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Abstract. In this paper we study the fully nonlinear free boundary problem{
F (D2u) = 1 a.e. in B1 ∩ Ω
|D2u| ≤ K a.e. in B1 \ Ω,

where K > 0, and Ω is an unknown open set.
Our main result is the optimal regularity for solutions to this problem: namely, we prove that

W 2,n solutions are locally C1,1 inside B1. Under the extra condition that Ω ⊃ {Du 6= 0} and
a uniform thickness assumption on the coincidence set {Du = 0}, we also show local regularity
for the free boundary ∂Ω ∩B1.

1. Introduction and main result

1.1. Background. Since the seminal work of Luis A. Caffarelli [2] on the analysis of free bound-
aries in the obstacle problem, many new techniques and tools have been developed to treat similar
type of free boundary problems. The linear theory, i.e., when the operator is the Laplacian, has
been completely resolved in [7, 16] for Lipschitz right hand side f and when the equation is
satisfied outside the set where u vanishes (this correspond to the obstacle problem):

∆u = fχ{u6=0} in B1. (1.1)

Passing below the Lipschitz threshold was a challenging task, as the previous techniques were
using monotonicity formulas which failed when f ∈ Cα. The main difficulty has been to prove
the C1,1-regularity of solutions. On the other hand the regularity of the free boundary for the
Laplacian case was still feasible (even in low-regularity cases) due to the fact that after blow-up
the right hand side becomes a constant, and hence the monotonicity tool applies again. (We
refer to the above reference for more details.)

A generalization of the problem towards fully nonlinear operator F (D2u) = χ{u6=0} for the
signed-problem (i.e., u ≥ 0) was completely done by K. Lee [13] and later partial results were
obtained by Lee-Shahgholian in the case of no-sign obstacle problem [14]. Here, two challenging
problems were left: (i) C1,1-regularity of u; (ii) Classification of global solutions.

Recently, using harmonic analysis technique, Andersson-Lindgren-Shahgholian [1] could prove
a complete result for the Laplacian case, with f satisfying a Dini-condition. Actually their
argument shows that if the elliptic equation ∆v = f admits a C1,1-solution in B1, then the
corresponding free boundary problem also admits a C1,1-solution. From here, the free boundary
regularity follows as in the classical case. The heart of the matter in [1] lies in their Proposition 1
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(due to John Andersson) which is a dichotomy between the growth of the solution and the decay
of the volume of the coincidence set. Indeed, one can show that if (close to a free boundary point)
the growth of the solution is not quadratic, then the volume of the complement set Br(x0) \ Ω
decays fast enough to make the potential of this set twice differentiable at the origin. From this
fact, they can then achieve the optimal growth.

In [1] the authors strongly relied on the linearity of the equation to consider projections of the
solution onto the space of second order harmonic polynomials. Also, the linearity of the equation
plays a crucial role in several of their estimates. Here, we introduce a suitable “fully nonlinear
version” of this projection operation, and we are able to circumvent the difficulties coming from
the nonlinear structure of the problem to prove C1,1 regularity of the solution. Using this result,
we can also show C1-regularity of the free boundary under a uniform thickness assumptions
on the “coincidence set”, which proves in particular that Lipschitz free boundaries are smooth.
Nevertheless, a complete regularity of the free boundary still remains open due to lack of new
technique to classify global solutions.

1.2. Setting of the problem. Our aim here is to provide an optimal regularity result for
solutions to a very general class of free boundary problems which include both the obstacle
problem (i.e., the right hand side is given by χ{u6=0}) and the more general free boundary problems
studied in [8] (where the right hand side is of the form χ{∇u6=0}).

To include these examples in a unique general framework, we make the weakest possible
assumption on the structure of the equation: we suppose that u solves a fully nonlinear equation
inside an open set Ω, and in the complement of Ω we only assume that D2u is bounded.

Notice that, in the above mentioned problems, the first step in the regularity theory is to show
that viscosity solutions are W 2,p for any p < ∞ (this is a relatively “soft” part), and then one
wants to prove that actually solutions are C1,1.

Since the first step is already pretty well understood [10, 8, 15], here we focus on the second
one. Hence, we assume that u : B1 → R is a W 2,n function satisfying{

F (D2u) = 1 a.e. in B1 ∩ Ω
|D2u| ≤ K a.e. in B1 \ Ω,

(1.2)

where K > 0, and Ω ⊂ Rn is some unknown open set. Since D2u is bounded in the complement
of Ω, we see that F (D2u) is bounded inside the whole B1, therefore u is a so-called “strong Ln
solution” to a fully nonlinear equation with bounded right hand side [5]. We refer to [4] as a
basic reference to fully nonlinear equations and viscosity methods, and to [10, 8, 15] for several
existence results for strong solutions to free boundary type problems.

Let us observe that, if u ∈ W 2,n, then D2u = 0 a.e. inside both sets {u = 0} and {∇u = 0},
so (1.2) includes as special cases both F (D2u) = χ{u6=0} and F (D2u) = χ{∇u6=0}.

We assume that:
(H0) F (0) = 0.
(H1) F is uniformly elliptic with ellipticity constants λ0, λ1 > 0, that is

P−(Q− P ) ≤ F (Q)− F (P ) ≤P+(Q− P )

for any P,Q symmetric, where P− and P+ are the extremal Pucci operators:

P−(M) := inf
λ0 Id≤N≤λ1 Id

trace(NM), P+(M) := sup
λ0 Id≤N≤λ1 Id

trace(NM).
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(H2) F is either convex or concave.
Under assumptions (H0)-(H2) above, strong Ln solutions are also viscosity solutions [5], so

classical regularity results for fully nonlinear equations [3] show that u ∈W 2,p
loc (B1) for all p <∞.

In addition, by [6], D2u belongs to BMO.
Our primary aim here is to prove uniform optimal C1,1-regularity for u. This is a key step in

order to be able to perform an analysis of the free boundary.

Remark 1.1. In order to keep the presentation simple and to highlight the main ideas in the
proof, we decided to restrict ourselves to the “clean” case F (D2u) = 1 inside Ω. However, under
suitable regularity assumptions on F and f , we expect our arguments to work for the general
class of equations F (x, u,∇u,D2u) = f inside Ω.

1.3. Main results. Our main result in this paper concerns optimal regularity of solutions to
(1.2). In order to simplify the notation and avoid dependence of constants on ‖u‖L∞(B1), we
call a constant universal if it depends on the dimension, K, the ellipticity constants of F , and
‖u‖L∞(B1) only.

Theorem 1.2. (Interior C1,1 regularity) Let u : B1 → R be a W 2,n solution of (1.2), and
assume that F satisfies (H0)-(H2). Then there exists a universal constant C̄ > 0 such that

|D2u| ≤ C̄, in B1/2.

In order to investigate the regularity of the free boundary, we need to restrict ourselves to a
more specific situation than the one in (1.2). Indeed, as discussed in Section 3, even if we assume
that D2u = 0 outside Ω, non-degeneracy of solutions (a key ingredient to study the regularity
of the free boundary) may fail. As we will see, a sufficient condition to show non-degeneracy
of solutions is to assume that Ω ⊃ {∇u 6= 0}. Still, once non-degeneracy is proved, the lack of
strong tools (available in the Laplacian case) such as monotonicity formulas makes the regularity
of the free boundary a very challenging issue.

To state our result we need to introduce the concept of “thickness”. Set Λ := B1 \ Ω, and
for any set E let MD(E) denote the smallest possible distance between two parallel hyperplanes
containing E. Then, we define the thickness of the set Λ in Br(x) as

δr(u, x) :=
MD(Λ ∩Br(x))

r
.

We notice that δr enjoys the scaling property δ1(ur, 0) = δr(u, x), where ur(y) = u(x+ ry)/r2.
Our result provides regularity for the free boundary under a uniform thickness condition. As

a corollary of our result, we deduce that Lipschitz free boundaries are C1, and hence smooth
[11].

Theorem 1.3. (Free boundary regularity) Let u : B1 → R be a W 2,n solution of (1.2). Assume
that F is convex and satisfies (H0)-(H1), and that one of the following conditions holds:

- Ω ⊃ {∇u 6= 0} and F is of class C1;
- Ω ⊃ {u 6= 0}.

Suppose further that there exists ε > 0 such that

δr(u, z) > ε ∀ r < 1/4, z ∈ ∂Ω ∩Br(0).

Then ∂Ω ∩Br0(0) is a C1-graph, where r0 depends only on ε and the data.
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The important difference between this theorem and previous results of this form is that here
we assume thickness of Λ in a uniform neighborhood of the origin rather than at the origin only.
The reason for this fact is that this allows us to classify global solutions arising as blow-ups
around such “thick points”. Once this is done, then local regularity follows in pretty standard
way.

The paper is organized as follows: In Section 2 we prove Theorem 1.2. Then in Section 3
we investigate the non-degeneracy of solutions, and classify global solutions under a suitable
thickness assumption. In Section 4 we show directional monotonicity for local solutions, that
gives a Lipschitz regularity for the free boundary. This Lipschitz regularity can then be improved
to C1. The details of such an analysis are by-now classical and only indicated shortly in Section 5.

2. Proof of Theorem 1.2

2.1. Technical preliminaries. In this section we shall gather some technical tools that are
interesting in their own rights, and may even be applied to other problems. Throughout all the
section, we assume that F satisfies (H0)-(H2).

With no loss of generality, here we will perform all our estimates at the origin, and later on
we will apply such estimates at all points where u is twice differentiable, showing that D2u is
universally bounded at all such points. This will give a complete optimal regularity for u; see
Section 2.2.

For all r < 1/4, we define

Ar := {x : rx ∈ Br \ Ω} =
Br \ Ω

r
⊂ B1. (2.1)

We recall that, by [6, Theorem A] (see also [9, Appendix] for a simpler proof of this estimate
in the more general context of parabolic equations),

‖D2u‖BMO(B3/4) ≤ C

for some universal constant C, which implies in particular that

sup
r∈(0,1/4)

∫
−
Br(0)

|D2u(y)− (D2u)r,0|2 dy ≤ C, (D2u)r,0 :=

∫
−
Br(0)

D2u(y) dy. (2.2)

Here we first show that in (2.2) we can replace (D2u)r,0 with a matrix in F−1(1) (a direct
proof of this result is also given in [9, Appendix]).

Lemma 2.1. There exists C > 0 universal such that

min
F (P )=1

∫
−
Br(0)

|D2u(y)− P |2 dy ≤ C ∀ r ∈ (0, 1/4). (2.3)
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Proof. Set Qr := (D2u)r,0. Since F (D2u) is bounded inside B1 and F is λ1-Lipschitz (this is a
consequence of (H1)), using (2.2) we get

|F (Qr)| =

∣∣∣∣∣
∫
−
Br(0)

F
(
Qr −D2u(y) +D2u(y)

)
dy

∣∣∣∣∣
≤
∫
−
Br(0)

(∣∣F (D2u(y))
∣∣+ λ1

∣∣Qr −D2u(y)
∣∣) dy

≤ C
(

1 +

√∫
−
Br(0)

|D2u(y)− (D2u)r,0|2 dy
)
≤ C.

Thus we have proved that F (Qr) is universally bounded. By ellipticity and continuity (see (H1))
we easily deduce that there exists a universally bounded constant β ∈ R such that F (Qr+β Id) =
1. Since ∫

−
Br(0)

|D2u(y)− (Qr + β Id)|2 dy ≤ 2

∫
−
Br(0)

|D2u(y)−Qr|2 dy + 2β2,

this proves the result. �

For any r ∈ (0, 1/4), let Pr ∈ F−1(1) denote a minimizer in (2.3) (although Pr may not be
unique, we just choose one).

We first show that Pr cannot change too much on a dyadic scale:

Lemma 2.2. There exists a universal constant C0 such that

|P2r − Pr| ≤ C0 ∀ r ∈ (0, 1/8).

Proof. By the estimate∫
−
Br(0)

|D2u(y)− Pr|2 dy +

∫
−
B2r(0)

|D2u(y)− P2r|2 dy ≤ C

(see (2.3)), we obtain

|P2r − Pr|2 ≤ 2

∫
−
Br(0)

|D2u(y)− Pr|2 dy + 2

∫
−
Br(0)

|D2u(y)− P2r|2 dy

≤ 2

∫
−
Br(0)

|D2u(y)− Pr|2 dy + 2n+1

∫
−
B2r(0)

|D2u(y)− P2r|2 dy ≤ C,

which proves the result. �

The following result shows that if Pr is bounded, then (up to a linear function) so is |u|/r2

inside Br.

Lemma 2.3. Assume that u(0) = ∇u(0) = 0. Then there exists a universal constant C1 such
that

sup
Br(0)

∣∣∣∣u− 1

2
〈Pry, y〉

∣∣∣∣ ≤ C1r
2 ∀ r ∈ (0, 1/8). (2.4)

In particular
sup
Br(0)

|u| ≤ (C1 + |Pr|)r2. (2.5)
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Proof. By Lemma 2.1 we know that∥∥∥∥D2u(ry)

r2
− Pr

∥∥∥∥
L2(B1)

≤ C,

that is the function ūr(y) := u(ry)/r2 − 1
2〈Pry, y〉 satisfies∥∥D2ūr

∥∥
L2(B1)

≤ C.

By Poincaré inequality, this implies that there exists a linear function ` : Rn → R such that

‖ūr − `‖L2(B5/6) ≤ C.

Let us define û := ūr− `. Since F (Pr +D2û(y)) = F (D2u(ry)) ∈ L∞(B1) and F (Pr) = 1, by [4,
Theorem 4.8(2)] applied to the subsolutions û+ and û− of the elliptic operatorsQ 7→ F (Pr+Q)−1
and Q 7→ 1− F (Pr −Q) respectively, we obtain that

‖û‖L∞(3/4) ≤ C.

Then, by interior C1,α estimates (see for instance [4, Chapter 5.3] and [3, Theorem 2]) we deduce
that

‖û‖C1,α(B1/2) ≤ C,

so in particular (by the definition of û)

|ūr(0)− `(0)|+ |∇ūr(0)−∇`(0)| ≤ C.

Since by assumption ūr(0) = ∇ūr(0) = 0, this implies that the linear function ` is uniformly
bounded inside B1/2, hence

sup
Br/2(0)

∣∣∣∣∣u− 1
2〈Pry, y〉
r2

∣∣∣∣∣ = ‖ūr‖L∞(B1/2) ≤ ‖û‖L∞(B1/2) + ‖`‖L∞(B1/2) ≤ C. (2.6)

To prove that actually we can replace r/2 with r in the equation above (see (2.4)), we first apply
(2.6) with 2r in place of r to get

sup
Br(0)

∣∣∣∣∣u− 1
2〈P2ry, y〉
(2r)2

∣∣∣∣∣ ≤ C,
and then we conclude by Lemma 2.2. �

We now prove that if |Pr| is sufficiently large then the measure of Ar (see (2.1)) has to decay
in a geometric fashion.

Proposition 2.4. There exists M > 0 universal such that, for any r ∈ (0, 1/8), if |Pr| ≥ M
then

|Ar/2| ≤
|Ar|
2n

.

Proof. Set ur(y) := u(ry)/r2, and let

ur(y) =
1

2
〈Pry, y〉+ vr(y) + wr(y), (2.7)
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where vr is defined as the solution of{
F (Pr +D2vr)− 1 = 0 in B1,
vr = ur(y)− 1

2〈Pry, y〉 on ∂B1,
(2.8)

and by definition wr := ur − 1
2〈Pry, y〉 − vr.

Set fr := F (D2ur) ∈ L∞(B1) (recall that |D2ur| ≤ K a.e. inside Ar, see (1.2)). Notice that,
since fr = 1 outside Ar,

F (D2ur)− F (Pr +D2vr) = (fr − 1)χAr ,

so it follows by (H1) that wr solves{
P−(D2wr) ≤ (fr − 1)χAr ≤P+(D2wr) in B1,
wr = 0 on ∂B1.

(2.9)

Hence, since fr is universally bounded, we can apply the ABP estimate [4, Chapter 3] to deduce
that

sup
B1

|wr| ≤ C‖χAr‖Ln(B1(0)) = C|Ar|1/n. (2.10)

Also, since F (Pr) = 1 and vr is universally bounded on ∂B1 (see (2.4)), by Evans-Krylov’s
theorem [4, Chapter 6] applied to (2.8) we have

‖D2vr‖C0,α(B3/4(0)) ≤ C. (2.11)

This implies that wr solves the fully nonlinear equation with Hölder coefficients

G(x,D2wr) = (fr − 1)χAr in B3/4, G(x,Q) := F (Pr +D2vr(x) +Q)− 1.

Since G(x, 0) = 0, we can apply [3, Theorem 1] with p = 2n, and using (2.10) we obtain∫
B1/2(0)

|D2wr|2n ≤ C
(
‖wr‖L∞(B3/4) + ‖χAr‖L2n(B3/4(0))

)2n
≤ C |Ar| (2.12)

(recall that |Ar| ≤ |B1|).
We are now ready to conclude the proof: since |D2ur| ≤ K a.e. inside Ar (by (1.2)), recalling

(2.7) we have ∫
Ar∩B1/2(0)

|D2vr +D2wr + Pr|2n =

∫
Ar∩B1/2(0)

|D2ur|2n ≤ K2n|Ar|.

Therefore, by (2.11) and (2.12),

|Ar ∩B1/2(0)| |Pr|2n =

∫
Ar∩B1/2(0)

|Pr|2n

≤ 32n

(∫
Ar∩B1/2(0)

|D2vr|2n +

∫
Ar∩B1/2(0)

|D2wr|2n +K2n|Ar|
)

≤ 32n

(
|Ar ∩B1/2(0)| ‖D2vr‖2nL∞(B1/2(0)) +

∫
B1/2(0)

|D2wr|2n +K2n|Ar|
)

≤ C |Ar ∩B1/2(0)|+ C |Ar|.
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Hence, if |Pr| is sufficiently large we obtain

|Ar ∩B1/2(0)| |Pr|2n ≤ C|Ar| ≤
1

4n
|Pr|2n|Ar|.

Since |Ar/2| = 2n|Ar ∩B1/2(0)|, this gives the desired result. �

2.2. Proof of Theorem 1.2. Since by assumption |D2u| ≤ K a.e. outside Ω, it suffices to
prove that |D2u(x0)| ≤ C for a.e. x0 ∈ Ω̄ ∩B1/2, for some C > 0 universal.

Fix x0 ∈ Ω̄ ∩ B1/2 such that u is twice differentiable at x0, and x0 a Lebesgue point for D2u
(these properties hold at almost every point). With no loss of generality we can assume that
x0 = 0 and that u(0) = ∇u(0) = 0.

Let M > 0 as in Proposition 2.4. We distinguish two cases:
(i) lim infk→∞ |P2−k | ≤ 3M .
(ii) lim infk→0 |P2−k | ≥ 3M .

Using (2.5) and the fact that u is twice differentiable at 0, in case (i) we immediately obtain

|D2u(0)| ≤ lim inf
k→∞

sup
B

2−k (0)

2|u|
2−2k

≤ 2(C1 + 3M).

In case (ii), let us define

k0 := inf
{
k ≥ 2 : |P2−j | ≥ 2M ∀ j ≥ k

}
.

By the assumption that lim infk→0 |P2−k | ≥ 3M , we see that k0 <∞. In addition, since P1/4 is
universally bounded, up to enlarge M we can assume that k0 ≥ 3.

Let us observe that, since by definition |P2−k0−1 | ≤ 2M , by Lemma 2.2 we obtain

|P2−k0 | ≤ 2M + C0. (2.13)

We now define the function ū0 := 4k
0
u(2−k0x) − 1

2〈P2−k0x, x〉. Observe that ū0 is a solution
of the fully nonlinear equation

G(D2ū0) = (f2−k0 − 1)χA
2−k0

in B1, (2.14)

where G(Q) := F (P2−k0 + Q) − 1 and f2−k0 (x) := F (D2u(2−k0x)) is universally bounded. In
addition, since |P2−k | ≥ 2M for all k ≥ k0, Proposition 2.4 gives

|A2−k0+j | ≤ 2−jn|A2−k0 | ≤ 2−jn|B1| ∀ j ≥ 0,

from which we deduce that (f2−k0 − 1)χA
2−k0

decays in Ln geometrically fast:∫
−
Br

∣∣(f2−k0 − 1)χA
2−k0

∣∣n ≤ C∫−
Br

|χA
2−k0
| ≤ Crn ∀ r ∈ (0, 1).

Hence, since G(0) = 0, we can apply [3, Theorem 3] to deduce that ū0 is C2,α at the origin, with
universal bounds. In particular this implies

|D2ū0(0)| ≤ C.

Since D2u(0) = D2ū0(0) + P2−k0 and P2−k0 is universally bounded (see (2.13)), this concludes
the proof.
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3. Non-degeneracy and global solutions

3.1. Local non-degeneracy. Non-degeneracy is a corner-stone for proving smoothness of the
free boundary. This property says that the function grows quadratically (and not slower) away
from the free boundary points, that is, supBr(x0) |u − u(x0) − (x − x0) · ∇u(x0)| & r2 for any
x0 ∈ Ω. However, while in the case ∆u = χ{u6=0} or ∆u = χ{∇u6=0} non-degeneracy is known to
hold true, in the case ∆u = χ{D2u6=0} non-degeneracy may fail.

To see this, one can consider the one dimensional problem u′′ = χ{u′′ 6=0}. Every solution is
obtained by linear functions and quadratic polynomial glued together in a C1,1 way. In particular,
if {Ij}j inN is a countable family of disjoint intervals, the function

u(t) :=

∫ t

0

∫ s

0
χΩ(τ) dτ ds, Ω := ∪jIj

satisfies u′′ = χΩ = χ{u′′ 6=0}, and if we choose Ij such that

|Ω ∩ (−r, r)|
2r

→ 0 as r → 0,

then it is easy to check that u(r) = o(r2) as r → 0.
A possible way to rule out the above counterexample may be to consider only points in Ω such

that Ω has a uniform density inside Br(x0). We will not investigate this direction here. Instead,
we show that non-degeneracy holds under the additional assumption that Ω ⊃ {∇u 6= 0} (which
is sufficient to include into our analysis the cases F (D2u) = χ{u6=0} and F (D2u) = χ{∇u6=0}).

Lemma 3.1. Let u : B1 → R be a W 2,n solution of (1.2), assume that F satisfies (H0)-(H2),
and that Ω ⊃ {∇u 6= 0}. Then, for any x0 ∈ Ω ∩B1/2,

max
∂Br(x0)

u ≥ u(x0) +
r2

2nλ1
∀ r ∈ (0, 1/4).

Proof. By approximation, it suffices to prove the estimate for x0 ∈ Ω. In addition, since D2u = 0
a.e. inside the set {∇u = 0}, F (D2u) = 1 in Ω ∩ B1, and F (0) = 0 (by (H0)), we see that
{∇u = 0} has measure zero inside Ω∩B1. This implies that the set Ω∩ {∇u 6= 0} ∩B1 is dense
inside Ω ∩B1, and so we only need to prove the result when x0 ∈ Ω ∩ {∇u 6= 0} ∩B1.

Let us define the C1,1 function (recall that u ∈ C1,1 because of Theorem 1.2)

v(x) := u(x)− |x− x
0|2

2nλ1
.

By (H1) we see that

F (D2v) = F
(
D2u− Id /(nλ1)

)
≥ F (D2u)−P+

(
Id /(nλ1)

)
≥ 0 in Ω ∩B1. (3.1)

We claim that
max
∂Br(x0)

v = sup
Br(x0)

v. (3.2)

Indeed, if there exists an interior maximum point y ∈ Br(x0), then

0 = ∇v(y) = ∇u(y)− y − x0

nλ1
. (3.3)
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Since by assumption x0 ∈ {∇u 6= 0} we have ∇u(x0) 6= 0, so by (3.3) y 6= x0. In particular
∇u(y) = y−x0

nλ1
6= 0, and thus y ∈ Ω. Recalling that v is a subsolution for F inside Ω ∩ B1 (see

(H0) and (3.1)), by the strong maximum principle v is constant in a neighborhood of y. Thus,
the set of maxima of v is both relatively open and closed in Br(x0), which implies that v is
constant there and (3.2) is trivially satisfied.

Thanks to the claim we obtain

max
∂Br(x0)

u− r2

2nλ1
= max

∂Br(x0)
v ≥ v(x0) = u(x0),

which proves the result. �

3.2. Classification of global solutions. Now that non-degeneracy is proven, we can start
considering blow-up solutions and try to classify them. We shall treat the case Ω ⊃ {∇u 6= 0}.
Our results would work also for the case Ω ⊃ {D2u 6= 0} if the assumptions are strengthened in
a way that solutions stay stable/invariant in a blow-up regime.

Since we will use the thickness to measure sets, we need some facts about its stability proper-
ties: Let us first recall the definition for δr(u, x):

δr(u, x) :=
MD(Λ ∩Br(x))

r
, Λ := B1 \ Ω.

We remark that, for polynomial global solutions P2 =
∑
aj x

2
j (with aj such that F (D2P2) = 1),

one has
δr(P2, 0) = 0. (3.4)

Indeed, the zeros of the gradient of a second degree homogeneous polynomial P2 always lie on a
hyperplane.

The next observation is the stability of δr(u, x) under scaling: more precisely, if x ∈ ∂Ω ∩B1

and we rescale u as ur(y) := u(x+ry)−u(x)
r2

(notice that ∇u(x) = 0 for all x ∈ ∂Ω), then

δr(u, x) = δ1(ur, 0) (3.5)

which along with the fact that lim supr→0 Λ(ur) ⊂ Λ(u0) whenever ur converges to some function
u0 (see [15, Proposition 3.17 (iv)]) gives

lim sup
r→0

δr(u, x
0) ≤ δ1(u0, 0). (3.6)

Since any limit of ur will be a global solution of (1.2) (i.e., it solves (1.2) in the whole Rn), we
are interested in classifying global solutions.

In the next proposition we classify global solution with a “thick free boundary”.

Proposition 3.2. Let u : Rn → R be a W 2,n solution of (1.2) inside Rn, assume that F is
convex and satisfies (H0)-(H1), and that Ω ⊃ {∇u 6= 0}. Assume that there exists ε0 > 0 such
that

δr(u, x
0) ≥ ε0 ∀ r > 0, ∀x0 ∈ ∂Ω. (3.7)

Then u is a half-space solution, i.e., up to a rotation, u(x) = γ[(x1)+]2/2 + c, where γ ∈
(1/λ1, 1/λ0) is such that F (γe1 ⊗ e1) = 1 and c ∈ R.
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Proof. We first prove that u is convex. Suppose by contradiction that u is not, and set

m := inf
z∈Ω, e∈Sn−1

∂eeu(z) < 0.

Observe that, thanks to Theorem 1.2, u is globally C1,1 in Rn, so m is finite.
Let us consider sequences yj ∈ Ω and ej ∈ Sn−1 such that

∂ejeju(yj)→ m as j →∞.

Rescale u at yj with respect to dj := dist(yj , ∂Ω), i.e.,

uj(x) :=
u(djx+ yj)− u(yj)− dj∇u(yj) · x

d2
j

.

Notice that, since ∇u = 0 on ∂Ω, ∇uj = `j on ∂Ωj , where Ωj := (Ω − yj)/dj and `j :=
−∇u(yj)/dj ∈ Rn.

Since |`j | ≤ C (by the C1,1 regularity of u), up to a subsequence `j → `∞. Also, up to rotate
the system of coordinates, we can assume that (again up to subsequences) ej → e1. Then the
functions uj still satisfy (1.2) and they converge to another global solution u∞ which satisfies
∂11u∞(0) = −m. Let us observe that, by convexity of F , ∂11u∞ is a supersolution of the linear
operator Fij(D2u∞)∂ij . Hence, since ∂11u∞(z) ≥ −m inside B1(0), by the strong maximum
principle we deduce that ∂11u∞ ≡ −m inside the connected component containing B1(0) (call it
Ω∞).

Notice that, up replace u∞(x) with u∞(x)− `∞ ·x, we can assume that ∇u∞(x) = 0 on ∂Ω∞.
Also, since ∂eeu∞(z) ≥ −m inside B1(0) for any e ∈ Sn−1, it follows that e1 is an eigenvector
of D2u at every point (which corresponds to the smallest eigenvalue). In particular this implies
that ∂1ju∞ = 0 for any j = 2, . . . , n inside Ω∞. Hence, integrating u∞ in the direction e1 gives

u∞(x) = P (x) inside Ω∞, (3.8)

where
P (x) := −mx2

1/2 + ax1 + b(x′), x′ = (x2, . . . , xn).

We now observe that the set where ∂1P vanishes corresponds to the hyperplane {x1 = a/m}.
Hence, since ∇u∞ = 0 (hence in particular ∂1u∞ = 0) on ∂Ω∞ we deduce that ∂Ω∞ ⊂ {x1 =
a/m}. We now distinguish two cases:

- If ∂Ω∞ 6= {x1 = a/m} then the set Ω∞ contains Rn \ {x1 = a/m} (since ∂1u∞ cannot
vanish anywhere else), and so F (D2u∞) = 1 a.e. in Rn. Then we apply Evans-Krylov’s
Theorem [4, Chapter 6] to u∞(Ry)/R2 inside B1 (notice that these functions are uni-
formly bounded inside B1 thanks to the global C1,1 regularity) to deduce that

sup
x,z∈BR

|D2u∞(x)−D2u∞(z)|
|x− z|α

≤ C

Rα
.

Letting R→∞ we obtain that D2u∞ is constant, and so u∞ is a second order polyno-
mial.

- If ∂Ω∞ = {x1 = a/m}, since ∇u∞ = 0 on ∂Ω∞ we get that ∇x′P = 0 on the hyperplane
{x1 = a/m}. Hence b is constant and so

u∞ = −mx2
1/2 + ax1 + b inside {x1 > a/m},
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which contradicts (H0) and (H1) (because F (D2u∞) = 1 while D2u∞ = −mId is nega-
tive definite).

In conclusion we have proved that if u is not convex, then u∞ is a second order polynomial.
Invoking the thickness assumption (3.7) and the stability properties (3.5)-(3.6) along with (3.4)
(notice that the stability properties, although stated in a slightly different context, still hold
in this situation), we conclude that u∞ cannot be a second degree polynomial, and thus a
contradiction.

Hence, we have proved that u is convex, which implies that {∇u = 0} is a convex set (since
for a convex function any critical point is a minimum, and the set of minima is convex). Recall
that, since F (D2u) = 1 in Ω, we have |Ω \ {∇u 6= 0}| = 0, and by convexity of {∇u = 0} and
the thickness assumption it is easy to see that Ω = {∇u 6= 0} (notice that, since u ∈ C1,1, the
set {∇u 6= 0} is open).

We now show that the set Λ(u) = {∇u = 0} is a half-space. For simplicity we may assume the
origin is on the free boundary. Consider a blow-down u∞ obtained as a limit (up to a subsequence)
of u(Ry)/R2 as R→∞. It is not hard to realize that Λ(u∞) = {x ∈ Λ(u) : tx ∈ Λ(u) ∀ t > 0}.
In other words, the coincidence set for the blow-down is convex, and coincides with the largest
cone (with vertex at the origin) in the coincidence set of the function u. Assume by contradiction
that Λ(u∞) is not a half-space. Then, in some suitable system of coordinates,

Λ(u∞) ⊂ Cθ0 :=
{
x ∈ Rn : x = (ρ cos θ, ρ sin θ, x3, . . . , xn), θ0 ≤ |θ| ≤ π

}
for some θ0 > π/2. Hence, if we choose θ1 ∈ (π/2, θ0) and set α := π/θ1, then it is easy to check
that, for β > 0 sufficiently large (the largeness depending only on θ1 and the ellipticity constants
of F ), the function

v = rα
(
e−β sin(αθ) − e−β

)
is a positive subsolution for the linear operator Fij(D2u)∂ij inside Rn \ C1 (see for instance [13]),
and it vanishes on ∂Cθ1 . Hence, because ∂1u∞ > 0 inside Rn \ Cθ0 (by convexity of u∞) and
θ0 > θ1, by the comparison principle we deduce that

v ≤ ∂1u∞.

However, since α < 1, this contradicts the Lipschitz regularity of ∂1u∞ at the origin.
So Λ(u∞) is a half space, and since Λ(u∞) ⊂ Λ(u) and the latter set is convex, we deduce

that Λ(u) is a half-space as well.
Finally, to conclude the proof, we apply Krylov’s boundary C2,α estimates [12] (see also the

recent results in [17]) inside the half-ball B1\Λ(u) to the uniformly bounded functions u(Ry)/R2

to get

sup
x,z∈BR\Λ(u)

|D2u(x)−D2u(z)|
|x− z|α

≤ C

Rα
.

Letting R → ∞ we obtain that D2u is constant, and so u is a second order polynomial inside
the half-space Rn \ Λ(u). Since ∇u = 0 on the hyperplane ∂Λ(u), it is immediate to check that
u has to be a half-space solution. �

4. Local solutions and directional monotonicity

In this section we shall prove a directional monotonicity for solutions to our equations. In
the next section we will use Lemmas 4.1 and 4.2 below to show that, if u is close enough to a
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half-space solution γ[(x1)+]2 in a ball Br, then for any e ∈ Sn−1 with e · e1 ≥ s > 0 we have
C0∂eu− u ≥ 0 inside Br/2.

4.1. The case Ω ⊃ {u 6= 0}.

Lemma 4.1. Let u : B1 → R be a W 2,n solution of (1.2) with Ω ⊃ {u 6= 0}. Assume that
C0∂eu−u ≥ −ε0 in B1 for some C0, ε0 ≥ 0, and that F is convex and satisfies (H0)-(H1). Then
C0∂eu− u ≥ 0 in B1/2 provided ε0 ≤ 1/(8nλ1).

Proof. Since F is convex, for any matrix M we can choose an element PM inside ∂F (M) (the
subdifferential of F at M) in such a way that the map M 7→ PM is measurable. Then, since
that u ∈ C2,α

loc (Ω) (by Evans-Krylov’s Theorem [4, Chapter 6]), we can define the measurable
uniformly elliptic coefficients

aij(x) := (PD
2u(x))ij ∈ ∂F (D2u(x)).

We now notice two useful facts: first of all, since aij ∈ ∂F (D2u), by convexity of F we deduce
that, for any x ∈ Ω and h > 0 small such that x+ he ∈ Ω,

aij(x)
∂iju(x+ he)− ∂iju(x)

h
≤ F (D2u(x+ he))− F (D2u(x))

h
= 0,

so, by letting h→ 0,

aij∂ij∂eu ≤ 0 in Ω. (4.1)

Also, again by the convexity of F and recalling that F (0) = 0, we have

aij∂iju ≥ F (D2u)− F (0) = 1 in Ω. (4.2)

Now, let us assume by contradiction that there exists y0 ∈ B1/2 such that C0∂eu(y0)−u(y0) < 0,
and consider the function

w(x) := C0∂eu(x)− u(x) +
|x− y0|2

2nλ1
.

Thanks to (4.1), (4.2), and assumption (H1) (which implies that λ0 Id ≤ aij ≤ λ1 Id) we deduce
that w is a supersolution of the linear operator L := aij∂ij . Hence, by the maximum principle,

min
∂(Ω∩B1)

w = min
Ω∩B1

w ≤ w(y0) < 0,

where the first inequality follows from the fact that y0 ∈ Ω∩B1/2 (since u = ∇u = 0 outside Ω).
Since w ≥ 0 on ∂Ω and |x− y0|2 ≥ 1/4 on ∂B1, it follows that

0 > min
∂B1

w ≥ −ε0 +
1

8nλ1
,

a contradiction if ε0 < 1/(8nλ1). �
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4.2. The case Ω ⊃ {∇u 6= 0}.

Lemma 4.2. Let u : B1 → R be a W 2,n solution of (1.2) with Ω ⊃ {∇u 6= 0}. Assume that
C0∂eu− |∇u|2 ≥ −ε0 in B1 for some C0, ε0 ≥ 0, and that F is convex, of class C1, and satisfies
(H0)-(H1). Then C0∂eu− |∇u|2 ≥ 0 in B1/2 provided ε0 ≤ λ0/(4n

2λ3
1).

Proof. By differentiating the equation F (D2u) = 1 inside Ω, we deduce that

Fij(D
2u)∂ij∇u = 0. (4.3)

We now observe that, since Fij ∈ C0 (because F ∈ C1) and D2u ∈ C2,α
loc (Ω) (by Evans-Krylov’s

Theorem [4, Chapter 6]), ∇u solves a linear elliptic equation with continuous coefficients, so by
standard elliptic theory ∇u ∈ W 2,p

loc (Ω) for any p <∞. Hence, we can apply the linear operator
Fij(D

2u)∂ij to the W 2,p
loc function |∇u|2, and using (4.3) we obtain

Fij(D
2u)∂ij |∇u|2 = 2

(
Fij(D

2u)∂ij∂ku
)
· ∂ku+ 2Fij(D

2u)∂iju∂iku

= 2Fij(D
2u)∂iju∂iku.

Now, if for every point x ∈ Ω we choose a system of coordinates so that D2u is diagonal, since
Fii(D

2u) ≥ λ0 for all i = 1, . . . , n (by (H1)) we obtain

Fij(D
2u(x))∂ij |∇u|2(x) = 2Fii(D

2u(x)) (Diiu(x))2 ≥ 2λ0|D2u(x)|2,

where |D2u(x)| :=
√∑

ij (Diju(x))2 =
√∑

i (Diiu(x))2 (since D2u(x) is diagonal). Using (H1)
again, we also have

1 = F (D2u)− F (0) ≤
√
nλ1|D2u| inside Ω,

so by combining the two estimates above we get

Fij(D
2u))∂ij |∇u|2 ≥ 2λ0/(nλ

2
1). (4.4)

Thanks to (4.3) and (4.4), we conclude exactly as before considering now the function

w(x) := C0∂eu(x)− |∇u|2(x) +
λ0|x− y0|2

n2λ3
1

.

�

5. Proof of Theorem 1.3

As already mentioned in the introduction, once we know that blow-up solutions around “thick
points” are half-space solutions (Proposition 3.2) and we can improve almost directional mono-
tonicity to full directional monotonicity (Lemmas 4.1 and 4.2), then the proof of Theorem 1.3
becomes standard. For convenience of the reader, we briefly sketch it here.

We consider only the case when Ω ⊃ {u 6= 0} (the other being analogous).
Take x ∈ ∂Ω ∩ B1/8, and rescale the solution around x, that is, consider ur(y) := [u(x +

ry) − u(x)]/r2. Because of the uniform C1,1 estimate provided by Theorem 1.2, we can find a
sequence rj → 0 such that urj converges locally in C1 to a global solution u0 satisfying u0(0) = 0.
Moreover, by our thickness assumption on the free boundary of u and (3.6), it follows that the
minimal diameter property holds for all r > 0 and all points on the free boundary ∂Ω(u0). Then,
by Proposition 3.2 we deduce that u0 is of the form u0(y) = γ[(y · ex)+]2/2 with γ ∈ [1/λ1, 1/λ0]
and ex ∈ Sn−1.
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Notice now that, for any s ∈ (0, 1), we can find a large constant Cs such that

Cs∂eu0 − u0 ≥ 0 inside B1

for all directions e ∈ Sn−1 such that e · ex ≥ s. Since urj → u0 in C1
loc, we deduce that, for

j sufficiently large (the largeness depending on s), the assumptions of Lemma 4.1 are satisfied
with u = ũrj . Hence

Cs∂eurj − urj ≥ 0 in B1/2, (5.1)

and since urj (0) = 0 a simple ODE argument shows that urj ≥ 0 in B1/4 (see the proof of [15,
Lemmas 4.4 and 4.5]).

Using (5.1) again, this implies that ∂eurj ≥ 0 inside B1/4, and so in terms of u we deduce that
there exists r = r(s) > 0 such that

∂eu ≥ 0 inside Br(x)

for all e ∈ Sn−1 such that e · ex ≥ s.
A simple compactness argument shows that r is independent of the point x, which implies that

the free boundary is s-Lipschitz. Since s can be taken arbitrarily small (provided one reduces
the size of r), this actually proves that the free boundary is C1 (compare for instance with [15,
Theorem 4.10]). Higher regularity follows from the classical work of Kinderlehrer-Nirenberg [11].
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