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Abstract

These notes record and extend the lectures for the CIME Summer Course held by the author
in Cetraro during the week of June 2-7, 2014. Our goal is to show how some recent developments
in the theory of the Monge-Ampère equation play a crucial role in proving existence of global
weak solutions to the semigeostrophic equations.
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1 The semigeostrophic equations

The semigeostrophic (in short, SG) equations are a simple model used in meteorology to describe
large scale atmospheric flows. As explained for instance in [5, Section 2.2] (see also [16] for a more
complete exposition), these equations can be derived from the 3-D incompressible Euler equations,
with Boussinesq and hydrostatic approximations, subject to a strong Coriolis force. Since for large
scale atmospheric flows the Coriolis force dominates the advection term, the flow is mostly bi-
dimensional. For this reason, the study of the SG equations in 2-D or 3-D is pretty similar, and in
order to simplify our presentation we focus here on the 2-dimentional periodic case.

1.1 The classical SG system

The 2-dimensional SG system can be written as
∂t∇pt + (ut · ∇)∇pt +∇⊥pt + ut = 0 in [0,∞)× R2,

divut = 0 in [0,∞)× R2,

p0 = p̄ on R2,

(1.1)

where ut = (u1
t ,u

2
t ) : R2 → R2 and pt : R2 → R are time-dependent periodic1 functions respectively

corresponding to the velocity and the pressure.
In the above system the notation ∇⊥pt denotes the rotation of the vector ∇pt by π/2, that is

∇⊥pt = (∂2pt,−∂1pt). Also, (ut · ∇) denotes the operator u1
t∂1 + u2

t∂2. Hence, in components the
first equation in (1.1) reads as

∂t∂1pt +
∑
j=1,2

ujt∂j∂1pt + ∂2pt + u1
t = 0,

∂t∂2pt +
∑
j=1,2

ujt∂j∂2pt − ∂1pt + u2
t = 0.

1By “periodic” we shall always mean Z2-periodic.
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Notice that in (1.1) we have 3 equations (the two above, together with divut = 0) for the 3 un-
knowns (pt,u

1
t ,u

2
t ). Also, while in many equations in fluid mechanics one usually prescribes the

evolution of the velocity field ut and pt acts as a Lagrange multiplier for the incompressibility
constraint, here we are prescribing the evolution of the gradient of pt and ut acts as a Lagrange
multiplier in order to ensure that the vector field ∇pt remains a gradient along the evolution.

As shown in [16], energetic considerations show that it is natural to assume that pt is (−1)-
convex, i.e., the function Pt(x) := pt(x) + |x|2/2 is convex on R2. Hence, noticing that

∇pt = ∇Pt − x, ∂t∇pt = ∂t∇Pt, (ut · ∇)x = ut,

we are led to the following extended system for Pt:
∂t∇Pt + (ut · ∇)∇Pt + (∇Pt − x)⊥ = 0 in [0,∞)× R2,

divut = 0 in [0,∞)× R2,

Pt convex in [0,∞)× R2,

P0 = p̄+ |x|2/2 on R2,

(1.2)

with the “boundary conditions” that both Pt − |x|2/2 and ut are periodic.

The existence theory for this equation is extremely complicated, and so far nobody has been
able to attack directly this equation. Instead, there is a way to find a “dual equation” to this
system for which existence of solutions is much easier to obtain, and then one can use this “dual
solution” to go back and construct a solution to the original system. This is the goal of the next
sections.

1.2 An evolution equation for the density associated to Pt: the dual SG system

Notice that ∇Pt can be seen a map from R2 to R2. Motivated by the fact that, in optimal transport
theory, gradients of convex functions are optimal transport maps (see Theorem 2.1 below), it is
natural to look at the image of the Lebesgue measure under this map and try to understand its
behavior. Hence, denoting by dx denote Lebesgue measure on R2, we define the measure ρt as
(∇Pt)]dx, that is, for any test function χ : R2 → R,∫

R2

χ(y) dρt(y) :=

∫
R2

χ
(
∇Pt(x)

)
dx. (1.3)

Before describing the properties of ρt, we make a simple observation that will be useful later.

Remark 1.1. Since ∇Pt − x is periodic, it is easy to check that the measure ρt is periodic on R2

and ∫
[0,1]2

dρt =

∫
[0,1]2

dx = 1,

so one can also identify it as a probability measure on the 2-dimensional torus T2.
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Our goal now is to find an evolution equation for ρt. To this aim we take ϕ ∈ C∞c (R2) and we
compute the time derivative of

∫
ϕdρt:

d

dt

∫
ϕdρt

(1.3)
=

d

dt

∫
ϕ
(
∇Pt

)
dx

=

∫
∇ϕ
(
∇Pt

)
· ∂t∇Pt dx

(1.2)
= −

∫
∇ϕ
(
∇Pt

)
· (ut · ∇)∇Pt dx−

∫
∇ϕ
(
∇Pt

)
· (∇Pt − x)⊥ dx

= −
∫
∇ϕ
(
∇Pt

)
·D2Pt · ut dx−

∫
∇ϕ
(
∇Pt

)
· (∇Pt − x)⊥ dx

= −
∫
∇
[
ϕ ◦ ∇Pt

]
· ut dx−

∫
∇ϕ
(
∇Pt

)
· (∇Pt − x)⊥ dx

=

∫ [
ϕ ◦ ∇Pt

]
divut dx−

∫
∇ϕ
(
∇Pt

)
· (∇Pt − x)⊥ dx

(1.2)
= −

∫
∇ϕ
(
∇Pt

)
· (∇Pt − x)⊥ dx,

(1.4)

where at the last step we used that divut = 0.
In order to continue in the computations we need to introduce the Legendre transform of Pt:

P ∗t (y) := sup
x∈R2

{x · y − Pt(x)} ∀ y ∈ R2.

Notice that the function P ∗t is also convex, being the supremum of linear functions. Also, at least
formally, the gradient of Pt and P ∗t are inverse to each other:2

∇Pt(∇P ∗t (y)) = y, ∇P ∗t (∇Pt(x)) = x. (1.5)

Thanks to this fact we obtain that the last term in (1.4) is equal to

−
∫ [
∇ϕ · (∇P ∗t − y)⊥

]
◦ ∇Pt(x) dx,

which by (1.3) can also be rewritten as

−
∫
∇ϕ · (∇P ∗t − y)⊥ dρt(y).

2The relation (1.5) is valid only at point where the gradients of Pt and P ∗t both exist. There is however a weaker
way to formulate such a relation that is independent of any regularity assumption: define the sub-differential of a
convex function φ : Rn → R as

∂φ(x) := {p ∈ Rn : φ(z) ≥ φ(x) + p · (z − x) ∀ z ∈ Rn}.

Then, using the definition of P ∗t it is not difficult to check that

y ∈ ∂Pt(x) ⇔ x ∈ ∂P ∗t (y).

Noticing that ∂φ(x) = {∇φ(x)} whenever φ is differentiable at x, the above relation reduces exactly to (1.5) at
differentiability points.
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Hence, if we set

U t(y) :=
(
∇P ∗t (y)− y

)⊥
,

(1.4) and an integration by parts give

d

dt

∫
ϕdρt = −

∫
ϕdiv(U tρt),

and by the arbitrariness of ϕ we conclude that ∂tρt + div(U tρt) = 0. Thus we have shown that ρt
satisfies the following dual problem:

∂tρt + div(U tρt) = 0 in [0,∞)× R2,

U t(y) =
(
∇P ∗t (y)− y

)⊥
in [0,∞)× R2,

ρt = (∇Pt)]dx in [0,∞)× R2,

P0 = p̄+ |x|2/2 on R2.

(1.6)

2 Global existence for the dual SG system

The global existence of weak solutions to the dual problem (1.6) was obtained by Benamou and
Brenier in [5]. The aim of this section is to review their result.

2.1 Preliminaries on transport equations

The system (1.6) is given by a transport equation for ρt where the vector field U t is coupled to ρt
via the relation ρt = (∇Pt)]dx. Notice that because U t = (U1

t ,U
2
t ) is the rotated gradient of the

function p∗t (y) := P ∗t (y)− |y|2/2, it is divergence free: indeed,

divU t = ∂1U
1
t + ∂2U

2
t = ∂1∂2p

∗
t − ∂2∂1p

∗
t = 0.

We now review some basic facts on linear transport equations with Lipschitz divergence-free
vector fields. Since the dimension does not play any role, we work directly in Rn.

Let vt : Rn → Rn be a time-dependent Lipschitz divergence-free vector field. Given a measure
σ̄ in Rn, our goal is to solve the equation{

∂tσt + div(vtσt) = 0 in [0,∞)× Rn,

σ0 = σ̄ on Rn.
(2.1)

Notice that because vt is divergence free, the above equation can also be rewritten as a standard
transport equation:

∂tσt + vt · ∇σt = 0.

To find a solution, we first apply the classical Cauchy-Lipschitz theorem for ODEs in order to
construct a flow for vt: {

Ẏ (t, y) = vt(Y (t, y))

Y (0, y) = y,
(2.2)
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and then we define σ(t) := Y (t)#σ̄. Let us check that this definition provides a solution to (2.1):
take ϕ ∈ C∞c (Rn) and observe that

d

dt

∫
ϕ(y) dσt(y)

(1.3)
=

d

dt

∫
ϕ(Y (t, y)) dσ̄(y)

=

∫
∇ϕ(Y (t, y)) · Ẏ (t, y) dσ̄(y)

=

∫
∇ϕ(Y (t, y)) · vt(Y (t, y)) dσ̄(y)

(1.3)
=

∫
∇ϕ(y) · vt(y) dσt(y).

By the arbitrariness of ϕ, this proves the validity of (2.1).

It is interesting to observe that the curve of measures t 7→ Y (t)#σ̄ is the unique solution of
(2.1). A possible way to prove this is to consider σt an arbitrary solution of (2.1) and define
σ̂t := [Y (t)−1]#σt. Then a direct computation shows that

d

dt

∫
ϕ(y) dσ̂t(y) = 0 ∀ ∈ C∞c (R2), (2.3)

therefore

[Y (t)−1]#σt = σ̂t
(2.3)
= σ̂0 = σ̄ ⇒ σt = Y (t)#σ̄,

as desired.

We also notice that, if we assume that σ̄ is not just a measure but a function, then we can give
a more explicit formula for σt. Indeed the fact that div vt = 0 implies that det∇Y (t) = 1,3 and the
classical change of variable formula gives∫

ϕ(y) dσt(y)
(1.3)
=

∫
ϕ(Y (t, y))σ(y) dy

z=Y (t,y)
=

∫
ϕ(z) σ̄

(
Y (t)−1(z)

)
dz.

Since ϕ is arbitrary we deduce that σt is a function (and not just a measure) and it is given by the
formula σt = σ̄ ◦ Y (t)−1, or equivalently

σt(Y (t, y)) = σ̄(y) ∀ y. (2.5)

This implies in particular that any pointwise bound on σ̄ is preserved in time, that is

λ ≤ σ̄ ≤ Λ ⇒ λ ≤ σt ≤ Λ ∀ t. (2.6)

3To show this, one differentiates (2.2) with respect to y and uses the classical identity

d

dε |ε=0

det(A+ εBA) = tr(B) det(A),

to get {
d
dt

(
det∇Y (t, y)

)
= [div vt(Y (t, y))]

(
det∇Y (t, y)

)
= 0,

det∇Y (0, y) = y.
(2.4)
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2.2 Preliminaries on optimal transport

Let µ, ν denote two probability measures on Rn. The optimal transport problem (with quadratic
cost) consists in finding the “optimal” way to transport µ onto ν, given that the transportation
cost to move a point from x to y is |x− y|2. Hence one is naturally led to minimize∫

Rn
|S(x)− x|2 dµ(x)

among all maps S which send µ onto ν, that is S#µ = ν. By a classical theorem of Brenier [9]
existence and uniqueness of optimal maps always hold provided µ is absolutely continuous and
both µ and ν have finite second moments. In addition, the optimality of the map is equivalent to
the fact that T is the gradient of a convex function. This is summarized in the next theorem:

Theorem 2.1. Let µ, ν be probability measures on Rn with µ = f dx and∫
|x|2 dµ(x) +

∫
|y|2 dν(y) <∞.

Then:
(1) There exists a unique optimal transport map T .
(2) There exists a convex function φ : Rn → R such that T = ∇φ.
(3) The fact that T is the gradient of a convex function is equivalent to its optimality. More
precisely, if ψ : Rn → R is a convex function such that ∇ψ#µ = ν then ∇ψ is optimal and
T = ∇ψ. In addition, if f > 0 a.e. then ψ = φ+ c for some additive constant c ∈ R.

We now show the connection between optimal transport and the Monge-Ampère equation.
Assume that both µ and ν are absolutely continuous, that is µ = f dx and ν = g dy, let ϕ ∈ C∞c (Rn),
and suppose that T = ∇φ is a smooth diffeomorphism. Then, using the definition of push-forward
and the standard change of variable formula, we get∫

ϕ(T (x)) f(x) dx
(1.3)
=

∫
ϕ(y) g(y) dy

y=T (x)
=

∫
ϕ(T (x)) g(T (x))

∣∣det∇T (x)
∣∣ dx.

By the arbitrariness of ϕ, this gives the Jacobian equation

f(x) = g(T (x))
∣∣det∇T (x))

∣∣,
that combined with the condition T = ∇φ implies that φ solves the Monge-Ampère equation

det(D2φ) =
f

g ◦ ∇φ
. (2.7)

Notice that the above computations are formal since we needed to assume a priori T to be smooth
in order to write the above equation. Still, this fact is the starting point behind the regularity
theory of optimal transport maps. We shall not enter into this but we refer to the survey paper
[21] for more details.
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Notice that in Section 1.2 we started from the Lebesgue measure on R2 and we sent it onto ρt
using the gradient of the convex function Pt. If we could apply Theorem 2.1(3) above we would
know that ∇Pt is the unique optimal map sending the Lebesgue measure onto ρt. However in our
case we do not have probability measure but rather periodic measures on Rn, hence Theorem 2.1
does not directly apply. However, since both the Lebesgue measure and ρt are probability measures
on the torus (see Remark 1.1), we can apply [15] (see also [2, Theorem 2.1]) to obtain the following:

Theorem 2.2. Let µ, ν be probability measures on T2, and assume that µ = f dx and that f > 0
a.e. Then there exists a unique (up to an additive constant) convex function P : R2 → R such that
(∇P )]µ = ν and P − |x|2/2 is periodic.

2.3 Dual SG vs. 2-D Euler

Before entering into the proof of existence of solutions to (1.6), let us first make a parallel with the
2-dimensional Euler equations. Starting from the Euler system{

∂tut + (ut · ∇)ut +∇pt = 0

divut = 0
(2.8)

one can consider the curl of ut given by ωt := ∂1u
2
t − ∂2u

1
t . Then, by taking the curl of the first

equation in (2.8), one finds that ωt solves the equation
∂tωt + div(ut ωt) = 0

ωt = curlut

divut = 0.

(2.9)

Since ut is divergence free, it follows that curlu⊥t = 0, hence u⊥t is the gradient of a function ψt,
or equivalently ut = −∇⊥ψt. Then, inserting this information inside the relation ωt = curlut we
deduce that ωt = −curl∇⊥ψt = ∆ψt, and (2.9) rewrites as

∂tωt + div(ut ωt) = 0

ut = ∇⊥ψt
∆ψt = ωt

(2.10)

(see [18, Section 1.2.1] for more details).
If we now compare (2.10) and (1.6), we can notice that the two systems are very similar. More

precisely, since the linearization of the determinant around the identity matrix gives the trace, we
see that (1.6) is a nonlinear version of (2.10). This can be formalized in the following way (see [32,
Section 6] for a rigorous result in this direction):

Exercise: Assume that (ρεt , P
∗,ε
t )ε>0 is a family of solutions to (1.6) with

ρεt = 1 + ε ωεt + o(ε), P ∗,εt = |y|2/2 + εψεt + o(ε),

for some couple of smooth functions (ωt, ψt). Then (ωt, ψt) solve (2.10).
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2.4 Global existence of weak solutions to (1.6)

In order to construct solutions to (1.6) one uses the following splitting method:
(1) Given ρ0, we construct the vector field U0 using the optimal transport map sending ρ0 to dx,
and we use (a regularization of) it to let ρ0 evolve over a time interval [0, ε].
(2) Starting from ρε, we construct U ε as before and we use it to let ρε evolve over the time
interval [ε, 2ε].
(3) Iterating this procedure, we obtain an approximate solution on [0,∞), and letting ε → 0
produces the desired solutions.

We now describe in detail this construction.

2.4.1 Construction of approximate solutions

Assume that ρ0 := (x+∇p̄)#dx satisfies

λ ≤ ρ0 ≤ Λ (2.11)

for some constants 0 ≤ λ ≤ Λ.4 Since ρ0 is absolutely continuous, we can apply Theorem 2.2 in
order to find a convex function P ∗0 whose gradient sends ρ0 to dx, and we define

U0(y) :=
(
∇P ∗0 (y)− y

)⊥
.

The idea is to fix ε > 0 a small time step and to solve the transport equation in (1.6) over the
time interval [0, ε] but with U0 in place of U t, using the theory described in Section 2.1. However,
since U0 is not smooth, we shall first regularize it.5 For this reason with introduce a regularization
parameter δ > 0.6

Hence, we fix a smooth convolution kernel χ ∈ C∞c (R2) and, for t ∈ [0, ε], we define

U ε,δ
t (y) := U0 ∗ χδ(y) =

∫
R2

U0(z)χδ(y − z) dz, χδ(y) :=
1

δ2
χ

(
y

δ

)
.

Notice that U ε,δ
t ∈ C∞(R2) and divU ε,δ

t = (divU0) ∗ χδ = 0, hence we can apply the theory

discussed in Section 2.1 in the following way: we denote by Y ε,δ(t) the flow of U ε,δ
t on [0, ε], that is{

Ẏ ε,δ(t, y) = U ε,δ
t (Y ε,δ(t, y)) for t ∈ [0, ε],

Y ε,δ(0, y) = y,

and define
ρε,δt := Y ε,δ(t)#ρ0 ∀ t ∈ [0, ε].

4In this proof the lower bound on ρ0 is not crucial and this is why we are allowing for λ = 0 as a possible value.
However, instead of just writing ρ0 ≤ Λ we have decided to write (2.11) in order to emphasize that both the upper
and the lower bound will be preserved along the flow.

5This regularization procedure is not strictly necessary, since in this situation one could also apply the theory of
flows for divergence-free BV vector fields [1]. However, to keep the presentation elementary, we shall not use these
advanced results.

6One could decide to choose δ = ε and to have only one small parameter. However, for clarity of the presentation,
we prefer to keep these two parameter distinct.
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Since U ε,δ
t is divergence-free, it follows from (2.11) and (2.6) that

λ ≤ ρε,δt ≤ Λ ∀ t ∈ [0, ε].

We now “update” the vector field: we apply Theorem 2.2 to find a convex function P ∗,ε,δε whose
gradient send ρε,δε to dx, we set

U ε,δ
t (y) :=

(
∇P ∗,ε,δε − y

)⊥ ∗ χδ(y) ∀ t ∈ [ε, 2ε],

we consider Y ε,δ(t) the flow of U ε,δ
t on [ε, 2ε],{

Ẏ ε,δ(t, y) = U ε,δ
t (Y ε,δ(t, y)) for t ∈ [ε, 2ε],

Y ε,δ(ε, y) = y,

and we define
ρε,δt := Y ε,δ(t)#ρ

ε,δ
ε ∀ t ∈ [ε, 2ε].

This allows us to update again the vector field on the time interval [2ε, 3ε] using the optimal map

from ρε,δ2ε to dx, and so on. Iterating this procedure infinitely many times and defining

P ∗,ε,δt := P ∗,ε,δkε for t ∈ [kε, (k + 1)ε), k ∈ N,

we construct a family of densities {ρε,δt }t≥0 and vector fields {U ε,δ
t }t≥0 satisfying

∂tρ
ε,δ
t + div(U ε,δ

t ρε,δt ) = 0 in [0,∞)× R2,

U ε,δ
t =

(
∇P ∗,ε,δt − y

)⊥ ∗ χδ in [0,∞)× R2,

(∇P ∗,ε,δt )#ρkε = dx for t ∈ [kε, (k + 1)ε),

λ ≤ ρε,δt ≤ Λ in [0,∞)× R2,

ρ0 = (x+∇p̄)#dx on R2.

(2.12)

2.4.2 Taking the limit in the approximate system

Notice that, because ∇P ∗,ε,δt are optimal transport maps between probability densities on the torus,
it is not difficult to show that

|∇P ∗,ε,δt (y)− y| ≤ diam(T2) =

√
2

2
∀ y ∈ R2 (2.13)

(see [2, Theorem 2.1]), which implies that the vector fields U ε,δ
t are uniformly bounded. Hence,

given an arbitrary sequence ε, δ → 0, up to extracting a subsequence we can find densities ρt and
a bounded vector field U t such that

ρε,δt ⇀∗ ρt in L∞loc

(
[0,∞)× R2

)
,

U ε,δ
t ⇀∗ U t in L∞loc

(
[0,∞)× R2;R2

)
.
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In particular, since λ ≤ ρε,δt ≤ Λ, it follows immediately that ρt satisfies

λ ≤ ρt ≤ Λ for a.e. t ≥ 0.

• Step 1: find the limit of U ε,δ
t ρε,δt . In order to take the limit into (2.12), the most difficult

term to deal with is the product U ε,δ
t ρε,δt inside the divergence, since in general it is not true that

under weak convergence this would converge to U tρt. However in this case we can exploit extra
regularity.

More precisely, since both ρε,δt and U ε,δ
t are uniformly bounded, we see that for any smooth

function ψ : R2 → R it holds∫
div(U ε,δ

t ρε,δt )ψ dy = −
∫

U ε,δ
t · ∇ψ ρ

ε,δ
t dy ≤ C‖ψ‖W 1,1(R2).

This means that div(U ε,δ
t ρε,δt ) belongs to [W 1,1(R2)]∗ (the dual space of W 1,1(R2)) uniformly in

time, which implies that

∂tρ
ε,δ
t = −div(U ε,δ

t ρε,δt ) ∈ L∞
(
[0,∞), [W 1,1(R2)]∗

)
⊂ Lploc

(
[0,∞), [W 1,q

loc (R2)]∗
)

for any p ∈ [1,∞] and q ≥ 1 (here we used that W 1,q
loc (R2) ⊂W 1,1

loc (R2) to get the opposite inclusion
between dual spaces). Combining this regularity in time with the bound

ρε,δt ∈ L∞
(
(0,∞), L∞(R2)

)
⊂ Lploc

(
[0,∞), Lploc(R

2)
)
,

by the Aubin-Lions Lemma (see for instance [34]) we deduce that

the family ρε,δt is precompact in Lploc

(
[0,∞), [W s,q

loc (R2)]∗
)

for any p <∞, q > 1, s > 0,

hence
ρε,δt → ρt in Lploc

(
[0,∞), [W s,q

loc (R2)]∗
)

for any p <∞, q > 1, s > 0. (2.14)

In order to exploit this strong compactness we need to gain some regularity in space on U ε,δ
t .

To this aim, observe that being P ∗,ε,δt smooth convex functions, one can easily get an a-priori
bound on their Hessian: since for a non-negative symmetric matrix the norm is controlled by the
trace, using the divergence theorem and the uniform local Lipschitzianity of P ∗,ε,δt (see (2.13)) we
get ∫

BR

‖D2P ∗,ε,δt ‖ dy ≤
∫
BR

∆P ∗,ε,δt dy ≤
∫
∂BR

|∇P ∗,ε,δt | dy ≤ CR ∀R > 0. (2.15)

By fractional Sobolev embeddings (see [7, Chapter 6]) we deduce that, uniformly with respect to ε
and δ,

U ε,δ
t ∈ L∞

(
(0,∞),W 1,1

loc (R2)
)
⊂ L∞

(
(0,∞),W s,q

loc (R2)
)

for all s ∈ (0, 1) and 1 ≤ q < 2
1+s . In particular, choosing for instance s = 1/2 and q = 5/4 we

deduce that
U ε,δ
t ⇀∗ U t in L∞

(
(0,∞),W

1/2,5/4
loc (R2)

)
,
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that combined with (2.14) with s = 1/2 and q = 5/4 implies that

U ε,δ
t ρε,δt ⇀∗ U tρt in L∞loc

(
(0,∞)× R2;R2

)
.

This allows us to pass to the limit in the transport equation in the distributional sense and deduce
that

∂tρt + div(U tρt) = 0 in (0,∞)× R2.

• Step 2: show that U t = (∇P ∗t − y)⊥. To conclude the proof we need so show that if P ∗t is the
convex function sending ρt onto dx (see Theorem 2.2) then

U t = (∇P ∗t − y)⊥ for a.e. t ≥ 0. (2.16)

To this aim notice that (2.14) implies that, up to a subsequence,

ρε,δt → ρt in [W s,q
loc (R2)]∗ for a.e. t ≥ 0,

hence, being ρε,δt uniformly bounded in L∞, we also deduce that

ρε,δt ⇀∗ ρt in L∞(R2) for a.e. t ≥ 0.

By stability of optimal transport maps (see for instance [36, Corollary 5.23]) it follows that7

∇P ∗,ε,δt → ∇P ∗t in L1
loc(R2) for a.e. t ≥ 0.

Recalling that U ε,δ
t = (∇P ∗,ε,δt − y)⊥ ∗ χδ we deduce that

U ε,δ
t → (∇P ∗t − y)⊥ in L1

loc(R2) for a.e. t ≥ 0,

which shows the validity of (2.16) and concludes the proof of the existence of weak solutions.

Notice that, as a consequence of (2.13), the uniform bound

|∇P ∗t (y)− y| ≤
√

2

2
(2.17)

holds. This will be useful in the sequel.

3 Back from dual SG to SG

In the previous section we have constructed a weak solution (ρt, P
∗
t ) to the dual system (1.6). Also,

we have seen that if ρ0 := (x+∇p̄)#dx satisfies λ ≤ ρ0 ≤ Λ then these bounds are propagated in
time, that is

λ ≤ ρt ≤ Λ for a.e. t ≥ 0. (3.1)

In this section we shall assume that λ > 0.

7Actually, if one assumes that λ > 0 (that is the densities ρε,δt are uniformly bounded away from zero and infinity)
then the convergence of ∇P ∗,ε,δt to ∇P ∗t holds even in W 1,1

loc (R2), see [20].
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3.1 A formula for (pt,ut)

We want to use the solution (ρt, P
∗
t ) to construct a couple (pt,ut) solving the original SG systems

(1.2).

3.1.1 Construction of pt

Recalling the procedure used to go from pt to P ∗t (adding |x|2/2 to pt and taking a Legendre
transform), it is easy to perform the inverse construction and define pt from P ∗t : indeed, if we
define8

Pt(x) := sup
y∈R2

{y · x− P ∗t (y)} (3.2)

and set

pt(x) := Pt(x)− |x|
2

2
, (3.3)

thanks to the periodicity of P ∗t −|y|2/2 it is easy to check that pt is periodic too. Hence, constructing
pt given P ∗t is relatively simple.

3.1.2 Construction of ut

More complicated is the formula for ut. Let us start from (1.2). From the first equation and the
fact that D2Pt is a symmetric matrix, we get

D2Pt · ut = −∂t∇Pt − (∇Pt − x)⊥. (3.4)

In order to invert D2Pt, we differentiate (1.5) with respect to x to find that

D2P ∗t (∇Pt)D2Pt = Id, (3.5)

while differentiating (1.5) with respect to t gives

[∂t∇P ∗t ](∇Pt) +D2P ∗t (∇Pt) · ∂t∇Pt = 0 (3.6)

Hence, thanks to (3.5), multiplying both sides of (3.4) by D2P ∗t (∇Pt) we get

ut = −D2P ∗t (∇Pt) · ∂t∇Pt −D2P ∗t (∇Pt) · (∇Pt − x)⊥,

that combined with (3.6) gives

ut = [∂t∇P ∗t ](∇Pt)−D2P ∗t (∇Pt) · (∇Pt − x)⊥. (3.7)

Hence we have found an expression of ut in terms of derivatives of P ∗t and its Legendre transform.
However the problem is to give a meaning to such terms.

First of all one may ask what is D2P ∗t (∇Pt). Notice that being P ∗t a convex function, a priori
D2P ∗t is only a matrix-valued measure, thus it is not clear what D2P ∗t (∇Pt) means. However, if we

8Recall that the Legendre transform is an involution on convex functions, that is, if φ : Rn → R is convex
then (φ∗)∗ = φ.
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remember that (∇P ∗t )#ρt = dx, it follows by the discussion in Section 2.2 (see in particular (2.7))
that

det(D2P ∗t ) = ρt. (3.8)

Hence, recalling (3.1) we deduce that

λ ≤ det(D2P ∗t ) ≤ Λ.

As we shall see in Section 4.1 below, this condition implies that

P ∗t ∈W
2,1+γ
loc (R2) for some γ = γ(n, λ,Λ) > 0. (3.9)

We claim that this estimate allows us to give a meaning to D2P ∗t (∇Pt) and prove that

D2P ∗t (∇Pt) ∈ L∞
(
(0,∞), L1+γ

loc (R2)
)
.

Indeed, since (∇P ∗t )#ρt = dx, it follows from (1.5) that (∇Pt)#dx = ρt. Also, since pt is periodic
we see that ∇Pt = x+∇pt is a bounded perturbation of the identity, hence there exists C > 0 such
that

∇Pt(BR) ⊂ BR+C ∀R > 0.

These two facts imply that∫
BR

‖D2P ∗t (∇Pt)‖1+γ dx
(1.3)
=

∫
∇Pt(BR)

‖D2P ∗t ‖1+γρt(y) dy
(3.1)

≤ Λ

∫
BR+C

‖D2P ∗t ‖1+γ dy
(3.9)
< ∞

for all R > 0, hence
D2P ∗t (∇Pt) ∈ L∞

(
(0,∞), L1+γ

loc (R2)
)
.

Recalling that (∇Pt − x)⊥ is globally bounded (see (2.17)), we deduce that

D2P ∗t (∇Pt) · (∇Pt − x)⊥ ∈ L∞
(
(0,∞), L1+γ

loc (R2)
)
,

so the last term in (3.7) is a well defined function.

Concerning the term [∂t∇P ∗t ](∇Pt), as explained in Section 4.2 one can show that

∂t∇P ∗t ∈ L1+κ
loc for κ =

γ

2 + γ
> 0, (3.10)

and arguing as above one deduces that

[∂t∇P ∗t ](∇Pt) ∈ L∞
(
(0,∞), L1+κ

loc (R2)
)
.

In conclusion we have seen that, using (3.9) and (3.10), the formula (3.7) defines a function
ut ∈ L∞

(
(0,∞), L1+κ

loc (R2)
)
, which is easily seen to be periodic.

Hence, modulo the validity of (3.9) and (3.10), we have constructed a couple of functions (pt,ut)
that we expect to solve (1.1). In the next section we shall see that the functions (pt,ut) defined
in (3.3) and (3.7) are indeed solutions of (1.1), and then in Section 4 we will prove both (3.9) and
(3.10).

14



3.2 (pt,ut) solves the semigeostrophic system

In order to prove that (pt,ut) is a distributional solution of (1.1) we need to find some suitable test
functions to use in (1.6).

More precisely, we first write (1.6) in distributional form:∫ ∫
T2

{
∂tϕt(x) +∇ϕt(x) ·U t(x)

}
ρt(x) dx dt dx = 0 (3.11)

for every ϕ ∈W 1,1((0,∞)× R2) periodic in the space variable.
We now take φ ∈ C∞c ((0,∞)×R2) a function periodic in space, and we consider the test function

ϕ : (0,∞)× R2 → R2 defined as

ϕt(y) := J (y −∇P ∗t (y))φt
(
∇P ∗t (y)

)
, (3.12)

where J denotes the matrix corresponding to the rotation by π/2, that is

J :=

(
0 −1
1 0

)
.

Notice that Jv = −v⊥ for any v ∈ R2, hence ϕt can be equivalently written as

ϕt := (∇P ∗t − y)⊥ φt(∇P ∗t )

We compute the derivatives of ϕ:{
∂tϕt = [∂t∇P ∗t ]⊥ φt(∇P ∗t ) + (∇P ∗t − y)⊥ ∂tφt(∇P ∗t ) + (y −∇P ∗t )⊥

[
∇φt(∇P ∗t ) · ∂t∇P ∗t

]
,

∇ϕt = J
(
Id−D2P ∗t

)
φt(∇P ∗t ) + (∇P ∗t − y)⊥ ⊗

(
∇φt(∇P ∗t ) ·D2P ∗t

)
.

(3.13)
Since U t = (∇P ∗t − y)⊥ and (∇P ∗t )]ρt = dx, recalling (1.5) we can use (3.13) to rewrite (3.11) as

0 =

∫ ∞
0

∫
T2

{
∂tϕt +∇ϕt ·U t

}
ρt(y) dy dt

=

∫ ∞
0

∫
T2

{
[∂t∇P ∗t ]⊥(∇Pt)φt + (x−∇Pt)⊥ ∂tφt + (x−∇Pt)⊥

[
∇φt · [∂t∇P ∗t ](∇Pt)

]
+
[
J
(
Id−D2P ∗t (∇Pt)

)
φt + (x−∇Pt)⊥ ⊗

(
∇φt ·D2P ∗t (∇Pt)

)]
(x−∇Pt)⊥

}
dx dt.

Taking into account the formula (3.7) for ut, after rearranging the terms the above expression
yields

0 =

∫ ∞
0

∫
T2

{
−∇⊥pt

(
∂tφt + ut · ∇φt

)
+
(
−∇pt + u⊥t

)
φt

}
dx dt,

hence (pt,ut) solve the first equation in (1.1). The fact that ut is divergence free is obtained in a
similar way, using the test function

ϕt := φ(t)ψ(∇Pt∗)

where φ ∈ C∞c ((0,∞)), and ψ ∈ C∞c (R2) is periodic.
This shows that (pt,ut) is a distributional solution of (1.1), and we obtain the following result

(see [2, Theorem 1.2]):
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Theorem 3.1. Let p̄ : R2 → R be a periodic function such that p̄(x)+ |x|2/2 is convex, and assume
that the measure ρ̄ := (Id +∇p̄)]dx is absolutely continuous with respect to the Lebesgue measure
and satisfies 0 < λ ≤ ρ̄ ≤ Λ.

Let (ρt, P
∗
t ) be a solution of (1.6) starting from ρ̄ satisfying 0 < λ ≤ ρt ≤ Λ, and let Pt be as

in (3.2). Then the couple (pt,ut) defined in (3.3) and (3.7) is a distributional solution of (1.1).

Although the vector field ut provided by the previous theorem is only L1+κ
loc , in [2] the authors

showed how to associate to it a measure-preserving Lagrangian flow. In particular, this allowed
them to recover (in the particular case of the 2-dimensional periodic setting) the result of Cullen
and Feldman [17] on the existence of Lagrangian solutions to the SG equations in physical space
(see also [24, 25] for some recent results on the existence of weak Lagrangian solutions).

As shown in [3], the above result can also be generalized to bounded convex domain Ω ⊂ R3.
However this extension presents several additional difficulties. Indeed, first of all in 3-dimensions
the SG system becomes much less symmetric compared to its 2-dimensional counterpart, because
the action of Coriolis force regards only the first and the second space components. Moreover,
even considering regular initial data and velocities, several arguments in the proofs require a finer
regularization scheme. Still, under suitable assumptions on the initial data one can prove global
existence of distributional solutions (see [3] for more details).

4 Regularity estimates for the Monge-Ampère equation

The aim of this section is to give a proof of the key estimates (3.9) and (3.10) used in the previous
section to obtain global existence of distributional solutions to (1.1).

We shall first prove (3.9), and then show how (3.9) combined with (1.6) yields (3.10).

4.1 Sobolev regularity for Monge-Ampère: proof of (3.9)

Our goal is to show that, given 0 < λ ≤ Λ, solutions to
λ ≤ det(D2φ) ≤ Λ

φ convex

φ− |x|2/2 periodic

(4.1)

belong to W 2,1+γ
loc for some γ > 0 [19, 22, 33]. This result is valid in any dimension and restricting

to dimension 2 would not simplify the proof. Also, since we want to prove an a-priori estimate on
solutions to (4.1), one can assume that φ is smooth. Hence, we shall assume that φ : Rn → R is a
C2 solution of (4.1) and we will show that∫

[0,1]n
‖D2φ‖1+γ ≤ C,

for some constant C depending only on n, λ,Λ. (From now on, any constant which depends only
on n, λ,Λ will be called universal).

We shall mainly follow the arguments in [19], except for Step 2 in Section 4.1.4 which is inspired
by [33].
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4.1.1 Sections and normalized solutions

An important role in the regularity theory of Monge-Ampère is played by the sections of the function
φ: given x ∈ Rn and t > 0, we define the section centered at x with height t as

S(x, t) :=
{
y ∈ Ω : u(y) ≤ u(x) +∇u(x) · (y − x) + t

}
. (4.2)

Moreover, given τ > 0, we use the notation τS(x, p, t) to denote the dilation of S(x, p, t) by a factor
τ with respect to x, that is

τS(x, t) :=

{
y ∈ Rn : x+

y − x
τ
∈ S(x, t)

}
. (4.3)

Notice that, because φ − |x|2/2 is periodic, φ has quadratic growth at infinity. In particular its
sections S(x, t) are all bounded.

We say that an open bounded convex set Z ⊂ Rn is normalized if

B(0, 1) ⊂ Z ⊂ B(0, n).

By John’s Lemma [30], for every open bounded convex set there exists an (invertible) orientation
preserving affine transformation T : Rn → Rn such that T (Z) is normalized.

Notice that in the sequel we are not going to notationally distinguish between an affine trans-
formation and its linear part, since it will always be clear to what we are referring to. In particular,
we will use the notation

‖T‖ := sup
|v|=1
|Av|, Tx = Ax+ b.

One useful property which we will use is the following identity: if we denote by T ∗ the adjoint of
T , then

‖T ∗T‖ = ‖T ∗‖‖T‖. (4.4)

(This can be easily proved using the polar decomposition of matrices.)

Given a section S(x, t), we can consider T an affine transformation which normalizes S(x, t)
and define the function

v(z) := (detT )2/n
[
u(T−1z)− u(x)−∇u(x) · (T−1z − x)− t

]
. (4.5)

Then it is immediate to check that v solves{
λ ≤ detD2v ≤ Λ in Z,

v = 0 on ∂Z,
(4.6)

with Z := T (S(x, t)) normalized. We are going to call v a normalized solution.

As shown in [12] and [29] (see also [28, Chapter 3]), sections of solution of (4.1) satisfy strong
geometric properties. We briefly recall here the ones that we are going to use:9

9Usually all these properties are stated for small sections (say, when t ≤ ρ for some universal ρ). However, since in
our case φ is a global solution which has quadratic growth at infinity, it is immediate to check that all the properties
are true when t is large.
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Proposition 4.1. Let φ be a solution of (4.1). Then the following properties hold:

(i) There exists a universal constant β ∈ (0, 1) such that

1

2
S(x, t) ⊂ S(x, t/2) ⊂ βS(x, t) ∀x ∈ Rn, t > 0.

(ii) There exists a universal constant θ > 1 such that

S(x, t) ∩ S(y, t) 6= ∅ ⇒ S(y, t) ⊂ S(x, θt) ∀x, y ∈ Rn, t > 0.

(iii) There exists a universal constant K > 1 such that such that

tn/2

K
≤ |S(x, t)| ≤ K tn/2 ∀x ∈ Rn, t > 0.

(iv)
⋂
t>0 S(x, t) = {x}.

4.1.2 A preliminary estimate for normalized solutions

In this section we consider v a solution of (4.6) with Br ⊂ Z ⊂ BR and we prove the following
classical lemma due to Alexandrov:

Lemma 4.2. Assume that v a solution of (4.6) with Br ⊂ Z ⊂ BR for some universal radii
0 < r ≤ R. There exist two universal constants c1, c2 > 0 such that

c1 ≤
∣∣∣inf
Z
v
∣∣∣ ≤ c2, (4.7)

Proof. Set

g−(z) :=
λ1/n

4

(
|z|2 − r2

)
.

We claim that v ≤ g−. Indeed, if not, let c > 0 be the smallest constant such that v− c ≤ g− in Z,
so that

v − c ≤ g− in Z, v(z̄)− c = g−(z̄) for some z̄ ∈ Z.
Notice that because g− ≤ 0 on ∂Z (since Br ⊂ Z), the contact point z̄ must be in the interior
of Z. Hence, since the functions g− − (v − c) attains a local minimum at z̄, its Hessian at z̄ is
non-negative definite, thus

D2g−(z̄) ≥ D2(v − c)(z̄) = D2v(z̄) ≥ 0

which implies that
λ

2n
= det

(
D2g−(z̄)

)
≥ det

(
D2v(z̄)

)
≥ λ,

a contradiction.
Set now

g+(z) := Λ1/n
(
|z|2 −R2

)
.

A completely analogous argument based on the fact that det(D2g+) = 2nΛ and g+ ≥ 0 on ∂Z
(since Z ⊂ BR) shows that g+ ≤ v in Z.

This proves that
g+ ≤ v ≤ g− in Z,

and the result follows.
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4.1.3 Two key estimates on the size of the Hessian

The following two lemmas are at the core of the proof of the W 2,1+γ
loc regularity. The first lemma

estimates the L1-size of ‖D2φ‖ on a section S(x, t), while the second one says that on a large
fraction of points in S(x, t) the value of ‖D2φ‖ is comparable to its average.

Lemma 4.3. Fix x ∈ Rn, t > 0, and let T be the affine map which normalizes S(x, t). Then there
exists a positive universal constant C1 such that∫

S(x,t)
‖D2φ‖ ≤ C1

‖T‖‖T ∗‖
(detT )2/n

(4.8)

Proof. Consider the function v : Rn → R defined as in (4.5), and notice that

D2v(z) = (detT )2/n
[
(T−1)∗D2φ(T−1z)T−1

]
, (4.9)

and {
λ ≤ detD2v ≤ Λ in T (S(x, 2t)),

v = const. on ∂
(
T (S(x, 2t))

)
.

(4.10)

Although the convex set T (S(x, 2t)) is not normalized in the sense defined before, it is almost so:
indeed, since T normalizes S(x, t), we have that

B1 ⊂ T (S(x, 2t)). (4.11)

Also, because
|S(x, 2t)| ≤ K(2t)n/2 ≤ 2n/2K2|S(x, t)|

(by Propoposition 4.1(iii)) and T (S(x, t)) is normalized, it follows that

|T (S(x, 2t))| ≤ 2n/2K2|T (S(x, t))| ≤ 2n/2K2|Bn| =: C0,

where C0 is universal. Since T (S(x, 2t)) is convex, the above estimate on its volume combined with
(4.11) implies that

B1 ⊂ T (S(x, 2t) ⊂ BR. (4.12)

for some universal radius R. Hence, it follows from (4.10) and Lemma 4.2 that

oscT (S(x,2t)) v ≤ c′, (4.13)

with c′ universal.
Since v is convex, the size of its gradient is controlled by its oscillation in a slightly larger

domain (see for instance [28, Lemma 3.2.1]), thus it follows from Proposition 4.1(i) and (4.13) that

sup
T (S(x,t))

|∇v| ≤ sup
βT (S(x,2t))

|∇v| ≤
oscT (S(x,2t)) v

dist
(
βT (S(x, 2t)), ∂

(
T (S(x, 2t))

)) ≤ c′′ (4.14)

for some universal constant c′′. Moreover, since T (S(x, t)) is a normalized convex set, it holds

|T (S(x, t))| ≥ cn Hn−1
(
∂T (S(x, t))

)
≤ Cn, (4.15)
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where cn, Cn > 0 are dimensional constants. Finally, since D2v(y) is non-negative definite (by the
convexity of v) its norm is controlled by its trace, that is

‖D2v(z)‖ ≤ ∆v(z). (4.16)

Thus, combining all these informations together we get∫
T (S(x,t))

‖D2v(z)‖ dz
(4.16)

≤
∫
T (S(x,t))

∆v(z) dz

=
1

|T (S(x, t))|

∫
∂T (S(x,t))

∇v(z) · ν dHn−1(z)

(4.15)

≤ Cn
cn

(
sup

T (S(x,t))
|∇v|

) (4.14)

≤ C1,

(4.17)

that together with (4.9) gives∫
S(x,t)

‖D2φ(y)‖ dy =
1

(detT )2/n

∫
S(x,t)

‖T ∗D2v(Ty)T‖ dy

≤ ‖T
∗‖‖T‖

(detT )2/n

∫
T (S(x,t))

‖D2v(z)‖ dz ≤ C1
‖T ∗‖‖T‖
(detT )2/n

,

concluding the proof.

Lemma 4.4. Fix x ∈ Rn, t > 0, and let T be the affine map which normalizes S(x, t). Then there
exists a universal positive constant c1 and a Borel set A(x, t) ⊂ S(x, t), such that

|A(x, t) ∩ S(x, t)|
|S(x, t)|

≥ 1

2
(4.18)

and

‖D2φ(y)‖ ≥ c1
‖T‖‖T ∗‖
(detT )2/n

∀ y ∈ A(x, t). (4.19)

Proof. Let v : Rn → R defined as in (4.5), and recall that∫
T (S(x,t))

‖D2v(z)‖ dz ≤ C1

for some universal constant C1 (see (4.17)). Set

E := {z ∈ T (S(x, t)) : ‖D2v(z)‖ ≥ 2C1}.

Then

2C1
|E|

|T (S(x, t))|
≤ 1

|T (S(x, t))|

∫
E
‖D2v(z)‖ dz ≤

∫
T (S(x,t))

‖D2v(z)‖ dz ≤ C1,

which implies that

|E| ≤ 1

2
|T (S(x, t))|.
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Define F := T (S(x, t)) \ E and notice that

|F |
|T (S(x, t))|

≥ 1

2
(4.20)

and (by (4.6) and the definition of E){
‖D2v‖ ≤ 2C1 inside F ,

det(D2v) ≥ λ.

If we denote by α1 ≤ . . . ≤ αn the eigenvalues of D2v, the first information tells us that αn ≤ 2C1,
while the second one that

∏
i αi ≥ λ, from which it follows that

α1 ≥
λ∏n
i=2 αi

≥ λ

(2C1)n−1
=: c1,

therefore
c1Id ≤ D2v ≤ 2C1Id inside F . (4.21)

Recalling the definition of v (see (4.5)) this implies that

D2φ(y) =
T ∗D2v(Ty)T

(detT )2/n
≥ c1

TT ∗

(detT )2/n
∀ y ∈ A := T−1(F ),

so in particular

‖D2φ(y)‖ ≥ c1
‖T‖‖T ∗‖
(detT )2/n

∀ y ∈ A.

Finally, thanks to (4.20) we get

|A|
|S(x, t)|

=
|T (A)|

|T (S(x, t))|
=

|F |
|T (S(x, t))|

≥ 1

2
,

concluding the proof.

4.1.4 Harmonic analysis related to sections and the W 2,1+γ
loc regularity

In this section we show how Lemmas 4.3 and 4.4 can be combined to obtain the desired result.
Since the covering argument is slightly technical and may hide the ideas behind the proof, we prefer
to give a formal argument and refer to the papers [19, 22, 33] for more details (see also [26]).

The basic idea behind the proof is that we can think of a section S(x, t) as a “ball of radius t
centered at x”, and the properties stated in Proposition 4.1 ensure that sections are suitable objects
to do harmonic analysis. Indeed it is possible to show that a Vitali Covering Lemma holds in this
context (see for instance [22]), and that many standard quantities in harmonic analysis still enjoy
all the properties that we are used to have in Rn.

For instance, to ‖D2φ‖ we can associated a “maximal function” using the sections:

M(x) := sup
t>0

∫
S(x,t)

‖D2φ(y)‖ dy ∀x ∈ Rn.
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Noticing that D2φ is periodic, in order to deal with sets of finite volume we shall see both D2φ and
M as functions on the torus Tn. In the same way, also the sections will be seen as subsets of Tn
by considering the canonical projection π : Rn → Tn.

The fact that sections behave like usual balls allows us to obtain the validity of a classical fact
in harmonic analysis, that is that the L1 norm of ‖D2φ‖ on a super level sets {‖D2φ‖ ≥ σ} is
controlled by the measure where M is above σ (up to a universal constant). More precisely, by
applying [35, Chapter 1, Section 4, Theorem 2] and [35, Chapter 1, Section 8.14], we deduce that
the following holds: there exist universal constants K,σ0 > 0 such that, for any σ ≥ σ0,∫

{‖D2φ‖≥σ}
‖D2φ(y)‖ dy ≤ Kσ

∣∣{M≥ σ
K

}∣∣. (4.22)

Our goal is to combine this estimate with Lemmas 4.3 and 4.4 to show that D2φ ∈W 2,1+γ
loc .

• Step 1: replace M with ‖D2φ‖ in the right hand side of (4.22). As we shall see, this
is the step where we use Lemmas 4.3 and 4.4.

Fix σ ≥ σ0. By the definition of M, for any x ∈ {M ≥ σ/K} we can find a section S(x, tx)
such that ∫

S(x,tx)
‖D2φ(y)‖ dy ≥ σ

2K
. (4.23)

Consider the family of sections {S(x, tx)}x∈{M≥σ/K} constructed in this way, and extract a sub-
family {S(xi, txi)}i∈I such that {

M≥ σ
K

}
⊂
⋃
i∈I S(xi, txi) (4.24)

and the sections {S(xi, txi)}i∈I have bounded overlapping, that is,

∀ z ∈ Tn #{i ∈ I : z ∈ S(xi, txi)} ≤ N (4.25)

for some N ∈ N universal.10

Then, Lemmas 4.3 and 4.4 applied to the sections S(xi, txi) yield sets A(xi, txi) ⊂ S(xi, txi)
such that

|A(xi, txi)|
|S(xi, txi)|

≥ 1

2
, #{i ∈ I : z ∈ A(xi, txi)} ≤ N ∀ z ∈ Tn, (4.26)

(the finite overlapping property is an immediate consequence of (4.25)), and

σ

2K

(4.23)

≤
∫
S(xi,txi )

‖D2φ(y)‖ dy ≤ C1
‖Ti‖‖T ∗i ‖
(detTi)2/n

≤ C1

c1
‖D2φ(y)‖ ∀ y ∈ A(xi, txi) (4.27)

10It is actually unknown whether, given a family of sections, one can extract a subfamily with finite overlapping.
Here we are assuming that this can be done just to make the presentation simpler. However, there are at least to ways
to circumvent this issue: either one slightly reduces txi by a factor (1− ε) with ε > 0 so that the finite overlapping
property holds (see [14, Lemma 1] and how this is applied in [19]), or one shrink txi by a universal factor η < 1 and
then the sections can be made disjoint (see [22, 26]).
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(here Ti denotes the affine map which normalizes S(xi, txi)). Thanks to these facts we deduce that

∣∣{M≥ σ
K

}∣∣ (4.24)

≤
∑
i∈I
|S(xi, txi)|

(4.25)

≤ 2
∑
i∈I
|A(xi, txi)|

(4.27)

≤ 2
∑
i∈I

∣∣A(xi, txi) ∩
{
‖D2φ‖ ≥ c1σ

2KC1

}∣∣
(4.26)

≤ 2N
∣∣{‖D2φ‖ ≥ c1σ

2KC1

}∣∣.
Hence, if we set K1 := max{2NK, 2KC1/c1}, this allows us to replace M with ‖D2φ‖ in the

right hand side of (4.22) and get∫
{‖D2φ‖≥σ}

‖D2φ(y)‖ dy ≤ K1σ
∣∣{‖D2φ‖ ≥ σ

K1

}∣∣ ∀σ ≥ σ0. (4.28)

• Step 2: a Gehring-type lemma. Equation (4.28) is a sort of reverse Chebyshev’s inequality
for ‖D2φ‖. We now show how this allows us to obtain higher integrability of ‖D2φ‖.

Set g(s) := |{‖D2φ‖ ≥ s}|. By the layer-cake formula we have∫
{‖D2φ‖≥σ}

‖D2φ(y)‖ dy = σ|{‖D2φ‖ ≥ σ}|+
∫ ∞
σ
|{‖D2φ‖ ≥ s}| ds = g(σ)σ +

∫ ∞
σ

g(s)ds, (4.29)

hence (4.28) implies that ∫ ∞
σ

g(s)ds ≤ K1σ g
(
σ
K1

)
∀σ ≥ σ0. (4.30)

Also, noticing that g(σ) ≤ |Tn| = 1, again by the layer-cake formula we get∫
Tn
‖D2φ(y)‖1+γ dy = (1 + γ)

∫ ∞
0

σγg(σ) dσ ≤ σ1+γ
0 + (1 + γ)

∫ ∞
σ0

σγg(σ) dσ.

Hence, to prove that ‖D2φ‖ ∈ L1+γ(Tn) we have to show that∫ ∞
σ0

σγg(σ) dσ <∞ (4.31)

for some γ > 0.
To this aim, performing an integrations by parts and using that s 7→ g(s) in non-increasing, we
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see that∫ ∞
σ0

σγg(σ) dσ = −
∫ ∞
σ0

σγ
d

dσ

(∫ ∞
σ

g(s) ds

)
dσ

= σγ0

∫ ∞
σ0

g(s) ds+ γ

∫ ∞
σ0

σγ−1

(∫ ∞
σ

g(s) ds

)
dσ

(4.30)

≤ σγ0

∫ ∞
σ0

g(s) ds+K1γ

∫ ∞
σ0

σγg
(
σ
K1

)
dσ

≤ σγ0
∫ ∞
σ0

g(s) ds+K1γ g
(
σ0
K1

) ∫ K1σ0

σ0

σγ dσ +K1γ

∫ ∞
K1σ0

σγg
(
σ
K1

)
dσ

τ=σ/K1
= σγ0

∫ ∞
σ0

g(s) ds+K1
γ

γ + 1
(K1σ0)γ+1g

(
σ0
K1

)
+K2+γ

1 γ

∫ ∞
σ0

τγg
(
τ
)
dτ.

Hence, recalling that g ≤ 1, we can choose γ > 0 small enough so that K2+γ
1 γ ≤ 1/2 and notice

that

σγ0

∫ ∞
σ0

g(s) ds
(4.29)

≤
∫
{‖D2φ‖≥σ}

‖D2φ(y)‖ dy ≤
∫
Tn
‖D2φ(y)‖ dy <∞

(to get the finiteness of ‖D2φ‖L1(Tn) simply apply (4.8) with t large enough so that S(x, t) ⊃ [0, 1]n)
to obtain that ∫ ∞

σ0

σγg(σ) dσ ≤ 2

∫
Tn
‖D2φ(y)‖ dy + 2K1

γ

γ + 1
(K1σ0)γ+1 <∞.

This shows the validity of (4.31) and concludes the proof of the W 2,1+γ
loc regularity of φ.

4.2 Regularity for time-dependent solutions of Monge-Ampère: proof of (3.10)

To deal with the term ∂t∇P ∗t , we shall use an idea of Loeper [31, Theorem 5.1] to combine (3.9)
and (1.6) and prove the following:

Theorem 4.5. There exists a universal constant C such that, for almost every t ≥ 0,∫
T2

ρt|∂t∇P ∗t |1+κ ≤ C, κ :=
γ

2 + γ
. (4.32)

Notice that, since ρt ≥ λ > 0 (see (3.1)), (4.32) implies immediately (3.10).

Proof. In order to justify the following computations one needs to perform a careful regularization
argument. Here we show just the formal computations, referring to [2, Section 3] for more details.

We begin by differentiating in time the relation (3.8) to get

2∑
i,j=1

Mij(D
2P ∗t ) ∂t∂ijP

∗
t = ∂tρt,

24



where Mij(A) := ∂ det(A)
∂Aij

is the cofactor matrix of A. Taking into account (1.6) and the well-known

divergence-free property of the cofactor matrix

2∑
i=1

∂i
[
Mij(D

2Pt
∗)
]

= 0, j = 1, 2,

(see for instance [23, Chapter 8.1.4.b] for a proof), we can rewrite the above equation as

2∑
i,j=1

∂i
(
Mij(D

2P ∗t ) ∂t∂jP
∗
t

)
= −div(U tρt).

Then, recalling that for invertible matrices the cofactor matrix M(A) is equal to det(A)A−1, using
again the relation (3.8) we get

div
(
ρt(D

2P ∗t )−1∂t∇P ∗t
)

= −div(ρtU t). (4.33)

We now multiply (4.33) by ∂tP
∗
t and integrate by parts to obtain11∫

T2

ρt|(D2P ∗t )−1/2∂t∇P ∗t |2 dx =

∫
T2

ρt ∂t∇P ∗t · (D2P ∗t )−1∂t∇P ∗t dx

= −
∫
T2

ρt ∂t∇P ∗t ·U t dx.

(4.34)

From Cauchy-Schwartz inequality, the right-hand side of (4.34) can be estimated as

−
∫
T2

ρt ∂t∇P ∗t · (D2P ∗t )−1/2(D2P ∗t )1/2U t dx

≤
(∫

T2

ρt|(D2P ∗t )−1/2∂t∇P ∗t |2 dx
)1/2(∫

T2

ρt|(D2P ∗t )1/2U t|2 dx
)1/2

, (4.35)

hence (4.34) and (4.35) give∫
T2

ρt|(D2P ∗t )−1/2∂t∇P ∗t |2 dx ≤
∫
T2

ρt|(D2P ∗t )1/2U t|2 dx. (4.36)

We now observe that∫
T2

ρt|(D2P ∗t )1/2U t|2 dx =

∫
T2

ρtU t ·D2P ∗t U t dx ≤ sup
T2

(
ρt|U t|2

) ∫
T2

‖D2P ∗t ‖ dx. (4.37)

Hence, recalling that U t and ρt are bounded and noticing that
∫
T2 ‖D2P ∗t ‖ dx < ∞,12 it follows

from (4.36) and (4.37) that ∫
T2

ρt|(D2P ∗t )−1/2∂t∇P ∗t |2 dx ≤ C. (4.38)

11Since the matrix D2Pt
∗ is positive definite, both its square root and the square root of its inverse are well-defined.

12This obviously follows by (3.9), but a direct proof can be given arguing as for (2.15).
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Thus, applying Hölder’s inequality and noticing that 1+κ
1−κ = 1 + γ, we get∫

T2

ρt|∂t∇P ∗t |1+κ dx ≤
∫
T2

(√
ρt|(D2P ∗t )−1/2∂t∇P ∗t |

)1+κ
(
‖(D2P ∗t )1/2‖
√
ρt

)1+κ

dx

≤
[∫

T2

ρt|(D2P ∗t )−1/2∂t∇P ∗t |2 dx
](1+κ)/2[∫

T2

(
‖D2P ∗t ‖

ρt

) 1+κ
1−κ

dx

](1−κ)/2

(4.38)+(3.1)

≤
(
C

λ

)(1+κ)/2[∫
T2

‖D2P ∗t ‖1+γ dx

](1−κ)/2 (3.9)

≤ C̄,

which proves (4.32).

5 Short-time existence and uniqueness of smooth solutions for
dual SG

In this section we discuss the results of Loeper in [32] concerning the short-time existence and
uniqueness of smooth solutions for the dual SG system (1.6). As we have seen in the previous
sections there is a strict correspondence between solutions of (1.6) and solutions of the original SG
system (1.2), hence these results can be easily read back in the original framework.

We shall prove that if ρ0 is Hölder continuous then there exists a unique Hölder solution (1.6)
on some time interval [0, T ], where T depends only on the bounds on ρ0. Using higher regularity
theory for elliptic equations, it is not difficult to check that if ρ0 is more regular (say, Ck,α for some
k ≥ 0 and α ∈ (0, 1)), then the solution that we constructed enjoys the same regularity.

The following result is contained in [32, Theorem 3.3, Corollary 3.4, Theorem 4.1]:

Theorem 5.1. Assume that

0 < λ ≤ ρ0 ≤ Λ and ρ0 ∈ C0,α(T2) (5.1)

for some α ∈ (0, 1). Then there exists T > 0, depending only on λ,Λ, ‖ρ0‖C0,α(T2), such that (1.6)
has a unique solution (ρt, P

∗
t ) on [0, T ] satisfying

0 < λ ≤ ρt ≤ Λ, ρt ∈ L∞
(
[0, T ], C0,α(T2)

)
, P ∗t ∈ L∞

(
[0, T ], C2,α(T2)

)
. (5.2)

We first discuss the existence part and then we deal with uniqueness.

5.1 Short-time existence of smooth solutions

The proof of existence given in [32, Theorem 3.3] is based on a fixed point argument. Here we give
a different proof, more in the spirit of the argument used in Section 2.4.

Set K0 := 2‖ρ0‖C0,α(T2), let T > 0 small (to be fixed later), let j ∈ N, and exactly as in Section
2.4.1 construct a family of approximate solutions by “freezing” the vector fields over time intervals
of length T

j . More precisely, for t ∈
[
0, Tj

]
we define P ∗,jt as the unique map whose gradient sends

ρ0 to dx (see Theorem 2.2), and we set

U j
t :=

(
∇P ∗,jt (y)− y

)⊥ ∀ t ∈
[
0, Tj

]
. (5.3)
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Notice that, by Caffarelli’s regularity theory for the Monge-Ampère equation [11] we have

‖D2P ∗,jt ‖C0,α(T2) ≤ K1 = K1(K0, λ,Λ) ∀ t ∈ [0, T/t],

hence
‖∇U j

t‖L∞(T2) ≤ K2 := 1 +K1. (5.4)

We now consider the flow of U j
t over the time interval

[
0, Tj

]
,{

Ẏ j(t, y) = U j
t (Y

j(t, y)) for t ∈
[
0, Tj

]
,

Y j(0, y) = y,
(5.5)

and define
ρjt := Y j(t)#ρ0 ∀ t ∈

[
0, Tj

]
.

Recall that, since U j
t is divergence free, ρj can also be written as

ρjt = ρ0 ◦ Y j(t)−1 (5.6)

(see (2.5)). Recalling (5.1), this implies in particular that λ ≤ ρjt ≤ Λ.
We now differentiate (5.5) with respect to y to get{

d
dt∇Y

j(t, y) =
(
∇U j

t (Y
j(t, y))

)
∇Y j(t, y),

∇Y j(0, y) = Id,

so (5.4) yields {
d
dt‖∇Y

j(t, y)‖ ≤ K2‖∇Y j(t, y)‖,
‖∇Y j(0, y)‖ = 1,

and by Gronwall’s Lemma we deduce that

e−K2t ≤ ‖∇Y j(t, y)‖ ≤ eK2t,

that is Y j(t) is a bi-Lipschitz homeomorphism with bi-Lipschitz norm controlled by eK2t. Inserting
this information into (5.6) we deduce that, provided T is small enough so that

eK2T ≤ 2, (5.7)

it holds
‖ρjt‖C0,α(T2) ≤ eK2t‖ρ0‖C0,α(T2) ≤ K0 ∀ t ∈

[
0, Tj

]
. (5.8)

(recall that, by definition, K0 = 2‖ρ0‖C0,α(T2)).

We now repeat this procedure over the time interval t ∈
[
T
j , 2

T
j

]
. More precisely, for t ∈

[
T
j , 2

T
j

]
we consider P ∗,jt the unique map whose gradient sends ρjT/j to dx, we define U j

t for t ∈
[
T
j , 2

T
j

]
as

in (5.3), we consider its flow Y j(t), and we use this flow to let ρjT/j evolve over the time interval
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[
T
j , 2

T
j

]
. Notice that, thanks to (5.8), ‖ρjt‖C0,α(T2) ≤ K0 so we still have ‖∇U j

t‖L∞(T2) ≤ K2.
Hence, by the same argument as above,

‖ρjt‖C0,α(T2) ≤ ‖ρ
j
T/j‖C0,α(T2)e

K2

(
t− T

j

)
∀ t ∈

[
T
j , 2

T
j

]
.

In particular, combining this bound with (5.8) and (5.7), we get

‖ρjt‖C0,α(T2) ≤ e
K2

(
t− T

j

)
e
K2

T
j ‖ρ0‖C0,α(T2) = eK2t‖ρ0‖C0,α(T2) ≤ K0 ∀ t ∈ [0, 2Tj ].

Iterating this procedure j times we construct a family (ρjt , P
∗,j
t ), with

λ ≤ ρjt ≤ Λ, ‖ρjt‖C0,α(T2) ≤ K0, ‖D2P ∗,jt ‖C0,α(T2) ≤ K1 ∀ t ∈ [0, T ], (5.9)

such that 
∂tρ

j
t + div(U j

tρ
j
t ) = 0 in [0, T ]× R2,

U j
t (y) =

(
∇P ∗,jt (y)− y

)⊥
in [0, T ]× R2,

ρjiT/j = (∇P jt )]dx for t ∈
[
iTj , (i+ 1)Tj

)
,

ρj0 = ρ0 on R2.

(5.10)

Thanks to the bounds (5.9) it is easy to show that, up to subsequences, (ρjt , P
∗,j
t ) converge to a

solution of (1.6) that will satisfy (5.2) (compare with Section 2.4.2). This concludes the proof of
the existence part.

5.2 Uniqueness of smooth solutions

Let (ρ1
t , P

∗,1
t ) and (ρ2

t , P
∗,2
t ) be two solutions of (1.6) satisfying (5.2). Our goal is to show that they

coincide. Because the argument is pretty involved, we shall split it into three steps.

5.2.1 A Gronwall argument

Recalling that ρit are given by Y i(t)#ρ0 where Y i(t) is the flow of U i
t = (∇P ∗,it − y)⊥, i = 1, 2 (see

Section 2.1), it is enough to show that Y 1(t) = Y 2(t). So we compute

d

dt

∫
T2

∣∣Y 1(t)− Y 2(t)
∣∣2 dy = 2

∫
T2

(
Y 1(t)− Y 2(t)

)
·
(
Ẏ 1(t)− Ẏ 2(t)

)
dy

= 2

∫
T2

(
Y 1(t)− Y 2(t)

)
·
(
U1
t (Y

1(t))−U2
t (Y

2(t))
)
dy

= 2

∫
T2

(
Y 1(t)− Y 2(t)

)
·
(
U1
t (Y

1(t))−U1
t (Y

2(t))
)
dy

+ 2

∫
T2

(
Y 1(t)− Y 2(t)

)
·
(
U1
t (Y

2(t))−U2
t (Y

2(t))
)
dy

≤ 2‖∇U1
t ‖L∞(T2)

∫
T2

∣∣Y 1(t)− Y 2(t)
∣∣2 dy

+

∫
T2

∣∣Y 1(t)− Y 2(t)
∣∣2 dy +

∫
T2

∣∣U1
t (Y

2(t))−U2
t (Y

2(t))
∣∣2 dy,
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where at the last step we used that 2a · b ≤ |a|2 + |b|2. Notice that (5.2) implies that ∇U1
t is

bounded, hence the above estimate gives

d

dt

∫
T2

∣∣Y 1(t)− Y 2(t)
∣∣2 dy ≤ C ∫

T2

∣∣Y 1(t)− Y 2(t)
∣∣2 dy +

∫
T2

∣∣U1
t (Y

2(t))−U2
t (Y

2(t))
∣∣2 dy. (5.11)

We now want to bound the last term in the right hand side. For this we first notice that

|U1
t −U2

t | = |(∇P
∗,1
t − y)⊥ − (∇P ∗,2t − y)⊥| = |(∇P ∗,1t −∇P ∗,2t )⊥| = |∇P ∗,1t −∇P ∗,2t |, (5.12)

hence, recalling that ρ2
t = Y 2(t)#ρ0, we get∫

T2

∣∣U1
t (Y

2(t))−U2
t (Y

2(t))
∣∣2 dy (5.2)

≤ 1

λ

∫
T2

∣∣U1
t (Y

2(t))−U2
t (Y

2(t))
∣∣2ρ2

t dy

(1.3)
=

1

λ

∫
T2

∣∣U1
t −U2

t

∣∣2ρ0 dy

(5.2)

≤ Λ

λ

∫
T2

∣∣U1
t −U2

t

∣∣2 dy
(5.12)

≤ Λ

λ

∫
T2

∣∣∇P ∗,1t −∇P ∗,2t

∣∣2 dy.
(5.13)

Thus we are left with estimating the L2 norm of ∇P ∗,1t −∇P ∗,2t .

5.2.2 An interpolation argument

To estimate ‖∇P ∗,1t −∇P
∗,2
t ‖L2(T2), the idea is to find a curve [1, 2] 3 θ 7→ ∇P ∗,θt which interpolates

between these two functions, write

∇P ∗,1t −∇P ∗,2t =

∫ 2

1
∂θ∇P ∗,θt dθ

so that by Holder’s inequality

‖∇P ∗,1t −∇P ∗,2t ‖2L2(T2) ≤
(∫ 2

1
‖∂θ∇P ∗,θt ‖L2(T2) dθ

)2

≤
∫ 2

1
‖∂θ∇P ∗,θt ‖2L2(T2) dθ, (5.14)

and try to control ‖∂θ∇P ∗,θt ‖L2(T2) with ‖Y 1(t)− Y 2(t)‖L2(T2) in order to close the Gronwall argu-
ment in (5.11).

To this aim, we consider a curve of measure [1, 2] 3 θ 7→ ρθt (to be chosen) which interpolates

between ρ1
t and ρ2

t and define ∇P ∗,θt as the optimal map sending ρθt onto dx (see Theorem 2.2).
Assume that the measures ρθt satisfy

1

K2
≤ ρθt ≤ K2, ‖ρθt‖C0,α(T2) ≤ K2, (5.15)

for some universal constant K2 > 0, so that13

‖D2P ∗,θt ‖L∞(T2) ≤ K3, ‖(D2P ∗,θt )−1‖L∞(T2) ≤ K3. (5.16)

13The bound on D2P ∗,θt follows by the C2,α regularity for Monge-Ampère [11], while the bound for (D2P ∗,θt )−1

follows exactly as in the proof of (4.21).
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Also, assume that there is a vector field V θ
t such that

∂θρ
θ
t + div(V θ

tρ
θ
t ) = 0 on [1, 2]× R2 (5.17)

(Notice that here t is just a fixed parameter, while θ is playing the role of the time variable).
Then, by the very same computations as in the proof of Theorem 4.5 we obtain∫

T2

ρθt |(D2P
∗θ
t )−1/2∂θ∇P ∗,θt |2 dx ≤

∫
T2

ρθt |(D2P ∗,θt )1/2V θ
t |2 dx

(compare with (4.36)), and using (5.15) and (5.16) we deduce that∫
T2

|∂θ∇P ∗,θt |2 dx ≤ K4

∫
T2

|V θ
t |2ρθt dx,

that combined with (5.13) and (5.14) gives∫
T2

∣∣U1
t (Y

2(t))−U2
t (Y

2(t))
∣∣2 dy ≤ K4

Λ

λ

∫ 2

1

(∫
T2

|V θ
t |2ρθt dy

)
dθ. (5.18)

Hence, our goal is to choose (ρθt ,V
θ
t ) in such a way that (5.15)-(5.17) hold, and the right hand side

above is controlled by ‖Y 1(t)− Y 2(t)‖L2(T2).
14

5.2.3 Construction of the interpolating curve

The key observation is that, since Y 1(t)#ρ0 = ρ1
t and Y 2(t)#ρ0 = ρ2

t , the map St := Y 2(t)◦[Y 1(t)]−1

satisfies
(St)#ρ

t
1 = ρt2.

Hence, if Tt = ∇Φt : T2 → T2 denotes the optimal transport map from ρ1
t to ρ2

t , by the definition
of optimal transport (see Section 2.2) we have∫

T2

|St − y|2 ρ1
t (y) dy ≥

∫
T2

|Tt − y|2 ρ1
t (y) dy.

Also, since [Y 1(t)−1]#ρ
1
t = ρ0,∫

T2

|St − y|2 ρ1
t (y) dy =

∫
T2

∣∣Y 2(t) ◦ [Y 1(t)]−1 − y
∣∣2 ρ1

t (y) dy

(1.3)
=

∫
T2

|Y 2(t)− Y 1(t)|2 ρ0(y) dy
(5.1)

≤ Λ

∫
T2

|Y 2(t)− Y 1(t)|2 dy,

14The reader familiar with optimal transport theory may recognize in (5.18) the dynamic formulation of optimal
transportation discovered by Benamou and Brenier [6]:

min

{∫ 2

1

(∫
T2

|V θ
t |2ρθt dx

)
dθ : (ρθt ,V

θ
t ) satisfy (5.17)

}
= min

{∫
Rn

|S(x)− x|2 dµ(x) : S#ρ
1
t = ρ2t

}
.

Although we shall not use this fact, the argument in Section 5.2.3 is strongly inspired by it.
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therefore

Λ

∫
T2

|Y 2(t)− Y 1(t)|2 dy ≥
∫
T2

|Tt − y|2 ρ1
t (y) dy. (5.19)

Also, since both ρ1
t and ρ2

t satisfy (5.2), the bounds

‖D2Φt‖C0,α(T2) ≤ K̂, ‖(D2Φt)
−1‖L∞(T2) ≤ K̂ (5.20)

hold (compare with (5.16), see also Footnote 13).
We now would like to relate V θ

t to Tt(y)− y, and this suggests the following definition of ρθt (as
already mentioned in Footnote 14, this is strongly inspired by [6]):

ρθt :=
[
y + (θ − 1)(Tt(y)− y)

]
#
ρt1 ∀ θ ∈ [1, 2],

or equivalently, since since Tt = ∇Φt,

ρθt = [∇Φθ
t ]#ρ

t
1, Φθ

t := (2− θ) |y|
2

2
+ (θ − 1)Φt.

Let
Φθ,∗
t (y) := sup

x∈R2

{x · y − Φθ
t (x)}.

Recalling that ∇Φθ,∗
t = (∇Φθ

t )
−1 (see (1.5)), one can check that with these definitions the following

properties hold:15
(A) (5.17) holds with V θ

t := (Tt − y) ◦ ∇Φθ,∗
t ,

(B)
∫
T2 |V θ

t |2ρθt dy =
∫
T2 |Tt − y|2 ρ1

t dy ∀ θ ∈ [1, 2],

(C) det(D2Φθ
t ) =

ρ1t
ρθt ◦∇Φθt

∀ θ ∈ [1, 2].

(5.21)

5.2.4 Bounds on the interpolating curve: proof of (5.15)

We now prove that the measures ρθt satisfy all properties in (5.15).
First of all we notice that, thanks to (5.20),

1

K̂
Id ≤ D2Φt ≤ K̂ Id,

therefore, since D2Φθ
t = (2− θ)Id + (θ − 1)D2Φt, it follows immediately that

1

K̂
Id ≤ D2Φθ

t ≤ K̂ Id ∀ θ ∈ [1, 2]. (5.22)

In particular det(D2Φθ
t ) ∈

[
1
K̂n
, K̂n

]
, that combined with (5.21)-(C) and the fact that ρ1

t satisfies

(5.2) gives

ρθt =
ρ1
t

det(D2Φθ
t )
◦ ∇Φθ,∗

t ∈
[
λ

K̂n
,
K̂n

λ

]
. (5.23)

15Property (A) follows by a direct computation very similar to what we already did in Section 2.1 to show that
Y (t)#σ̄ solves (2.1). Property (B) is a direct consequence of (1.3) and the fact that [(∇Φθt )

−1]#ρ
θ
t = ρt1, while (C)

follows by (2.7). We leave the details to the interested reader.
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Also, the Hölder continuity of D2Φt (see (5.20)) implies that D2Φθ
t ∈ C0,α, from which it follows

that ∥∥det(D2Φθ
t )
∥∥
C0,α(T2)

≤ K̂0,

so by (5.2) and the fact that det(D2Φθ
t ) ≥ 1/K̂n we get∥∥∥∥ ρ1

t

det(D2Φθ
t )

∥∥∥∥
C0,α(T2)

≤ K̂1.

Finally, it suffices to observe that ‖D2Φθ,∗
t ‖ ≤ K̂ (this simply follows from (5.22) and (3.5)) to

deduce that ∇Φθ,∗
t is uniformly Lipschitz, thus∥∥∥∥ ρ1

t

det(D2Φθ
t )
◦ ∇Φθ,∗

t

∥∥∥∥
C0,α(T2)

≤ K̂2.

Recalling (5.23), this concludes the proof of (5.15).

5.2.5 Conclusion

The fact that the measures ρθt satisfy the properties in (5.15) allows us to justify all the previous
computations. In particular, thanks to (5.19), (5.18), and (5.21)-(B), we get∫

T2

∣∣U1
t (Y

2(t))−U2
t (Y

2(t))
∣∣2 dy ≤ K4

Λ2

λ

∫
T2

|Y 2(t)− Y 1(t)|2 dy.

Inserting this bound into (5.11), we finally obtain

d

dt

∫
T2

∣∣Y 1(t)− Y 2(t)
∣∣2 dy ≤ C̄ ∫

T2

|Y 2(t)− Y 1(t)|2 dy,

so by Gronwall’s inequality∫
T2

∣∣Y 1(t)− Y 2(t)
∣∣2 dy ≤ eC̄ t ∫

T2

∣∣Y 1(0)− Y 2(0)
∣∣2 dy = 0,

as desired.

6 Open problems

In this last section we state some open problems related to the Monge-Ampère and semigeostrophic
equations.

1. Our global existence result for weak solutions of SG was based on regularity results for
Monge-Ampère that are valid in every dimension. However, the regularity theory for Monge-
Ampère provides stronger results in 2-D. For instance, Alexandrov showed in [4] (see also [27,
Theorem 2.1]) that a convex function φ : R2 → R is continuous differentiable provided the
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upper bound det(D2φ) ≤ Λ holds (this result is false when n ≥ 3, see [37]). Hence, in relation
to the theorem proved in Section 4.1, a natural question becomes the following:

Is it possible to prove W 2,1
loc regularity of φ in the 2-D case assuming only an upper bound on

det(D2φ)?

Apart from its own interest, such a result could help in extending Theorem 3.1 outside of the
periodic setting.

2. As shown in Section 5, the existence of smooth solutions for the dual SG system is known
only for short time. However, for the 2-D incompressible Euler equations it is well-known that
smooth solutions exist globally in time (see for instance [8, Corollary 3.3]). By the analogy
between the dual SG system and the Euler equations (see Section 2.3) one may hope to say
that global smooth solutions exist also for the dual SG system, at least for initial data which
are sufficiently close to 1 in some strong norm. Whether this fact holds true is an interesting
open problem.

3. As proved in [3], the results described here can be extended to the case when the domain
is the whole R2,16 provided the initial datum ρ0 = (∇P0)]dxbΩ is strictly positive on the
whole space. It would nice to remove this assumption in order to deal with the case when
ρ0 is compactly supported (which is the most interesting case from a physical point of view).
However, the nontrivial evolution of the support of the solution ρt does not permit to apply the
regularity regularity results from [19, 22, 33], so completely new ideas need to be introduced in
order to prove existence of distributional solutions to (1.1) in this case. As already mentioned
above, solving Problem 1 could be extremely helpful in this direction.
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