with line bundles. The general principle is the following: Let
G be a Lie group which contains U(1) as a central subgroup, and let
PG → M be a principal G-bundle and Lα → M an hermitian line
bundle. Let Pα

U(1) be the circle bundle associated with Lα. On the fiber
product

PG × Pα
U(1) ,

G acts by its action on the left factor and U(1) acts by its diagonal
action. The U(1)-action commutes with the action of G, so the quotient

Qα
G := (PG × Pα

U(1))/U(1)

has a residual G-action which makes it into a principal G-bundle. We
will call this the twisting of PG by Lα.

One can apply this construction to PSpinc(2d), since Spinc(2d) contains
U(1) as a central subgroup. Let P 2α

U(1) be the circle bundle correspond-

ing to the line bundle L2
α, and let Q2α

U(1) be the twisting of PU(1) by

P 2α
U(1). The double covering (5.4) is equivariant with respect to the

homomorphism

γ : U(1) −→ U(1) , γ(a) = a2 .

The double covering

Pα
U(1) −→ P 2α

U(1)

is also equivariant with respect to γ. By taking the quotient of each
side of the four-fold covering

PSpinc(2d) × Pα
U(1) −→ (PSO(2d) × PU(1))× P 2α

U(1)
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by the diagonal action of U(1) via γ, one gets a double covering

(5.6) Qα
Spinc(2d) −→ PSO(2d) ×Q2α

U(1) .

We will call this the twisting of the spin-c structure (5.4) by Lα. Note
that, by (5.5), the line bundle defined by Q2α

U(1) is the tensor product

d+1∧
C

(TM ⊕ R2)⊗ L2
α .

In particular, if the folded symplectic form that we started with
is integral, i.e. [ω] is the image in H2(M ; R) of a cohomology class
α ∈ H2(M ; Z) and Lα is the line bundle whose Chern class is α, we
will call (5.6) the canonical spin-c structure on our folded symplectic
manifold M . Since this structure depends on J , H, etc., this definition
is a bit of a misnomer. However, it is to some extent justified by the
following result.

Theorem 3. If ∂/ is the spin-c Dirac operator associated with this spin-
c structure, the index of ∂/ is given by the formula

(5.7)

∫
M

exp(ω) Todd(TM ⊕ R2, J) .

Proof. This is just a special case of the Atiyah-Singer formula for
the spin-c Dirac operator. (See, for instance, [8], formula D.20.) �

Note that the Todd class of TM⊕R2 sits in the rational cohomology
of M , so it is unchanged by smooth isotopies of J . Therefore, since J
is determined up to isotopy by ω, it only depends on ω and hence so
does the expression (5.7). Thus the index of ∂/ is a folded symplectic
invariant of M .

6. Folding

Let W = W 2d be a compact manifold with boundary equipped with
a symplectic form, ω. Theorem 1, the normal form theorem for folded
symplectic forms, has the following analogue for manifolds with bound-
ary. Let t : W → R+ be a defining function for the boundary, i.e.

(6.1) p ∈ ∂W ⇔ t(p) = 0 and dtp 6= 0 , ∀p ∈ ∂W ,

and let v be the hamiltonian vector field associated with t. By (6.1), v
is tangent to the boundary and on the boundary is nonvanishing. Let
α be a one-form on ∂W with the property ı(v)α = 1.
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Theorem 4. There exists a collar neighborhood, U = ∂W × [0, ε), of
∂W on which ω is diffeomorphic to

(6.2) π∗ι∗ω + d(tπ∗α) ,

ι being the inclusion map of ∂W into W and π the projection (p, t) 7→ p.

Proof. The boundary ∂W is a coisotropic submanifold of W ,
and (6.2) has the same restriction to ∂W as ω, so this is a consequence
of the coisotropic imbedding theorem of Gotay [5] and Weinstein [18].
�

Remark. Though t and v are not canonically defined, the orientation
of the normal bundle of ∂W defined by dt is canonically defined and
hence so is the orientation of the null-foliation of ∂W defined by v.

We will now describe a folding result which one can obtain from
this theorem. Let W1 and W2 be compact oriented 2d-dimensional
manifolds with boundary. Suppose that σ : U1 → U2 is an orientation-
reversing diffeomorphism of collar neighborhoods of the boundaries,
Ui ' ∂Wi × I, i = 1, 2, inducing an orientation-reversing diffeomor-
phism ρ of the boundaries. Let M be the compact oriented manifold
(without boundary) that one gets from

W1 tW2

by identifying U1 with U2 via σ, where W2 denotes the manifold W2

equipped with the opposite orientation. Let ωi be a symplectic form
on Wi. We orient W1 and W2 by their symplectic orientations; the
orientations in W1 tW2 patch together to define an orientation of M .
Let ιi be the inclusion of Z into Wi and suppose that

ι∗1ω1 = ρ∗ι∗2ω2 = µ .

Suppose also that the two orientations of the null-foliation agree. By
Theorem 4, we may assume that the collar neighborhoods are of the
form Ui ' Z × [0, εi), and that, on Ui, ωi is diffeomorphic to

π∗µ+ d(tiπ
∗α) , i = 1, 2 .

Define a folded symplectic form, ω, on M by setting ω = ωi on Wi \ Ui
and setting

ω = π∗µ+ d(t2π∗α)

on Z × (−δ2, δ1), where δ2
i = εi and t is a coordinate function on the

interval (−δ2, δ1), which satisfies

t2 = t1 on δ1
2
< t < δ1
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and
t2 = t2 on − δ2 < t < − δ2

2
.

Since U1 and U2 can be chosen to be arbitrarily small, we have proved:

Theorem 5. For every neighborhood, U , of Z, there exists a folded
symplectic form on M with folding hypersurface Z such that ω = ωi on
Wi \ U .

The construction we have just described will be called folding. We
will next describe an analogous “unfolding” construction.

7. Unfolding

Let (M,ω) be a compact oriented folded symplectic manifold, and
let Z be its folding hypersurface. For the moment we will assume
that M and Z are connected and hence that M \ Z consists of two
connected components. We will denote their closures by W1 and W2.
These are manifolds-with-boundary with the common boundary Z. Let
U = Z × (−ε, ε) be a tubular neighborhood of Z in M on which ω has
the normal form

π∗ι∗ω + d(t2π∗α) ,

and let U1 = Z × [0, ε) and U2 = Z × (−ε, 0] be the intersections of U
with W1 and W2 respectively. Let t1 be a coordinate function on the
interval [0, ε2) such that t1 = t2 on the interval ε

2
< t < ε, and let t2

be a coordinate function on the interval [0, ε2) such that t2 = t2 on the
interval −ε < t < − ε

2
. Then the symplectic form

(7.1) ω1 = π∗ι∗ω + d(t1π
∗α)

can be extended to a symplectic form on W1 by setting it equal to ω
on W1 \ U1 and the form

(7.2) ω2 = π∗ι∗ω + d(t2π
∗α)

can be extended to a symplectic form on W2 by setting it equal to ω
on W2 \ U2. Thus, to summarize, we have proved:

Theorem 6. M can be “unfolded” into two symplectic pieces, (Wi, ωi),
i = 1, 2, which are compact manifolds-with-boundary, having Z as their
common boundary.

This result can be considerably improved if we assume that the null-
foliation on Z is fibrating, i.e. that there exists a fibration

(7.3) p : Z → B
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whose base is a compact manifold, B, and whose fibers are the leaves of
the null-foliation. Let v be a nonvanishing vector field whose integral
curves are the fibers, and let f(b) be the period of the integral curve
sitting over b; f(b) depends smoothly on b, so we can reparametrize
these integral curves by replacing v by the vector field

w :=
2π

f
v

whose integral curves are of period 2π. This modified vector field gen-
erates an action of S1 on Z, and makes the fibration (7.3) into a prin-
cipal S1-bundle. Let α be a connection form on this bundle, i.e. an
S1-invariant one-form satisfying ı(w)α = 1. One can extend the ac-
tion of S1 to the neighborhood U1 = Z × [0, ε1) of Z in W1 by letting
it act trivially on [0, ε1). This action preserves the form ω1; indeed,
by (7.1), ı(w)ω1 = −dt1, so this action is hamiltonian with moment
map t1. Now apply the “symplectic cutting” operation to U1. By sym-
plectic reduction there is a unique symplectic form, ωB, on B such that
p∗ωB = ι∗1ω1. Let U0

1 = U1 \ Z. Symplectic cutting (cf. [9]) says that
the disjoint union

B ∪ U0
1

can be made into a symplectic manifold in such a way that B imbeds
into this manifold as a symplectic submanifold of codimension two.
Moreover, one can do this without changing the symplectic form, ω1,
on U0

1 except on a small open set

0 < t1 < ε′1 � ε1 .

This glues together with the symplectic form, ω1, on W1 \ U1 to give a
symplectic structure to the disjoint union

M1 = B ∪ (W1 \ Z) .

One can apply the same construction to W2 and thus finally show:

Theorem 7. If the null-foliation on Z is fibrating, then M can be
“unfolded” into compact symplectic manifolds, M1 and M2, each of
which contains B as an imbedded codimension two hypersurface.

If the null-foliation is not fibrating, one can still obtain a result of
this sort provided that each leaf of the null-foliation has an open neigh-
borhood in Z diffeomorphic to S1 ×Zn R2d−2, where the null-foliation
sits as the directions tangent to S1, and Zn acts on R2d−2 by rotations
(i.e. provided that the null-foliation is a “Seifert fibration”). Hence,
there is a locally free action of S1 on Z whose orbits are the leaves of
the null-foliation and the argument above suffices to show:
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Theorem 8. If each leaf of the null-foliation on Z has an open neigh-
borhood in Z diffeomorphic to S1×Zn R2d−2, where the null-foliation sits
as the directions tangent to S1, and Zn acts on R2d−2 by rotations, then
M can be “unfolded” into compact symplectic orbifolds, M1 and M2,
each of which contains B as an imbedded codimension two symplectic
suborbifold.

We have also been assuming up to this point that Z is connected.
This hypothesis can be relaxed. If the connected components of M \Z
are W 0

i , i = 1, . . . , N , one can unfold Z, one component at a time, thus
obtaining, in place of the W 0

i ’s, compact orbifolds, Mi, i = 1, . . . , N ,
just as above.

8. Spin-c Index

Let M be a compact connected oriented 2d-dimensional manifold,
and let ω ∈ Ω2(M) be a folded symplectic form with folding hypersur-
face Z. For simplicity we will assume that Z is connected and hence
that M \Z consists of two connected pieces. Suppose, as in §7, that the
null-foliation on Z is fibrating. Then, by Theorem 7, M unfolds into
two compact symplectic manifolds, (Mi, ωi), i = 1, 2. We orient the
Mi’s by their symplectic orientations. Without loss of generality, we
can assume that the (symplectic) orientation on M1 coincides with the
orientation induced by M , and that the (symplectic) orientation on M2

is opposite to the orientation induced by M . The goal of this section
is to compute the integral (5.7). (If [ω] is an integer cohomology class,
this integral is, by Theorem 3, the index of the spin-c Dirac operator.)
Explicitly we will prove:

Theorem 9. The integral (5.7) is equal to

(8.1)

∫
M1

exp(ω1) Todd(M1)−
∫
M2

exp(ω2) Todd(M2) .

Remarks.

(1) The cohomology classes [ω1] and [ω2] need not be integer coho-
mology classes. When they are, the two summands of (8.1) are
just the Riemann-Roch numbers of M1 and M2.

(2) If the null-foliation on Z is not fibrating, but is as in Theorem 8,
then M has an unfolding of the type in §7 where the Mi’s are
orbifolds. In this case, the formula (8.1) is still valid provided
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the terms on the right are replaced by the Kawasaki-Riemann-
Roch numbers of M1 and M2.

(3) If Z is not connected, formula (8.1) has to be replaced by the
slightly more complicated formula (1.4).

Proof. Choose a neighborhood, U ' Z × (−ε, ε), of the folding
hypersurface of the form given by Theorem 1, where, in the notation
of §2, ω is diffeomorphic to

π∗ι∗ω + d(t2π∗α) .

The integral (5.7) can be written as a sum

(8.2)

∫
M\U

exp(ω) Todd(TM ⊕ R2, J) +

(8.3) +

∫
U

exp(ω) Todd(TM ⊕ R2, J) .

Apply the “Meinrenken trick” to the integral (8.3) (cf. [14]): Pick a
connection form, θ, for the action of S1 on U , and note that, by Stokes’
theorem, the integral (8.3) can be written as the value at x = 0 of the
function of x given by∫

∂U

θ exp(ω) Todd(TM ⊕ R2, J)

dθ − x
.

Now each of the two boundary components of ∂U can be identified
with Z. Let p : Z → B be the fibration with total space Z and
symplectic base (B,ωB), as in §7. The restriction of TM ⊕R2 to each
of these boundary components is a complex vector bundle of the form

p∗TB ⊕ C2 ,

the complex structure on TB being any complex structure which is
compatible with ωB.

Thus the contribution of each of the boundary components is, up to
sign (see below), equal to∫

B

exp(ωB) Todd(TB)

µ− x
,

where p∗µ = dθ (so µ is the curvature of the connection θ).

However, the signs of these two contributions differ. The reason for
this is that the orientation onM induces on (Z×{ε})/S1 an orientation
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which is compatible with ωd−1
B and on (Z × {−ε})/S1 an orientation

which is compatible with −ωd−1
B .

Hence, the integral (8.3) is zero.

Consider now the expression (8.1). Regard Mi as a union (Mi \Ui)∪
Ui, where

U1 = B ∪ (Z × (0, ε))

and
U2 = B ∪ (Z × (−ε, 0)) .

Recall from §7 that the symplectic structures on U1 and U2 are acquired
by applying the “symplectic cutting” operation to Z × (0, ε) and Z ×
(−ε, 0).

By assumption, TM ⊕R2 is isomorphic on M \ U to T (M \ U)⊕C.
Thus the summand (8.2) is equal to∫

M1\U1

exp(ω1) Todd(M1)−
∫
M2\U2

exp(ω2) Todd(M2) ,

where the minus sign follows from the mismatch between the (symplec-
tic) orientation of M2 and the orientation induced by M .

In order to prove the theorem it suffices to show that∫
U1

exp(ω1) Todd(M1)−
∫
U2

exp(ω2) Todd(M2)

is zero. To see this, note that, in view of the canonical form of Theo-
rem 1, one gets from the involution t 7→ −t a symplectomorphism from
M+ ∩ U onto M− ∩ U , which descends to a symplectomorphism from
U1 onto U2. �

Remark. Let G be a compact Lie group. If G acts on M and this
action preserves ω, then, by averaging, we can arrange that all auxiliary
data is G-invariant, so that the index of the spin-c Dirac operator
becomes a virtual representation of G. In this case, formula (8.1) holds
as an isomorphism of virtual representations, yielding an equivariant
version of Theorem 9.
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