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Abstract
In this note we provide a new geometric lower bound on the so-called Grad's number of a

domain Ω in terms of how far Ω is from being axisymmetric. Such an estimate is important
in the study of the trend to equilibrium for the Boltzmann equation for dilute gases.

1 Introduction and statement of the result
In a recent paper [3], Desvillettes and Villani proved a rate of convergence to equilibrium for
solutions of the Boltzmann equation like O(t−∞) under some suitable assumptions on the solution
and on the domain. In particular, the shape of the domain plays a crucial role in the uniqueness
of the steady state. Indeed, for a generic shape of the domain a steady state would be a rest state
(that is the density and temperature would be constant all over the box, and there would be no
macroscopic velocity �eld), while, if the domain presents an axis of symmetry, there are steady
states which are not at rest and possess a rotating velocity �eld. Thus, in order to prove a result
of convergence to the equilibrium with a quantitative rate of convergence, one of the steps in [3]
consists in expressing how much the domain deviates from axisymmetry (see [5] for the study of
convergence to equilibrium in the axisymmetric case). We recall that, for N = 2, 3, a set is said
axisymmetric if it has a circular symmetry around some point (N = 2) of if it admits an axis of
symmetry (N = 3) (see [2, De�nition-Lemma 5] for the de�nition in the case N ≥ 41).

The way in which the absence of an axis of symmetry enters in proof of the convergence result
is trough the following Korn-type inequality [2, Theorem 3] (here and in the sequel, given a vector
�eld u, ∇u = ∇symu +∇au denotes the decomposition of the matrix ∇u into its symmetric and
antisymmetric part):

Theorem 1.1. Let Ω be a C1 bounded, non-axisymmetric open subset of RN , with N ≥ 2. Let
u be a vector �eld on Ω with ∇u ∈ L2(Ω). Assume that u is tangent to ∂Ω:

u(x) · n(x) = 0 ∀x ∈ Ω,
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where n(x) stands for the outer unit normal vector to Ω at the point x. Then there exists a
constant K(Ω) > 0, depending only on Ω, such that

‖∇symu‖2
L2(Ω) ≥ K(Ω)‖∇u‖2

L2(Ω).

The value of the constant K(Ω) appearing in the above proposition is used in the study
of trend to equilibrium to quantify the deviation of Ω from axisymmetry. It is therefore of
great interest to have as much insight as possible in the explicit value of K(Ω), in terms of the
geometry of Ω. As proved in [2, Theorem 3], a lower bound on K(Ω) can be given in terms of
other constants depending only on the domain:

1
K(Ω)

≤ 2N
(
1 + CH(Ω)

)(
1 +

1
K(Ω)

)(
1 +

1
G(Ω)

)
.

Here CH(Ω) is a constant related to the homology of Ω and the Hodge decomposition (for instance
CH(Ω) = 1 if Ω is convex), K(Ω) is related to Korn's inequality, and G(Ω) is what the authors
call the Grad's number:

G(Ω) :=
1

2|Ω| inf
Σ∈UAN

inf
v∈VΣ

‖∇symv‖2
L2(Ω),

where UAN denotes the set of antisymmetric N ×N matrices with unit norm (Σ = (Σij) ∈ UAN

if Σij = −Σji and
∑

ij(Σij)2 = 1), and VΣ ⊂ H1(Ω) is the set of vector �elds satisfying
{ ∇ · v = 0, ∇av = Σ in Ω,

v · n = 0 on ∂Ω.

As explained in [2, Section 2], all the relevant information about axisymmetry lies in G(Ω). Thus
what is important is to give quantitative estimates on the positivity of G(Ω) in terms of some
geometric informations about how far Ω is from being axisymmetric.

In order to state our result, we �rst give two de�nitions. We will denote by H N−1 the
(N − 1)-dimensional Hausdor� measure.
De�nition 1.2 (Trace constant). Let Ω ⊂ RN be a C1 bounded open domain. We de�ne its
trace constant T (Ω) as

1
T (Ω)

:= inf
{

H N−1(∂E ∩ Ω)
H N−1(∂E ∩ ∂Ω)

: E ⊂ Ω, |E| ≤ |Ω|
2

, ∂E is C1

}
.

By the coarea formula for smooth function (see [1, Theorem 3.40] or [6, Theorem 5.4.4] for a
more general result), it is not di�cult to prove that

∫

Ω
|∇f | ≥ 1

T (Ω)
inf
c∈R

∫

∂Ω
|f − c| dH N−1, ∀f ∈ C∞(Rn) (1)

(see for example [4, Lemma 3.1]). We remark that one could have introduced T (Ω) directly as
the smallest constant for which (1) holds. However, we preferred to introduce it in this other
way because we believe that this presentation clari�es the geometric meaning of T (Ω).

We now introduce the notion of quadratic oscillation. Recall that, given a set Γ and a function
f : Γ → R, oscΓ f := supΓ f − infΓ f .
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De�nition 1.3 (Quadratic oscillation). Let Ω ⊂ R2 be a C1 bounded open domain, and de-
compose its boundary as a union of C1 closed curves, that is ∂Ω = ∪iΓi. Then we de�ne the
quadratic oscillation of ∂Ω as

osc2(∂Ω) :=
∑

i

oscΓi |x|2.

Our result is the following:

Theorem 1.4. Let Ω ⊂ RN be a C1 bounded open domain.
• If N = 2, then

G(Ω) ≥ 1
32|Ω|2T (Ω)2

inf
x0∈R2

osc2(x0 + ∂Ω)2. (2)

If moreover we assume ∂Ω connected, we have

G(Ω) ≥ 1
2H 1(∂Ω)2T (Ω)2

inf
x0∈R2

dH(x0 + ∂Ω, Sr(∂Ω))
2, (3)

where dH(x0 + ∂Ω, Sr(∂Ω)) denotes the Hausdor� distance between x0 + ∂Ω and the circle Sr(∂Ω)

centered at the origin and with radius r(∂Ω) := sup∂Ω |x|+inf∂Ω |x|
2 .

• If N = 3, for ω ∈ R3 we de�ne ∂Ωω,t = ∂Ω∩ {ω · x = t}. Then, looking at x0 + ∂Ωω,t as a
subset of (x0 + {ω · x = t}) ' R2, we have

G(Ω) ≥ 1
48|Ω|2T (Ω)2

inf
x0,ω∈R3

(∫

R
osc2(x0 + ∂Ωω,t) dt

)2

. (4)

If moreover Ω is convex (so that ∂Ωω,t is connected for almost all t), we get

G(Ω) ≥ 1
3|Ω|2T (Ω)2

inf
x0,ω∈R3

(∫

R

H 2(Ωω,t)
H 1(∂Ωω,t)

dH(x0 + ∂Ωω,t, Sr(∂Ωω,t)) dt

)2

. (5)

Remark 1.5 (The case N = 2). By the above theorem we know that Grad's number can be
bounded from below by the sum of the oscillations (in the L∞ norm) of |x|2 on each connected
component of ∂Ω (once Ω has been properly translated). This means that, if G(Ω) is small, each
connected component of ∂Ω must be contained in some annulus {c1 ≤ |x| ≤ c2}, with c2 − c1

small. However, even if we assume Ω to be connected and simply connected, this does not imply
that Ω is close to a disc, since it could be entirely contained in an annulus.

On the other hand, if we assume Ω to be convex, it is simple to see that G(Ω) controls in a
quantitative way the Hausdor� distance between Ω and a disc. We also remark that in this case
the constant CH(Ω) appearing in [2, Theorem 3] can be taken equal to 1 (see [2, Appendix]),
and so our estimate gives a good lower bound for the constant K(Ω) appearing in Theorem 1.1.

Remark 1.6 (The case N = 3). The geometric quantity that we control in this case, although
more complicated than in dimension two, is quite natural: for instance, if a set Ω is �almost
axisymmetric� with respect to an axis ω, we expect that for almost all t ∈ R the set Ω∩{ω ·x = t}
will be �almost radially symmetric�. On the other end, since some level sets can be close to balls
while others can be close to annuli, the behavior of Ω in the direction ω can be arbitrary.
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Let us also observe that the vector x0 appearing both in (4) and (5) corresponds just to a
translation of the whole set Ω. Therefore the sets Ωω,t are translated by the same quantity for
all t ∈ R.
Remark 1.7. Our lower bound on G(Ω) is in general stronger than the one's in [2]. For example,
let Ω be either a smoothed version of a ball in R2 from which an ε-strip has been removed, say

Ω ' {
(x1, x2) ∈ R2 | x2

1 + x2
2 ≤ 1

} \ {
(x1, x2) ∈ R2 | 0 ≤ x1 ≤ 1, |x2| ≤ ε

}
,

or a smoothed version of an annulus from which an ε-strip has been removed, say

Ω ' {
(x1, x2) ∈ R2 | 1/4 ≤ x2

1 + x2
2 ≤ 1

} \ {
(x1, x2) ∈ R2 | 0 ≤ x1 ≤ 1, |x2| ≤ ε

}
.

Then in both cases T (Ω) ∼ 1, and from (3) we get G(Ω) ≥ c, while the estimate provided by [2,
Equation (26)] is G(Ω) ≥ cε2.

Another advantage of our lower bound is its simplicity for practical computation. For exam-
ple, if Ω is a slightly elongated ellipse in the plane, say

Ω =
{

(x1, x2) ∈ R2 | x2
1 +

x2
2

(1 + ε)
≤ 1

}
,

then (3) immediately implies G(Ω) ≥ cε2, and we recover the estimate proved at the end of
Section 4 in [2].

2 Proof of Theorem 1.4
Let v ∈ VΣ with Σ ∈ UAN , and consider the rigid motion R de�ned by

R(x) = Σx.
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Then, by (1) applied to each component of the function v−R = (v1−R1, . . . , vN −RN ), we get

√
|Ω|

√∫

Ω
|∇symv|2 dx =

√
|Ω|

√∫

Ω
|∇(v −R)|2 dx =

√
|Ω|

√∑

i

∫

Ω
|∇(vi −Ri)|2 dx

≥
√
|Ω| 1√

N

∑

i

√∫

Ω
|∇(vi −Ri)|2 dx

≥ 1√
N

∑

i

∫

Ω
|∇(vi −Ri)| dx

≥ 1√
NT (Ω)

∑

i

inf
ci∈R

∫

Ω
|vi −Ri − ci| dx

≥ 1√
NT (Ω)

inf
c∈RN

∫

∂Ω
|v − Σx− c| dH N−1(x)

≥ 1√
NT (Ω)

inf
c∈RN

∫

∂Ω
|(v − Σx− c) · n| dH N−1(x)

=
1√

NT (Ω)
inf

c∈RN

∫

∂Ω
|(Σx− c) · n| dH N−1(x)

where we used v · n = 0 on ∂Ω. We now remark that, up to a translation of Ω, we can assume
that the in�mum in the last quantity is attained for c = 0. Thus

√
|Ω|

√∫

Ω
|∇symv|2 dx ≥ 1√

NT (Ω)

∫

∂Ω
|(Σx) · n| dH N−1(x) (6)

and we want to use the quantity appearing in the right hand side to control how far Ω is from
being axisymmetric.

• The case N = 2
We remark that in this case there are only two possibilities for Σ:

Σ = ±
(

0 1/
√

2
−1/

√
2 0

)
.

This implies that
|(Σx) · n| = |x · (Σn)| = 1√

2
|x · n⊥|.

Let us �x a connected component Γ of ∂Ω, and parameterize it with a curve γ : [0, L] → R2,
where L = H 1(Γ) and γ is parameterized by arc-length. We observe that

n⊥(γ) = ±γ̇,

and so
|γ · n⊥(γ)| = |γ · γ̇|.
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Therefore
∫

Γ
|(Σx) · n| dH 1(x) =

1√
2

∫

γ
|γ · γ̇| dH 1 =

1√
2

∫ L

0
|γ(t) · γ̇(t)| dt =

1
2
√

2

∫ L

0

∣∣∣∣
d

dt
|γ(t)|2

∣∣∣∣ dt.

This gives

oscΓ |x|2 := sup
Γ
|x|2 − inf

Γ
|x|2 ≤

∫ L

0

∣∣∣∣
d

dt
|γ(t)|2

∣∣∣∣ dt = 2
√

2
∫

Γ
|(Σx) · n| dH 1.

If we now decompose ∂Ω = ∪iΓi into its connected components, we can write the above inequality
for each i, and adding them we obtain

∑

i

oscΓi |x|2 ≤ 2
√

2
∫

∂Ω
|(Σx) · n| dH 1(x). (7)

Thus, recalling De�nition 1.3 and using (6), we get

osc2(∂Ω) ≤ 2
√

2
∫

∂Ω
|(Σx) · n| dH 1(x) ≤ 4T (Ω)

√
|Ω|

√∫

Ω
|∇symv|2 dx

We remark that osc2(∂Ω) is not invariant by translations of Ω (recall that we assumed Ω to be
translated in such a way that infc∈R2

∫
∂Ω |(Σx − c) · n| is attained at c = 0). Thus we take the

in�mum in the left hand side among all possible translations, and the in�mum in the right hand
side among all v and Σ. In this way we conclude

inf
x0∈R2

osc2(x0 + ∂Ω) ≤ 4T (Ω)
√
|Ω| inf

Σ, v∈VΣ

√∫

Ω
|∇symv|2 dx,

which is exactly (2).
Let us now assume that ∂Ω is connected. In this case we can give a more geometric estimate.

Indeed we observe that

sup
∂Ω

|x| ≥
∫
−

∂Ω
|x| dH 1(x) ≥

∫
−

∂Ω
x · ndH 1(x) =

1
H 1(∂Ω)

∫

Ω
div(x) dx = 2

|Ω|
H 1(∂Ω)

.

Thus we have

osc∂Ω |x| = osc∂Ω |x|2
sup∂Ω |x|+ inf∂Ω |x| ≤

H 1(∂Ω)
2|Ω| osc∂Ω |x|2

≤ 2T (Ω)
H 1(∂Ω)√

|Ω|

√∫

Ω
|∇symv|2 dx.

Observing that osc∂Ω |x| is just twice the Hausdor� distance between ∂Ω and the circle Sr(∂Ω)

centered at the origin and with radius r(∂Ω) := sup∂Ω |x|+inf∂Ω |x|
2 , (3) follows.
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• The case N = 3
As we will see, we will reduce to the two-dimensional case through a Coarea argument.

Indeed, �rst we remark that to each Σ we can associate a unit vector ω ∈ R3 such that

Σx =
1√
2
ω ∧ x.

Moreover we remark that, since Σx · n = −x · Σn,

|(ω ∧ x) · n| = |(ω ∧ n) · x|.

We now use the coarea formula with respect to the map

f : ∂Ω → R, f(y) = ω · y

(see [1, Theorem 2.93]). Since the tangential jacobian Jf(y) is equal to |ω ∧ n(y)| (which is just
the norm of the projection of ω on the tangent space of ∂Ω at y), we have

∫

∂Ω
|(Σx) · n| dH 2(x) =

1√
2

∫

∂Ω
|(ω ∧ n) · x| dH 2(x)

=
1√
2

∫

∂Ω∩{ω∧n 6=0}
|(ω ∧ n) · x| dH 2(x)

=
1√
2

∫

∂Ω∩{ω∧n 6=0}

|(ω ∧ n) · x|
|ω ∧ n| |ω ∧ n| dH 2(x)

=
1√
2

∫

R
dt

∫

∂Ω∩{ω∧n 6=0}∩{ω·x=t}

|(ω ∧ n) · x|
|ω ∧ n| dH 1(x).

Observe that by Sard theorem the set of critical points of f has measure zero. Thus for L 1-a.e.
t the set {ω ∧ n = 0} ∩ {ω · x = t} is empty, and, if we de�ne Ωω,t := Ω ∩ {ω · x = t}, the set
∂Ωω,t := ∂(Ωω,t) = ∂Ω ∩ {ω · x = t} is a union of smooth curves. Thus, we can write

∫

∂Ω
|(Σx) · n| dH 2(x) =

1√
2

∫

R
dt

∫

∂Ωω,t

|(ω ∧ n) · x|
|ω ∧ n| dH 1(x). (8)

Now we remark that ω ∧ n is orthogonal to ω, so it belongs to the plane Π := {ω · x = 0}.
Moreover ω ∧ n is also orthogonal to n. These two facts implies that we can write

ω ∧ n

|ω ∧ n| = ±n⊥t ,

where nt is the normal to the 1-dimensional set Γω,t := {y ∈ Π : y + tω ∈ ∂Ωω,t} seen as a
subset of Π ' R2. Therefore we can write each x ∈ ∂Ωω,t as x = y + tω with y ∈ Γω,t, and we
have

|(ω ∧ n) · x|
|ω ∧ n| =

∣∣∣∣
ω ∧ n

|ω ∧ n| · x
∣∣∣∣ = |n⊥t · x| = |n⊥t · y|.
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This gives ∫

∂Ω
|(Σx) · n| dH 2(x) =

1√
2

∫

R
dt

∫

Γt

|n⊥t · y| dH 1(y). (9)

In this way we reduced exactly to the case N = 2: by (7) we get
∫

Γt

|n⊥t · y| dH 1(y) ≥ 1
2

osc2(∂Ωω,t),

where osc2(∂Ωω,t) is de�ned as in the two-dimensional case looking at ∂Ωω,t as a subset of
{ω · x = t} ' R2. This, together with (8), gives

∫

∂Ω
|(Σx) · n| dH 2(x) ≥ 1

2
√

2

∫

R
osc2(∂Ωω,t) dt.

Using (6) and taking the in�mum among all translations of Ω, we obtain

√
|Ω|

√∫

Ω
|∇symv|2 dx ≥ 1

2
√

6T (Ω)
inf

x0∈R3

∫

R
osc2(x0 + ∂Ωω,t) dt.

Taking now the in�mum among all v in the left hand side and among all ω in both sides, we
�nally obtain (4).

If moreover we know that Ω is convex, for all ω and for almost all t, the set ∂Ωω,t will consist
of a unique smooth curve. Therefore, with the same notation as in the case N = 2,

∫

Γt

|n⊥t · y| dH 1(y) ≥ 2
H 2(Ωω,t)
H 1(∂Ωω,t)

dH(x0 + ∂Ωω,t, Sr(∂Ωω,t)),

which combined with (9) gives
∫

∂Ω
|(Σx) · n| dH 2(x) ≥

√
2

∫

R

H 2(Ωω,t)
H 1(∂Ωω,t)

dH(x0 + ∂Ωω,t, Sr(∂Ωω,t)) dt,

and (5) follows.
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