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Abstract. This note describes some recent results on the regularity of optimal trans-
port maps. As we shall see, in general optimal maps are not globally smooth, but they
are so outside a “singular set” of measure zero.

1. The optimal transportation problem

The optimal transportation problem, whose origin dates back to Monge [19], aims to
find a way to transport a distribution of mass from one place to another by minimizing the
transportation cost. Mathematically, the problem can be formulated as follows: given two
probability measures µ and ν (representing respectively the initial and final configuration
of the mass that we want to transport) defined on the measurable spaces X and Y , one
says that a map T : X → Y transports µ onto ν if T]µ = ν, i.e.,

ν(A) = µ
(
T−1(A)

)
∀A ⊂ Y measurable.

Then, given a cost function c : X×Y → R (so that c(x, y) represents the cost to transport
a unit of mass from x to y), one wants to minimize the transportation cost among all
possible transport maps.

Since transporting a unitary mass from x to T (x) costs c(x, T (x)), the cost to transport
the whole mass µ is simply given by

∫
X
c(x, T (x)) dµ(x). Hence the optimal transportation

problem consists in solving the minimization problem

(1) min
T#µ=ν

{∫
X

c(x, T (x)) dµ(x)

}
.

When T : X → Y minimizes the transportation cost we call it an optimal transport map.

Even in Euclidean spaces with the cost c given by the Euclidean distance |x − y| or
its square |x− y|2, the problem of the existence of an optimal transport map is far from
being trivial. Moreover, it is easy to build examples where the Monge problem is ill-posed
simply because there is no transport map: this happens for instance when µ is a Dirac
mass while ν is not. This means that one needs some restrictions on the measures µ and
ν.

We notice that when X, Y ⊂ Rn, µ(dx) = f(x)dx, and ν(dy) = g(y)dy, if T : X → Y is
a sufficiently smooth transport map one can rewrite the transport condition T#µ = ν as a
Jacobian equation. Indeed, if χ : Rn → R denotes a test function, the condition T#µ = ν
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gives ∫
Rn
χ(T (x))f(x) dx =

∫
Rn
χ(y)g(y) dy.

Now, assuming in addition that T is a diffeomorphism, we can set y = T (x) and use the
change of variable formula to obtain that the second integral is equal to∫

Rn
χ(T (x))g(T (x))

∣∣det(∇T (x))
∣∣ dx.

By the arbitrariness of χ, this gives the Jacobian equation

(2) f(x) = g(T (x))
∣∣det(∇T (x))

∣∣.
1.1. The quadratic cost on Rn. In [2, 3], Brenier considered the case X = Y = Rn

and c(x, y) = |x − y|2/2, and proved the following theorem (which was also obtained
independently by Cuesta-Albertos and Matrán [8] and by Rachev and Rüschendorf [20]).

Theorem 1.1. Let µ and ν be two compactly supported probability measures on Rn. If µ
is absolutely continuous with respect to the Lebesgue measure, then:

(i) There exists a unique solution T̂ to the optimal transport problem with cost c(x, y) =
|x− y|2/2.

(ii) The optimal map T̂ is characterized by the structure T̂ (x) = ∇u(x) for some

convex function u : Rn → R, which is called the “potential” associated to T̂ .

Let us point out, for further use, that the minimization problem for the cost |x−y|2/2 is
equivalent to the the minimization problem for the cost −x · y. Indeed, for any transport
map T we have ∫

Rn

|T (x)|2

2
dµ(x) =

∫
Rn

|y|2

2
dν(y)

(this is a direct consequence of the condition T#µ = ν), hence∫
Rn

|x− T (x)|2

2
dµ(x) =

∫
Rn

|x|2

2
dµ(x) +

∫
Rn

|T (x)|2

2
dµ(x) +

∫
Rn

(
−x · T (x)

)
dµ(x)

=

∫
Rn

|x|2

2
dµ(x) +

∫
Rn

|y|2

2
dν(y) +

∫
Rn

(
−x · T (x)

)
dµ(x),

and since the first two integrals in the right hand side are independent of T we see that
the two problems

min
T#µ=ν

∫
Rn

|x− T (x)|2

2
dµ(x) and min

T#µ=ν

∫
Rn

(
−x · T (x)

)
dµ(x)

are equivalent (that is, they have the same minimizers).

Having found a solution to (1), a natural question is the one concerning its regularity :
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Assuming that X and Y are two bounded smooth open sets in Rn, let µ(dx) = f(x)dx
and ν(y) = g(y)dy be two probability measures with smooth densities f and g such that

X = {f > 0} and Y = {g > 0}. Then, is it true that the optimal map T̂ (or equivalently
the “potential” u) is smooth?

As observed by Caffarelli [6], one cannot expect any general regularity result for u
without making some geometric assumptions on the support of the target measure. In-
deed, let n = 2 and suppose that X = B1 is the unit ball centered at the origin and
Y =

(
B+

1 + e1
)
∪
(
B−1 − e1

)
is the union of two half-balls (here (e1, e2) denote the canon-

ical basis of R2), where

B+
1 :=

(
B1 ∩ {x1 > 0}

)
, B−1 :=

(
B1 ∩ {x1 < 0}

)
.

Then, if f = 1
|X|1X and g = 1

|Y |1Y , it is easily seen that the optimal map T̂ is given by

T̂ (x) :=

{
x+ e1 if x1 > 0,
x− e1 if x1 < 0,

which corresponds to the gradient of the convex function u(x) = |x|2/2 + |x1|.
Thus (as one could also show by an easy topological argument) in order to hope for

a regularity result for u we need at least to assume the connectedness of Y . However,
not even this is sufficient. Indeed, starting from the above construction and considering
a sequence of domains X ′ε where one adds a small strip of width ε > 0 to glue together(
B+

1 + e1
)
∪
(
B−1 − e1

)
, one can also show that for ε > 0 small enough the optimal map

will still be discontinuous (see [6] or [25, Theorem 12.3] for more details).

In order to understand what is happening in the previous example, let us try to write
down what is the equation satisfied by u. Since T̂ = ∇u, the Jacobian equation (2) gives
that u formally solves the Monge-Ampère equation

(3) det(D2u(x)) =
f(x)

g(∇u(x))

coupled with the “boundary condition”

(4) ∇u(X) = Y

which corresponds to the fact that T̂ transports f(x)dx onto g(y)dy (recall that X =
{f > 0} and Y = {g > 0}). So, one may in principle hope to apply the regularity theory
for Monge-Ampère in order to show that u is actually smooth.

However this is just a formal computation, and what one can rigorously show is the
following: the transport condition (∇u)#f = g means that∫

(∇u)−1(A)

f =

∫
A

g ∀A ⊂ Y.
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From this fact it is possible to prove (see for instance [24, Lemma 4.6]) that∫
E

f =

∫
∂u(E)

g ∀E ⊂ X,

where ∂u denotes the subdifferential of u:

∂u(x) :=
{
p ∈ Rn : u(z) ≥ u(x) + p · (z − x) ∀ z ∈ Rn

}
, ∂u(E) :=

⋃
x∈E

∂u(x).

Hence, since Y = {g > 0} we get∫
E

f =

∫
∂u(E)∩Y

g ∀E ⊂ X,

and, if λ ≤ f, g ≤ 1/λ on X and Y respectively, we deduce that 1

(5) λ2|E| ≤ |∂u(E) ∩ Y | ≤ |E|/λ2 ∀E ⊂ X.

Hence, we can see this as a “weak” form of the Monge-Ampère equation.
On the other hand, the “right” notion of weak solution of (3) (i.e., a notion of solution

which allows one to obtain a satisfactory regularity theory) is the one of Alexandrov
solution [1]: we say that a convex function u : X → R is an Alexandrov solution of

(6) λ2 ≤ detD2u ≤ 1/λ2

if

(7) λ2|E| ≤ |∂u(E)| ≤ |E|/λ2 ∀E ⊂ X.

Note that (6) is the condition which would follow from (3) when λ ≤ f, g ≤ 1/λ. Moreover,
if u ∈ C2(X) then (6) implies (7), indeed in this case ∂u = ∇u, hence by the Area Formula

|∂u(E)| = |∇u(E)| =
∫
E

det(D2u),

and (7) follows from (6).

The difference between (5) and (7) is at the base of the previous counterexample.
Indeed, (7) provides enough control on the behavior of ∂u to show that if u is strictly
convex 2 then ∂u(x) is a singleton for all x ∈ X. By convexity of u, this implies that
u is continuously differentiable in X, and actually one can also show that ∇u is Holder
continuous (see [4, 5] and [10, Section 2.4]).

On the other hand, (5) only gives information on the behavior of the intersection
∂u(E) ∩ Y for E ⊂ X. In the counterexample above with X = B1 and Y =

(
B+

1 + e1
)
∪(

B−1 − e1
)
, the potential u was given by u(x) = |x|2/2 + |x1|. Hence, for any x of the form

x = (0, x2) the set ∂u is multivalued, namely ∂u(x) = [−1, 1]× {x2}. Thus

∂u({0} × [−1, 1]) = [−1, 1]2.

1Here and in the sequel, |E| denotes the Lebesgue measure of a set E.
2By an example of Pogorelov this turns out to be a necessary condition, see for instance [24, Section

4.1.3].
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This would not be possible if u satisfied (7) since ∂u has to map sets of measure zero onto
sets of measure zero. However, since the intersection of [−1, 1]2 with Y = {g > 0} has
measure zero, one is not able to detect the singularity of u using (5).

Hence, in order to avoid this kind of counterexamples one should make sure that the
target Y always covers the image of X through the subdifferential map ∂u. A way to
ensure this is that Y is convex. Indeed (see for instance [6] or [10, Theorem 3.3]) if Y
is convex then ∂u(X) ⊂ Y and (5) becomes (7). This information allows one to prove
regularity [6, 7]. More precisely the following holds:

Theorem 1.2. Let X, Y ⊂ Rn be two bounded open sets, let f : X → R+ and g : Y → R+

be two probability densities bounded away from zero and infinity on X and Y respectively,
and denote by T̂ = ∇u : X → Y the unique optimal transport map sending f onto g for
the cost |x− y|2/2. Assume that Y is convex. Then:

(a) T̂ ∈ C0,α
loc (X).

(b) If in addition f ∈ Ck,β
loc (X) and g ∈ Ck,β

loc (Y ) for some β ∈ (0, 1), then T̂ ∈
Ck+1,β

loc (X).
(c) Furthermore, if f ∈ Ck,β(X), g ∈ Ck,β(Y ), and both X and Y are smooth and

uniformly convex, then T̂ : X → Y is a global diffeomorphism of class Ck+1,β.

Even if this result is very satisfactory, one still would like to understand how “bad”
can be the set where u is not regular when one removes the convexity assumption on the
target. As shown in [14] (see also [12] for a more precise description of the singular set
in two dimensions), in this case one can prove that the optimal transport map is actually
smooth outside a closed set of measure zero. More precisely, the following holds:

Theorem 1.3. Let X, Y ⊂ Rn be two bounded open sets, let f : X → R+ and g : Y → R+

be two probability densities bounded away from zero and infinity on X and Y respectively,
and denote by T̂ = ∇u : X → Y the unique optimal transport map sending f onto g for
the cost |x− y|2/2. Then there exist two relatively closed sets ΣX ⊂ X and ΣY ⊂ Y , with

|ΣX | = |ΣY | = 0, such that T̂ : X \ ΣX → Y \ ΣY is a homeomorphism of class C0,α
loc for

some α > 0. In addition, if c ∈ Ck+2,β
loc (X × Y ), f ∈ Ck,β

loc (X), and g ∈ Ck,β
loc (Y ) for some

k ≥ 0 and β ∈ (0, 1), then T̂ : X \ ΣX → Y \ ΣY is a diffeomorphism of class Ck+1,β
loc .

Sketch of the proof. As explained above, when Y is not convex there could be points
x ∈ X such that ∂u(x) * Y . Let us define 3

RegX := {x ∈ X : ∂u(x) ⊂ Y } ΣX := X \ RegX .

By the continuity property of the subdifferential it is immediate to see that RegX is open.
Moreover it follows from the condition (∇u)](f dx) = g dy that ∇u(x) ∈ Y for a.e. x ∈ X,
thus |ΣX | = 0. Hence

λ2|E| ≤ |∂u(E)| ≤ |E|/λ2 ∀E ⊂ RegX

3Actually, in [12, 14] the regular set is defined in a slightly different way and it is in principle smaller.
However, the advantage of that definition is that it allows for a more refined analysis of the singular set
(see [12]).
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provided λ ≤ f, g ≤ 1/λ. A (non-trivial) adaptation of Caffarelli’s techniques permits
to prove that u is smooth inside RegX (the main issue here is to show that u is strictly
convex). �

1.2. The case of a general cost. After Theorem 1.1 many researchers started to work
on the problem of showing existence (and regularity) of optimal maps in the case of more
general costs, both in an Euclidean setting and in the case of Riemannian manifolds.
Since, at least locally, any Riemannian manifold looks like Rn, here we shall only focus
on the Euclidean case (see [13] and [10] for more results).

Let us introduce first some conditions on the cost function c : X × Y → R, where
X, Y ⊂ Rn:

(C0) The cost function c : X × Y → R is of class C2 with ‖c‖C2(X×Y ) <∞.
(C1) For any x ∈ X, the map Y 3 y 7→ −Dxc(x, y) ∈ Rn is injective.
(C2) For any y ∈ Y , the map X 3 x 7→ −Dyc(x, y) ∈ Rn is injective.
(C3) det(Dxyc)(x, y) 6= 0 for all (x, y) ∈ X × Y .

We also introduce the concept of c-convex functions which generalizes the one of convex
functions that appeared in the case c(x, y) = −x · y (see Theorem 1.1 and recall that,
by the discussion immediately after that theorem, the costs −x · y and |x − y|2/2 are
equivalent): a function u : X → R ∪ {+∞} is c-convex if it can be written as

u(x) = sup
y∈Y
{−c(x, y) + λy}

for some family of constants λy ∈ R.
The following is a basic result in optimal transport theory.

Theorem 1.4. Let c : X × Y → R satisfy (C0)-(C1). Given two probability densities f
and g supported on X and Y respectively, there exists a c-convex “potential” u : X → R
such that the map T̂ : X → Y implicitly defined by

(8) Dxc(x, T̂ (x)) +∇u(x) = 0

is the unique optimal transport map sending f onto g.

Since c satisfies (C1) we can define the c-exponential map:

for any x ∈ X, y ∈ Y , p ∈ Rn, c-expx(p) = y ⇔ p = −Dxc(x, y).

This allows us to rewrite (8) as T̂ (x) = c-expx(∇u(x)).
Let us try again to understand which PDE is satisfied by the “potential” u. Assuming

that u is smooth, we see that the c-convexity of u implies that

(9) D2u(x) +Dxxc
(
x, c-expx(∇u(x))

)
≥ 0.

Moreover, using (C2) one can show that T̂ is injective and that T̂−1 is the optimal map
between ν and µ for the symmetrized cost c∗(x, y) = c(y, x).



PARTIAL REGULARITY RESULTS IN OPTIMAL TRANSPORTATION 7

Hence, differentiating (8) with respect to x and using (2) and (9), we obtain

(10) det
(
D2u(x) +Dxxc

(
x, c-expx(∇u(x))

))
=
∣∣det

(
Dxyc

(
x, c-expx(∇u(x))

))∣∣ f(x)

g(c-expx(∇u(x)))
.

Hence, at least formally, u solves a Monge-Ampère type equation of the form

(11) det
(
D2u−A(x,∇u)

)
= h(x,∇u)

with

(12) A(x, p) := −Dxxc
(
x, c-expx(p)

)
and

h(x, p) :=
∣∣det

(
Dxyc

(
x, c-expx(p)

))∣∣ f(x)

g(c-expx(p))
.

Observe that, in the case c(x, y) = −x · y, A ≡ 0 and (11) reduces to the classical Monge-
Ampère equation. As we showed in the previous section, in order to get regularity of u
one needs to assume the convexity of the target domain. The issue is in some sense the
following: the Monge-Ampère equation enjoys some a-priori regularity estimates (these
are the so called Pogorelov estimates, see for instance [16, Section 17.6]) which allows one
to obtain regularity of solutions provided one has suitable boundary conditions. In the
case c(x, y) = −x · y the boundary condition was ∇u(X) = Y and convexity of Y was
enough to ensure regularity.

Now, for the general case we have to face two difficulties: in addition to identify some
suitable notion of convexity on the domains to handle the boundary conditions, one also
needs some analogous of the Pogorelov estimates for the general class of equations (11).

The breakthrough for the regularity of solutions to this class of equations came with the
paper of Ma, Trudinger and Wang [18], where the authors found a mysterious condition
on the cost functions that turned out to be sufficient to prove the regularity of u. More
precisely, the condition to be imposed on the cost (that we call here “MTW condition”)
is the following:

(13) D2
pηpηA(x, p)[ξ, ξ] ≤ 0 ∀x, p, ∀ ξ ⊥ η.

Since A depends on first and second order derivatives of the cost (see (12)), the MTW
condition is a fourth-order condition on c.

Under this condition, Ma, Trudinger, and Wang could prove the following result [18,
22, 23] (see also [21]), that generalizes Theorem 1.2(c):

Theorem 1.5. Let c : X × Y → R satisfy (C0)-(C3). Assume that the MTW condition
holds, and that f and g are smooth and bounded away from zero and infinity on their
respective supports X and Y . Also, suppose that:

- X and Y are smooth;
- Dxc(x, Y ) is uniformly convex for all x ∈ X;
- Dyc(X, y) is uniformly convex for all y ∈ Y .
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Then u ∈ C∞(X) and the map Tu : X → Y defined as Tu(x) := c-expx(∇u(x)) is a
smooth diffeomorphism.

In [17] Loeper started a systematic study of the MTW condition and its relation to the
geometry of optimal transport maps. Among other things, he was able to prove that the
MTW condition (13) is essentially equivalent to the following (see [17], [25, Chapter 12]
for a more precise discussion):
For any c-convex function u, its c-subdifferntial

(14) ∂cu(x) =
{
y ∈ Y : u(z) + c(z, y) ≥ u(x) + c(x, y) ∀ z ∈ X

}
is connected for every x ∈ X.

Note that, when c(x, y) = −x · y, c-convex function are just convex and ∂cu(x) reduces
to ∂u(x) (which is convex, thus connected).

Connectdness of the c-subdifferential turns out to be a necessary condition for the
regularity of optimal maps, see [17], [25, Theorem 12.7], [15]. Hence, in view of its
equivalence with the MTW condition, Loeper proved the following: if there exist x, p, ξ ⊥
η such that the MTW condition fail, then one can construct smooth positive probability
densities f and g (whose supports satisfy the appropriate global convexity assumptions)
such that the optimal map between µ = fdx and ν = gdy is discontinuous. Moreover,
Loeper also found a nice connection with geometry: if c = d2/2 with d a Riemannian
distance, then

D2
pkp`

Aij(x, 0)ξiξjηkη` = −2

3
Sectx([ξ, η]) ∀ ξ, η ∈ TxM, ξ ⊥ η,

where Sectx([ξ, η]) denotes the sectional curvature of the 2-plane generated by ξ and η.
Since (as we just mentioned above) the MTW condition is necessary for regularity, one
gets the following: 4

Corollary 1.5.1. Let c = d2/2 on a smooth Riemannian manifold M , and assume that
Sectx < 0 at some point along some 2-plane in TxM . Then one can construct f, g ∈
C∞(M) with f, g > 0 such that T̂ 6∈ C0.

Let us also mention that the MTW condition is quite restrictive and it is satisfied only
in very particular cases. These include the costs:

- |x− y|2/2 (or equivalently −x · y);
- − log |x− y|;
-
√
a2 − |x− y|2;

-
√
a2 + |x− y|2;

- |x− y|p with −2 < p < 1;

and the case c = d2/2 on the following manifolds:

- Rn and Tn;
- Sn, its quotients (like RPn), and its submersions (like CPn or HPn);

4Although we did not state them here, many existence and uniqueness result for optimal transport
maps on Riemannian manifolds are known (see for instance [11]), and they include for instance the case
c(x, y) = d(x, y)2/2.
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- products of any of the examples listed above (for instance, Sn1 × . . .× Snk ×R` or
Sn1 × CPn2 × Tn3);

- smooth perturbations of Sn.

Because the MTW condition is usually false, a natural question is: Can one prove a
partial regularity result for general cost functions?

Notice that in the case −x · y one exploits the fact that ∂u(x) ⊂ Λ a.e. (see the sketch
of the proof of Theorem 1.3), which means (very roughly) that at most points we are as
in the case of a convex target, and hence a local regularity theory is in principle available.
However, in the general case, besides the global obstruction given by the geometry of the
source and target domains there is also the local obstruction given by the failure of the
MTW condition. For instance, by Loeper’s result, if M has negative sectional curvature
then MTW fails at every point ! This means that there is no hope to say that, as in the
quadratic case, we are in a “good” situation at almost every point. Still, in [9] we have
been able to prove the following result:

Theorem 1.6. Let X, Y ⊂ Rn be two bounded open sets, and let f : X → R+ and
g : Y → R+ be two continuous probability densities bounded away from zero and infinity
on X and Y respectively. Assume that the cost c : X × Y → R satisfies (C0)-(C3), and

denote by T̂ : X → Y the unique optimal transport map sending f onto g. Then there
exist two relatively closed sets ΣX ⊂ X and ΣY ⊂ Y , with |ΣX | = |ΣY | = 0, such that

T̂ : X \ ΣX → Y \ ΣY is a homeomorphism of class C0,β
loc for any β < 1. In addition, if

c ∈ Ck+2,α
loc (X × Y ), f ∈ Ck,α

loc (X), and g ∈ Ck,α
loc (Y ) for some k ≥ 0 and α ∈ (0, 1), then

T̂ : X \ ΣX → Y \ ΣY is a diffeomorphism of class Ck+1,α
loc .

This result can be suitably localized to obtain a regularity result for the squared distance
function on Riemannian manifolds:

Theorem 1.7. Let M be a smooth Riemannian manifold, and let f, g : M → R+ be two
continuous probability densities, locally bounded away from zero and infinity on M . Let
T̂ : M → M denote the optimal transport map for the cost c = d2/2 sending f onto g,
d being the Riemannian distance on M . Then there exist two closed sets ΣX ,ΣY ⊂ M ,
with |ΣX | = |ΣY | = 0, such that T̂ : M \ΣX →M \ΣY is a homeomorphism of class C0,β

loc

for any β < 1. In addition, if both f and g are of class Ck,α, then T̂ : M \ΣX →M \ΣY

is a diffeomorphism of class Ck+1,α
loc .

Idea of the proof of Theorem 1.6. Let x0 be a point where the potential u associated to
T̂ is twice differentiable (since u is c-convex, one can use Alexandrov’s Theorem to show

that u is twice differentiable at almost every point), set y0 := T̂ (x0), and assume without
loss of generality that x0 = y0 = 0. Then u looks like a parbola near zero, and up to
subtracting a linear function we have

u(x) = Mx · x+ o(|x|2).
We now observe that the cost c(x, y) is equivalent to

ĉ(x, y) := c(x, y)− c(x, 0)− c(0, y) + c(0, 0).
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Indeed, as in the quadratic case, for any transport map T we have∫
Rn
ĉ(x, T (x)) dµ(x) =

∫
Rn
c(x, T (x)) dµ(x)−

∫
Rn
c(x, 0) dµ(x)

−
∫
Rn
c(0, T (x)) dµ(x) +

∫
Rn
c(0, 0) dµ(x)

=

∫
Rn
c(x, T (x)) dµ(x)−

∫
Rn
c(x, 0) dµ(x)

−
∫
Rn
c(0, y) dν(y) + c(0, 0),

and the last three terms are independent of T .
So, without loss of generality we can assume that ĉ = c, and by Taylor’s expansion we

get

c(x, y) = Ax · y +O(|x|2|y|+ |y|2|x|).
Hence, up to applying the linear transformations x 7→ M1/2x and y 7→ −M−1/2A∗y, we
can assume that

u(x) =
|x|2

2
+ o(|x|2)

and

c(x, y) = −x · y +O(|x|2|y|+ |y|2|x|)
near (0, 0).

In addition, since f and g are continuous,

f(x) = f(0) + ω(|x|), g(y) = g(0) + ω(|y|),

for some modulus of continuity ω : R+ → R+.
By compactness we prove the following key result:

Lemma 1.7.1. Assume ∣∣∣∣u(x)− |x|
2

2

∣∣∣∣ ≤ η in B1,

‖c(x, y) + x · y‖C2(B1×B1) ≤ δ,

‖f − 1‖L∞(B1) + ‖g − 1‖L∞(B1) ≤ δ.

Then, provided η > 0 is universally small, there exists a modulus of continuity ω̂ such
that

|u− φ| ≤ ω̂(δ) in B1/2,

where ∇φ is an optimal transport map for the quadratic cost between two constant densi-
ties. In addition

‖φ‖C3(B1/2) ≤ C.



PARTIAL REGULARITY RESULTS IN OPTIMAL TRANSPORTATION 11

We apply the lemma as follows: first we rescale u, c, f, g once:

ψ(x) 7→ u1(x) :=
u(hx)

h2
, c(x, y) 7→ c1(x, y) :=

1

h2
c(hx, hy),

f(x) 7→ f1(x) := f(hx), g(x) 7→ g1(x) := g(hx)

for some h� 1.
Since

u(x) =
|x|2

2
+ o(|x|2),

for h small we have ∣∣∣∣u1(x)− |x|
2

2

∣∣∣∣ ≤ η in B1.

Thus we can apply Lemma 1.7.1 with δ = min{ω(h), Ch} to obtain

|u1 − φ| ≤ ω(h) in B1/2, ‖φ‖C3(B1/2) ≤ C,

for some modulus of continuity ω. Let now P (x) := 1
2
D2φ(0)x · x. Then

|φ(x)− φ(0)−∇φ(0) · x− P (x)| ≤ Cr3 in Br

for any r ∈ (0, 1/2), therefore

|u1 − φ(0)−∇φ(0) · x− P (x)| ≤ ω(h) + Cr3 in Br.

We are now in position to iterate the rescaling argument: set

u2(x) :=
u1(rx)− φ(0)−∇φ(0) · x

r2
c2(x, y) :=

c1(rx, ry)− φ(0)−∇φ(0) · x
r2

,

f2(x) := f1(rx), g2(x) := g1(rx)

Then, since P (rx)/r2 = P (x) we obtain

|u2(x)− P (x)| ≤ ω(h)

r2
+ Cr ≤ η in B1

provided we choose first r = r(η) � 1 and then h = h(r, η) � 1. Let us observe that
P (x) is not exactly |x|2/2 (as we would need to iterate the argument again), but we can
show that it is of the form Ax · x for some symmetric matrix A satisfying λId ≤ A ≤ ΛId
for some universal constants 0 < λ ≤ Λ < ∞. This is actually enough for us to keep
iterating this argument and show that, for any α < 1, there exists C > 0 such that

|u(x)− u(0)−∇u(0) · x| ≤ C|x|1+α.
Since this argument can be reapplied at any point near 0, we get u ∈ C1,α in a neighbor-
hood of 0.

This is the main step of the proof since it allows us to get rid of the local obstruction
given by the failure of the MTW condition. Indeed, since u is C1 near 0, recalling (14) it
is easy to see that (for x in a neighborhood of 0)

∂cu(x) = {c-exp(∇u(x))},
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in particular ∂cu(x) is connected. Relying on this, we can show that u enjoys a comparison
principle, and this allows us to use a second approximation argument with solutions of the
classical Monge-Ampère equation to conclude that u is C2,σ′ in a smaller neighborhood
for some σ′ > 0. Then higher regularity follows from Schauder’s theory.

These results imply that T̂ is of class C0,β in neighborhood of x̄ (resp. T̂ is of class

Ck+1,α if c ∈ Ck+2,α
loc and f, g ∈ Ck,α

loc ). Being our assumptions completely symmetric in x
and y, we can apply the same argument to the optimal map T ∗ sending g onto f (here

optimal means with respect to the cost c∗(x, y) = c(y, x)). Since T ∗ = T̂−1, it follows that

T̂ is a global homeomorphism of class C0,β
loc (resp. T̂ is a global diffeomorphism of class

Ck+1,α
loc ) outside a closed set of measure zero, concluding the proof. �
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