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Abstract

The aim of this note is to present some new results concerning “almost everywhere” well-posedness and stability
of continuity equations with measure initial data. The proofs of all such results can be found in [4], together with
some application to the semiclassical limit of the Schrödinger equation.

Resumé

Dans cette note, nous présentons des nouveaux résultats concernant l’existence, l’unicité (au sens “presque
partout”) et la stabilité pour des équations de continuité avec données initiales mesures. Les preuves de tous ces
résultats sont données dans [4], avec aussi des applications à la limite semiclassique pour l’équation de Schrödinger.

Starting from the seminal paper of DiPerna-Lions [8] (dealing mostly with the transport equation),
in [1], [2] the well-posedness of the continuity equation{

∂µt
∂t +∇ · (btµt) = 0 on (0, T )× Rd
µ0 = µ̄

(1)

has been strongly related to well-posedness of the ODE (here we use the notation b(t, x) = bt(x)){
Ẋ(t, x) = bt(X(t, x)) for L 1-a.e. t ∈ (0, T ),
X(0, x) = x,

(2)

for “almost every” x ∈ Rd. (See [2] and the bibliography therein for the most recent developments on
the theory of ODE with non-smooth coefficients.) More precisely, observe that being a solution to the
ODE (2) for L n-a.e. x is not invariant under modification of b in Lebesgue negligible sets, while many
applications of the theory to fluid dynamics (see for instance [12], [13]) and conservation laws need this
invariance property. This leads to the concept of regular Lagrangian flow (RLF in short): one may ask
that, for all t ∈ [0, T ], the imageX(t, ·)]L d of the Lebesgue measure L d under the flow map x 7→X(t, x)
is still controlled by L d (see Definition 1.1 below). Then existence and uniqueness (up to L d-negligible
sets) and stability of the RLF X(t, x) in Rd hold true provided the functional version of (1), namely{

∂wt
∂t +∇ · (btwt) = 0 on (0, T )× Rd
w0 = w̄,

(3)

is well-posed for any non-negative initial datum w̄ ∈ L1(Rd)∩L∞(Rd) in the set of non-negative bounded
integrable funtions L∞+

(
[0, T ];L1(Rd) ∩ L∞(Rd)

)
.
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Now we may view (1) as an infinite-dimensional ODE in P
(
Rd
)
, the space of probability measures in

Rd, and try to obtain existence and uniqueness results for (1) in the same spirit of the finite-dimensional
theory, starting from the simple observation that t 7→ δX(t,x) solves (1). We may expect that if we fix
a “good” measure ν in the space P

(
Rd
)
of initial data, then existence, uniqueness ν-a.e. and stability

hold. Moreover, for ν-a.e. µ the unique and stable solution of (1) starting from µ should be given by

µ(t, µ) :=
∫
δX(t,x) dµ(x) ∀ t ∈ [0, T ], µ ∈P

(
Rd
)
. (4)

1 Continuity equations and flows
We use a standard and hopefully self-explainatory notation. Let b : [0, T ] × Rd → Rd be a Borel vector
field belonging to L1

loc

(
[0, T ]×Rd

)
, and set bt(·) := b(t, ·); we shall not work with the Lebesgue equivalence

class of b, although a posteriori the theory is independent of the choice of the representative.

Definition 1.1 (ν-RLF in Rd). Let X(t, x) : [0, T ]×Rd → Rd and ν ∈M+(Rd) with ν � L d and with
bounded density. We say that X(t, x) is a ν-RLF in Rd (relative to b) if the following two conditions are
fulfilled:

(i) for ν-a.e. x, the function t 7→X(t, x) is an absolutely continuous integral solution to the ODE (2)
in [0, T ] with X(0, x) = x;

(ii) X(t, ·)]ν ≤ CL d for all t ∈ [0, T ], for some constant C independent of t.

By a simple application of Fubini’s theorem this concept is, unlike the single condition (i), invariant
in the Lebesgue equivalence class of b. In this context, since all admissible initial measures ν are bounded
above by CL d, uniqueness of the ν-RLF can and will be understood in the following stronger sense: if
f, g ∈ L1(Rd) ∩ L∞(Rd) are nonnegative and X and Y are respectively a fL d-RLF and a gL d-RLF,
then X(·, x) = Y (·, x) for L d-a.e. x ∈ {f > 0} ∩ {g > 0}.

Remark 1.2. We recall that the ν-RLF exists for all ν ≤ CL d, and is unique in the strong sense
described above under the following assumptions on b: |b| is uniformly bounded, bt ∈ BVloc(Rd; Rd) and
∇ · bt = gtL d � L d for L 1-a.e. t ∈ (0, T ), with

‖gt‖L∞(Rd) ∈ L1(0, T ), |Dbt|(BR) ∈ L1(0, T ) for all R > 0,

where |Dbt| denotes the total variation of the distributional derivative of bt. (See [1], [7], and [6] for
Hamiltonian vector fields, but the literature is very large.)

Given a nonnegative σ-finite measure ν ∈M+

(
P
(
Rd
))
, we denote by Eν ∈M+

(
Rd
)
its expectation,

namely ∫
Rd
φdEν =

∫
P(Rd)

∫
Rd
φdµ dν(µ) for all φ bounded Borel.

Definition 1.3 (Regular measures in M+

(
P
(
Rd
))
). Let ν ∈M+

(
P
(
Rd
))
. We say that ν is regular if

Eν ≤ CL d for some constant C.

Example 1.4. (1) The first standard example of a regular measure ν is the law under ρL d of the map
x 7→ δx, with ρ ∈ L1(Rd)∩L∞(Rd) nonnegative. Actually, one can even consider the law under L d, and
in this case ν would be σ-finite instead of finite.

(2) If d = 2n and z = (x, p) ∈ Rn×Rn (this factorization corresponds for instance to flows in a phase
space), instead of considering the law of under ρL 2n of the map (x, p) 7→ δx ⊗ δp one may also consider
the law under ρL n of the map x 7→ δx × γ, with ρ ∈ L1(Rnx) ∩ L∞(Rnx) nonnegative and γ ∈ P

(
Rnp
)

bounded from above by a constant multiple of L n.
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We observe that Definition 1.1 has a natural (but not perfect) transposition to flows in P
(
Rd
)
:

Definition 1.5 (Regular Lagrangian flow in P
(
Rd
)
). Let µ : [0, T ] × P

(
Rd
)
→ P

(
Rd
)
and ν ∈

M+

(
P
(
Rd
))
. We say that µ is a ν-RLF in P

(
Rd
)
(relative to b) if

(i) for ν-a.e. µ, |b| ∈ L1
loc

(
(0, T ) × Rd;µtdt

)
, t 7→ µt := µ(t, µ) is continuous from [0, 1] to P

(
Rd
)

with µ(0, µ) = µ and µt solves (1) in the sense of distributions;

(ii) E(µ(t, ·)]ν) ≤ CL d for all t ∈ [0, T ], for some constant C independent of t.

Notice that condition (ii) is weaker than µ(t, ·)]ν ≤ Cν (which would be the analogue of (ii) in
Definition 1.1 if we were allowed to choose ν = L d), and it is actually sufficient and much more flexible
for our purposes, since we would like to consider measures ν generated as in Example 1.4(2).

2 Existence, uniqueness and stability of the RLF
In this section we recall the main existence and uniqueness results of the ν-RLF in Rd, and see their
extensions to ν-RLF in P

(
Rd
)
. The following result is proved in [2, Theorem 19] for the part concerning

existence and in [2, Theorem 16, Remark 17] for the part concerning uniqueness.

Theorem 2.1 (Existence and uniqueness of the ν-RLF in Rd). Assume that (3) has existence and
uniqueness in L∞+

(
[0, T ];L1(Rd) ∩ L∞(Rd)

)
. Then, for all ν � L d with bounded density the ν-RLF

exists and is unique.

The next result shows that, uniqueness of (3) in L∞+
(
[0, T ];L1(Rd) ∩ L∞(Rd)

)
implies a stronger

property, namely uniqueness of the ν-RLF.

Theorem 2.2 (Existence and uniqueness of the ν-RLF in P
(
Rd
)
). Assume that (3) has uniqueness in

L∞+
(
[0, T ];L1(Rd) ∩ L∞(Rd)

)
. Then, for all ν ∈ M+

(
P
(
Rd
))

regular, there exists at most one ν-RLF
in P

(
Rd
)
. If (3) has existence in L∞+

(
[0, T ];L1(Rd) ∩ L∞(Rd)

)
, this unique flow is given by

µ(t, µ) :=
∫

Rd
δX(t,x) dµ(x), (5)

where X(t, x) denotes the unique Eν-RLF.

For the applications it is important to show that RLF’s not only exist and are unique, but they are
also stable. In the statement of the stability result we shall consider measures νn ∈P

(
P
(
Rd
))
, n ≥ 1,

and a limit measure ν. We shall assume that νn = (in)]P, where (W,F ,P) is a probability measure
space and in : W → P

(
Rd
)
are measurable; we shall also assume that ν = i]P, with in → i P-almost

everywhere. (Recall that Skorokhod theorem (see [5, §8.5, Vol. II]) shows that weak convergence of νn
to ν always implies this sort of representation, even with W = [0, 1] endowed with the standard measure
structure, for suitable in, i.) The following formulation of the stability result is particularly suitable for
the application to semiclassical limit of the Schrödinger equation.

Henceforth, we fix an autonomous vector field b : Rd → Rd satisfying the following regularity condi-
tions:

(a) d = 2n and b(x, p) = (p, c(x)), (x, p) ∈ Rd, c : Rn → Rn Borel and locally integrable;

(b) there exists a closed L n-negligible set S such that c is locally bounded on Rn \ S.
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Theorem 2.3 (Stability of the ν-RLF in P
(
Rd
)
). Let in, i be as above and let µn : [0, T ] × in(W ) →

P
(
Rd
)
be satisfying µn(0, in(w)) = in(w) and the following conditions:

(i) (uniform regularity)

sup
n≥1

sup
t∈[0,T ]

∫
W

∫
Rd
φdµn(t, in(w)) dP(w) ≤ C

∫
Rd
φdx

for all φ ∈ Cc(Rd) nonnegative;

(ii) (uniform decay away from S) for some β > 1

sup
δ>0

lim sup
n→∞

∫
W

∫ T

0

∫
BR

1
distβ(x, S) + δ

dµn(t, in(w)) dt dP(w) <∞ ∀R > 0; (6)

(iii) (space tightness) for all ε > 0, P
({
w : sup

t∈[0,T ]

µn(t, in(w))(Rd \BR) > ε
})
→ 0 as R→∞;

(iv) (time tightness) there exists q > 1 such that, for P-a.e. w ∈W , for all φ ∈ C∞c (Rd) and n ≥ 1, the
map t 7→

∫
Rd φdµn(t, in(w)) is absolutely continuous in [0, T ] and, uniformly in n,

lim
M↑∞

P
({

w ∈W :
∫ T

0

∣∣∣∣( ∫
Rd
φdµn(t, in(w))

)′∣∣∣∣q dt > M
})

= 0;

(v) (limit continuity equation)

lim
n→∞

∫
W

∣∣∣∣∫ T

0

[
ϕ′(t)

∫
Rd
φdµn(t, in(w)) + ϕ(t)

∫
Rd
〈b,∇φ〉 dµn(t, in(w))

]
dt

∣∣∣∣ dP(w) = 0 (7)

for all φ ∈ C∞c
(
Rd \ (S × Rn)

)
, ϕ ∈ C∞c (0, T ).

Assume, besides (a), (b) above, that (3) has uniqueness in L∞+
(
[0, T ];L1 ∩ L∞(Rd)

)
. Then the ν-RLF

µ(t, µ) relative to b exists, is unique (by Theorem 2.2) and

lim
n→∞

∫
W

sup
t∈[0,T ]

dP(µn(t, in(w)),µ(t, i(w))) dP(w) = 0 (8)

where dP is any bounded distance in P
(
Rd
)
inducing weak convergence of measures.

An example of application of the above stability result is the following: let α ∈ (0, 1) and let ψεx0,p0 :
[0, T ]× Rn → C be a family of solutions to the Schrödinger equation{

iε∂tψ
ε
x0,p0(t) = − ε

2

2 ∆ψεx0,p0(t) + Uψεx0,p0(t)

ψεx0,p0(0) = ε−nα/2φ0

(
x−x0
εα

)
ei(x·p0)/ε,

(9)

with φ0 ∈ C2
c (Rn) and

∫
|φ0|2 dx = 1. When the potential U is of class C2, it was proven in [10], [11]

that for every (x0, p0) the Wigner transforms Wεψ
ε
x0,p0(t) converge, in the natural dual space A′ for the

Wigner transforms, to δX(t,x0,p0) as ε ↓ 0. Here X(t, x, p) if the unique flow in R2n associated to the
Liouville equation

∂tW + p · ∇xW −∇U(x) · ∇pW = 0. (10)
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In [4], relying also on some a-priori estimates of [3] (see also [9]), the authors consider a potential U
which can be written as the sum of a repulsive Coulomb potential Us plus a bounded Lipschitz interation
term Ub with ∇Ub ∈ BVloc. We observe that in this case the equation (10) does not even make sense for
measure initial data, as ∇U is not continuous. Still, they can prove full convergence as ε ↓ 0, namely

lim
ε↓0

∫
Rd
ρ(x0, p0) sup

t∈[−T,T ]

dA′
(
Wεψ

ε
x0,p0(t), δX(t,x0,p0)

)
dx0dp0 = 0 ∀T > 0 (11)

for all ρ ∈ L1(R2n) ∩ L∞(R2n) nonnegative, where X(t, x, p) if the unique L 2n-RLF associated to (10)
and dA′ is a bounded distance inducing the weak∗ topology in the unit ball of A′.

The proof of (11) relies on an application of Theorem 2.3 to the Husimi transforms of ψεx0,p0(t).
The scheme is sufficiently flexible to allow more general families of initial conditions displaying partial
concentration, of position or momentum, or no concentration at all: for instance the limiting case α = 1
in (9) (related to Example 1.4(2)) leads to

lim
ε↓0

∫
Rd
ρ(x0) sup

t∈[−T,T ]

dA′
(
Wεψ

ε
x0,p0(t),µ(t, µ(x0, p0))

)
dx0 = 0 ∀ p0 ∈ Rn, T > 0

for all ρ ∈ L1(Rn)∩L∞(Rn) nonnegative, with µ(t, µ) given by (4) and µ(x0, p0) = δx0×|φ̂0|2(·−p0)L n.
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