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1. INTRODUCTION

The Brunn-Miknowski inequality gives a lower bound on the Lebesgue measure of a sumset
in terms of the measures of the individual sets. This classical inequality in convex geometry
was inspired by issues around the isoperimetric problem and was considered for a long time to
belong to geometry, where its significance is widely recognized. However, it is by now clear that
the Brunn-Miknowski inequality has also applications in analysis, statistics, informations theory,
etc. (we refer the reader to [29] for an extended exposition on the Brunn-Minkowski inequality
and its relation to several other famous inequalities).

To focus more on the analytic side, we recall that Brunn-Minkowski (BM) is intimately con-
nected to several other famous inequalities such as the isoperimetric (Isop) inequality, Sobolev
(Sob) inequalities, and Gagliardo-Nirenberg (GN) inequalities. In particular, it is well-known
that the following chain of implications holds, although in general one cannot obtain one inequal-
ity from the other with sharp constants (see for instance [20] for a more detailed discussion):

(BM) = (Isop) = (Sob) = (GN).

The issue of the sharpness of a constant, as well as the characterization of minimizers, is a classical
and important question which is by now well understood (at least for the class of inequalities we
are considering). More recently, a lot of attention has been given to the stability issue:

Suppose that a function almost attains the equality in one of the previous inequalities. Can we
prove, if possible in some quantitative way, that such a function is close (in some suitable sense)
to one of the minimizers?

In the latest years several results have been obtained in this direction, showing stability for
isoperimetric inequalities |28, 23, 12, 17, 13|, the Brunn-Minkowski inequality on convex sets
[24], Sobolev [11, 25, 15| and Gagliardo-Nirenberg inequalities [3, 15]. We notice that, apart
from their own interest, this kind of results have applications in the study of geometric problems
(see for instance |21, 22, 9]) and can be used to obtain quantitative rates of convergence for
diffusion equations (see for instance [3]).

Very recently, some quantitative stability results have been proved also for the Brunn-Minkowski
inequality on general Borel sets [24, 18, 19]. The study of this problem involves an interplay be-
tween linear structure, analysis, and affine-invariant geometry of Euclidean spaces.

2. SETTING AND STATEMENT OF THE RESULTS

Given two sets A, B C R", and ¢ > 0, we define the set sum and scalar multiple by

A+B:={a+b:ac A be B}, cA:={ca:ac A} (2.1)
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Let |E| denote the Lebesgue measure of a set E (if E is not measurable, |E| denotes the outer
Lebesgue measure of E). The Brunn-Minkowski inequality states that, given A, B C R" mea-
surable sets,

|A+ B|V"™ > |A]Y™ + |B|Y/™. (2.2)
In addition, if |A|,|B| > 0, then equality holds if and only if there exist a convex set K C R",
A1, A1 > 0, and vy, v9 € R, such that

MA+v1 CK, MB+4wvy CK, |IC\()\1A+U1)|:|’C\()\23+U2)’:0-

Our aim is to investigate the stability of such a statement.

When n = 1, the following sharp stability result holds as a consequence of classical theorems
in additive combinatorics (an elementary proof of this result can be given using Kemperman’s
theorem [7, 8|):

Theorem 2.1. Let A, B C R be measurable sets. If |A+ B| < |A| + |B| + § for some § <
min{|A|, |B|}, then there exist two intervals I, J C R such that A C I, B C J, [I\ A] <4, and
|J\ Bl <9.

Concerning the higher dimensional case, in [5, 6] M. Christ proved a qualitative stability result
for (2.2), namely, if |A+ B|'/™ — (|A\1/" + \B|1/") =:§ < 1 then A and B are close to homothetic
convex sets. Since his result relies on compactness, it does not yield any explicit information
about the dependence on the parameter §.

On the quantitative side, in [23, 24| the author together with F. Maggi and A. Pratelli obtained
a sharp stability result for the Brunn-Minkowski inequality on convex sets. After dilating A and
B appropriately, we can assume |A| = |B| = 1 while replacing the sum A + B by a convex
combination S :=tA + (1 —t)B. It follows by (2.2) that |S| = 1+ § for some § > 0.

In |23, 24| a sharp quantitative stability result is proved when A and B are both convex.

Theorem 2.2. There is a computable dimensional constant Cy(n) such that if A, B C R" are
convex sets satisfying |A| = |B| =1, [tA+ (1 —t)B| =140 for somet € [1,1 — 7], then, up to
a translation,

|AAB| < Co(n)r—1/2n41/2

(Here and in the sequel, EAF denotes the symmetric difference between two sets F and F, that
is EAF = (E\F)U(F\E).)

The main theorem in [19] is a quantitative version of Christ’s result. Since the proof is by
induction on the dimension, it is convenient to allow the measures of |A| and |B| not to be
exactly equal, but just close in terms of . Here is the main result of that paper.

Theorem 2.3. Let n > 2, let A, B C R" be measurable sets, and define S :=tA+ (1 —t)B for
somet € [1,1—71],0 <7 <1/2. There are computable dimensional constants Ny, and computable
functions M, (7),en(T) > 0 such that if

[[A| =1 +||B| = 1|+ [|S| - 1| <4 (2.3)

—Mn(7)

for some § < e , then there exists a convex set I C R™ such that, up to a translation,

A BCcK and K\ A+ K\ B| < 7= Nngen(m)
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Ezxplicitly, we may take
23" 13" | log 73" 73"
M, = , € = .
n(T) 7_3n n(T) 23n+1 n3n ’ lOg 7_‘371
In particular, the measure of the difference between the sets A and B and their convex hull is
bounded by a power ¢, confirming a conjecture of Christ [5].

In order to understand the above statement, it will be useful to go through the conceptual
steps that led to its proof.

3. CONCEPTUAL PATH

The question we are trying to address is the following: Assume that (2.2) is almost an equality.
Is it true that both A and B are almost convex, and that actually they are close to the same
convex set?

Notice that this question has two statements in it. Indeed, we are wondering if:
- The error in the Brunn-Minkowski inequality controls how far A and B are from their convex
hulls (Convexity).
- The error in the Brunn-Minkowski inequality controls the difference between the shapes of A
and B (Homothety) .

We will proceed by steps as follows: in Section 3.1 we will focus only on the (Homothety)
issue. More precisely, we assume that A and B are already convex and we prove that, if equality
almost holds in (2.2), then A and B have almost the same shape. Then, in Section 3.2 we will
focus on the (Convexity) issue in the simpler case A = B, and we shall prove that A is close
to its convex hull. Finally, in Section 3.3 we will deal with the general case.

3.1. Stability on convex sets. Let A, B be bounded convex set with 0 < A < |A],|B| < A,
and set
1/n |A|1/n+|B|1/n

B

It follows from (2.2) that 6(A, B) > 0, and we would like to show that §(A, B) controls some
kind of “distance” between the shape of A and the one of B.
In order to compare A and B, we first want them to have the same volume. Hence, we

5(A,B) = ‘A;B

. . . 1/n
renormalize A so that it has the same measure of B: if v := ‘\fﬂ'ﬁ then
[vA[ = |B|.
We then define a “distance”! between A and B as follows:

d(A, B) = m]iRn |BA(z +~vA)|.
TzeR™

INotice that d is not properly a distance since it is not symmetric. Still, it is a natural geometric quantity which
measures, up to translations, the L'-closeness between vA and B: indeed, observe that an equivalent formulation
for d is

d(A, B) = ;2]%2 113 = LatyallLin).-
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The following result has been obtained in [23, Section 4] (see also [24]):

Theorem 3.1. Let A, B be bounded convex set with 0 < X\ < |A],|B| < A. There exists C =
C(n, \,A) such that
d(A,B) < C (A, B)'/2.
As observed in [23, Section 4| the exponent 1/2 is optimal and the constant C' is explicit.
The proof of this theorem is obtained by carefully inspecting the proof of Brunn-Minkowski via
optimal transport given in [30]. We refer the reader to |20, Section 3] for an idea of the proof.

3.2. Stability when A = B. As explained for instance at the beginning of [20, Section 4|, the
proof of the quantitative stability for Brunn-Minkowski exploiting optimal transportation works
only if both A and B are convex. In particular, it cannot be used to solve the (Convexity) issue
raised at the end of Section 2, and a completely new strategy is needed to address this issue.

3.2.1. The case n = 1. Already in the one dimensional case the problem is far from being trivial.
Up to rescale A we can always assume that |A| = 1. Define
01(A) :==|A+ Al —2|A]
It is easy to see that d;(A) cannot control in general |co(A) \ A|: indeed take
A:=10,1/2]U[L, L+ 1/2]
with L > 1. Then
A+A=[0,1)U[L,L+1]U[2L,2L + 1],
which implies that 0;(A) = 1(= |A|) while |[co(A) \ A| = L — 1/2 is arbitrarily large. Luckily, as
shown by the following theorem, this is essentially the only thing that can go wrong.
Theorem 3.2. Let A C R be a measurable set with |A| = 1, and denote by co(A) its convex hull.
If 61(A) <1 then
[co(A) \ A < 61(A).

This theorem can be obtained as a corollary of a result of G. Freiman [26] about the structure

of additive subsets of Z. (See |27] or |31, Theorem 5.11] for a statement and a proof.) However,

it turns out that to prove of Theorem 3.2 one only needs weaker results, and a simple proof of
the above theorem is given in [18, Section 2| (see also [20, Section 4.1]).

3.2.2. The case n > 2. Let us define the deficit of A as
_Basa] a4
' |Al |24]

As mentioned above, one can obtain a precise stability result in one dimension by translating
it into a problem on Z. The main result in [18] is a quantitative stability result in arbitrary
dimension, showing that a power of §(A) dominates the measure of the difference between A and

its convex hull co(A). The proof is done by induction on the dimension, combining several tools
from analysis, measure theory, and affine-invariant geometry.

6(A) 1.

Theorem 3.3. Let n > 2. There exist computable dimensional constants 6y, c, > 0 such that if
A C R"™ is a measurable set of positive measure with §(A) < 6y, then

o |co(A) \ A 1
n > = .
oA 2 en 4] " 816" 2nl(n — 1)!
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3.3. Stability when A # B. As already mentioned in Section 2, when n = 1 a sharp stability
result holds as a consequence of classical theorems in additive combinatorics.

As in the case A = B and t = 1/2 (see Theorem 3.3), the proof of Theorem 2.3 uses the one
dimensional result from Theorem 2.1 together with an inductive argument. We want however to
point out that, with respect to the one of Theorem 3.3, the proof of Theorem 2.3 is much more
elaborate: it combines the techniques of M. Christ in [5, 6] with those developed in [18], as well
as several new ideas (see [20, Section 5| for a sketch of the proof).

4. CONCLUDING REMARKS

Although the stability results stated in this note look very much the same (in terms of the
statements we want to prove), their proofs involve substantially different methods: Theorem 3.1
relies on optimal transportation techniques, Theorem 3.2 is based on additive combinatorics’
arguments, and Theorems 3.3 and 2.3 involve an interplay between measure theory, analysis,
and affine-invariant geometry.

We notice the our statements still leave space for improvements: for instance, the exponents
ay, and B, (7) depend on the dimension, and it looks very plausible to us that they are both
non-sharp. An important question in this direction would be to improve our exponents and,
if possible, understand what the sharp exponents should be. Notice that this is not a merely
academic question, as improving exponents in stability inequalities plays an important role in
applications (see for instance [3]| and [9]).

It is our belief that this line of research will continue growing in the next years, producing
new and powerful stability results.
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