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Abstract. The aim of this note is to review some recent devel-
opments on the regularity theory for the stationary and parabolic
obstacle problems.

After a general overview, we present some recent results on the
structure of singular free boundary points. Then, we show some se-
lected applications to the generic smoothness of the free boundary
in the stationary obstacle problem (Schaeffer’s conjecture), and
to the smoothness of the free boundary in the one-phase Stefan
problem for almost every time.
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1. Introduction

1.1. The classical Stefan problem. The classical Stefan problem
aims to describe the temperature distribution in a homogeneous medium
undergoing a phase change, typically the melting of a body of ice main-
tained at zero degrees centigrade. Given are the initial temperature
distribution of the water and the energy contributed to the system
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through the boundary of the domain. The unknowns are the tempera-
ture distribution of the water as a function of space and time, and the
ice-water interface.

This problem is named after Josef Stefan, a Slovenian physicist who
introduced the general class of such problems around 1890 in relation
to problems of ice formation, although this question had already been
considered by Lamé and Clapeyron in 1831.

In its most classical formulation, the Stefan problem can be formu-
lated as follows: let Ω ⊂ Rn be a bounded domain, and let

θ = θ(t, x)

denote the temperature of the medium at a point x ∈ Ω at time t ∈ R+.
We assume that θ ≥ 0 in R+ × Ω, so that {θ = 0} represents the ice
while {θ > 0} represents the water, see Figure 1.

ice

water

free boundary

boundary 
conditions

Figure 1. The Stefan problem. Because the ice-water
interface is an unknown of the problem, it is called “free
boundary”.

We prescribe an initial condition

θ(0, x) = θ0(x) ≥ 0

at time t = 0, and a boundary condition

θ(t, x) = θb(t, x) ≥ 0 for x ∈ ∂Ω and t ≥ 0.

In the water, the temperature evolves in time according to the classical
heat equation, that is

(1.1) ∂tθ = ∆θ inside {θ > 0}.

Also, the interface ice-water moves accordingly to the so-called “Stefan
condition”

(1.2) ẋ(t) = −∇θ(t, x(t)) ∀x(t) ∈ ∂{θ(t) > 0},
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where ∇θ(t) denotes the spatial gradient of θ(t) computed from inside
the region {θ(t) > 0}, see Figure 2.

Figure 2. The gradient of θ(t) at a free boundary point
is computed from inside the region {θ(t) > 0}.

Observe that −∇θ(t, x(t)) points always towards the region {θ(t) =
0}, hence this set shrinks in time, see Figure 3. In other words, ice is
melting.

Figure 3. The vector −∇θ points into {θ = 0}, which
shrinks as time evolves.

This problem belongs to the general class of “free-boundary prob-
lems”, since θ solves a PDE (the heat equation) inside the time-evolving
domain {θ > 0} which depends on the solution itself, and so in partic-
ular it is an unknown of the problem. In this regard, we say that the
boundary ∂{θ > 0} is a free-boundary.

1.2. From Stefan to the parabolic obstacle problem. In order to
study this problem it is convenient to perform the so-called Duvaut’s
transformation [12, 13]: let

u(t, x) :=

∫ t

0

θ(s, x) ds.

Then u : R+ × Ω→ R solves the so-called parabolic obstacle problem

(1.3) ∂tu = ∆u− χ{u>0}, u ≥ 0, ∂tu ≥ 0,

with Dirichlet boundary conditions

u(t, x) =

∫ t

0

θb(s, x) ds for x ∈ ∂Ω and t ≥ 0
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(we shall explain the name “obstacle problem” in the next section).
To understand how to obtain (1.3) from the Stefan problem, we give

here an informal derivation assuming that the set ∂{θ > 0} can be
represented as the graph of a smooth function τ : Ω→ R+, that is

∂{θ > 0} = {(t, x) : t = τ(x)} = graph(τ).

In other words, τ(x) represents the moment when the ice present at x
melts into water.

Since

(1.4) θ(τ(x), x) = 0 ∀x ∈ Ω,

differentiating this relation with respect to x we obtain

(1.5) 0 = ∇
[
θ(τ(x), x)

]
= ∂tθ(τ(x), x)∇τ(x) +∇θ(τ(x), x).

Also, since

θ(t, x(t)) = 0 for any curve t 7→ x(t) ∈ ∂{θ(t) > 0},
differentiating this relation in time and using the Stefan condition (1.2),
we get

(1.6) 0 =
d

dt
θ(t, x(t)) = ∂tθ+∇θ · ẋ(t) = ∂tθ−|∇θ|2 on ∂{θ > 0}.

Hence, combining (1.5) and (1.6), we deduce that

(1.7) ∇τ(x) · ∇θ(τ(x), x) = −|∇θ(τ(x), x)|2

∂tθ(τ(x), x)
= −1.

Note that, because the sets {θ(t) = 0} shrink in time, we have

θ(t, x) = 0 for t ∈ [0, τ(x)].

In particular

u(t, x) =

∫ t

0

θ(s, x) dx = 0 for t ≤ τ(x),

which implies that

(1.8) u(t, x) =

∫ t

τ(x)

θ(s, x) ds ∀ t > τ(x)

and that

(1.9) {θ > 0} = {(t, x) : t > τ(x)} = {u > 0}.
We now want to compute the equation for u for t > τ(x).

Differentiating (1.8) with respect to xi and recalling (1.4), we obtain

∂xiu(t, x) =

∫ t

τ(x)

∂xiθ(s, x) ds− θ(τ(x), x) ∂xiτ(x) =

∫ t

τ(x)

∂xiθ(s, x) ds.
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Differentiating again with respect to xi yields

∂xixiu(t, x) =

∫ t

τ(x)

∂xixiθ(s, x) ds− ∂xiθ(τ(x), x) ∂xiτ(x),

so that summing over i = 1, . . . , n gives

∆u(t, x) =

∫ t

τ(x)

∆θ(s, x) ds−∇θ(τ(x), x) · ∇τ(x).

Hence, since θ = ∂tu, recalling (1.1), (1.4), and (1.7), we obtain

∆u(t, x) =

∫ t

τ(x)

∂tθ(s, x) ds+ 1 = θ(t, x) + 1 = ∂tu(t, x) + 1

inside the region {θ > 0}. Recalling (1.9), we proved that

(1.10) ∂tu = ∆u− 1 inside {u > 0}.

It is important to remark that (1.10) is not equivalent to (1.3), as the
latter equation has a further hidden condition on the free boundary.
To understand this, assume that v solves (1.3). Then, since

∂tv −∆v = −χ{v>0} ∈ L∞,
it follows by parabolic regularity theory that v(t) ∈ C1(Ω) for any
t > 0. In particular, since v(t) ≥ 0 and v(t)|∂{v(t)>0} = 0, it holds

∇v(t) = 0 on ∂{v(t) > 0}.
Hence, we need to show that the function u(t, x) defined in (1.8) satis-
fies also this extra condition.

To prove this, we recall (see (1.4)) that

0 = θ(τ(x), x) = ∂tu(τ(x), x).

Also, since u(τ(x), x) = 0, differentiating this relation with respect to
x we get

0 = ∇
[
u(τ(x), x)

]
= ∂tu(τ(x), x)∇τ(x) +∇u(τ(x), x).

Combining these two relations we obtain

∇u(τ(x), x) = 0,

that is

(1.11) ∇u(t) = 0 on ∂{u(t) > 0},
see Figure 4.

It is interesting to observe that, in the equation for u, no transmission
condition appears on the free boundary (cp. the Stefan condition for θ,
see (1.2)). Hence, one may wonder what is determining the evolution
of the free boundary. This can be explained as follows: recalling (1.11),
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Figure 4. The parabolic obstacle problem.

we showed that both u(t) and ∇u(t) vanish on the free boundary for
any t > 0. One may notice that this is a very strong condition, since
we are saying that u(t) solves the parabolic equation

∂tu = ∆u− 1 in {u > 0}
with two boundary conditions on the free boundary:

u = 0 and ∇u = 0 on ∂{u > 0},
see Figure 4. This is an over-determined system: in classical PDE
theory one can only prescribe either Dirichlet or Neumann boundary
conditions, but not both! This means that the free boundary has to
evolve so to ensure that both boundary conditions hold for every time.
In other words, the transmission condition determining the evolution
of the free boundary is now hidden inside the equation (1.3) via the
condition (1.11).

Thanks to this informal discussion, since {θ > 0} = {u > 0}, we have
reduced the study of the free boundary in the Stefan problem to the one
in the parabolic obstacle problem. Our goal now is to understand the
free boundary regularity in the parabolic obstacle problem. In order to
simplify the analysis, it makes sense to start first from the stationary
case where u is independent of time, and then move to the general case.
This will be the focus of the next sections.

2. The elliptic obstacle problem

In this section we study the free boundary regularity in the stationary
obstacle problem.

Thus, given a domain Ω ⊂ Rn and some fixed smooth boundary
conditions f : ∂Ω → R with f > 0, we want to investigate the elliptic
obstacle problem

(2.1)

 ∆u = χ{u>0} in Ω,
u ≥ 0 in Ω,
u = f on ∂Ω.
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Note that, because ∆u = χ{u>0} ∈ L∞(Ω), it follows by elliptic regu-
larity that u ∈ C1(Ω). In particular, as in the previous section, since
u ≥ 0 and u|∂{u>0} = 0, one deduces that

(2.2) ∇u = 0 on ∂{u > 0},
see Figure 5.

Figure 5. The stationary obstacle problem.

Before beginning our study, we first want to explain the origin of the
name “obstacle problem” associated to (2.1).

Consider an elastic membrane that coincides with the graph of f on
∂Ω, subject to the action of gravity, and forced to lie above the plane
{xn+1 = 0} (the “obstacle”). If we represents the membrane as the
graph of a nonnegative function u : Ω → R, this function minimizes
the functional

(2.3) min
v≥0

{∫
Ω

(
|∇v|2

2
+ g v

)
: v|∂Ω = f

}
,

where∫
Ω

|∇v|2

2
represents the elastic energy of the graph of v,

and

g

∫
Ω

v represents the gravitational energy of the graph of v

(here g > 0 is the gravitational constant), see Figure 6.

Figure 6. The obstacle problem models an elastic sur-
face lying above the plane {xn+1 = 0} and subject to
gravity.
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The existence and uniqueness of a minimizer for (2.3) follows by
standard techniques in the calculus of variations, see for instance [16,
Section 2]. Then, computing the Euler-Lagrange equations for the
minimizer u, one can prove that u satisfies the equation

∆u = g χ{u>0},

see for instance [16, Section 3]. In particular, up to replacing u by
u/g we can assume that g = 1, which shows that (2.1) corresponds to
the Euler-Lagrange equations associated to the minimization problem
(2.3). This justifies the name obstacle problem. Also, since the set
{u = 0} corresponds to the region where u touches the obstacle, one
refers to {u = 0} as the contact set.

2.1. Regularity properties of u. Let u solve (2.1). Since

∆u = χ{u>0} ∈ L∞(Ω),

standard elliptic regularity (see for instance [20, Corollary 9.10 and
Theorem 9.13]) guarantees that u ∈ W 2,p

loc (Ω) for any p < ∞. In other
words

D2u ∈ Lploc(Ω) ∀ p <∞.
A key result in the theory of obstacle problems states that the estimate
above holds even for p =∞, see [19, 5, 7, 16]:

Theorem 2.1. Let u solve (2.1). Then

D2u ∈ L∞loc(Ω).

It is worth noticing that the result above is optimal. Indeed, since
∆u = χ{u>0} is discontinuous, the statement u ∈ C2(Ω) is clearly false.
Thus the boundedness of D2u is the best one can hope for.

As a consequence of Theorem 2.1, we deduce that u grows at most
quadratically away from the free boundary.

Corollary 2.2. Let u solve (2.1), let Ω′ ⊂⊂ Ω, let x0 ∈ ∂{u > 0}, and
assume that Br(x0) ⊂ Ω′. Then there exists C = C(Ω′) such that

0 ≤ sup
Br(x0)

u ≤ C r2.

Proof. Given x ∈ Br(x0), we can write u(x) using the Taylor formula
centered at x0:

u(x) = u(x0) +∇u(x0) · (x− x0)

+

∫ 1

0

(1− t)D2u
(
x0 + t(x− x0)

)
[x− x0, x− x0] dt.
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Since u(x0) = 0 and ∇u(x0) = 0, setting C := ‖D2u‖L∞(Ω′) we get

0 ≤ u(x) ≤ C

2
|x− x0|2 ≤

C

2
r2,

as desired. �

As shown in [6, 7, 16], the upper bound is always attained.

Proposition 2.3. Let u solve (2.1), let x0 ∈ ∂{u > 0}, and assume
that Br(x0) ⊂ Ω. Then there exists a dimensional constant c = c(n) >
0 such that

sup
Br(x0)

u ≥ c r2.

2.2. Blow-up analysis and Caffarelli’s dichotomy. Thanks to Corol-
lary 2.2 and Proposition 2.3, we know that

sup
Br(x0)

u ' r2 ∀x0 ∈ ∂{u > 0}.

This suggests the following rescaling: for x0 ∈ ∂{u > 0} and r > 0
small, we define the family of functions

(2.4) ux0,r(x) :=
u(x0 + rx)

r2
.

In this way, recalling Theorem 2.1, we get (see Figure 7):

• ux0,r(0) = 0, supB1
ux0,r ' 1;

• |D2ux0,r|(x) = |D2u|(x0 + rx) ≤ C.

Figure 7. By scaling, we look at functions of size 1
defined inside B1.

Thanks to these bounds, it follows by Ascoli-Arzelà Theorem that the
family of functions {ux0,r}r>0 is compact in C1. So, one can consider a
possible limit (up to subsequences) as r → 0+. Such a limit is called a
blow-up of u at x0.

The first goal is to classify the possible blow-ups, since they give us
information on the infinitesimal behavior of u near x0. We begin by
considering two possible natural type of blow-ups that one may find.



10 ALESSIO FIGALLI

2.2.1. Regular free boundary points. Let us first consider the case when
the free boundary is smooth near x0, with u > 0 on one side and u = 0
on the other side. In this case, as we rescale u around x0 we expect in
the limit to see a one dimensional “half-parabola”, see Figure 8.

Figure 8. Performing a blow-up near a “thick” free
boundary point.

This motivates the following:

Definition 2.4. A free boundary point x0 ∈ ∂{u > 0} is called a
regular point if, up to a subsequence of radii,

u(x0 + rx)

r2
→ 1

2
[(e · x)+]2 as r → 0+

for some unit vector e ∈ Sn−1.

2.2.2. Singular free boundary points. Now, imagine that the contact-
set is very narrow near x0. Since ∆u = 1 outside of the contact set, as
we rescale u around x0 we expect to see in the limit a function that has
Laplacian equal to 1 everywhere. In dimension two, a natural behavior
that one may expect to observe is represented in Figure 9.

 

Figure 9. Performing a blow-up near a “thin” free
boundary point.

More in general, since any nonnegative quadratic polynomial with
Laplacian equal to 1 solves (5), one introduces the following:

Definition 2.5. A free boundary point x0 ∈ ∂{u > 0} is called a
singular point if, up to a subsequence of radii,

u(x0 + rx)

r2
→ p(x) :=

1

2
〈Ax, x〉 as r → 0+
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for some nonnegative definite matrix A ∈ Rn×n with tr(A) = 1.

It is worth noticing that the form of the polynomial p is strictly
related to the shape of the contact set near the origin. For instance,
if n = 3 and p(x) = 1

2
(e · x)2 for some unit vector e ∈ S2, then the

contact set will be close to a 2-dimensional plane, see Figure 10.

Figure 10. A possible contact set near a singular point
in dimension 3.

On the other hand one could also see points where the contact set is
close to a line, which may correspond for instance to a polynomial of
the form p(x) = 1

4
(x2

1 + x2
2), see Figure 11.

Figure 11. A possible contact set near a singular point
in dimension 3.

2.2.3. Caffarelli’s dichotomy theorem. Notice that, at the moment, the
definitions of regular and singular points may not be mutually exclu-
sive, since a free boundary point point could be regular along some
sequence of radii and singular along a different sequence. Also, it is
not clear that regular and singular points should exhaust the whole
free boundary.
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These highly nontrivial and deep issues have been answered by Caf-
farelli in [6]:

Theorem 2.6. Let x0 ∈ ∂{u > 0}. Then one of these two alternatives
hold (see Figure 12):

(i) either x0 is regular, and then there exists a radius r0 > 0 such
that ∂{u > 0} ∩ Br0(x0) is an analytic hypersurface consisting
only of regular points;

(ii) or x0 is singular, in which case for any r > 0 there exists a unit
vector er ∈ Sn−1 such that

∂{u > 0} ∩Br(x0) ⊂
{
x : |er · (x− x0)| ≤ o(r)

}
.

Figure 12. A regular (left) and a singular (right) free
boundary point.

Theorem 2.6 states that a free boundary point can be either regular
or singular. Also, if it is regular then the free boundary is smooth in a
neighborhood and all points nearby are regular as well. From this one
deduces that the convergence in Definition 2.4 holds without the need
of taking a subsequence of radii.

While Theorem 2.6(i) gives a complete answer on the structure of
regular points, Theorem 2.6(ii) is still not conclusive. Indeed, in the
statement the vector er may depend on r. Also, the quantity o(r)
comes from a compactness argument, so it is not quantified.

Hence, from now on we shall focus on the study of singular points.
To simplify the notation, we denote

Σ := {singular points} ⊂ ∂{u > 0}.
Note that, since the set of regular points is relatively open inside the
free boundary (see Theorem 2.6(i)), it follows that Σ is a closed set.

2.3. Uniqueness of blow-up at singular points. As observed in
the previous section, a priori the vector er appearing in the statement
of Theorem 2.6(ii) may depend on r. This fact is essentially related to
the question of whether the convergence in Definition 2.5 holds up to
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subsequences or not: indeed, if one could prove that the convergence
to a polynomial p holds without passing to a subsequence, then one
could easily deduce that

∂{u > 0} ∩Br(x0) ⊂
{
x : dist(x− x0, {p = 0}) ≤ o(r)

}
.

The complete answer to this questions has been given by Caffarelli
in [7], after important previous results in the two dimensional case
[10, 23, 24].

From now on, we use the notation

P :=

{
p(x) =

1

2
〈Ax, x〉 :

A ∈ Rn×n symmetric nonnegative definite, trA = 1

}
.

Theorem 2.7. Let x0 ∈ Σ. Then there exists p∗,x0 ∈ P such that

lim
r→0

u(x0 + rx)

r2
= p∗,x0(x).

In addition, the map

Σ 3 x0 7→ p∗,x0

is locally uniformly continuous.

We present here a proof of this result given few years later by Mon-
neau [22]. To this aim, we first recall the so-called Monneau’s mono-
tonicity formula, whose proof relies on a previous monotonicity formula
obtained by Weiss in [26].

Lemma 2.8. Let 0 ∈ Σ, p ∈ P, and define

M(r, u, p) :=
1

rn+3

∫
∂Br

(u− p)2.

Then
d

dr
M(r, u, p) ≥ 0.

Using this lemma, the uniqueness and the continuity of the blow-up
at singular points follows rather easily.

Proof of Theorem 2.7. We first prove the existence of the limit.
Assume with no loss of generality that x0 = 0, and set

ur(x) := r−2u(rx).
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With this notation, noticing that r−2p(rx) = p(x), it is follows by a
change of variables that

(2.5) M(r, u, p) =
1

rn+3

∫
∂Br

(u− p)2 =

∫
∂B1

(ur − p)2.

Now, let p1 and p2 be two different limits obtained along two sequences
rk,1 and rk,2 both converging to zero. Up to taking a subsequence of
rk,2 and relabeling the indices, we can assume that rk,2 ≤ rk,1 for all k.
Thus, thanks to Lemma 2.8 and (2.5), we have∫

B1

(urk,1 − p1)2 = M(rk,1, u, p1) ≥M(rk,2, u, p1) =

∫
B1

(urk,2 − p1)2,

and letting k →∞ we obtain

0 = lim
k→∞

∫
B1

(urk,1 − p1)2 ≥ lim
k→∞

∫
B1

(urk,2 − p1)2 =

∫
B1

(p2 − p1)2.

This proves that there is a unique possible limit for the functions ur
as r → 0, which implies that the limit exists. From now on, given a
singular point x0, we shall denote this limit by p∗,x0 .

We now prove the continuity of the map x0 7→ p∗,x0 at 0 ∈ Σ. Fix
ε > 0, and consider a sequence xk ∈ Σ with xk → 0. Since ur → p∗,0
as r → 0, there exists a small radius rε > 0 such that

(2.6)

∫
∂B1

∣∣∣∣u(rεx)

r2
ε

− p∗,0(x)

∣∣∣∣2 ≤ ε.

Then, applying Lemma 2.8 at xk with p = p∗,0, we deduce that∫
∂B1

|pxk,∗ − p∗,0|2 = lim
r→0

∫
∂B1

∣∣∣∣u(xk + rx)

r2
− p∗,0(x)

∣∣∣∣2
≤
∫
∂B1

∣∣∣∣u(xk + rεx)

r2
ε

− p∗,0(x)

∣∣∣∣2.
Hence, letting k →∞ and recalling (2.6) we obtain

lim sup
k→∞

∫
∂B1

|pxk,∗ − p∗,0|2 ≤ lim
k→∞

∫
∂B1

∣∣∣∣u(xk + rεx)

r2
ε

− p∗,0(x)

∣∣∣∣2 ≤ ε.

Since ε > 0 is arbitrary, this proves the continuity at 0.
Because Σ is locally compact (recall that Σ is closed), this actually

implies that the map

Σ 3 x0 7→ p∗,x0

is locally uniformly continuous. �
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2.4. Stratification and C1 regularity of the singular set. With
Theorem 2.7 at hand, we can now investigate the regularity of Σ. Note
that singular points may look very different, depending on the dimen-
sion of the set {p∗,x0 = 0}, see Figures 10 and 11. This suggests to
stratify the set of singular points according to this dimension. More
precisely, given x0 ∈ Σ we set

kx0 := dim(kerD2p∗,x0) = dim({p∗,x0 = 0}).
Then, given m ∈ {0, . . . , n− 1}, we define

Σm := {x0 ∈ Σ : kx0 = m}.
Note that, with this definition, the point in Figure 10 belongs to Σ2,
while the point in Figure 11 belongs to Σ1. Hence one may expect that
Σm should correspond to the m-dimensional part of Σ, see Figure 13.

Figure 13. A possible example of contact set in 3 dimensions.

This intuition is confirmed by the following result of Caffarelli [7]:

Theorem 2.9. For any m ∈ {0, . . . , n− 1}, Σm is locally contained in
a m-dimensional manifold of class C1.

Idea of the proof. Recalling (2.2), we have u|Σm = ∇u|Σm ≡ 0. Also,
thanks to Theorem 2.7,

u(x0 + y) = p∗,x0(y) + o(|y|2).

Hence, at least formally, p∗,x0 corresponds to the second order term
in the Taylor expansion of u, namely “p∗,x0(y) = 1

2
〈D2u(x0)y, y〉”, or

equivalently
“D2p∗,x0 = D2u(x0)”.

Since the map

Σ 3 x0 7→ p∗,x0(y) =
1

2
〈D2p∗,x0y, y〉
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is continuous, we deduce that

Σ 3 x0 7→ D2p∗,x0 ∈ Rn×n

is continuous as well.
This allows us to apply Whitney’s extension theorem to find a map

F : Rn → Rn of class C1 such that

F (x0) = ∇u(x0) = 0 and ∇F (x0) = D2p∗,x0 ∀x0 ∈ Σm.

Noticing that, by the definition of Σm,

dim(ker∇F (x0)) = dim(kerD2p∗,x0) = m on Σm,

it follows by the Implicit Function Theorem that

Σm = {F = 0} ∩ Σm

is locally contained in a C1 m-dimensional manifold, as desired. �

Remark 2.10. The proof above shows that the estimate

‖u(x0 + ·)− p∗,x0‖L∞(Br) = o(r2),

with an error o(r2) independent of x0, implies that Σm is locally con-
tained in a C1 m-dimensional manifold.

More in general, if one could prove that

(2.7) ‖u(x0 + ·)− p∗,x0‖L∞(Br) ≤ C r2+α

for some constant C independent of x0, then by applying Whitney’s
extension theorem in Hölder spaces one would conclude that Σm is
contained in a m-dimensional manifold of class C1,α.

Remark 2.11. The fact that Σm is only contained in a manifold (and
does not necessarily coincide with it) is optimal: already for n = 2, one
can build examples where Σ1 coincides with a Cantor set contained in
a line [25].

2.5. Recent developments. In 1999, Weiss proved a monotonicity
formula that allowed him to obtain the following result [26]:

Theorem 2.12. Let n = 2. Then there exist C, α > 0 such that

‖u(x0 + ·)− p∗,x0‖L∞(Br) ≤ C r2+α ∀x0 ∈ Σ.

In particular Σ1 is locally contained in a C1,α curve.

Weiss’ proof was restricted to two dimensions because of some deli-
cate technical assumptions in some steps of the proof. Still, one could
have hoped to extend his argument to higher dimensions. This was
achieved by Colombo, Spolaor, and Velichkov [11]. There, the authors
introduced a quantitative argument to avoid a compactness step in
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Weiss’ proof. However, the price to pay for working in higher dimen-
sions was that they could only get a logarithmic improvement in the
convergence of u to p∗,x0 :

Theorem 2.13. Let n ≥ 3. Then exist dimensional constants C, ε > 0
such that

‖u(x0 + ·)− p∗,x0‖L∞(Br) ≤ C r2| log(r)|−ε ∀x0 ∈ Σ.

In particular, for any m ∈ {0, . . . , n− 1}, Σm is locally contained in a
C1,logε m-dimensional manifold.

In other words, in dimension n ≥ 3 one can improve the C1 regular-
ity of Caffarelli to a quantitative one, with a logarithmic modulus of
continuity. This result raises the question of whether one may hope to
improve such an estimate, or if this logarithmic bound is optimal.

In a recent paper with Serra [17] we showed that, at most points,
(2.7) holds with α = 1. However, there exist some “anomalous” points
of higher codimension where not only (2.7) does not hold with α = 1,
but actually (2.7) is false for any α > 0.

As a consequence we deduce that, up to a small set, singular points
can be covered by C1,1 (and in some cases C2) manifolds. As we shall
discuss in Remark 2.15 below, this result provides the optimal decay
estimate for the contact set.

Finally, it is important to observe that anomalous points may exist
and our bound on their Hausdorff dimension is optimal.

Before stating our result we note that, as a consequence of Theorem
2.7, points in Σ0 are isolated and u is strictly positive in a neighborhood
of them. In particular u solves ∆u = 1 in a neighborhood of Σ0,
hence it is analytic there. Thus, it is enough to focus on the cases
m = 1, . . . , n− 1.

Here and in the sequel, dimH(E) denotes the Hausdorff dimension
of a set E. The main result in [17] the following:

Theorem 2.14. Let Σ := ∪n−1
m=0Σm denote the set of singular points.

Then:

(n = 2) Σ1 is locally contained in a C2 curve.
(n ≥ 3) (a) The higher dimensional stratum Σn−1 can be written as the

disjoint union of “generic points” Σg
n−1 and “anomalous

points” Σa
n−1, where:

- Σg
n−1 is locally contained in a C1,1 (n − 1)-dimensional

manifold;
- Σa

n−1 is a relatively open subset of Σn−1 satisfying

dimH(Σa
n−1) ≤ n− 3
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(actually, Σa
n−1 is discrete when n = 3).

Furthermore, the whole stratum Σn−1 can be locally covered
by a C1,α◦ (n− 1)-dimensional manifold, for some dimen-
sional exponent α◦ > 0.

(b) For all m = 1, . . . , n − 2 we can write Σm = Σg
m ∪ Σa

g,
where:
- Σg

m is locally contained in a C1,1 m-dimensional manifold;
- Σa

m is a relatively open subset of Σm satisfying

dimH(Σa
m) ≤ m− 1

(actually, Σa
m is discrete when m = 1).

In addition, the whole stratum Σm can be locally covered by
a C1,logε◦ m-dimensional manifold, for some dimensional
exponent ε◦ > 0.

This result needs several comments.

Remark 2.15. We first discuss the optimality of the theorem above,
and then make some general considerations.

(1) Our C1,1 regularity provides the optimal control on the contact
set in terms of the density decay. Indeed our result implies
that, at all singular points up to a (n− 3)-dimensional set, the
following bound holds:

|{u = 0} ∩Br(x0)|
|Br(x0)|

≤ Cr ∀ r > 0.

In view of the two dimensional Example 1 in [25, Section 1],
this estimate is optimal.

(2) The possible presence of anomalous points comes from differ-
ent reasons depending on the dimension of the stratum. More
precisely, the following holds:
(a) The possible presence of points in Σa

n−1 comes from the
potential existence, in dimension n ≥ 3, of λ-homogeneous
solutions to the so-called Signorini problem with λ ∈ (2, 3),
see for instance [1, 2]. Whether this set is empty or not is
an important open problem.

(b) The anomalous points in the strata Σa
m for m ≤ n−2 come

from the possibility that, around a singular point x0, the
function u behaves as

u(x0 + rx) = r2 p∗,x0(x) + r2εr q(x) + o(r2εr),

where:
- εr ∈ R+ is infinitesimal as r → 0+, but εr � rα for any
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α > 0;
- q is a nontrivial second order harmonic polynomial.
This behavior may look rather strange: indeed we are say-
ing that, after one removes from u its second order Taylor
expansion p∗,x0 , one still sees as a reminder a second order
polynomial. However, it turns out that such anomalous
points may exist, and we can construct examples of solu-
tions for which dimH(Σa

m) = m− 1.
(3) Our result on the higher dimensional stratum Σn−1 extends

Theorem 2.12 to every dimension, and improves it in terms
of the regularity.

(4) The last part of the statement in the case (n ≥ 3)-(b) corre-
sponds to Theorem 2.13. In [17] we obtain the same result as
a simple byproduct of our analysis. In addition, our result on
the existence of anomalous points shows that Theorem 2.13 is
essentially optimal.

3. Generalizations and applications

3.1. The parabolic obstacle problem. The first natural extension
of Theorem 2.14 consists in understanding the structure of the free
boundary in the parabolic case

(3.1) ∂tu = ∆u− χ{u>0}, u ≥ 0, ∂tu ≥ 0.

As shown in [6] (see also [8]), solutions to this problem are C1 in time
and C1,1 in space, namely

|∂tu|+ |u|+ |∇u|+ |D2u| ∈ L∞loc, ∂tu ∈ C0.

Also, as in the elliptic case, points of the free boundary ∂{u > 0} are
divided into two classes: regular points and singular points. A free
boundary point z0 = (t0, x0) is either regular or singular depending on
the type of blow-up of u at that point. More precisely:

(3.2) z0 is called regular point ⇔
u(t0 + r2t, x0 + rx)

r2

r↓0−→ 1

2
[(e · x)+]2

for some e = ez0 ∈ Sn−1, and

(3.3) z0 is called singular point ⇔
u(t0 + r2t, x0 + rx)

r2

r↓0−→ p∗,z0(x) :=
1

2
〈Ax, x〉
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for some symmetric nonnegative definite matrix A = Az0 ∈ Rn×n with
tr(A) = 1. The existence of the previous limits in (3.2) and (3.3), as
well as the classification of possible blow-ups are well-known results;
see [6, 9, 3]. It is interesting to observe that both at regular and
singular points the blow-ups are independent of time. This can be
explained as follows: since solutions are C1 in time and C1,1 in space
and ∂tu = ∇u = 0 on the free boundary, near a free boundary point
z0 = (t0, x0) the function u satisfies

u(t0 + t, x0 + x) = o(t) +O(|x|2).

Because of this, it follows immediately that the blow-ups considered
above will not depend on t.

By the theory in [6, 9], the free boundary is an analytic hypersurface
near regular points. On the other hand, near singular points the contact
set {u = 0} may form cusps and can be rather complicated.

To understand the structure of the singular points, we consider again
a stratification based on the size of the zero set of the blow-up. More
precisely, given a singular point z0 = (t0, x0), we set

Lz0 := {p∗,z0 = 0} = ker(Az0).

Then, given a time t > 0 and m ∈ {0, 1, 2, . . . , n − 1}, we define the
m-th stratum at time t as

Σm,t :=
{
z0 = (t0, x0) : singular point with dim(Lz0) = m and t0 = t

}
.

The natural generalization of Theorem 2.9 would be to prove that, for
any t and m, the set Σm,t is contained in a m-dimensional manifold of
class C1. Actually, as proved in [21] (see also [4, 3] for some previous
contributions) ⋃

t>0

(
{t} × Σm,t

)
⊂ R+ × Rn

is locally contained in a m-dimensional manifold of class C1, where here
C1 regularity has to be intended with respect to the parabolic metric

dP (z, z′) := |x− x′|+ |t− t′|1/2, where z = (x, t), z′ = (x′, t′).

In our paper [18] we take a different approach. More precisely, because
the function u is mononically increasing in time, the free boundaries
∂{u(t) > 0} are nested. Exploiting this monotonicity one could use
the arguments in [21] to show that⋃

t>0

Σm,t ⊂ Rn

is locally contained in a m-dimensional manifold of class C1. Hence, it
is natural to try to prove the analogue of Theorem 2.14 for ∪t>0Σm,t.
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This is done in [18], where we obtain the following result (we state here
a simplified version):

Theorem 3.1. Let u be a solution of (3.1), let m ∈ {1, . . . , n − 1},
and let Σm := ∪t>0Σm,t. Then Σm = Σg

m ∪ Σa
m, where:

- Σg
m can be locally covered by a C1,1 m-dimensional manifold;

- Σa
m is a relatively open subset of Σm satisfying dimH(Σa

m) ≤ m− 1.

The extension from the elliptic to the parabolic problem is far from
trivial, as it requires relating the behavior of the solution at different
times for different singular points. This involves both finer analytic
arguments and a series of new covering-type theorems that allow us
to take care of sets coming from different times. This result, besides
considerably improving the previous knowledge on the structure of the
free boundary for the Stefan problem, can be used to estimate the size
of the set of singular times.

Let Σt := ∪n−1
m=0Σm,t, and define the set of singular times

S := {t > 0 : Σt 6= ∅}.

Because singular points are a closed subset of the free boundary, if we
ensure that the free boundary is contained in a bounded domain then
the set Σ is compact, in which case S is a compact subset of R+. In
particular, if t0 6∈ S then there exists τ0 > 0 such that

∂{u > 0} ∩
(
(t0 − τ0, t0 + τ0)× Rn

)
is an analytic hypersurface.

A fundamental question is to estimate the size of S.
Recalling that ∂{u > 0} coincides with the free boundary for the

Stefan problem (recall Section 1.2), in [18] we prove the following result:

Theorem 3.2. Let Ω ⊂ R3 be a bounded domain, and let θ solve the
Stefan problem in R+ × Ω, with θ(t) > 0 on ∂Ω. Then

∂{θ > 0} ∩
(
(R+ \ S)× Ω

)
is analytic,

where S ⊂ R+ is a compact set satisfying

dimH(S) ≤ 1

2
.

At least to our knowledge, this is the first result on the size of the
singular times.

3.2. Generic obstacle problems. A famous conjecture by Schaeffer
on the elliptic obstacle problem states that, generically, the set of sin-
gular points in the free boundary should be empty [25]. This result has
been proved in dimension 2 by Monneau [22].
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To attack this problem, given a domain Ω ⊂ Rn, let t 7→ ft ∈ C0(∂Ω)
be a one parameter family of nonnegative functions such that ∂tft > 0
inside the set {ft > 0}. For instance one may consider ft(x) := f(x)+t
as in [22], but many other choices are possible.

Then, for any t we can consider ut the solution of the obstacle prob-
lem  ∆ut = χ{ut>0} in Ω,

ut ≥ 0 in Ω,
ut = ft on ∂Ω.

It is interesting to observe that this one-parameter family of elliptic
obstacle problems can be used to investigate the regularity of the free
boundary both in the study of injection of fluid into a finite Hele-Shaw
cell [15] and in the two dimensional annular electrochemical maching
problem [14].

Note that, since the boundary data are increasing,

ut ≥ us for t ≥ s.

For each t we define Σm,t as the m-th stratum of the singular points
for ut. Of course Theorem 2.14 applies to each ut. However, exploiting
the monotonicity with respect to t, as in the parabolic case we can
prove that the very same theorem holds with Σm,t replaced by ∪t>0Σm,t

(actually, we can prove even a finer version of that result).
To obtain this, several new difficulties arise with respect to the para-

bolic case. Indeed, while on the one hand the fact that each ut solves an
elliptic problem simplifies the analysis, on the other hand much more
work is needed to relate the behavior of different solutions ut and us
are different singular points.

As an application, define Σt := ∪n−1
m=0Σm,t. Then we can prove the

following result:

Theorem 3.3. Let ut be as before. Then, for a.e. t, the singular set
Σt satisfies

dimH(Σt) ≤ n− 4.

In particular, for n ≤ 3 we have Σt = ∅ for a.e. t.

Notice that, by the discussion above, this result implies the validity
of Schaeffer’s conjecture in dimension n ≤ 3.

Actually, as in the case of Theorem 3.2, for n = 2, 3 we can give an
estimate on the Hausdorff dimension of the set of singular times: if we
define

S := {t > 0 : Σt 6= ∅},
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then

dimH(S) ≤ 1/4 for n = 2, dimH(S) ≤ 1/2 for n = 3.

Recalling the connection for n = 2 to the Hele-Shaw flow [15] and the
electrochemical maching problem [14] discussed above, we deduce that
in these problems the free boundary is smooth outside a closed set of
singular times of dimension at most 1/4.

References

[1] I. Athanasopoulos, L. Caffarelli, Optimal regularity of lower dimensional ob-
stacle problems. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov.
(POMI) 310 (2004), Kraev. Zadachi Mat. Fiz. i Smezh. Vopr. Teor. Funkts. 35
[34], 49–66, 226; translation in J. Math. Sci. (N. Y.) 132 (2006), no. 3, 274–284.

[2] I. Athanasopoulos, L. Caffarelli, S. Salsa, The structure of the free boundary for
lower dimensional obstacle problems, Amer. J. Math. 130 (2008) 485–498.

[3] A. Blanchet, On the singular set of the parabolic obstacle problem, J. Differential
Equations 231 (2006), no. 2, 656–672.

[4] A. Blanchet, J. Dolbeault, R. Monneau, On the continuity of the time derivative
of the solution to the parabolic obstacle problem with variable coefficients, J.
Math. Pures Appl. (9) 85 (2006), no. 3, 371–414.
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