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Abstract. In this paper we consider the fully nonlinear parabolic free boundary problem
{

F (D2u)− ∂tu = 1 a.e. in Q1 ∩ Ω
|D2u|+ |∂tu| ≤ K a.e. in Q1 \ Ω,

where K > 0 is a positive constant, and Ω is an (unknown) open set.
Our main result is the optimal regularity for solutions to this problem: namely, we prove

that W 2,n
x ∩W

1,n
t solutions are locally C1,1

x ∩C
0,1
t inside Q1. A key starting point for this result

is a new BMO-type estimate which extends to the parabolic setting the main result in [4].
Once optimal regularity for u is obtained, we also show regularity for the free boundary

∂Ω ∩ Q1 under the extra condition that Ω ⊃ {u 6= 0}, and a uniform thickness assumption on
the coincidence set {u = 0},

1. Introduction and main result

1.1. Background. This paper is the parabolic counterpart of our earlier work [10] on fully
nonlinear elliptic free boundary problems of obstacle type. The problem at hand concerns very
generalized version of free boundary problems that have been in focus in the last two decades.

The particular application, in the linear theory, is related to “inverse Cauchy-Kowalevskya
theory”. This amounts to showing that if a domain Ω ⊂ R

n+1 admits a solution to the overde-
termined problem

∆u− ∂tu = 1 in Ω, u = ∇u = 0 on ∂Ω,

then both the solution and the boundary must be reasonably smooth. Notice that, by Cauchy-
Kowalevskaya theory, it is well-known that for smooth enough boundaries there is a solution to
the above problem in a neighborhood of ∂Ω, hence the question asked here is the converse.

In this paper we shall consider a much more general version of this question, allowing fully-
nonlinear parabolic equations of the type H(u) := F (D2u) − ∂tu, as well as a more general
equation, see (1.1) below.

1.2. Setting of the problem. We will use Qr(X) := Br(x)× (t− r, t) ⊂ R
n ×R to denote the

parabolic ball of radius r centered at a point X = (x, t) ∈ R
n+1, and we will use the notation

Qr = Qr(0).

Our starting point will be a W 2,n
x (Q1) ∩W 1,n

t (Q1) function u : Q1 → R satisfying
{

H(u) = 1 a.e. in Q1 ∩ Ω,

|D̃2u| ≤ K a.e. in Q1 \ Ω,
(1.1)

where D̃2u = (D2
xu,Dtu) ∈ R

n2+1, H(u) := F (D2u) − ∂tu, K > 0, and Ω ⊂ R
n+1 is some

unknown open set. Since, by assumption, D̃2u is bounded in the complement of Ω, we see that
1
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H(u) is bounded inside the whole Q1 and u is a so-called “strong Ln solution” to a fully nonlinear
parabolic equation with bounded right hand side [7]. We refer to [12, 7] as basic references to
parabolic fully nonlinear equations and viscosity methods.

The above free boundary problem has a very general form and encompasses several other free
boundaries of obstacle type. In the elliptic case, it has been recently studied by the authors in
[10]. We also refer to several other articles concerning similar type of problems: for elliptic case
see [5], [1], and for parabolic case see [6], [2]. One may find applications and relevant discussions
about these kinds of problems in these articles.

Since most of the results follow the same line of arguments (sometimes with obvious modifica-
tions) as that of its elliptic counterpart done in [10], here we have decided not to enter into the
details of the proof as they can be worked out in a similar way as in the elliptic case. Instead,
we shall give the outline of the proofs and point out all the necessary changes. For the reader
unfamiliar with these techniques, we suggest first to read [10].

Going back to our problem, we observe that, if u ∈ W 2,n
x ∩W 1,n

t , then D̃2u = 0 a.e. inside
{u = 0}, and D2u = 0 a.e. inside {∇u = 0} (here and in the sequel, ∇u denotes only the
spatial gradient of u). In particular we easily deduce that (1.1) includes, as special cases, both
H(u) = χ{u 6=0} and H(u) = χ{∇u 6=0}.

We assume that:

(H0) F (0) = 0.
(H1) F is uniformly elliptic with ellipticity constants 0 < λ0 ≤ λ1 < ∞, that is,

P
−(P1 − P2) ≤ F (P1)− F (P2) ≤ P

+(P1 − P2)

for any P1, P2 symmetric, where P− and P+ are the extremal Pucci operators: given
a symmetric matrix M one defines

P
−(M) := inf

λ0 Id≤N≤λ1 Id
trace(NM), P

+(M) := sup
λ0 Id≤N≤λ1 Id

trace(NM),

where N in the formula above is symmetric as well.
(H2) F is either convex or concave.

Under assumptions (H0)-(H2) above, strong Ln solutions are also viscosity solutions [5], and

hence regularity results for parabolic fully nonlinear equations [12, 13] show that u ∈ W 2,p
x (Qρ)∩

W 1,p
t (Qρ) for all ρ ∈ (0, 1) and p < ∞.

Our first result concern the optimal C1,1
x ∩ C0,1

t -regularity for u. Once this will be done, we
will be able to study the regularity of the free boundary.

1.3. Main results. Our first result concerns the optimal regularity of solutions to (1.1):

Theorem 1.1. (Interior C1,1
x ∩C0,1

t regularity) Let u : Q1 → R be a W 2,n
x ∩W 1,n

t solution of (1.1),
and assume that F satisfies (H0)-(H2). Then there exists a constant C̄ = C̄(n, λ0, λ1, ‖u‖∞) > 0
such that

|D̃2u| ≤ C̄, in Q1/2.

To state our result on the regularity of the free boundary, we need to introduce the concept of
minimal diameter: for any set E ⊂ R

n let MD(E) denote the smallest possible distance between
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two parallel hyperplanes containing E. Then, given a point X0 = (x0, t0) ∈ R
n+1, we define

δr(u,X
0) := inf

t∈[t0−r2,t0+r2]

MD
(

Λ ∩
(

Br(x
0)× {t}

))

r
, Λ := Q1 \ Ω. (1.2)

In other words, δr(u,X
0) measures the thickness of the complement of Ω at all time levels

t ∈ (t0 − r2, t0 + r2), around the point x0. Notice that δr depends on u since Ω does. In
particular, we observe that if u solves (1.1) for some set Ω, then ur(y, τ) := u(x+ ry, t+ r2τ)/r2

solves (1.1) with

Ωr := {(y, τ) : (x+ ry, t+ r2τ) ∈ Ω}

in place of Ω, and δr enjoys the scaling property δ1(ur, 0) = δr(u,X), X = (x, t).
Our result provides regularity for the free boundary under a uniform thickness condition. As

a corollary of our result, we deduce that Lipschitz free boundaries are C1, and hence smooth [8].

Theorem 1.2. (Free boundary regularity) Let u : Q1 → R be a W 2,n
x ∩W 1,n

t solution of (1.1).
Assume that F is convex and satisfies (H0)-(H1), and that Ω ⊃ {u 6= 0}. Suppose further that
there exists ε > 0 such that

δr(u, z) > ε ∀ r < 1/4, ∀ z ∈ ∂Ω ∩Qr(0).

Then ∂Ω ∩Qr0(0) is a C1-graph in space-time, where r0 depends only on ε and the data.

The paper is organized as follows:
In Section 2 we prove Theorem 1.1. Then in Section 3 we investigate the non-degeneracy of

solutions, and classify global solutions under a suitable thickness assumption. In Section 4 we
show directional monotonicity for local solutions which gives Lipschitz (and then C1) regularity
for the free boundary, as shown in Section 5.

Acknowledgements: We thank Guido De Philippis for useful discussions concerning the proof
of Lemma 6.2. A. Figalli was partially supported by NSF grant DMS-1262411.

2. Proof of Theorem 1.1

The proof of this theorem follows the same line of ideas as its elliptic counterpart [10]. First
one starts from a BMO-type estimate on D2u, and then one shows a dichotomy that either u
has quadratic growth away from a free boundary point X0, or the density of the set Λ at X0

vanishes fast enough to assure the quadratic bound.
In [10] the following result was a consequence of the BMO-type estimate proved in [4, Theorem

A] (see [10, Lemma 2.3]). Since we could not find a reference for this estimate in the parabolic
case, we prove this result in the appendix. We notice that our proof is much simpler than the
one in [4] and actually gives a new proof of the results there (see Remark 6.3).

In all this section, u is as in the statement of Theorem 1.1. With no loss of generality, we will
carry out the proof at the origin, by letting X0 = (0, 0).

We say that P is a “parabolic (second order) polynomial” if it is of the form

P (x, t) = a0 + 〈b0, x〉+ 〈M0x, x〉+ c0t, a0, c0 ∈ R, b0 ∈ R
n, M0 ∈ R

n×n.
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Lemma 2.1. There exist a constant C = C(n, λ0, λ1, ‖u‖∞), and a family of parabolic polyno-
mials {Pr}r∈(0,1) solving H(Pr) = 0, such that

sup
Qr(0)

|u− Pr| ≤ Cr2, ∀ r ∈ (0, 1). (2.1)

Consequently
sup
Qr(0)

|u| ≤ (Cr2 + |D̃2Pr|), ∀ r ∈ (0, 1). (2.2)

The first statement in the Lemma is proven in Appendix (see (6.1) and Lemma 6.2 there),
while the second estimate is a straightforward consequence of the first one. It should be remarked
that these polynomials Pr need not to be unique.

Define
Ar :=

{

(x, t) : (rx, r2t) ∈ Qr \Ω
}

⊂ Q1 ∀ r < 1/4. (2.3)

We shall prove that if |Pr| is sufficiently large then the Lebesgue measure of Ar has to decay
geometrically.

Proposition 2.2. Let Pr be as in Lemma 2.1 and set P̃r := D̃2Pr. There exists M > 0 universal
such that, for any r ∈ (0, 1/8), if |P̃r| ≥ M then

|Ar/2| ≤
|Ar|

2n+1
.

The proof of the proposition follows the same lines of ideas as that of [10, Proposition 2.4].
However, since the changes are not completely straightforward, for the reader’s convenience we
present the proof here.

Proof. Set ur(y, t) := u(ry, r2)/r2 and let

ur(y, t) = Pr(y, t) + vr(y, t) + wr(y, t), (2.4)

where vr is defined as the solution of
{

H(Pr + vr)− 1 = 0 in Q1,
vr(y, t) = ur(y, t)− Pr(y, t) on ∂pQ1,

(2.5)

where ∂pQ1 denotes the parabolic boundary of Q1, and by definition wr := ur − Pr − vr.

Set fr := H(ur) ∈ L∞(B1) (recall that |D̃2ur| ≤ K a.e. inside Ar). Notice that, since fr = 1
outside Ar,

H(ur)−H(Pr + vr) = (fr − 1)χAr ,

so it follows by (H1) that wr solves
{

P−(D2wr)− ∂twr ≤ (fr − 1)χAr ≤ P+(D2wr)− ∂twr in Q1,
wr = 0 on ∂pQ1.

(2.6)

Hence, we can apply the ABP estimate [12, Theorem 3.14] to deduce that

sup
Q1

|wr| ≤ C‖χAr‖Ln+1(Q1) = C|Ar|
1/(n+1). (2.7)

Also, since H(Pr) = 0 and vr is universally bounded on ∂pQ1 (see (2.1) and (2.5)), by the
parabolic Evans-Krylov’s theorem [9] applied to (2.5) we have

‖D̃2vr‖C0,α(Q3/4)
≤ C. (2.8)
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This implies that wr solves the fully nonlinear equation with Hölder coefficients

G(D2wr,X)−∂twr−∂t(vr+Pr) = (fr−1)χAr in Q3/4, G(M,X) := F (D2Pr+D2vr(x)+M)−1.

Since G(0,X) = 0, we can apply [12, Theorem 5.6] with p = n+ 2 and (2.7) to obtain

∫

Q1/2

|D̃2wr|
n+2 ≤ C

(

‖wr‖L∞(Q3/4) + ‖χAr‖L2n(Q3/4)

)n+2
≤ C |Ar| (2.9)

(recall that |Ar| ≤ |Q1|).

We are now ready to conclude the proof: since |D̃2ur| ≤ K a.e. inside Ar (by (1.1)), recalling
(2.4) we have

∫

Ar∩Q1/2

|D̃2vr + D̃2wr + P̃r|
n+2 =

∫

Ar∩Q1/2

|D̃2ur|
n+2 ≤ Kn+2|Ar|.

Therefore, by (2.8) and (2.9),

|Ar ∩Q1/2| |P̃r|
n+2 =

∫

Ar∩Q1/2

|P̃r|
n+2

≤ 32n
(
∫

Ar∩Q1/2

|D̃2vr|
n+2 +

∫

Ar∩Q1/2

|D̃2wr|
n+2 +Kn+2|Ar|

)

≤ 3n+2

(

|Ar ∩Q1/2| ‖D̃
2vr‖L∞(Q1/2) +

∫

Q1/2

|D̃2wr|
n+2 +Kn+2|Ar|

)

≤ C |Ar ∩Q1/2|+ C |Ar|,

which gives

|Ar ∩Q1/2(0)| |P̃r |
n+2 ≤ C|Ar|.

Hence, if |P̃r| is sufficiently large so that C ≤ 1
4n+1 |P̃r|

n+2 we get

|Ar ∩Q1/2(0)| |P̃r |
n+2 ≤

1

4n+1
|P̃r|

n+2|Ar|.

Since |Ar/2| = 2n+1|Ar ∩Q1/2(0)|, this gives the desired result. �

2.1. Proof of Theorem 1.1. Taking M > 0 as in Proposition 2.2, we have that one of the
following hold:

(i) lim infk→∞ |P2−k | ≤ 3M ,
(ii) lim infk→∞ |P2−k | ≥ 3M .

Then, one consider the two case separately and, arguing exactly as in the proof of Theorem 1.2
in [10] one obtains the desired result. (We notice that the reference [3, Theorem 3] in that proof
is to be replaced by [13, Theorem 1.1].)
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3. Non-degeneracy and global solutions

3.1. Local non-degeneracy. The C1,1
x ∩C0,1

t -regularity proved in the previous section implies
that u cannot grow more than quadratically in space and linearly in time away from the free
boundary. Non-degeneracy means that a solution always grows exactly at such a rate, and this
property is extremely useful for proving smoothness of the free boundary, both in the elliptic
and the parabolic case.

As shown in [10, Section 3] non-degeneracy fails in general for the elliptic case, hence for our
problem as well. Nevertheless, the non-degeneracy does hold for the case Ω ⊃ {∇u 6= 0}, see [10,
Lemma 3.1]. We now show that this non-degeneracy result still holds in the parabolic case:

Lemma 3.1. Let u : Q1 → R be a W 2,n
x ∩ W 1,n

t solution of (1.1), assume that F satisfies
(H0)-(H2), and that Ω ⊃ {∇u 6= 0}. Then, for any X0 = (x0, t0) ∈ Ω ∩Q1/2,

max
∂pQr(X0)

u ≥ u(X0) +
r2

2nλ1 + 1
∀ r ∈ (0, 1/4).

Proof. For

v(x) := u(x)−
|x− x0|2 − (t− t0)

2nλ1 + 1
, X0 ∈ Ω ∩Q1/2,

one readily verifies that H(v) ≥ 0 in Qr(X
0). Then, by the very same argument as in the proof

of [10, Lemma 3.1] we deduce that1

max
∂pQr(X0)

v = sup
Qr(X0)

v,

and the result follows easily. By continuity the lemma holds for X0 ∈ Ω ∩Q1/2 �

3.2. Classification of global solutions. As already discussed in the previous section, to have
non-degeneracy of solutions we need to assume that Ω ⊃ {∇u 6= 0}. In the elliptic case this
assumption is also sufficient to classify global solutions with a “thick free boundary” (see [10,
Proposition 3.2]). However, in the parabolic case the situation is much more complicated: indeed,
while global solutions of the elliptic problem with “thick free boundary” are convex and one-
dimensional, in the parabolic case we have non-convex solutions. For instance the function

u(x, t) =

{

−2t− x21/2 if x1 > 0,
−2t if x1 ≤ 0,

is a solution of (1.1) on the whole R
n+1 with F (D2u) = ∆u and Ω := {x1 > 0} = {∇u 6= 0}. In

order to avoid this kind of examples, here we shall only consider the case Ω ⊃ {u 6= 0}.
Since we will use minimal diameter to measure sets (recall (1.2)), we need some classical

facts about their stability properties. First of all we recall that, for polynomial global solutions
P2 =

∑

j ajx
2
j + bt (with A = diag(aj), and b such that F (A)− b = 1), one has

δr(P2, 0) = 0. (3.1)

1The proof of this fact is a consequence of the strong maximum principle: if there exists an interior maximum
point Y ∈ Qr(X

0), since ∇v(Y ) = 0 and Ω ⊃ {∇u 6= 0}, one deduces that Y ∈ Ω ∩Qr(X
0). Hence, because v is

a subsolution and ∇u = 0 outside Ω, v must be constant inside Qr(X
0) and the result follows (see the proof of

[10, Lemma 3.1] for more details).
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Also, the scaling and stability estimate

δr(u,X) = δ1(ur, 0), lim sup
r→0

δr(u,X
0) ≤ δ1(u0, 0) (3.2)

holds whenever ur(y, τ) = u(x+ ry, t+ r2τ)/r2 converges in C1 to some function u0.
In the next proposition we classify global solution with a “thick free boundary”. We notice that

assumption (3.3) below allows us to exclude the family of global solutions uσ(t, x) = −(t− σ)+,
σ ∈ R.

Proposition 3.2. Let u : Rn+1 → R be a W 2,n solution of (1.1) on the whole R
n+1, assume

that F is convex and satisfies (H0)-(H1), and that Ω ⊃ {u 6= 0}. Furthermore, assume that there
exists ǫ0 > 0 such that

δr(u,X
0) ≥ ǫ0 ∀ r > 0, ∀X0 ∈ ∂Ω. (3.3)

Then u is time-independent. In particular, by the elliptic case [10, Proposition 3.2], u is a half-
space solution, i.e., up to a rotation, u(x) = γ[(x1)+]

2/2, where γ ∈ (1/λ1, 1/λ0) is such that
F (γe1 ⊗ e1) = 1.

Proof. Let m := supRn+1 ∂tu (notice that m is finite by Theorem 1.1) and consider a sequence
mj = ∂tu(X

j) such that mj → m.
We now perform the scaling

uj(x, t) :=
u(djx+ xj , d2j t+ tj)

d2j
,

where Xj = (xj , tj) and dj := dist(Xj , ∂Ω).

The functions uj still satisfy (1.1). Also, since u = 0 on ∂Ω it follows by the C1,1
x ∩ C0,1

t

regularity of u that uj are uniformly bounded, hence, up to subsequences, they converge to
another global solution u∞ which satisfies ∂tu∞(0) = m. By (3.2) and the assumption (3.3) we
obtain

δr(u∞,X0) ≥ ǫ0 ∀ r > 0, ∀X0 ∈ ∂Ω∞, (3.4)

where Ω∞ is the limit, as j → ∞, of the family of open sets

Ωj :=
{

(x, t) : (djx+ xj, d2j t+ tj) ∈ Ω
}

.

Let us observe that, by the condition Ω ⊃ {u 6= 0} we get u∞(t, x) = 0 on ∂Ω∞.
In addition ∂tu∞ is a solution of the uniformly parabolic linear operator Fij(D

2u∞)∂ij − ∂t
inside Ω∞. Hence, since ∂tu∞ ≤ m and ∂tu∞(0) = m, by the strong maximum principle we
deduce that ∂tu∞ is constant inside the connected component of Ω∞ containing 0 (call it Ω0).

Therefore, integrating u∞ in the direction t gives

u∞(t, x) = mt+ U(x) inside Ω0, u∞ = 0 on ∂Ω0. (3.5)

We claim that m = 0. Indeed, suppose by contradiction that m 6= 0. Then, for any point
(x̄, t̄) ∈ Ω0 it follows by (3.5) that: (a) either there exists t′ ∈ R such that (x̄, t′) ∈ ∂Ω0; (b) or
{x̄} × R ⊂ Ω0. Thanks to the thickness assumption (3.4) we see that ∇u∞ = 0 on ∂Ω0, so in
case (a) we obtain that ∇U(x̄) = ∇u∞(x̄, t′) = 0. Hence, by the arbitrariness of x̄, we can write

Ω0 = Ω1 ∪Ω2,

where ∇u∞ ≡ 0 in Ω1, and Ω2 is a cylinder of the form V × R with V ⊂ R
n. So, it follows

from (3.5) that u∞ = 0 on ∂Ω2, which is incompatible with the fact that u∞(t, x) = mt+ U(x)



8 ALESSIO FIGALLI AND HENRIK SHAHGHOLIAN

inside Ω2 (and so, by continuity, also on ∂Ω2) unless m = 0. This proves the claim, showing that
supRn+1 ∂tu = 0.

By a completely symmetric argument we obtain infRn+1 ∂tu = 0. Thus ∂tu = 0, which implies
that u is time-independent and therefore, by [10, Proposition 3.2], up to a rotation u is of the
form u(x) = γ[(x1)+]

2/2 + c γ ∈ (1/λ1, 1/λ0) is such that F (γe1 ⊗ e1) = 1 and c ∈ R. Since
Ω ⊃ {u 6= 0} we see that c = 0, which proves the result. �

4. Local solutions and directional monotonicity

In this section we shall prove a directional monotonicity for solutions to our equations. In
the next section we will use Lemma 4.2 below to show that, if u is close enough to a half-space
solution γ[(x1)+]

2 in a ball Br, then for any e = (ex, et) ∈ S
n with e · (e1, 0) ≥ s > 0 we have

C0∂eu− u ≥ 0 inside Br/2.

Lemma 4.1. Let u : Q1 → R be a W 2,n
x ∩ W 1,n

t solution of (1.1) with Ω ⊃ {u 6= 0}. Then,
under the conditions of Theorem 1.2 we have

lim
Ω∋X→∂Ω

∂tu(X) = 0.

Proof. The proof of this lemma follows easily by a contradiction argument, along with scaling
and blow-up. Indeed, given a sequence Xj → ∂Ω such that |∂tu(X

j)| ≥ c > 0, then one may

scale at Xj with dj = dist(Xj , ∂Ω) and define uj(X) :=
[

u(djx+ xj , d2j t+ tj)− u(Xj)
]

/d2j to

end up with a global solution u∞ with the property ∂tu∞(0) 6= 0, contradicting Proposition
3.2. �

The proof of the following result is a minor modification of the one of [10, Lemma 4.1], so we
just give a sketch of the proof.

Lemma 4.2. Let u : Q1 → R be a W 2,n
x ∩W 1,n

t solution of (1.1) with Ω ⊃ {u 6= 0}. Assume
that for some space-time direction e = (ex, et) with |e| = 1 we have C0∂eu− u ≥ −ε0 in Q1 for
some C0, ε0 ≥ 0, and that F is convex and satisfies (H0)-(H1). Then C0∂eu − u ≥ 0 in Q1/2

provided ε0 ≤
1

4(2nλ1+1) .

Proof. Since F is convex, for any matrix M we can choose an element PM inside ∂F (M) (the
subdifferential of F at M) in such a way that the map M 7→ PM is measurable, and we define
the measurable uniformly elliptic coefficients

aij(x, t) := (PD2u(x,t))ij ∈ ∂F (D2u(x, t)).

As in the proof of [10, Lemma 4.1], by the convexity of F if follows that, in the viscosity sense,

aij∂ij(∂eu)− ∂t(∂eu) ≤ 0 in Ω (4.1)

and
aij∂iju− ∂tu ≥ 1 in Ω. (4.2)

Now, let us assume by contradiction that there exists X0 = (x0, t0) ∈ Q1/2 such that

C0∂eu(X
0)− u(X0) < 0, and consider the function

w(X) := C0∂eu(X)− u(X) +
|x− x0|2 − (t− t0)

2nλ1 + 1
.
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Thanks to (4.1), (4.2), and assumption (H1) (which implies that λ0 Id ≤ aij ≤ λ1 Id) we deduce
that w is a supersolution of the linear operator L := aij∂ij−∂t, hence, by the minimum principle,

min
∂p(Ω∩Q1(Y 0))

w = min
Ω∩Q1(Y 0)

w ≤ w(Y 0) < 0.

By Lemma 4.1 and the assumption Ω ⊃ {u 6= 0} we have ∂tu = u = |∇u| = 0 on ∂Ω, therefore
w ≥ 0 on ∂Ω. Thus, since |x− x0|2 − (t− t0) ≥ 1/4 on ∂pQ

−
1 it follows that

0 > min
∂pQ

−

1/2
(X0)

w ≥ −ε0 +
1

4(2nλ1 + 1)
,

a contradiction if ε0 ≤
1

4(2nλ1+1) . �

5. Proof of Theorem 1.2

The proof of this theorem is very similar to the proof of [10, Theorem 1.3]. Indeed, take
X0 = (x0, t0) ∈ ∂Ω ∩ Q1/8, and rescale the solution around X0, that is ur(x, t) := [u(rx +

x0, r2t+ t0)− u(x0, t0)− r∇u(x0, t0) · x]/r2.

Because of the uniform C1,1
x ∩ C0,1

t estimate provided by Theorem 1.1 and the thickness as-
sumption on the free boundary of u, we can find a sequence rj → 0 such that urj converges locally

uniformly to a global solution u∞ of the form u∞(x) = γ[(x · e
X0

)+]
2/2 with γ ∈ [1/λ1, 1/λ0]

and e
X0

∈ S
n−1 (see Proposition 3.2).

Notice now that, for any s ∈ (0, 1), we can find a large constant Cs such that

Cs∂eu∞ − u∞ ≥ 0 inside B1

for all directions e = (ex, et) ∈ S
n such that e · (e

X0
, 0) ≥ s, hence by the C1

x convergence of urj
to u∞ and Lemmas 4.1 and 4.2 we deduce that

Cs∂eurj − urj ≥ 0 in Q1/2, (5.1)

and since urj(0) = 0 a simple ODE argument shows that urj ≥ 0 in Q1/4.
Using (5.1) again, this implies that ∂eurj inside Q1/4, and so in terms of u we deduce that

there exists r = r(s) > 0 such that

∂eu ≥ 0 inside Qr(X
0)

for all e ∈ S
n such that e · (e

X0
, 0) ≥ s.

A simple compactness argument shows that r is independent of the point x, which implies that
the free boundary is s-Lipschitz. Since s can be taken arbitrarily small (provided one reduces the
size of r), this actually proves that the free boundary is C1. Higher regularity is then classical.

6. Appendix: Parabolic BMO estimates

Let u : Q1 → R satisfy |u| ≤ 1 and |H(u)| ≤ M . Up to replacing u by u(x/R, t/R2) and H by
(F (R2 ·)/R2 − ∂t) with R a large fixed constant, we can assume that |H(u)| ≤ δ with δ a small
constant to be fixed later. Observe that, with this scaling, the ellipticity remains the same.

Let us first state a standard stability result.
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Lemma 6.1. (Compactness) Let ε > 0, and u be such that u : Q1 → R satisfy |u| ≤ 1. Let
further v : Q1/2 → R solve

{

H(v) = 0 in Q1/2,
v = u on ∂pQ1/2.

Then there exists δ = δ(ε) > 0 such that

|u− v| ≤ ε in Q1/2,

provided |H(u)| ≤ δ.

The proof of the lemma is based on a standard compactness argument, using that both u and
v are uniformly Hölder continuous (in (x, t)-variables) inside Q1/2; see [12], Lemma 5.1.

Recall that P is a parabolic polynomial if it is of the form

P (x, t) = a0 + 〈b0, x〉+ 〈M0x, x〉+ c0t, a0, c0 ∈ R, b0 ∈ R
n, M0 ∈ R

n×n.

We now prove by induction the following result:

Lemma 6.2. Let u : Q1 → R be a solution to our problem (1.1), with |u| ≤ 1. Then there exists
ρ > 0 universal such that

|u(X) − Pk(X)| ≤ ρ2k inside Qρk ∀ k ∈ N,

where Pk is a parabolic polynomial such that H(Pk) = 0.

A straight forward implication of this result is that there is a universal constant C = 1/ρ2

such that
|u(X)− Pr(X)| ≤ Cr2 inside Qr ∀ 0 < r < 1, (6.1)

where Pr is a parabolic second order polynomial such that H(Pr) = 0. This in turn implies an
Lp-BMO type result, see the corollary below.

Proof. (of Lemma 6.2) Since the result is obviously true for k = 0 (just take P0 = 0), we prove
the inductive step. So, let us assume that the result is true for k and we prove it for k + 1.

Define uk(X) := u(ρkx,ρ2kt)−Pk(ρ
kx,ρ2kt)

ρ2k
. Then, by the inductive hypothesis |uk| ≤ 1 inside Q1.

In addition
|Hk(uk)| ≤ δ, Hk(v) := F (D2v +D2Pk)− ∂tPk − ∂tv.

Observe that Hk keeps the same ellipticity as H. Hence we can apply the lemma above to deduce
that

|uk − vk| ≤ ε in Q1/2,

where vk solves
{

Hk(vk) = 0 in Q1/2,
vk = uk on ∂pQ1/2.

Since ‖vk‖L∞(Q1/2) ≤ ‖uk‖L∞(Q1) ≤ 1, by interior C2,1
α estimates we get

‖vk‖C2,1
α (Q1/4)

≤ C0.

Let P̂k be the “parabolic” second order Taylor expansion of vk at (0, 0), and notice that Hk(P̂k) =
Hk(vk(0, 0)) = 0. Then

|vk − P̂k| ≤ C0ρ
2+α inside Qρ,
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which gives

|uk − P̂k| ≤ C0ρ
2+α + ε inside Qρ.

In particular, if we choose ρ sufficiently small so that C0ρ
α ≤ 1/2 and then ε ≤ ρ2/2 we arrive

at

|uk(X) − P̂k(X)| ≤ ρ2 inside Qρ,

or equivalently (recalling the definition of uk)

|u(X) − Pk+1(X)| ≤ ρ2(k+1), Pk+1(X) := Pk(X) + ρ2kP̂k(x/ρ
k, t/ρ2k).

Also, since Hk(P̂k) = 0 we will have

H(Pk+1) = F (D2Pk+1)− ∂tPk+1 = F (D2Pk +D2P̂k)− ∂tPk − ∂tP̂k = Hk(P̂k) = 0

which concludes the proof of the inductive step.
�

Remark 6.3. As a corollary of our result we deduce Lp-BMO estimates on D̃2u (p ∈ (1,∞))

for solutions to general elliptic/parabolic operators of type F = F (D̃2u,∇u, u,X) provided F is

Hölder continuous and u ∈ C1,α
x .

Indeed, if F = F (D2u,X), since uk(X) := u(ρkx,ρ2t)−Pk(ρ
kx,ρ2t)

ρ2k
satisfies |uk| ≤ 1 and |Hk(uk)| ≤

δ inside Q1, by interior W 2,1
p estimates we get

‖D̃2uk‖Lp(Q1/2) ≤ C,

that is
1

|Qρk/2|

∫

Q
ρk/2

|D̃2u− D̃2Pk|
p ≤ C ∀ k ∈ N.

For general operators F it suffices to apply the above argument to G(M,X) := F (M,Du(X), u(X),X).

References

[1] Andersson J.; Lindgren E.; Shahgholian H.; Optimal regularity for the no-sign obstacle problem. Comm.
Pure. Appl. Math., 66 (2013), no. 2, 245- 262.

[2] Andersson J.; Lindgren E.; Shahgholian H.; Optimal regularity for parabolic no-sign obstacle problem.
Preprint.

[3] Caffarelli, L. A.; Interior a priori estimates for solutions of fully nonlinear equations. Ann. of Math. (2) 130
(1989), no. 1, 189-213.

[4] Caffarelli, L. A.; Huang, Q.; Estimates in the generalized Campanato-John-Nirenberg spaces for fully non-
linear elliptic equations. Duke Math. J. 118 (2003), no. 1, 1-17.

[5] Caffarelli, L. A.; Karp L.; Shahgholian, H.; Regularity of a free boundary with application to the Pompeiu
problem. Ann. of Math. (2), 151 (2000), no. 1, 269-292.

[6] Caffarelli, L. A.; Petrosyan, A.; Shahgholian, H.; Regularity of a free boundary in parabolic potential theory.
J. Amer. Math. Soc., 17 (2004), no. 4, 827-869.
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