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Abstract. These short notes summarize a series of lectures given by the author during the School
“Optimal Transport on Quantum Structures”, which took place on September 19th-23rd, 2022, at the
Erdös Center - Alfréd Rényi Institute of Mathematics. The lectures aimed to introduce the classical
optimal transport problem and the theory of Wasserstein gradient flows.
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1. The origin of optimal transport and its modern formulation

1.1. Monge’s formulation. In his celebrated work in 1781, Gaspard Monge introduced the concept
of transport maps starting from the following practical question: Assume one extracts soil from the
ground to build fortifications. What is the cheapest possible way to transport the soil? To formulate
this question rigorously, one needs to specify the transportation cost, namely how much one pays to
move a unit of mass from a point x to a point y. In Monge’s case, the ambient space was R3, and
the cost was the Euclidean distance c(x, y) = |x− y|.

1.2. Kantorovich’s formulation. After 150 years, in the 1940s, Leonid Kantorovich revisited
Monge’s problem from a different viewpoint. To explain this, consider:
• N bakeries located at positions (xi)i=1,...,N ;
• M coffee shops located at (yj)j=1,...,M ;
• the ith bakery produces an amount αi ≥ 0 of bread;
• the jth coffee shop needs an amount βj ≥ 0.
Also, assume that supply is equal to demand, and (without loss of generality) normalize them to be
equal to 1, i.e.,

N∑
i=1

αi =
M∑
j=1

βj = 1.

In Monge’s formulation, the transport is deterministic: the mass located at x can be sent to a unique
destination T (x). Unfortunately this formulation is incompatible with the problem above, since one
bakery may supply bread to multiple coffee shops, and one coffee shop may buy bread from multiple
bakeries. For this reason Kantorovich introduced a new formulation: given c(xi, yj) the cost to move
one unit of mass from xi to yj , he looked for matrices (γij) i=1,...,N

j=1,...,M
such that

(i) γij ≥ 0 (the amount of bread going from xi to yj is a nonnegative quantity);

(ii) for all i, αi =
∑M

j=1 γij (the total amount of bread sent to the different coffee shops is equal

to the production);

(iii) for all j, βj =
∑N

i=1 γij (the total amount of bread bought from the different bakeries is equal
to the demand);

(iv) γij minimizes the cost
∑

i,j γijc(xi, yj) (the total transportation cost is minimized).

It is interesting to observe that, as functions of the matrix γij :
- constraint (i) is convex;
- constraints (ii) and (iii) are linear;
- the objective function in (iv) is linear.
In other words, Kantorovich’s formulation corresponds to minimizing a linear function with convex
constraints.

1.3. Notation. In these notes we will use standard notations. For instance, when we write P(Z), we
mean the space of (Borel) probability measures over sole locally compact separable complete metric
space Z. Given a set E, we use 1E to denote its indicator functions. We refer the interested reader
to [4] for more details and notation.

1.4. Transport maps and couplings.

Definition 1.1. Given µ ∈ P(X) and ν ∈ P(Y ), a measurable map T : X → Y is called a transport
map from µ to ν if T#µ = ν, that is,

(1.1) ν(A) = µ(T−1(A)) ∀A ⊂ Y Borel.
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Remark 1.2. Condition (1.1) can also be rewritten in terms of test functions as follows (see for
instance [4, Corollary 1.2.6]):

T#µ = ν ⇐⇒
ˆ
Y
ψ dν =

ˆ
X
ψ ◦ T dµ ∀ψ : Y → R Borel and bounded.

In these notes we will often make use of this fact.

Remark 1.3. Given µ and ν, the set of transport maps from µ to ν may be empty. For instance,
given µ = δx0 with x0 ∈ X and a map T : X → Y , then T#µ = δT (x0). Hence, unless ν is a Dirac
delta, for any map T we have T#µ ̸= ν and the set {T : T#µ = ν} is empty.

Definition 1.4. We call γ ∈ P(X × Y ) a coupling or transport plan between µ and ν if

(πX)#γ = µ and (πY )#γ = ν,

where πX(x, y) = x and πY (x, y) = y for every (x, y) ∈ X × Y , namely

µ(A) = γ(A× Y ), ν(B) = γ(X ×B), ∀A ⊂ X, B ⊂ Y.

We denote by Γ(µ, ν) the set of couplings of µ and ν.

Remark 1.5. Given µ and ν, the set Γ(µ, ν) is always nonempty. Indeed, the product measure
γ = µ⊗ ν is a coupling (see [4, Remark 1.4.4]).

Remark 1.6. Let T : X → Y satisfy T#µ = ν. Consider the map id × T : X → X × Y , i.e.,
x 7→ (x, T (x)), and define

γT := (id× T )#µ ∈ P(X × Y ).

We claim that γT ∈ Γ(µ, ν). Indeed,

(πX)#γT = (πX)#(id× T )#µ = (πX ◦ (id× T ))#µ = id#µ = µ,

(πY )#γT = (πY )#(id× T )#µ = (πY ◦ (id× T ))#µ = T#µ = ν.

This proves that any transport map T induces a coupling γT .
Vice versa, if γ ∈ Γ(µ, ν) and γ = (id× T )#µ for some map T : X → Y, then T#µ = ν. In other

words, if a coupling is induced by a map, then this map is a transport.

1.5. Monge and Kantorovich’s problems. Fix µ ∈ P(X), ν ∈ P(Y ), and c : X × Y → [0,+∞]
lower semicontinuous. The Monge and Kantorovich’s problems can be stated as follows (recall
Definition 1.4):

CM (µ, ν) := inf

{ˆ
X
c(x, T (x)) dµ(x)

∣∣∣∣ T#µ = ν

}
,(1.2)

CK(µ, ν) := inf

{ˆ
X×Y

c(x, y) dγ(x, y)

∣∣∣∣ γ ∈ Γ(µ, ν)

}
.(1.3)

In other words, Monge’s problem (1.2) consists in minimizing the transportation cost among all
transport maps, while Kantorovich’s problem (1.3) consists in minimizing the transportation cost
among all couplings.

Remark 1.7. Recalling Remark 1.6, we also notice thatˆ
X
c(x, T (x)) dµ(x) =

ˆ
X
c ◦ (id× T )(x) dµ(x) =

ˆ
X×Y

c(x, y) dγT (x, y).

In other words, any transport map T induces a coupling γT with the same cost. In particular,

CM (µ, ν) ≥ CK(µ, ν).

Thanks to this inequality we deduce that, if γ ∈ Γ(µ, ν) is optimal in (1.3) and γ = (id × T )#µ for
some map T : X → Y, then T solves (1.2).
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As we shall see in the next section, while Kantorovich’s problem can be solved under minimal
assumptions on the cost, the solution of Monge’s problem is considerably more complicated.

2. Solving Monge and Kantorovich’s problems

Motivated by Remark 1.7, a natural strategy to solve Monge and Kantorovich’s problems is the
following:
(1) show that a solution of Kantorovich’s problem exists under minimal assumptions;
(2) analyze the structure of an optimal coupling, and try to understand under which assumptions
this coupling is induced by a map.

2.1. Existence of optimal couplings. As mentioned above, optimal couplings exist under minimal
assumptions on the cost. We refer the reader to [4, Theorem 2.3.2] for a detailed proof of the following:

Theorem 2.1. Let c : X × Y → [0,+∞) be lower semicontinuous, µ ∈ P(X), and ν ∈ P(Y ). Then
there exists a coupling γ̄ ∈ Γ(µ, ν) that is a minimizer for (1.3).

Sketch of the proof. Let (γk)k∈N ⊂ Γ(µ, ν) be a minimizing sequence, namely

ˆ
X×Y

c dγk → α := inf
γ∈Γ(µ,ν)

ˆ
X×Y

c dγ as k → ∞.

Thanks to the marginal constraints on the measures γk, one can prove that there exists a subsequence
(γkj )j∈N such that γkj ⇀ γ̄ ∈ Γ(µ, ν). Also, thanks to the nonnegativity and lower semicontinuity of
c, one can prove that

α = lim inf
j→∞

ˆ
X×Y

c dγkj ≥
ˆ
X×Y

c dγ̄.

Since the opposite inequality
´
X×Y c dγ̄ ≥ α holds (by definition of α), this proves that γ̄ is a

minimizer. □

Remark 2.2. In general, the optimal coupling is not unique. To see this, let X = Y = R2, c(x, y) =
|x− y|2, consider the points in R2 given by

x1 := (0, 0), x2 := (1, 1), y1 := (1, 0), y2 := (0, 1),

and define the measures

µ = 1
2δx1 +

1
2δx2 , ν = 1

2δy1 +
1
2δy2 .

In this case, the set of all couplings Γ(µ, ν) is given by

γα = αδ(x1,y1) +
(
1
2 − α

)
δ(x1,y2) +

(
1
2 − α

)
δ(x2,y1) + αδ(x2,y2), α ∈

[
0, 12

]
,

and one can check that all these couplings have the same cost, so they are all optimal.

2.2. The structure of optimal couplings: Kantorovich duality. To study the structure of
optimal couplings, it is useful to relate Kantorovich’s problem to a dual problem. Formally, the
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argument is based on general abstract results in convex analysis and goes as follows:

inf
γ∈Γ(µ,ν)

ˆ
X×Y

c(x, y) dγ
(i)
= inf

γ≥0
sup
φ,ψ

{ˆ
X×Y

c(x, y) dγ+

Lagrange multiplier for (πX)#γ = µ︷ ︸︸ ︷(ˆ
X×Y

φ(x) dγ −
ˆ
X
φ(x) dµ

)

+

Lagrange multiplier for (πY )#γ = ν︷ ︸︸ ︷(ˆ
X×Y

ψ(y) dγ −
ˆ
Y
ψ(y) dν

)}

(ii)
= inf

γ≥0
sup
φ,ψ

{ˆ
X
−φdµ+

ˆ
Y
−ψ dν +

ˆ
X×Y

(
c(x, y) + φ(x) + ψ(y)

)
dγ

}

(iii)
= sup

φ,ψ
inf
γ≥0

{ˆ
X
−φdµ+

ˆ
Y
−ψ dν +

ˆ
X×Y

(
c(x, y) + φ(x) + ψ(y)

)
dγ

}

(iv)
= sup

φ,ψ

{(ˆ
X
−φdµ+

ˆ
Y
−ψ dν

)
+ inf
γ≥0

ˆ
X×Y

(
c(x, y) + φ(x) + ψ(y)

)
dγ

}
(v)
= sup

φ(x)+ψ(y)+c(x,y)≥0

ˆ
X
−φdµ+

ˆ
Y
−ψ dν,

where the equalities are justified as follows:

(i) While we keep the sign constraint γ ≥ 0, we remove the coupling constraints on γ.1 These
constraints are now “hidden” in the Lagrange multipliers. Indeed, unless (πX)#γ ̸= µ (resp.
if (πY )#γ ̸= ν), the supremum over φ (resp. over ψ) is +∞.

(ii) We simply rearranged the terms.
(iii) We used [9, Theorem 1.9] to exchange inf and sup.
(iv) We note that the infimum over γ only affects the last integral.
(v) We have the following two possible situations:

• If c(x, y) + φ(x) + ψ(y) ≥ 0 for all (x, y), then

inf
γ≥0

ˆ
X×Y

(
c(x, y) + φ(x) + ψ(y)

)
dγ = 0.

Indeed, the integrand is nonnegative and we can choose γ ≡ 0 to deduce that the infimum
is zero.

• If there exists (x̄, ȳ) such that c(x̄, ȳ)+φ(x̄)+ψ(x̄) < 0, then we can choose γ =Mδ(x̄,ȳ)
to find that

inf
γ≥0

ˆ
X×Y

(
c(x, y) + φ(x) + ψ(y)

)
dγ ≤M

(
c(x̄, ȳ) + φ(x̄) + ψ(x̄)

)
.

Hence, letting M → +∞, we conclude that in this case the infimum is −∞.

1Keeping the sign constraint γ ≥ 0 is convenient because of the following simple remark: if γ ≥ 0 has one of the
two marginals equal to µ or ν, then it is a probability measure. Indeed, if for instance (πX)#γ = µ, then

γ(X × Y ) = µ(X) = 1.

In other words, in the space of nonnegative measures, the condition of being probability measures is automatically
implied by the marginal constraints.
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The argument above shows that the infimum in Kantorovich’s problem is equal to the supremum
over a dual problem. Actually, again under minimal assumptions on the cost, it is possible to prove
that the infimum and the supremum are respectively a minimum and a maximum, see [4, Theorem
2.6.5]. Hence, the following general Kantorovich duality result holds:

Theorem 2.3. Let c ∈ C0(X × Y ) be bounded from below, and assume that infγ∈Γ(µ,ν)
´
X×Y c dγ <

+∞. Then

min
γ∈Γ(µ,ν)

ˆ
X×Y

c dγ = max
φ(x)+ψ(y)+c(x,y)≥0

ˆ
X
−φdµ+

ˆ
Y
−ψ dν.

2.3. From Kantorovich duality to Brenier’s Theorem. As a consequence of Theorem 2.3, we
can now study the structure of optimal plans.

Let γ̄ be an optimal plan, and let (φ̄, ψ̄) be a couple of functions for which equality holds in
Theorem 2.3, namelyˆ

X×Y
c(x, y) dγ̄ =

ˆ
X
−φ̄(x) dµ+

ˆ
Y
−ψ̄(y) dν =

ˆ
X×Y

−φ̄(x) dγ̄ +

ˆ
X×Y

−ψ̄(y) dγ̄,

where the second equality follows from the marginal constraints on γ̄. Hence, this proves thatˆ
X×Y

[
c(x, y) + φ̄(x) + ψ̄(y)

]
dγ̄ = 0.

Since the function Ψ(x, y) := c(x, y) + φ̄(x) + ψ̄(y) is nonnegative everywhere (by the assumption
on (φ̄, ψ̄) in Theorem 2.3), we deduce that Ψ = 0 γ̄-a.e. In other words, Ψ attains its minimum at
γ̄-a.e. point. In particular, if we knew that Ψ is differentiable in x at γ̄-a.e. point, then we would
deduce that

(2.1) 0 = ∇xΨ(x, y) = ∇xc(x, y) +∇φ(x) for γ̄-a.e. (x, y).

To understand what this relation entails, we consider the classical “quadratic case”.

Let X = Y = Rd and c(x, y) = |x−y|2
2 . Then, in this case, (2.1) becomes

0 = x− y +∇φ̄(x) for γ̄-a.e. (x, y),

or equivalently

y = x+∇φ̄(x) = ∇
(
|x|2

2
+ φ̄

)
(x) for γ̄-a.e. (x, y).

In other words, if φ̄ is differentiable µ-a.e.2 then we deduce that

y = T (x), T = ∇
(
|x|2

2
+ φ̄

)
for γ̄-a.e. (x, y),

namely γ̄ is contained inside the graph of T . By Remark 1.7, this map T would then be a solution
to Monge’s problem.

Making this argument rigorous leads to the proof of the following celebrated theorem of Brenier
[3] (see [4, Theorem 2.5.10] for a detailed proof):

Theorem 2.4. Let X = Y = Rd and c(x, y) = |x−y|2
2 . Suppose thatˆ

Rd
|x|2 dµ+

ˆ
Rd

|y|2 dν < +∞

2Note that, since φ̄ depends only on x, asking that φ̄ is differentiable γ̄-a.e. is equivalent to asking that φ̄ is
differentiable µ-a.e.
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and that µ≪ dx (i.e., µ is absolutely continuous with respect to the Lebesgue measure). Then there
exists a unique optimal plan γ̄. In addition, γ̄ = (id× T )#µ and T = ∇ϕ for some convex function
ϕ.

Sketch of proof. We first prove existence, and then discuss the uniqueness.
- Step 1: Existence. Given γ ∈ Γ(µ, ν) it holdsˆ

Rd×Rd
|x− y|2 dγ ≤ 2

ˆ
Rd×Rd

(
|x|2 + |y|2

)
dγ = 2

ˆ
Rd

|x|2 dµ+ 2

ˆ
Rd

|y|2 dν < +∞,

thus Theorem 2.1 ensures the existence of a nontrivial optimal transport plan γ̄. By the argument
above, we can find a pair (φ̄, ψ̄) such that

Ψ(x, y) :=
|x− y|2

2
+ φ̄(x) + ψ̄(y) ≥ 0, Ψ = 0 γ̄-a.e.

It is also possible to show that Ψ ≥ 0 implies that ϕ(x) := |x|2
2 + φ̄(x) coincides µ-a.e. with a convex

function. Hence, assuming without loss of generality that ϕ is convex, and recalling that convex
functions are differentiable a.e. with respect to the Lebesgue measure, since µ≪ dx we deduce that
the function ϕ (and so also φ̄) is differentiable µ-a.e. Thus, the argument presented above shows
that

y = T (x), T = ∇ϕ for γ̄-a.e. (x, y).

This implies that γ̄ is induced by the map T and that T = ∇ϕ is a solution to Monge’s problem (see
Remark 1.7).
- Step 2: Uniqueness. To show uniqueness, one observes that if γ̄1 and γ̄2 are optimal for the
Kantorrovich’s problem, by linearity of the problem (and convexity of the constraints) also γ̄1+γ̄2

2 is

optimal. Hence, by Step 1, there exist three convex functions ϕ1, ϕ2, ϕ̄ such that

(x, y) = (x,∇ϕ1(x)) γ̄1-a.e., (x, y) = (x,∇ϕ2(x)) γ̄2-a.e., (x, y) = (x,∇ϕ̄(x)) γ̄1 + γ̄2
2

-a.e.

This implies

(x,∇ϕ1(x)) = (x,∇ϕ̄(x)) γ̄1-a.e. ⇒ ∇ϕ1(x) = ∇ϕ̄(x) µ-a.e.

(x,∇ϕ2(x)) = (x,∇φ̄(x)) γ̄2-a.e. ⇒ ∇ϕ2(x) = ∇φ̄(x) µ-a.e.

Thus ∇ϕ1 = ∇ϕ2 µ-a.e., and therefore γ̄1 = γ̄2, as desired. □

Remark 2.5. The argument above can be extended to more general costs. Indeed, the key point
behind the proof of Theorem 2.4 is the fact that the relation (2.1), namely

0 = ∇xΨ(x, y) = ∇xc(x, y) +∇φ(x),
uniquely identifies y in terms of x and ∇φ(x). For instance, this happens when c(x, y) = |x − y|p
with p > 1.

To see this, set v := −∇φ(x) and assume that (2.1) holds. Then, since ∇xc(x, y) = p|x−y|p−2(x−
y), we have

(2.2) p|x− y|p−2(x− y) = v.

Since |x − y|p−2 > 0, we deduce that the vectors v and (x − y) are parallel and point in the same
direction, hence

x− y

|x− y|
=

v

|v|
.

In addition, taking the modulus in relation (2.2) we get

p|x− y|p−1 = |v|.
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Combining these two facts we deduce that

x− y =
v

|v|
|x− y| = v

|v|

(
|v|
p

) 1
p−1

,

or equivalently, recalling that v = −∇φ(x),

y = x+
1

p
1
p−1

∇φ(x)

|∇φ(x)|
p−2
p−1

.

This proves that (2.1) uniquely identifies y in terms of x and ∇φ(x), and Brenier’s Theorem can
indeed be extended to the family of costs c(x, y) = |x− y|p when p > 1 (see [4, Theorem 2.7.1]).

It is worth observing that this argument fails for p = 1, since (2.2) becomes

x− y

|x− y|
= v,

and this relation does not uniquely identify y in terms of x and v. We refer the interested reader to
[4, Chapter 2.7] for more details.

2.4. p-Wasserstein distances and geodesics. In the space of probability measures with finite p-
moment, optimal transport can be used to introduce the so-called p-Wasserstein distance. Although
one can perform this construction in arbitrary metric spaces, here we restrict ourselves to Rd.

Definition 2.6. Given 1 ≤ p <∞, let

(2.3) Pp(Rd) :=
{
σ ∈ P(X) :

ˆ
Rd

|x|p dσ(x) < +∞
}

be the set of probability measures with finite p-moment.

Definition 2.7. Given µ, ν ∈ Pp(Rd), we define their p-Wasserstein distance as

Wp(µ, ν) :=

(
inf

γ∈Γ(µ,ν)

ˆ
Rd×Rd

d(x, y)p dγ(x, y)

) 1
p

.

Remark 2.8. If µ, ν ∈ Pp(Rd), then for all γ ∈ Γ(µ, ν) it holds
ˆ
Rd×Rd

|x− y|p dγ ≤ 2p−1

ˆ
Rd×Rd

(
|x|p + |y|p

)
dγ = 2p−1

(ˆ
Rd

|x|p dµ+

ˆ
Rd

|y|p dν
)
<∞.

Hence, Wp is finite on Pp(Rd)× Pp(Rd).

The terminology “p-Wasserstein distance” is justified by the following result (see [4, Theorem
3.1.5] and [1, Proposition 7.1.5] for a proof):

Theorem 2.9. Wp is a distance on the space Pp(Rd), and (Pp(Rd),Wp) is a complete metric space.

In addition, one can prove that Wasserstein distances metrize the weak∗ convergence of measures
on compact sets, see [4, Corollary 3.1.7] for a proof (note that, on compact sets, all probability
measures have finite p-moment).

Proposition 2.10. Let K ⊂ Rd be compact, p ≥ 1, (µn)n∈N ⊂ P(K) a sequence of probability
measures, and µ ∈ P(K). Then

µn ⇀
∗ µ ⇐⇒ Wp(µn, µ) → 0.
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Since (Pp(Rd),Wp) is a complete metric space, we can also talk about geodesics. To describe them,

let µ0, µ1 ∈ Pp(Rd), and assume first, for simplicity, that there exists an optimal transport map T
from µ0 to µ1 for the cost c(x, y) = |x− y|p. Then the geodesic between µ0 and µ1 takes the form

µt := (Tt)#µ0, Tt(x) := (1− t)x+ tT (x).

One can indeed check that, with this definition,

Wp(µt, µs) = |t− s|Wp(µ0, µ1), hence t 7→ µt is a constant-speed geodesics.

In the general case when an optimal map may not exist, one considers γ ∈ Γ(µ0, µ1) an optimal
coupling for Wp, set πt(x, y) := (1 − t)x + ty, and define µt := (πt)#γ. Note that, if the optimal
coupling is not unique, then also the geodesic is not unique (since each optimal coupling induces a
different geodesic). We refer to [4, Section 3.1.1] for more details.

3. An application of optimal transport: the isoperimetric inequality

In this section we show how one can use optimal transport to prove the sharp isoperimetric
inequality in Rd. We use |E| to denote the Lebesgue measure of a set E.

Theorem 3.1. Let E ⊂ Rd be a bounded set with smooth boundary. Then

Area(∂E) ≥ d|B1|
1
d |E|

d−1
d ,

where |B1| is the volume of the unit ball.

To prove this result, we need the following result.

Lemma 3.2. Consider the probability measures µ := 1E
|E|dx and ν :=

1B1
|B1|dy, and let T = ∇ϕ denote

the Brenier map from µ to ν (see Theorem 2.4). Assume T to be smooth.3 Then the following hold:

(a) |T (x)| ≤ 1 for every x ∈ E;

(b) det∇T = |B1|
|E| in E;

(c) div T ≥ d (det∇T )
1
d .

Proof. We prove the three properties.
(a) If x ∈ E, then T (x) ∈ B1 and thus |T (x)| ≤ 1. By continuity, the estimate also holds for every
x ∈ E.
(b) Let A ⊂ B1, so that T−1(A) ⊂ E. Since T#µ = ν and µ = 1E

|E|dx, we have

ν(A) = µ(T−1(A)) =

ˆ
T−1(A)

dx

|E|
.

On the other hand, by the classical change of variable formulas, setting y = T (x) we have dy =
|det∇T | dx, therefore

ν(A) =

ˆ
A

dy

|B1|
=

ˆ
T−1(A)

1

|B1|
|det∇T (x)| dx.

Furthermore, since ∇T = D2ϕ is nonnegative definite (recall that ϕ is convex), it follows that
det∇T ≥ 0, hence ˆ

T−1(A)

dx

|E|
= ν(A) =

ˆ
T−1(A)

1

|B1|
det∇T (x) dx.

3The smoothness assumption can be dropped with some fine analytic arguments relying on the theory of functions
of bounded variations, see [5, Section 2.2] for more details.
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Since A ⊂ B1 is arbitrary, we deduce that

det∇T
|B1|

=
1

|E|
inside E.

(c) Note that, since the matrix ∇T = D2φ is symmetric and nonnegative definite, fixed a point
x ∈ E we can choose a system of coordinates so that ∇T (x) is diagonal with nonnegative entries:

∇T (x) =


λ1(x) 0 0 0
0 λ2(x) 0 0
0 0

. . . 0
0 0 0 λd(x)

 , λi(x) ≥ 0.

Hence, by the arithmetic-geometric mean inequality,

div T (x) =
d∑
i=1

λi(x) = d

(
1

d

d∑
i=1

λi(x)

)
≥ d

( d∏
i=1

λi(x)

) 1
d

= d
(
det∇T (x)

) 1
d .

□

Proof of Theorem 3.1. Thanks to properties (a), (b), (c) in Lemma 3.2, denoting by νE the outer
unit normal to ∂E and by dσ the surface measure on ∂E, we have

Area(∂E) =

ˆ
∂E

1 dσ
(a)

≥
ˆ
∂E

|T | dσ ≥
ˆ
∂E
T · νE dσ =

ˆ
E
div T dx

(c)

≥ d

ˆ
E

(
det∇T

) 1
d dx

(b)
= d

ˆ
E

(
|B1|
|E|

) 1
d

dx = d|B1|
1
d |E|

d−1
d ,

where the last equality in the first line follows from the divergence theorem. □

4. Gradient flows in Hilbert spaces

4.1. An informal introduction to gradient flows. Let H be a Hilbert space (think, as a first
example, H = RN ) and let ϕ : H → R be of class C1. Given x0 ∈ H, the gradient flow of ϕ starting
at x0 is given by the ordinary differential equation

(4.1)

{
x(0) = x0,

ẋ(t) = −∇ϕ(x(t)).

Note that, if x(t) solves (4.1), then

(4.2)
d

dt
ϕ(x(t)) = ∇ϕ(x(t)) · ẋ(t) = −|∇ϕ(x(t))|2 ≤ 0.

In other words, ϕ decreases along the curve x(t), and d
dtϕ(x(t)) = 0 if and only if |∇ϕ(x(t))| = 0

(i.e., x(t) is a critical point of ϕ). In particular, if ϕ has a unique stationary point that coincides
with the global minimizer (this is for instance the case if ϕ is strictly convex), then one expects x(t)
to converge to the minimizer as t→ +∞.

Remark 4.1. To define a gradient flow, one needs a scalar product. Indeed, as a general fact, given
a function ϕ : H → R one defines its differential dϕ(x) : H → R as

dϕ(x)[v] = lim
ε→0

ϕ(x+ εv)− ϕ(x)

ε
∀ v ∈ H.
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If ϕ is of class C1, then the map dϕ(x) : H → R is linear and continuous, which means that dϕ(x) ∈
H∗ (the dual space of H). On the other hand, if t 7→ x(t) ∈ H is a curve, then

ẋ(t) = lim
ε→0

x(t+ ε)− x(t)

ε
∈ H.

This shows that ẋ(t) ∈ H and dϕ(x(t)) ∈ H∗ live in different spaces. Hence, to define a gradient
flow, we need a way to identify H and H∗.

This can be done if we introduce a scalar product. Indeed, if ⟨·, ·⟩ is a scalar product on H ×H,
we can define the gradient of f at x as the unique element of H such that

⟨∇ϕ(x), v⟩ := dϕ(x)[v] ∀ v ∈ H.
In other words, the scalar product allows us to identify the gradient and the differential, and thanks
to this identification we can now make sense of ẋ(t) = −∇ϕ(x(t)).

Note that, if one changes the scalar product, then the gradient (and therefore the gradient flow)
will be different.

4.2. Gradient flows of convex functions. Let ϕ : H → R ∪ {+∞} be a convex function.

Definition 4.2. Given x ∈ H such that ϕ(x) < +∞, we define the subdifferential of ϕ at x as

∂ϕ(x) :=
{
p ∈ H : ϕ(z) ≥ ϕ(x) + ⟨p, z − x⟩ ∀z ∈ H

}
.

Note that, if ϕ is differentiable at x, then ∂ϕ(x) = {∇ϕ(x)}.

With this definition, we can define the gradient flow of ϕ starting at x0 as

(4.3)

{
x(0) = x0,

ẋ(t) ∈ −∂ϕ(x(t)) for almost every t > 0.

4.3. An example of gradient flow on H = L2(Rd): the heat equation.

Proposition 4.3. Let H = L2(Rd) and

ϕ(u) =


1

2

ˆ
Rd

|∇u|2 dx if u ∈W 1,2(Rd),

+∞ otherwise.

Then
∂ϕ(u) ̸= ∅ ⇐⇒ ∆u ∈ L2(Rd),

and in that case ∂ϕ(u) = {−∆u}.

Proof. Even though the proofs are quite similar, we prove the two implications separately.
⇒) Let p ∈ L2(Rd) with p ∈ ∂ϕ(u). Then, by definition, for any v ∈ L2(Rd) we have

ϕ(v) ≥ ϕ(u) + ⟨p, v − u⟩L2 ,

or equivalently ˆ
Rd

|∇v|2

2
dx−

ˆ
Rd

|∇u|2

2
dx ≥

ˆ
Rd
p(v − u) dx.

Take v = u+εw with w ∈W 1,2(Rd) and ε > 0. Then, rearranging the terms and dividing by ε yieldsˆ
Rd

∇u · ∇w dx+
ε

2

ˆ
Rd

|∇w|2 dx ≥
ˆ
Rd
pw dx,

so by letting ε→ 0 we obtainˆ
Rd

∇u · ∇w ≥
ˆ
Rd
pw dx ∀w ∈W 1,2(Rd).
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Replacing w with −w in the inequality above, we conclude that
ˆ
Rd

−∆u︸ ︷︷ ︸
as a

distribution

w =

ˆ
Rd

∇u · ∇w dx =

ˆ
Rd
pw dx ∀w ∈W 1,2(Rd),

that is, −∆u = p ∈ L2(Rd).
⇐) Assume that the distributional Laplacian ∆u belongs to L2(Rd). By definition of ϕ, for any
w ∈W 1,2(Rd) we have

ϕ(u+ w)− ϕ(u) =

ˆ
Rd

|∇u+∇w|2

2
dx−

ˆ
Rd

|∇u|2

2
dx

=

ˆ
Rd

∇u · ∇w dx+
1

2

ˆ
Rd

|∇w|2 dx ≥
ˆ
Rd

∇u · ∇w dx =

ˆ
Rd

−∆uw dx.

On the other hand, if u ∈W 1,2(Rd) (so that ϕ(u) < +∞) while w ̸∈W 1,2(Rd), then u+w ̸∈W 1,2(Rd)
and therefore

ϕ(u+ w) = +∞ > ϕ(u) +

ˆ
Rd

−∆uw dx.

This proves that −∆u ∈ ∂ϕ(u). □

As a consequence of this discussion, we obtain the following:

Corollary 4.4 (Heat equation as gradient flow). Let H and ϕ be as in Proposition 4.3. Then the
gradient flow of ϕ with respect to the L2-scalar product is the heat equation, i.e.,

∂tu(t) ∈ −∂ϕ(u(t)) ⇐⇒ ∂tu(t, x) = ∆u(t, x).

5. Continuity equation and Benamou–Brenier

Let Ω ⊂ Rd be a convex set4 (Ω = Rd is admissible), let ρ̄0 ∈ P2(Ω) be a probability density with
finite second moment, and let v : [0, T ] × Ω → Rd be a smooth bounded vector field tangent to the
boundary of Ω. Let X(t, x) denote the flow of v, namely

(5.1)

{
Ẋ(t, x) = v(t,X(t, x)),

X(0, x) = x,

and set ρt = (X(t))#ρ̄0. Note that, since v is tangent to the boundary, the flow remains inside Ω,
hence ρt ∈ P(Ω).

Lemma 5.1. Let vt(·) := v(t, ·). Then (ρt, vt) solves continuity equation

(5.2) ∂tρt + div(vtρt) = 0

in the distributional sense.

4The convexity of Ω guarantees that if ρ0, ρ1 ∈ P2(Ω), then also the Wasserstein geodesic between them is contained
inside Ω, cf. Section 2.4.
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Proof. Let ψ ∈ C∞
c (Ω), and consider the function t 7→

´
Ω ρt(x)ψ(x) dx. Then, using the definitions

of X and ρt, we getˆ
Ω
∂tρt(x)ψ(x) dx =

d

dt

ˆ
Ω
ρt(x)ψ(x) dx

(i)
=

d

dt

ˆ
Ω
ψ(X(t, x))ρ̄0(x) dx

=

ˆ
Ω
∇ψ(X(t, x)) · Ẋ(t, x)ρ̄0(x) dx

(ii)
=

ˆ
Ω
∇ψ(X(t, x)) · vt(X(t, x))ρ̄0(x) dx

(iii)
=

ˆ
Ω
∇ψ(x) · vt(x)ρt(x) dx = −

ˆ
Ω
ψ(x)div(vtρt) dx,

where (i) and (iii) follow from ρt = (X(t))#ρ̄0, while (ii) follows from (5.1). □

Definition 5.2. Given a pair (ρt, vt) solving the continuity equation (5.2) with ρtvt · ν|∂Ω = 0,5 we
define its action as

A[ρt, vt] :=

ˆ 1

0

ˆ
Ω
|vt(x)|2ρt(x) dx dt.

The following formula, due to Benamou and Brenier [2], shows a deep link between the continuity
equation and the W2-distance.

Theorem 5.3 (Benamou–Brenier formula). Given two probability measures ρ̄0 ∈ P2(Ω) and
ρ̄1 ∈ P2(Ω), it holds that

W2(ρ̄0, ρ̄1)
2 = inf

{
A[ρt, vt] : ρ0 = ρ̄0, ρ1 = ρ̄1, ∂tρt + div(vtρt) = 0, ρtvt · ν|∂Ω = 0

}
.

Proof. We give only a formal proof, referring to [1, Chapter 8] for a rigorous argument. By approxi-
mation we shall assume that ρ̄0 and ρ̄1 are absolutely continuous.

Let (ρt, vt) satisfy ρ0 = ρ̄0, ρ1 = ρ̄1,∂tρt + div(vtρt) = 0, ρtvt · ν|∂Ω = 0, and denote by X(t, x)
the flow of vt, so that ρt = (X(t))#ρ̄0. In particular X(1)#ρ̄0 = ρ̄1, which implies that X(1) is a
transport map from ρ̄0 to ρ̄1. Then

A[ρt, vt] =

ˆ 1

0

ˆ
Ω
|vt|2ρt dx dt

(i)
=

ˆ 1

0

ˆ
Ω
|vt(X(t, x))|2ρ̄0(x) dx dt

(ii)
=

ˆ 1

0

ˆ
Ω
|Ẋ(t, x)|2ρ̄0(x) dt dx =

ˆ
Ω
ρ̄0(x)

ˆ 1

0
|Ẋ(t, x)|2 dt dx

(iii)

≥
ˆ
Ω
ρ̄0(x)

∣∣∣∣ˆ 1

0
Ẋ(t, x) dt

∣∣∣∣2 dx =

ˆ
Ω
ρ̄0(x)|X(1, x)− x|2 dx

(iv)

≥ W 2
2 (ρ̄0, ρ̄1),

(5.3)

where (i) follows from ρt = (X(t))#ρ̄0, (ii) is just the definition of X, (iii) follows from Hölder
inequality, and for (iv) we used that X(1) is a transport map from ρ̄0 to ρ̄1. This proves that
W 2

2 (ρ̄0, ρ̄1) is always less than or equal to the infimum appearing in the statement.
To show equality, take X(t, x) = x + t(T (x) − x) where T = ∇φ is optimal from ρ̄0 to ρ̄1 (see

Theorem 2.4), set ρt := X(t)#ρ̄0, and let vt be such that Ẋ(t) = vt ◦X(t). With these choices we

5The constraint ρtvt · ν|∂Ω = 0 guarantees that, whenever there is some mass ρt near the boundary, the flow of vt
does not allow it to go outside Ω. In particular

d

dt

ˆ
Ω

ρt dx =

ˆ
Ω

∂tρt dx = −
ˆ
Ω

div(vtρt) dx = −
ˆ
∂Ω

ρtvt · ν = 0,

hence ρt ∈ P(Ω) for all t.
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have (T (x)−x) = Ẋ(t, x) = vt(X(t, x)), and looking at the computations above one can easily check
that all inequalities in (5.3) become equalities, proving that

A[ρt, vt] =W 2
2 (ρ̄0, ρ̄1).

□

6. A differential viewpoint of optimal transport

As in the previous section, we assume that Ω ⊂ Rd is convex.

6.1. From Benamou-Brenier to the Wasserstein scalar product. Starting from the Benamou-
Brenier formula, we will see how this motivates Otto’s interpretation of the Wasserstein space as a
Riemannian manifold [8].

Thanks to Theorem 5.3, we can write

W2(ρ̄0, ρ̄1)
2 = inf

ρt,vt

{ˆ 1

0

(ˆ
Ω
|vt|2ρt dx

)
dt

∣∣∣∣ ∂tρ+ div(vtρt) = 0, ρtvt · ν|∂Ω = 0, ρ0 = ρ̄0, ρ1 = ρ̄1

}
= inf

ρt

{
inf
vt

ˆ 1

0

ˆ
Ω
|vt|2ρt dx dt

∣∣∣∣ ∂tρ+ div(vtρt) = 0, ρtvt · ν|∂Ω = 0, ρ0 = ρ̄0, ρ1 = ρ̄1

}
= inf

ρt

{ˆ 1

0
inf
vt

{ˆ
Ω
|vt|2ρt dx

∣∣∣∣ div(vtρt) = −∂tρt, ρtvt · ν|∂Ω = 0

}
dt

∣∣∣∣ ρ0 = ρ̄0, ρ1 = ρ̄1

}
,

where in the last equality we used that, for each time t ∈ [0, 1], and for ρt and ∂tρt given, one
can minimize with respect to all vector fields vt satisfying the constraints div(vtρt) = −∂tρt and
ρtvt · ν|∂Ω = 0.

In analogy with the formula for the Riemannian distance on a manifold6, it is natural to define
the Wasserstein norm of the derivative ∂tρt at ρt as

(6.1) ∥∂tρt∥2ρt := inf
vt

{ˆ
Ω
|vt|2ρt dx

∣∣∣∣ div(vtρt) = −∂tρt, ρtvt · ν|∂Ω = 0

}
.

In other words, at each time t, the continuity equation gives a constraint on the divergence of vtρt.
So, with this definition, we get

W2(ρ̄0, ρ̄1)
2 = inf

ρt

{ˆ 1

0
∥∂tρt∥2ρt dt

∣∣∣∣ ρ0 = ρ̄0, ρ1 = ρ̄1

}
.

To find a better formula for the Wasserstein norm of ∂tρt we want to understand the properties of
the vector field vt that realizes the infimum in (6.1). Hence, given ρt and ∂tρt, let vt be a minimizer,
and let w be a vector field such that div(w) = 0 and w · ν|∂Ω = 0. Then, for every ε we have

div
((
vt + ε

w

ρt

)
ρt

)
= −∂tρt, ρt

(
vt + ε

w

ρt

)
· ν|∂Ω = 0.

Thus vt + ε wρt is an admissible vector field in the minimization problem (6.1), and so by minimality

of vt we getˆ
Ω
|vt|2ρt dx ≤

ˆ
Ω

∣∣∣vt + ε
w

ρt

∣∣∣2ρt dx =

ˆ
Ω
|vt|2ρt dx+ 2ε

ˆ
Ω
⟨vt, w⟩ dx+ ε2

ˆ
Ω

|w|2

ρt
dx.

6Given (M, g) a Riemannian manifold, one can define the distance dM between two points x, y ∈M as

dM (x, y)2 = inf

{ˆ 1

0

|γ̇(t)|2 dt
∣∣∣∣ γ : [0, 1] →M, γ(0) = x, γ(1) = y

}
.
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Dividing by ε and letting it go to zero yieldsˆ
Ω
⟨vt, w⟩ = 0

for every w such that div(w) ≡ 0. By Helmholtz decomposition, this implies that

vt ∈ {w : div(w) = 0, w · ν|∂Ω = 0}⊥ = {∇q : q : Ω → R}.
In other words, if vt realizes the infimum in (6.1), then there exists a function ψt such that vt = ∇ψt.
Also, since div(vtρt) = −∂tρt and ρtvt · ν|∂Ω = 0, then ψt is a solution of

(6.2)


div(ρt∇ψt) = −∂tρt in Ω,

ρt
∂ψt
∂ν

= 0 on ∂Ω.

Note that if ρt is a smooth curve of positive probability densities, then (6.2) is a uniformly elliptic
equation with Neumann boundary conditions for ψt, and the solution ψt is unique up to a constant.7

So, instead of using (6.1), one can define

∥∂tρt∥2ρt =
ˆ
Ω
|∇ψt|2ρt dx,

where ψt solves (6.2).
More generally, given ρ ∈ P2(Ω), we can construct a scalar product (compatible with the norm

defined above) as follows:

Definition 6.1. Given two functions h1, h2 : Ω → R with
´
Ω h1 =

´
Ω h2 = 0,8 we define their

Wasserstein scalar product at ρ as

⟨h1, h2⟩ρ :=
ˆ
Ω
∇ψ1 · ∇ψ2 ρ dx, where


div(ρ∇ψi) = −hi in Ω,

ρ
∂ψi
∂ν

= 0 on ∂Ω.

6.2. Wasserstein gradient flows. Now that we have a scalar product (see Definition 6.1), we can
define the gradient of a functional in the Wasserstein space (cf. Remark 4.1).

Definition 6.2. Given a functional F : P2(Ω) → R, its Wasserstein gradient at ρ̄ ∈ P2(Ω) is the
unique function gradW2

F [ρ̄] (if it exists) such that〈
gradW2

F [ρ̄],
∂ρε
∂ε

∣∣∣
ε=0

〉
ρ̄
=

d

dε

∣∣∣
ε=0

F [ρε]

for any smooth curve (−ε0, ε0) ∈ ε 7→ ρε ∈ P(Ω) with ρ0 = ρ̄.

7Note that, since by assumption
´
Ω
ρt dx = 1, thenˆ

Ω

∂tρt dx =
d

dt

ˆ
Ω

ρt dx = 0.

It is a classical fact (at least in the smooth setting when ρt > 0) that the zero-integral condition above is necessary
and sufficient for the solvability of (6.2).

8The condition
´
Ω
h = 0 is needed for the solvability of the elliptic equation{

div(ρ∇ψ) = −h in Ω,

ρ ∂ψ
∂ν

= 0 on ∂Ω,

since ˆ
Ω

h dx = −
ˆ
Ω

div(ρ∇ψ) dx = −
ˆ
∂Ω

ρ
∂ψ

∂ν
= 0.
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We now aim to obtain an explicit formula for the Wasserstein gradient of a functional. Given

a functional F : P2(Ω) → R and a probability measure ρ̄ ∈ P2(Ω), let us denote by δF [ρ̄]
δρ its first

L2-variation, i.e., the function such that

d

dϵ

∣∣∣
ϵ=0

F [ρϵ] =

ˆ
Ω

δF [ρ̄]

δρ
(x)

∂ρϵ(x)

∂ϵ

∣∣∣
ϵ=0

dx

for any smooth curve (−ε0, ε0) ∈ ε 7→ ρε ∈ P2(Ω) such that ρ0 = ρ̄. Hence, by Definition 6.2,〈
gradW2

F [ρ̄],
∂ρε
∂ε

∣∣∣
ε=0

〉
ρ̄
=

ˆ
Ω

δF [ρ̄]

δρ

∂ρε
∂ε

∣∣∣
ε=0

dx.

Thus, denoting by ψ the solution of{
div(∇ψ ρ̄) = −∂ρε

∂ε

∣∣
ε=0

in Ω,

ρ̄∂ψ∂ν = 0 on ∂Ω,

we have 〈
gradW2

F [ρ̄],
∂ρε
∂ε

∣∣∣
ε=0

〉
ρ̄
= −

ˆ
Ω

δF [ρ̄]

δρ
div(∇ψρ̄) dx =

ˆ
Ω
∇δF [ρ̄]

δρ
· ∇ψρ̄ dx

and therefore, by Definition 6.1, it follows that

(6.3) gradW2
F [ρ̄] = −div

(
∇
(δF [ρ̄]

δρ

)
ρ̄

)
, with ρ̄

∂
(
δF [ρ̄]
δρ

)
∂ν

∣∣∣
∂Ω

= 0.

Example 6.3. If F [ρ] =
´
Ω U(ρ(x)) dx with U : R → R, then for any smooth variation ϵ 7→ ρϵ it

holds that
d

dϵ

∣∣∣
ϵ=0

ˆ
Ω
U(ρϵ(x)) dx =

ˆ
Ω
U ′(ρ̄(x))

∂ρϵ(x)

∂ϵ

∣∣∣
ϵ=0

dx,

and therefore the first L2-variation of F [ρ] at ρ̄ ∈ P2(Ω) is given by

δF [ρ̄]

δρ
(x) = U ′(ρ̄(x)).

Using (6.3), this implies that the Wasserstein gradient of F is

gradW2
F [ρ̄] = −div

(
ρ̄∇[U ′(ρ̄)]

)
= −div

(
ρ̄U ′′(ρ̄)∇ρ̄

)
, ρ̄U ′′(ρ̄)

∂ρ̄

∂ν

∣∣∣
∂Ω

= 0.

In the special case U(s) = s log(s) (hence, F is the entropy functional) one has U ′′(s) = 1
s , thus

gradW2
F [ρ̄] = −∆ρ̄,

∂ρ̄

∂ν

∣∣∣
∂Ω

= 0.

If instead U(s) = sm

m−1 for some m ̸= 1, then we get

gradW2
F [ρ̄] = −mdiv

(
ρ̄m−1∇ρ̄

)
= −∆(ρ̄m),

∂ρ̄m

∂ν

∣∣∣
∂Ω

= 0.

Example 6.4. Let F [ρ] =
´
Ω V (x)ρ(x) dx with V : Ω → R. Then

δF [ρ̄]

δρ
(x) = V (x),

and therefore the Wasserstein gradient of F is

gradW2
F [ρ̄] = −div

(
∇V ρ̄

)
, ρ̄

∂V

∂ν

∣∣∣
∂Ω

= 0.
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Example 6.5. Let F [ρ] = 1
2

˜
Ω×ΩW (x − y)ρ(x)ρ(y) dx dy with W : Rd → R such that W (z) =

W (−z). Then
δF [ρ̄]

δρ
(x) =W ∗ ρ̄(x) =

ˆ
Ω
W (x− y)ρ(y) dy,

where ∗ denotes the convolution, and therefore the Wasserstein gradient of F is

gradW2
F [ρ̄] = −div

(
(∇W ∗ ρ̄)ρ̄

)
, ρ̄

∂W ∗ ρ̄
∂ν

∣∣∣
∂Ω

= 0.

Finally, the definition of gradient flow in the Wasserstein space is the expected one.

Definition 6.6. Given a functional F : P2(Ω) → R, a curve of probability measure [0, T ) ∋ t 7→ ρt ∈
P2(Ω) is a W2-gradient flow of F starting from ρ̄0 if{

∂tρt = −gradW2
F [ρt],

ρ0 = ρ̄0.

By the computations in Example 6.3, the W2-gradient flow of the entropy functional F [ρ] =´
Ω ρ log(ρ) dx is the heat equation with Neumann boundary conditions:

∂tρt = ∆ρt,
∂ρt
∂ν

∣∣∣
∂Ω

= 0.

On the other hand, if F [ρ] = 1
m−1

´
Ω ρ

m for m ̸= 1 with m > 0, then the gradient flow is

∂tρt = ∆(ρmt ),
∂ρmt
∂ν

∣∣∣
∂Ω

= 0.

that is, the porous medium equation (if m > 1) or the fast diffusion equation (if m ∈ (0, 1)) .

6.3. Implicit Euler and JKO schemes. Given ϕ : H → R of class C1, a classical way to construct
solutions of (4.1) is by discretizing the ODE in time, via the so-called implicit Euler scheme. More

precisely, with a small fixed time step τ > 0, we discretize the time derivative ẋ(t) as x(t+τ)−x(t)
τ , so

that (4.1) becomes
x(t+ τ)− x(t)

τ
= −∇ϕ(y)

for a suitable choice of the point y. A natural idea would be to choose y = x(t) (as in the explicit
Euler scheme), but for our purposes the choice y = x(t+ τ) (as in the implicit Euler scheme) works
better. Thus, given x(t), one looks for a point x(t+ τ) ∈ H solving the relation

x(t+ τ)− x(t)

τ
= −∇ϕ(x(t+ τ)).

With this idea in mind, we set xτ0 = x0. Then, given k ≥ 0 and xτk, we want to find xτk+1 by solving

xτk+1 − xτk
τ

= −∇ϕ(xτk+1),

or equivalently

∇x

(
∥x− xτk∥2

2τ
+ ϕ(x)

)∣∣∣∣
x=xτk+1

=
xτk+1 − xτk

τ
+∇ϕ(xτk+1) = 0.

In other words, xτk+1 is a critical point of the function ψτk(x) :=
∥x−xτk∥

2

2τ +ϕ(x). Therefore, a natural
way to construct xτk+1 is by looking for a global minimizer of ψτk :

xτk+1 := argmin

{
x 7→

∥x− xτk∥2

2τ
+ ϕ(x)

}
.
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Once the sequence (xτk)k≥0 has been constructed, setting xτ (0) := x0 and xτ (t) := xτk for t ∈
((k − 1)τ, kτ ], one obtains an approximate solution t 7→ xτ (t). Then, the main challenge is to let
τ → 0 and prove that there exists a limit curve x(t) that indeed solves (4.1).

In many situations, this approach works and allows one to construct gradient flows (for instance,
when ϕ is convex, it allows one to construct solutions of (4.3)). Hence, motivated by this, one can
mimic the same strategy in the Wasserstein space: given an initial measure ρ̄0 and a functional F ,
one inductively defines

ρτk+1 is the minimizer in P(Rd) of ρ 7→
W 2

2 (ρ, ρ
τ
k)

2τ
+ F [ρ].

This approach is called JKO scheme, as it was first introduced by Jordan, Kinderlehrer, and Otto in
the case F [ρ] =

´
ρ log(ρ) to construct solutions to the heat equation [6], and it has become by now

a very versatile tool to construct solutions of evolution PDEs.

6.4. Displacement convexity. When considering gradient flows, the convexity of the energy plays
a crucial role. Indeed, let ϕ be a convex function, and let x(t), y(t) be solutions of (4.3) with initial
conditions x0 and y0 respectively. If ϕ is of class C1 then

d

dt

∥x(t)− y(t)∥2

2
= ⟨x(t)− y(t), ẋ(t)− ẏ(t)⟩ = −⟨x(t)− y(t),∇ϕ(x(t))−∇ϕ(y(t))⟩ ≤ 0,

where the last inequality follows from the convexity of ϕ. This argument can easily be extended to
non-smooth convex functions (see [4, Remark 3.2.3]), yielding

∥x(t)− y(t)∥ ≤ ∥x0 − y0∥ ∀ t ≥ 0,

which implies both uniqueness and stability of gradient flows.
A natural question is understanding the analogue of convexity in the Wasserstein space. The

correct answer has been found by McCann [7]:

Definition 6.7. We say that a functional F : P2(Ω) → R is W2-convex, or displacement convex, if
the one-dimensional function

[0, 1] ∋ t 7→ F [ρt]

is convex for any W2-geodesic [0, 1] ∋ t 7→ ρt ∈ P2(Ω).

It turns out that, under this assumption, uniqueness and stability hold. More precisely, let F be
displacement convex, and let ρt and σt be two gradient flows of F . Then

W2(ρt, σt) ≤W2(ρ0, σ0) ∀ t ≥ 0,

see [1, Theorem 11.1.4]. Motivated by these results, it is natural to look for sufficient conditions that
guarantee the displacement convexity of a functional.

We summarize here some important examples (see [4, Chapter 4.3] for a proof):

Proposition 6.8. Let Ω ⊂ Rd be a convex set. The following functionals are displacement convex
on P2(Ω).

(1) F [ρ] :=
´
Ω U(ρ(x)) dx, where U : [0,∞) → R satisfy

(0,∞) ∋ s 7→ U
( 1

sd

)
sd is convex and nonincreasing.

(2) F [ρ] :=
´
Ω V (x)ρ(x) dx with V : Ω → R convex.

(3) F[ρ] :=
˜

Ω×ΩW (x−y)ρ(x)ρ(y) dx dy with W : Rd→R convex.
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Corollary 6.9. Let F [ρ] =
´
Ω U(ρ(x)) dx. The following choices of U induce displacement convex

functionals:

U(s) :=


s log(s) ⇝ ∂tρt = ∆ρ (heat equation),

1
m−1s

m for m > 1 ⇝ ∂tρt = ∆(ρm) (porous medium equation),

1
m−1s

m for m ∈ [1− 1
d , 1) ⇝ ∂tρt = ∆(ρm) (fast diffusion equation).

7. Conclusion

In these notes, we have introduced the optimal transport problem, the Wasserstein distances, and
the theory of Wasserstein gradient flows. Of course, the material contained here is far from complete.
We invite the interested reader to consult the recent monograph [4] for more details, an extended
bibliography, and further readings.

References
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