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Abstract

In this paper we introduce a new transportation distance between non-negative
measures inside a domainΩ. This distance enjoys many nice properties, for in-
stance it makes the space of non-negative measures insideΩ a geodesic space
without any convexity assumption on the domain. Moreover wewill show that the
gradient flow of the entropy functional

∫

Ω
[ρ log(ρ) − ρ] dx with respect to this dis-

tance coincides with the heat equation, subject to the Dirichlet boundary condition
equal to 1.

Résuḿe
Dans ce papier, nous introduisons une nouvelle distance surl’espace des mesures

positive dans un domaineΩ. Cette distance satisfait plusieurs propriétés intéressantes :
par exemple, elle fait de l’espace des mesures positives dansΩ un espace géodésique
sans aucune hypothèse de convexité sur le domaine. De plus, on montre que le flot
gradient de la fonctionnelle d’entropie

∫

Ω
[ρ log(ρ) − ρ] dx par rapport à cette dis-

tance donne lieu à l’équation de la chaleur, avec condition de Dirichlet égale à 1
sur le bord.

Keywords: transportation distances, gradient flows, heat equation, Dirichlet
boundary conditions.

1 Introduction

Nowadays, it is well-know that transportation distances between probability measures
can be successfully used to study evolutionary equations. More precisely, one of the
most surprisingly achievement of [8, 11, 12] has been that many evolution equations of
the form

d
dt
ρ(t) = div

(

∇ρ(t) − ρ(t)∇V − ρ(t)
(∇W ∗ ρ(t)

)

)
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can be seen as gradient flows of some entropy functionals on the space of probability
measures with respect to the Wasserstein distance

W2(µ, ν) = inf

{

√

∫

|x− y|2 dγ(x, y) : π1
#γ = µ, π

2
#γ = ν

}

.

Besides the fact that this interpretation allows to prove entropy estimates and functional
inequalities (see [13, 14] for more details on this area, which is still very active and in
continuous evolution), this point of view provides a powerful variational method to
prove existence of solutions to the above equations: given atime stepτ > 0, construct
an approximate solution by iteratively minimizing

ρ 7→ W2(ρ, ρ0)
2τ

+

∫

[

ρ log(ρ) + ρV +
1
2
ρ(W ∗ ρ)

]

dx.

We refer to [2] for a general description of this approach.
Let us observe that the choice of the distance on the space of probability measures

plays a key role, and by changing it one can construct solutions to more general classes
of evolution equations, see for instance [1, 5, 7]. However,all the distances considered
up to now need the two measures to have the same mass (which up to a scaling can
always be assumed equal to 1). In particular, since the mass remains constant along
the evolution, if one restricts to measures concentrated ona bounded domain, then the
approach described above will always produce solutions to parabolic equations with
Neumann boundary conditions.

Motivated by the intent to find an analogous approach to construct solutions of
evolution equations subject to Dirichlet boundary condition, in this paper we introduce
a new transportation distanceWb2 between measures. As we will see, the main features
of the distanceWb2 are:

• It metrizes the weak convergence of positive Borel measuresin Ω belonging to
the space

M2(Ω) :=
{

µ :
∫

d2(x, ∂Ω) dµ(x) < ∞
}

, (1)

see Proposition 2.7. Observe thatM2(Ω) contains all positive finite measures on
Ω and that the claim we are making is perfectly analogous to what happens for
the common Wasserstein distances, but without any mass constraint.

• The resulting metric space (M2(Ω),Wb2) is always geodesic, see Proposition
2.9. This is a particularly interesting property compared to what happens in
the classical Wasserstein space: indeed the space (P(Ω),W2) is geodesic if and
only if Ω is convex. In our case, the convexity of the open set is not required.
(Actually, not even connectedness is needed!)

• The natural approach via minimizing movements to the study of the gradient
flow of the entropy leads to weak solution of the heat equationwith Dirichlet
boundary condition, see Theorem 3.5. Interesting enough, with this approach
the regularity of the boundary ofΩ does not play any role.

As a drawback, the entropy functional do not have the same nice properties it has in
the classical Wasserstein space. In particular:

• It is notgeodesically convex. Still, it has some sort of convexity properties along
geodesics, see Remark 3.4.
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• Due to the lack of geodesic convexity, we were not able to prove any kind of
contractivity result for the flow.

• Actually, we are not even able to prove uniqueness of the limit of the mini-
mizing movements scheme. (Of course one knows by standard PDE techniques
that weak solutions of the heat equation with Dirichlet boundary conditions are
unique, therefore a posteriori it is clear that the limit hasto be unique - what we
are saying here is that we do not know whether such uniquenessmay be deduced
a priori via techniques similar, e.g., to those appeared in [2].)

The distanceWb2 is defined in the following way (the ‘b’ stands to recall that we
have some room to play with theboundary ofΩ). LetΩ ⊂ Rd be a bounded open set,
and letM2(Ω) be defined by (1). We define the distanceWb2 onM2(Ω) as a result of
the following problem:

Problem 1.1 (A variant of the transportation problem) Let µ, ν ∈ M2(Ω). The set
of admissible couplingsAdm(µ, ν) is defined as the set of positive measuresγ onΩ×Ω
satisfying

π1
#γ|Ω = µ, π2

#γ|Ω = ν. (2)

For any non-negative measureγ onΩ ×Ω, we define itscostC(γ) as

C(γ) :=
∫

Ω×Ω
|x− y|2dγ(x, y).

The distance Wb2(µ, ν) is then defined as:

Wb2
2(µ, ν) := inf

γ∈Adm(µ,ν)
C(γ).

The difference betweenWb2 andW2 relies on the fact that an admissible coupling is a
measure on theclosureof Ω ×Ω , rather than just onΩ ×Ω, and that the marginals are
required to coincide with the given measures only insideΩ. This means that we can
use∂Ω as an infinite reserve: we can ‘take’ as mass as we wish from theboundary, or
‘give’ it back some of the mass, provided we pay the transportation cost. This is why
this distance is well defined for measures which do not have the same mass.

Although this approach could be applied for more general costs than just|x − y|2
and for a wider class of entropy functionals, we preferred toprovide a complete result
only in the particular case of the heat equation, in order to avoid technicalities and gen-
eralizations which would just obscure the main ideas. We refer to Section 4 for some
possible generalizations, a comparison between our and theclassicalL2-approach, and
some open problems.

Acknowledgements:We gratefully thank the referee for his valuable comments,
which helped us having a clearer understanding of the properties ofWb2.

2 General properties of the distanceWb2

The aim of this section is to describe the main properties of the distanceWb2.
For any positive Borel measureµ in Ω, definem2(µ) as

m2(µ) :=
∫

d2(x, ∂Ω)dµ(x),
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Figure 1: Example of admissible transport plan

so thatM2(Ω) is precisely the set of measuresµ such thatm2(µ) < ∞. Observe that if
A ⊂ Ω is any set which is at a positive distancer from ∂Ω andµ ∈ M2(Ω), then the
inequality

∞ > m2(µ) ≥
∫

A
r2dµ = r2µ(A), (3)

shows thatµ(A) < ∞.
Let γ be a non-negative measure onΩ × Ω. We will write γB

A for the restriction of
γ to the rectangleA× B ⊂ Ω × Ω. Observe that there is a natural splitting ofγ into 4
parts:

γ = γ
Ω

Ω
+ γ

∂Ω
Ω
+ γ

Ω

∂Ω + γ
∂Ω
∂Ω.

We now remark that, ifγ ∈ Adm(µ, ν), then

γ − γ∂Ω∂Ω ∈ Adm(µ, ν) and C(γ − γ∂Ω∂Ω) ≤ C(γ).

Hence, when looking for optimal plans, it is not restrictiveto assume that

γ
∂Ω
∂Ω = 0. (4)

Observe that from the bound

γ(A×Ω ∪ Ω ∪ A) ≤ γ(A×Ω) + γ(Ω × A) = µ(A) + ν(A) < ∞,

valid for any Borel setA ⊂ Ω with positive distance from∂Ω and anyγ ∈ Adm(µ, ν)
satisfying (4), it easily follows the weak compactness of the set of admissible plans
satisfying (4) (in duality with functions inCc(Ω ×Ω \ ∂Ω × ∂Ω)). Thus from the weak
lower semicontinuity of

γ 7→ C(γ),

we get the existence of optimal plans
We will denote the set of optimal plans by Opt(µ, ν), and we will always assume

that an optimal plan satisfies (4).
We now prove thatWb2 is a distance onM2(Ω). For the triangle inequality we

need the following variant of the classical gluing lemma (see [2, Lemma 5.3.2]):

4



Lemma 2.1 (A variant of the gluing lemma) Fix µ1, µ2, µ3 ∈ M2(Ω), and letγ12 ∈
Adm(µ1, µ2), γ23 ∈ Adm(µ2, µ3) such that(γ12)∂Ω

∂Ω
= (γ23)∂Ω

∂Ω
= 0. Then there exists a

positive Borel measureγ123 onΩ ×Ω × Ω such that

π12
# γ

123
= γ

12
+ σ

12,

π23
# γ

123
= γ

23
+ σ

23,

whereσ12 andσ23 are both concentrated on the diagonal of∂Ω × ∂Ω, i.e. on the set
of pairs of points{(x, x) : x ∈ ∂Ω}.

Let us point out that, in contrast with the classical result,in our case the second
marginal ofγ12 onΩ does not necessarily coincides with the first marginal ofγ

23, and
so the two measures cannot be ‘glued’ together in a trivial way.

Proof. In order to clarify the structure of the proof, it is convenient to seeµ1, µ2, µ3 as
measures onM2(Ω1),M2(Ω2),M2(Ω3) respectively, whereΩ1,Ω2,Ω3 are three dis-
tinct copies ofΩ. In this way we haveγ12 ∈ M+(Ω1 × Ω2), γ23 ∈ M+(Ω2 × Ω3), and
γ

123 ∈ M+(Ω1 × Ω2 × Ω3). However, since in factΩ1 = Ω2 = Ω3, sometimes we
will identify Ω2 with Ω, Ω1, or Ω3. Furthermore, we will useπ2 to denote both the
canonical projection fromΩ1 ×Ω2 ontoΩ2, and the one fromΩ2 × Ω3 ontoΩ2.

From the hypothesis we know that

π2
#(γ

12)Ω
Ω
= µ2

= π2
#(γ

23)Ω
Ω
,

also, sinceµ2 is locally finite an application of (a simple variant of) the classical gluing
lemma guarantees the existence of a plan ˜γ

123 ∈ M+(Ω1 ×Ω2 ×Ω3) such that

π12
# γ̃

123
= (γ12)Ω

Ω
,

π23
# γ̃

123
= (γ23)Ω

Ω
.

Then define

σ
12 := (π2, π2, π3)#

(

(

γ
23)Ω

∂Ω

)

∈ M(∂Ω2 × ∂Ω2 ×Ω3) =M(∂Ω1 × ∂Ω2 ×Ω3),

σ
23 := (π1, π2, π2)#

(

(

γ
12)∂Ω
Ω

)

∈ M(Ω1 × ∂Ω2 × ∂Ω2) =M(Ω1 × ∂Ω2 × ∂Ω3),

and finally define
γ

123 := γ̃123
+ σ

12
+ σ

23.

We prove thatγ123 satisfies the thesis. Observe that

π12
# γ

123
= π12

# γ
123
+ π12

# σ
12
+ π12

# σ
23
= (γ12)Ω

Ω
+ (π2, π2)#

(

(

γ
23)Ω

∂Ω

)

+ (π1, π2)#

(

(

γ
12)∂Ω
Ω

)

= (γ12)Ω
Ω
+ (π2, π2)#

(

(

γ
23)Ω

∂Ω

)

+
(

γ
12)∂Ω
Ω
= γ

12
+ (π2, π2)#

(

(

γ
23)Ω

∂Ω

)

,

and that (π2, π2)#
(

(γ23)Ω
∂Ω

)

is concentrated on the diagonal of∂Ω × ∂Ω. Similar for
π23

# γ
123. �

Theorem 2.2 (Wb2 is a distance onM2(Ω)) The function Wb2 is a distance on the set
M2(Ω) which is lower semicontinuous with respect to weak convergence in duality with
functions in Cc(Ω).
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Proof. The facts thatWb2(µ, ν) = 0 if and only ifµ = ν and the symmetry are obvious.
For the triangle inequality we need to use the version of gluing lemma we just proved.
Fix µ1, µ2, µ3 ∈ M2(Ω) and letγ12, γ23 be two optimal plans fromµ1 to µ2 and fromµ2

to µ3 respectively. Use lemma 2.1 to find a 3-planγ123 such thatπ1,2
# γ

123
= γ

12
+ σ

12

andπ2,3
# γ

123
= γ

23
+σ

23, with σ12 andσ12 concentrated on the diagonals of∂Ω × ∂Ω.
Then we have

(

π1
#γ

123)|Ω =
(

π1
#γ

12
+ σ

12)|Ω = µ1. Similarly, we have
(

π3
#γ

123)|Ω = µ3,

thereforeπ1,2
γ

123 ∈ Adm(µ1, µ3) and it holds

Wb2(µ1, µ3) ≤

√

∫

|x1 − x3|2dγ123

≤

√

∫

|x1 − x2|2dγ123+

√

∫

|x2 − x3|2dγ123

=

√

∫

|x1 − x2|2d(γ12 + σ12) +

√

∫

|x2 − x3|2d(γ23 + σ23)

=

√

∫

|x1 − x2|2dγ12+

√

∫

|x2 − x3|2dγ23

=Wb2(µ1, µ2) +Wb2(µ2, µ3),

where in the fourth step we used the fact thatσ12 andσ23 are concentrated on a diago-
nal.

For the lower semicontinuity, let (µn), (νn) be two sequences weakly converging to
µ, ν respectively, and for anyn ∈ N chooseγn ∈ Opt(µn, νn). It is immediate to check
that the sequence (γn) is relatively compact in duality with functions inCc(Ω × Ω \
∂Ω × ∂Ω), so that up to passing to a subsequence, not relabeled, we may assume that
(γn) weakly converges to someγ in duality withCc(Ω×Ω\∂Ω×∂Ω). Since obviously
π1

#γ|Ω = µ andπ2
#γ|Ω = ν we have

Wb2
2(µ, ν) ≤

∫

|x− y|2dγ ≤ lim
n→∞

∫

|x− y|2dγn(x, y) = lim
n→∞

Wb2
2(µn, νn).

�

From now on,P : Ω→ ∂Ω will be a measurable map such that

|x− P(x)| = d(x, ∂Ω) ∀ x ∈ Ω.

It is well-known that such a map is uniquely defined onLd-a.e. x ∈ Ω. (Indeed,P(x)
is uniquely defined whenever the Lipschitz functiond(·, ∂Ω) is differentiable, and is
given byP(x) = x − ∇d(x, ∂Ω)2/2.) Here we are just defining it on the wholeΩ via a
measurable selection argument (we omit the details).

We will use the notation Id :Ω→ Ω to denote the identity map onΩ.
To better understand the properties of optimal plans, let ussetc(x, y) := |x− y|2 and

c̃(x, y) := min
{

|x− y|2, d2(x, ∂Ω) + d2(y, ∂Ω)
}

.

Also, define the setA ⊂ Ω ×Ω by

A :=
{

(x, y) ∈ Ω ×Ω : |x− y|2 ≤ d2(x, ∂Ω) + d2(y, ∂Ω)
}

. (5)
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Recall that a functionϕ onΩ is saidc-concave provided

ϕ(x) = inf
y∈Ω

c(x, y) − ψ(y),

for someψ : Ω→ R. Thec-transform ofϕ is the functionϕc defined by

ϕc(y) = inf
x∈Ω

c(x, y) − ϕ(y),

and thec-superdifferential∂c
+
ϕ of thec-concave functionϕ is the set

∂c
+
ϕ :=

{

(x, y) ∈ Ω × Ω : ϕ(x) = c(x, y) − ϕc(y)
}

.

Analogously, one can speak about ˜c-concavity, c̃-transform, and ˜c-superdifferential.
Let us remark that sincec, c̃ are Lipschitz onΩ×Ω, c-concave and ˜c-concave functions
are Lipschitz too.

Proposition 2.3 (Characterization of optimal plans) Let γ be a Borel measure on
Ω×Ω \∂Ω×∂Ω satisfying

∫ [

d2(x, ∂Ω) + d2(y, ∂Ω)
]

dγ(x, y) < ∞. Then the following
three things are equivalent:

(i) γ is optimal for the coupleπ1
#γ|Ω, π

2
#γ|Ω for Problem 1.1,.

(ii) γ is concentrated onA and the setsupp(γ)∪ ∂Ω× ∂Ω is c̃-cyclically monotone.

(iii) there exists a c-concave functionϕ such thatϕ andϕc are both identically0 on
∂Ω, andsupp(γ) ⊂ ∂c

+
ϕ.

Also, for each optimal planγ it holds

|x− y| = d(x, ∂Ω), γ
∂Ω
Ω

-a.e.(x, y). (6)

Similarly forγΩ
∂Ω

.
Moreover, if(γn) is a sequence of optimal plans for Problem 1.1 (each one with

respect to to its own marginals) which weakly converges to some planγ in duality with
functions in Cc(Ω ×Ω \ ∂Ω × ∂Ω), thenγ is optimal as well.

Finally, givenµ, ν ∈ M2(Ω) there exists a c-concave functionϕ such thatϕ andϕc

are both identically0 on∂Ω, and every optimal planγ betweenµ andν is concentrated
on∂c

+
ϕ.

Proof. Let us first assume thatγ has finite mass. Defineµ := π1
#γ, ν := π2

#γ, and let
µ, ν be the restriction ofµ, ν toΩ respectively.

We start proving that (i) ⇒ (ii ). We show first thatγ is concentrated onA. Define
the planγ̃ by

γ̃ := γ|A + (π1,P ◦ π1)#

(

γ|
Ω×Ω\A

)

+ (P ◦ π2, π2)#

(

γ|
Ω×Ω\A

)

, (7)

and observe that ˜γ ∈ Adm(µ, ν) and
∫

|x− y|2 dγ̃(x, y) =
∫

A
|x− y|2 dγ +

∫

Ω×Ω\A

[

d2(x, ∂Ω) + d2(y, ∂Ω)
]

dγ(x, y)

≤
∫

|x− y|2 dγ(x, y),
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with strict inequality if γ(Ω × Ω \ A) > 0. Thus from the optimality ofγ we deduce
thatγ is concentrated onA. This implies that

∫

c̃(x, y) dγ(x, y) =
∫

|x− y|2 dγ(x, y). (8)

Now we show thatγ is an optimal transport plan (in the classical sense) fromµ to
ν for the cost ˜c. Suppose by contradiction that it is not optimal. Then thereexists some
planη such thatπ1

#η = µ, π2
#η = ν and
∫

c̃(x, y) dη <
∫

c̃(x, y) dγ. (9)

Let η̃ be the plan constructed via formula (7) replacingγ by η. As before, fromη ∈
Adm(µ, ν) we deriveη̃ ∈ Adm(µ, ν), and

∫

|x− y|2dη̃(x, y) =
∫

c̃(x, y)dη(x, y).

Hence from (8) and (9) we contradict the optimality ofγ for Problem 1.1.
This shows that any optimal planγ is an optimal transport plan (in the classical

sense) fromµ to ν for the cost ˜c. Hence, applying the standard transport theory from
optimal transport, we deduce that the support of any optimalplan for Problem 1.1 is
c̃-cyclically monotone.

Now, takex ∈ ∂Ω and observe that the planγ := γ+δx,x is still optimal for Problem
1.1. Hence by the above argument the set supp(γ) ∪ {(x, x)} is c̃-cyclically monotone.
From the validity of

c̃(x, y) = 0, ∀x, y ∈ ∂Ω,
c̃(x, z) + c̃(y, z) ≥ c̃(x, y) ∀x, y ∈ Ω, z ∈ ∂Ω,

and it is easy to verify the ˜c-cyclically monotonicity of supp(γ) ∪ {(x, x)} implies that
the set

supp(γ) ∪ ∂Ω × ∂Ω
is c̃-cyclically monotone as well, as desired.

Now we prove that (ii )⇒ (iii ). From the standard theory of transport problems (see
e.g. [14, Theorem 5.10]) there exists a ˜c-concave function such that supp(γ) ∪ ∂Ω ×
∂Ω ⊂ ∂c̃

+
ϕ. We claim thatϕ andϕc̃ are both constant on∂Ω. Indeed, since (x, y) ∈ ∂c̃

+
ϕ

for any (x, y) ∈ ∂Ω × ∂Ω we have

ϕ(x) + ϕc̃(y) = c̃(x, y) = 0, ∀ x, y ∈ ∂Ω,

which gives the claim. In particular, up to adding a constant, we can assume thatϕ is
identically 0 on∂Ω, which implies in particular thatϕc̃ is identically 0 on∂Ω too.

The fact thatϕ is c-concave follows immediately from the fact that for anyy ∈ Ω
the function

x 7→ c(x, y) = min
{

|x− y|2, inf
z∈∂Ω
|x− z|2 + d2(y, ∂Ω)

}

,

is c-concave. It remains to prove thatγ is concentrated on∂c
+
ϕ and thatϕc

= 0 on∂Ω.
For the first part, we observe that

∂c̃
+
ϕ ∩A ⊂ ∂c

+
ϕ. (10)

8



Indeed, assume that (x0, y0) ∈ ∂c̃
+
ϕ ∩A. Then

ϕ(x0) = c̃(x0, y0) − ϕc̃(y0),

ϕ(x) ≤ c̃(x, y0) − ϕc̃(y0), ∀x ∈ Ω.

Moreover, since (x0, y0) ∈ A we have ˜c(x0, y0) = c(x0, y0) while in general ˜c(x, y0) ≤
c(x, y0). Hence

ϕ(x0) = c(x0, y0) − ϕc̃(y0),

ϕ(x) ≤ c(x, y0) − ϕc̃(y0), ∀x ∈ Ω,

which easily implies that (x0, y0) ∈ ∂c
+
ϕ.

For the second part, observe that the diagonal{(x, x) : x ∈ ∂Ω} is included both in
∂c̃
+
ϕ and inA, thus from (10) it is included in∂c

+
ϕ. This means that

ϕc(x) = ϕ(x) + ϕc(x) = c(x, x) = 0, ∀x ∈ ∂Ω,

which givesϕc(x) ≡ 0 in ∂Ω as desired.
We finally show (iii ) ⇒ (i). Let γ̃ be any plan in Adm(µ, ν). Since supp(γ) ⊂

∂cϕ(x), we haveϕ(x) + ϕc(y) = c(x, y) = |x− y|2 on the support ofγ, while for general
x, y it holdsϕ(x)+ϕc(y) ≤ c(x, y) = |x−y|2. Also, the functionsϕ, ϕc are Lipschitz (so in
particularly bounded), and thus integrable with respect toany measure with finite mass.
Furthermore, sinceϕ is identically 0 on∂Ω andπ1

#γ|Ω = π1
#γ̃|Ω, we have

∫

ϕdπ1
#γ =

∫

ϕdπ1
#γ̃. The analogous result holds for forϕc. Thanks to these considerations we

obtain
∫

|x− y|2 dγ(x, y) =
∫

[

ϕ(x) + ϕc(y)
]

dγ(x, y)

=

∫

ϕ(x) dπ1
#γ(x) +

∫

ϕc(y) dπ2
#γ(y)

=

∫

ϕ(x) dπ1
#γ̃(x) +

∫

ϕc(y) dπ1
#γ̃(x)

=

∫

[ϕ(x) + ϕc(y)] dγ̃(x, y)

≤
∫

|x− y|2 dγ̃,

which concludes the proof.
Now, let us consider the case whenγ has infinite mass.
The proof of (i) ⇒ (ii ) works as in the case of finite mass. Indeed, the only argu-

ment coming from the classical transport theory that we usedis the implication ‘support
not c̃-cyclically monotone implies plan not optimal for the cost ˜c’, and it is immedi-
ate to check that the classical argument of finding a better competitor from the lack of
c̃-cyclical monotonicity of the support works also for infinite mass.

The implication (ii )⇒ (iii ) follows as above, as the statements (ii ) and (iii ) concern
only properties of the support ofγ.

To prove (iii ) ⇒ (i), the only difficulty comes from the fact that a prioriϕ andϕc

may be not integrable. However, it is easy to see that thec-concavity ofϕ combined
with the fact thatϕ andϕc both vanish on∂Ω implies

ϕ(x) ≤ d2(x, ∂Ω), ϕc(x) ≤ d2(x, ∂Ω), ∀ x ∈ Ω.
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Hence bothϕ andϕc are semi-integrable, and this allow us to conclude as above.(See
for instance Step 4 in the proof of [2, Theorem 6.1.4].)

To prove (6), let

A :=
{

(x, y) ∈ Ω × ∂Ω : |x− y| > d(x, ∂Ω) = |x− P(x)|
}

,

and assume by contradiction thatγ∂Ω
Ω

(A) > 0. Then we define

γ̃
∂Ω
Ω

:= (Id,P)#π
1
#γ

∂Ω
Ω
,

and set
γ̃ := γΩ

Ω
+ γ̃

∂Ω
Ω
+ γ

Ω

∂Ω.

Sinceπ1
#γ̃

∂Ω
Ω
= π1

#γ
∂Ω
Ω

we haveπ1
#γ̃ = π

1
#γ. Moreoverπ2

#γ̃|Ω = π
2
#γ|Ω by construction,

so thatγ̃ ∈ Adm(µ0, µ1). Since
∫

Ω×∂Ω
|x− y|2 dγ̃(x, y) <

∫

Ω×∂Ω
|x− y|2 dγ(x, y),

∫

Ω×Ω\Ω×∂Ω
|x− y|2 dγ̃(x, y) =

∫

Ω×Ω\Ω×∂Ω
|x− y|2 dγ(x, y),

we haveC(γ̃) < C(γ), which gives the desired contradiction.
The stability of optimal plans now follows as in the classical optimal transport

problem by exploiting the equivalence between (i) and (ii),see for instance [14, The-
orem 5.20]. Finally, the last statement follows from the following observation: let
(γi)i≥0 ⊂ Opt(µ, ν) be a countable dense subset, and define

γ∞ :=
∑

i≥0

1
2i
γi .

Thenγ∞ ∈ Opt(µ, ν) by the convexity of the constraints (2) and the linearity ofthe
cost. Furthermore, since its support contains the supportsof all theγi ’s, and since they
are dense inside Opt(µ, ν), the support ofγ∞ contains that of any optimal plan. Hence
it suffices to apply (i)⇒ (iii ) to γ∞, to conclude. �

Remark 2.4 The idea on which is based the proof of the last part of the above propo-
sition is well-known for the classical transport problem. Recently, the first author used
the same tool to prove a similar result for the optimal partial transport problem (see
[6]). Observe also that here the fact that the cost function is the squared distance does
not play any crucial role. Therefore many of the statements in this section hold for
much more general cost functions (we will not stress this point any further).

The following result is the analogue in our setting of Brenier’s theorem on existence
and uniqueness of optimal transport maps [3, 4]:

Corollary 2.5 (On uniqueness of optimal plans)Letµ, ν ∈ M2(Ω), and fixγ ∈ Opt(µ, ν).
Then:

(i) If µ ≪ Ld, thenγΩ
Ω

is unique, and it is given by(Id,T)#µ, where T : Ω → Ω is
the gradient of a convex function. (However,γ as a whole may be not uniquely
defined as there may be multiple ways of bringing the mass fromthe boundary to
ν if no hypothesis onν are made).

10



(ii) If µ, ν≪ Ld, thenγ is unique.

Proof. Thanks to the equivalence (i) ⇔ (iii ) of the previous theorem, the result
follows exactly as in the classical transport problem, see for instance [2, Theorem 6.2.4
and Remark 6.2.11]. �

Remark 2.6 Let us point out that given a sequence (µn) ⊂ M2(Ω) weakly converges
to someµ ∈ M2(Ω) in duality with functions inCc(Ω), the following two things are
equivalent:

- m2(µn)→ m2(µ),

- lim
r→0

sup
n∈N

∫

{d(x,∂Ω)≤r}

d2(x, ∂Ω) dµn(x) = 0.

Proposition 2.7 (The space(M2(Ω),Wb2)) A sequence(µn) ⊂ M2(Ω) converges to
µ ∈ M2(Ω) with respect to Wb2 if and only if it converges weakly in duality with
functions in Cc(Ω) and m2(µn)→ m2(µ).

Moreover the space(M2(Ω),Wb2) is Polish, and the subsetM≤M(Ω) ofM2(Ω)
consisting of measures with mass less or equal to M∈ R is compact.

Proof. Suppose thatWb2(µn, µ) → 0, and let0 denote the vanishing measure. Then,
sincem2(µ) = Wb2(µ, 0), from the triangle inequality we immediately getm2(µn) →
m2(µ). Now, givenϕ ∈ Cc(Ω), fix ε > 0 and find a Lipschitz functionψ such that

supp(ψ) ⊂ supp(ϕ),

sup
x∈Ω
|ϕ(x) − ψ(x)| ≤ ε.

Observe that from inequality (3) and the uniform bound onm2(µn),m2(µ), we have that
the mass ofµn, µ on supp(ϕ) is uniformly bounded by some constantC. Thus, choosing
γn ∈ Opt(µn, µ) we have

∣

∣

∣

∣

∣

∫

ϕdµn −
∫

ϕdµ
∣

∣

∣

∣

∣

≤ 2Cε +
∣

∣

∣

∣

∣

∫

ψdµn −
∫

ψdµ
∣

∣

∣

∣

∣

= 2Cε +
∣

∣

∣

∣

∣

∫

ψ(x) dγn(x, y) −
∫

ψ(y) dγn(y, y)
∣

∣

∣

∣

∣

≤ 2Cε +
∫

supp(ψ)×supp(ψ)
|ψ(x) − ψ(y)| dγn(x, y)

≤ 2Cε + Lip(ψ)
∫

supp(ψ)×supp(ψ)
|x− y| dγn(x, y)

≤ 2Cε +C Lip(ψ)

√

∫

supp(ψ)×supp(ψ)
|x− y|2 dγn(x, y)

≤ 2Cε +C Lip(ψ) Wb2(µn, µ).

Letting firstn→ ∞ and thenε→ 0, we obtain the weak convergence.
Conversely, let (µn) be a sequence weakly converging toµ and satisfyingm2(µn)→

m2(µ), and chooseγn ∈ Opt(µn, µ). Up to passing to a subsequence, thanks to Proposi-
tion 2.3 we may assume that (γn) weakly converges to some optimal planγ in duality
with functions inCc(Ω ×Ω \ ∂Ω × ∂Ω). Chooser > 0, define

Ar :=
{

(x, y) ∈ Ω × Ω : d(x, ∂Ω) < r, d(y, ∂Ω) < r
}

,
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and recall that supp(γ) ⊂ A,A being defined by (5). Hence

lim
n→∞

∫

Ω×Ω

|x− y|2 dγn(x, y) ≤ lim
n→∞

∫

Ω×Ω\Ar

|x− y|2 dγn(x, y) + lim
n→∞

∫

Ar

|x− y|2 dγn(x, y)

≤
∫

Ω×Ω\Ar

|x− y|2 dγ(x, y) + 2 lim
n→∞

∫

Ar

d2(x, ∂Ω) dγn(x, y) + 2 lim
n→∞

∫

Ar

d2(y, ∂Ω) dγn(x, y)

=

∫

Ω×Ω\Ar

|x− y|2 dγ(x, y) + 2 lim
n→∞

∫

{d(x,∂Ω)≤r}

d2(x, ∂Ω) dµn(x) + 2 lim
n→∞

∫

{d(y,∂Ω)≤r}

d2(y, ∂Ω) dµ(y),

where in the second step we used the fact thatΩ × Ω \ Ar is closed. Lettingr ↓ 0,
using Remark 2.6, the stability of optimality statement of Proposition 2.3 above and
observing that the result does not depend on the subsequencechosen, we get

lim
n→∞

Wb2
2(µn, µ) =

∫

Ω×Ω

|x− y|2 dγ(x, y) =Wb2
2(µ, µ) = 0

as desired.
The claim on the compactness ofM≤M(Ω) is easy. It is also immediate to check

that∪MM≤M is dense inM2(Ω), so that to prove the separability ofM2(Ω) it is enough
to prove the separability of each of theM≤M(Ω)’s, which follows by standard means by
considering the set of rational combination of Dirac massescentered at rational points.
Thus we only prove completeness. Let (µn) be a Cauchy sequence with respect toWb2.
We observe thatm2(µn) are uniformly bounded. Moreover thanks to inequality (3) the
set{µn} is weakly relatively compact in duality with functions inCc(Ω), which implies
the existence of a subsequence (µnk) weakly converging to some measureµ. By the
lower semicontinuity ofWb2 with respect to weak convergence we get

m2(µ) =W2(µ, 0) ≤ lim
k→∞

W2(µnk , 0),

so thatµ ∈ M2(Ω). Again by the lower semicontinuity ofWb2 we have

Wb2(µ, µm) ≤ lim
k→∞

Wb2(µnk , µm),

so
lim

m→∞
Wb2(µ, µm) ≤ lim

m,k→∞
Wb2(µnk , µm) = 0.

�

Remark 2.8 Note carefully that in the above proposition we are talking about weak
convergence in duality with functions with compact supportin Ω, and not, e.g., with
continuous and bounded functions inΩ. Indeed, the mass can ‘disappear’ inside the
boundary, so that in general we only have

lim inf
n→∞

µn(Ω) ≥ µ(Ω),

for any sequence{µn}n∈N ⊂ M2(Ω) such thatWb2(µn, µ)→ 0.
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Figure 2: Geodesic interpolation is always possible in the space (M2(Ω),Wb2). Indeed,
the mass can ‘appear’ only att = 0, can ‘vanish’ only att = 1, and fort ∈ (0, 1) it moves
along straight segments insideΩ. In particular, in the open interval (0, 1), a geodesic
with respect toWb2 is also a geodesic with respect toW2.

Proposition 2.9 (Geodesics)The space(M2(Ω),Wb2) is a geodesic space. A curve
[0, 1] ∋ t 7→ µt is a minimizing geodesic with constant speed if and only if there exists
γ ∈ Opt(µ0, µ1) such that

µt =
(

(1− t)π1
+ tπ2)

#γ, ∀ t ∈ (0, 1). (11)

Also, given a geodesic(µt), for any t ∈ (0, 1) and s∈ [0, 1] there is a unique optimal
planγs

t fromµt to µs, which is given by

γ
s
t :=

(

(1− t)π1
+ tπ2, (1− s)π1

+ sπ2)
#γ,

whereγ ∈ Opt(µ0, µ1) is the plan which induces the geodesic via Equation(11). Fur-
thermore, the planγs

t is the unique optimal transport plan fromµt toµs for the classical
transport problem.

In particular, the space(M2(Ω),Wb2) is non-branching, and the mass ofµt inside
Ω is constant - possibly infinite - for t∈ (0, 1).

Observe that Equation (11) doesnot hold for t = 0, 1, as the marginals ofγ generally
charge also∂Ω. We further remark that such a statement would be false for the classical
Wasserstein distanceW2. Indeed, ifγ is an optimal plan forW2, then the measuresµt

defined by (11) willnot in general be concentrated inΩ, unlessΩ is convex.

Proof. The only new part with respect to the classical case is that, if γ is an optimal
plan fromµ0 to µ1, then the measuresµt defined by (11) are concentrated inΩ (and
not just in its convex hull). Once this result is proved, the rest of the proof becomes
exactly the same as in the standard case of the Wasserstein distance, see [2, Paragraph
7.2]. Hence, we are going to prove only this new part.

To this aim, recall that thanks to Proposition 2.3 we know that an optimal planγ is
concentrated on the setA defined in (5). Thus to conclude it is enough to show that
for every (x, y) ∈ A the segmentt 7→ (1− t)x+ ty is entirely contained inΩ. Argue by
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contradiction and assume that for somet ∈ (0, 1) it holds (1− t)x+ ty < Ω, then from

d(x, ∂Ω) ≤ |x− (1− t)x+ ty| = t |x− y|,
d(y, ∂Ω) ≤ |y− (1− t)x+ ty| = (1− t) |x− y|,

we deduce

d2(x, ∂Ω) + d2(y, ∂Ω) ≤ (

t
2
+ (1− t)2) |x− y|2 < |x− y|2,

which contradicts (x, y) ∈ A. �

Remark 2.10 (A comparison betweenWb2 and W2) Let µ, ν ∈ M2(Ω) and assume
that 0 < µ(Ω) = ν(Ω) < ∞. Then any planγ which is optimal for the classical
transportation cost is admissible for the new one. Therefore we have the inequality:

Wb2(µ, ν) ≤W2(µ, ν), ∀ µ, ν ∈ M2(Ω) s.t.µ(Ω) = ν(Ω) > 0. (12)

Figure 3: For measures with the same amount of mass, the distanceWb2 is smaller
than the classicalW2: as the picture shows, it may be much better to exchange the mass
with the boundary rather than internally.

Proposition 2.11 (An estimate on the directional derivative) Let µ, ν ∈ M2(Ω) and
w : Ω→ Rd a bounded vector field with compact support. Also, letγ ∈ Opt(µ, ν), and
defineµt := (Id + tw)#µ. Then

lim sup
t→0

Wb2
2(µt, ν) −Wb2

2(µ, ν)

t
≤ −2

∫

〈w(x), y− x〉 dγ(x, y).

Proof. Observe that sincew is compactly supported inΩ, for t > 0 sufficiently small
µt ∈ M2(Ω), so that the statement makes sense. Now it is simple to checkthat the plan
γt defined by

γt :=
(

(Id + tw) ◦ π1, π2)
#γ,

belongs to Adm(µt, ν). Hence

Wb2
2(µt, ν) ≤

∫

|x− y|2 dγt(x, y) =
∫

|x+ tw(x) − y|2 dγ(x, y)

=Wb2
2(µ, ν) − 2t

∫

〈w(x), y− x〉 dγ(x, y) + t2
∫

|w(x)|2 dγ(x, y),

and the conclusion follows. �
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3 The heat equation with Dirichlet boundary condition
as a ‘gradient flow’

This section contains an application of our new transportation distance: we are going
to show that the gradient flow of the entropy functional

∫

Ω
[ρ log(ρ) − ρ] dx coincides

with the heat equation, with Dirichlet boundary condition equal to 1. To prove such a
result, we will first study some of the properties of the entropy, showing in particular a
lower bound on its slope, see Proposition 3.2. Then, following the strategy introduced
in [8], we will apply the minimizing movement scheme to proveour result. Finally
we will show that the discrete solutions constructed by minimizing movements enjoy
a comparison principle: if (ρτk)k∈N and (ρ̃τk)k∈N are two discrete solution for a time step
τ > 0, andρτ0 ≤ ρ̃τ0, thenρτk ≤ ρ̃

τ
k for all k ∈ N. Lettingτ→ 0, this monotonicity result

allows to recover the classical maximum principle for the heat equation.

To be clear: we will not state any result concerning existence of the gradient flow
of the entropy (we will not identify the slope of the entropy,nor the infinitesimal de-
scription of the distanceWb2). What we will do is a work ‘by hands’: we will show
that we have compactness in the minimizing movements schemeand prove that any
limit is a weak solution of the heat equation with Dirichlet boundary conditions.

3.1 The entropy

The entropy functionalE :M2(Ω)→ R ∪ {+∞} is defined as

E(µ) :=



























∫

Ω

e(ρ(x)) dx if µ = ρLd|Ω,

+∞ otherwise,

wheree : [0,+∞)→ [0,+∞) is given by

e(z) := zlog(z) − z+ 1.

From now on, since we will often deal with absolutely continuous measures, by abuse
of notation we will sometimes useρ to denote the measureρLd|Ω. In particular, we

will write A dm(ρ, ρ′) in place of Adm(ρLd|Ω, ρ
′Ld|Ω).

Proposition 3.1 (Semicontinuity and compactness of sublevels) The functional E:
M2(Ω)→ R ∪ {+∞} takes value in[0,+∞], it is lower semicontinuous with respect to
Wb2, and its sublevels are compact.

Proof. If µ = ρLd|Ω, thanks to Jensen inequality we have

e

(

µ(Ω)
|Ω|

)

= e

(

1
|Ω|

∫

Ω

ρdx

)

≤ 1
|Ω|

∫

Ω

e(ρ) dx=
E(µ)
|Ω| . (13)

This inequality bounds the mass ofρ in terms of the entropy, which gives the relative
compactness of the sublevels ofE thanks to Proposition 2.7. The boundE(µ) ≥ 0 is
immediate ase ≥ 0. Finally, the lower semicontinuity follows from the convexity and
superlinearity ofe and from fact that convergence with respect toWb2 implies weak
convergence (see Proposition 2.7). �

15



We recall that theslopeof the functionalE defined on the metric space (M2(Ω),Wb2)
is defined as:

|∇E|(µ) := lim sup
ν→µ

(E(µ) − E(ν))+

Wb2(µ, ν)
.

Proposition 3.2 (Bound of the slope in terms of Fisher’s information) The slope of
E is bounded from below by the square root of the Fisher information F : M2(Ω) →
[0,+∞]:

F(µ) :=



























4
∫

Ω

∣

∣

∣∇√ρ
∣

∣

∣

2
dx if µ = ρLd|Ω and

√
ρ ∈ H1(Ω),

+∞ otherwise.

Proof. Takeµ ∈ M2(Ω), definem := µ(Ω), and letMm(Ω) be the set of non-negative
measures onΩ with massm. OnMm(Ω), we can consider the Wasserstein distance
W2. Consider the functionalE : (Mm(Ω),W2) → R ∪ {+∞}. It is well-known that
|∇E|(µ) =

√

F(µ) for all µ ∈ M1, see [2, Chapter 10]. Then, it is easily checked by a
scaling argument that the formula remains true for arbitrary m≥ 0. Hence, taking into
account inequality (12), we obtain

|∇E|(µ) ≥ lim sup
Mm(Ω)∋ν→µ

(E(µ) − E(ν))+

Wb2(µ, ν)
≥ lim sup
Mm(Ω)∋ν→µ

(E(µ) − E(ν))+

W2(µ, ν)
=

√

F(µ),

as desired. �

Proposition 3.3 (A directional derivative of E) Let µ = ρLd ∈ M2(Ω) be such that
E(µ) < +∞, and letw : Ω → Rd be a C∞ vector field with compact support. Define
µt := (Id + tw)#µ. Then

lim
t→0

E(µt) − E(µ)
t

=

∫

Ω

ρdivw dx.

Proof. Sincew is compactly supported,µt ∈ M2(Ω) for sufficiently smallt, and the
proof is exactly the same as the one in the Wasserstein case. �

Remark 3.4 [A source of difficulties] It is important to underline that the entropyE
is not geodesically convex on the space (M2(Ω),Wb2). Indeed, since for instance the
mass can disappear at the boundary fort = 1, it is possible that an high concentration
of mass near∂Ω gives limt↑1 E(µt) = +∞, while E(µ1) < +∞. (Observe that, once
the mass has reached∂Ω, it does not contribute any more to the energy!) Still, since
for t, s ∈ (0, 1) the optimal transport plan forWb2 coincides with the optimal transport
plan forW2 (see Proposition 2.9),t 7→ E(µt) is convex in the open interval (0, 1) (see
for instance [2, Chapter 9]).

3.2 Minimizing movements for the entropy

In this paragraph we apply the minimizing movements to construct a weak solution to
the heat equation with Dirichlet boundary condition.

We briefly review the minimizing movement scheme, referringto [2] for a detailed
description and general results. Fixρ0 ∈ M2(Ω) such thatE(ρ0) < +∞ (given the
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Figure 4: For typicalµ0, µ1, a geodesic connecting them takes mass from the boundary
at t = 0 and leaves mass att = 1. In this case the graph oft 7→ E(µt) looks like
in the picture: in the interval (0, 1) the function is convex and converges to+∞ as
t → 0, 1. The value ofE(µ0) andE(µ1) has basically no connection with the values in
intermediate times.

lack of convexity ofE, we need to assume that the entropy at the initial point is finite,
thus in particular the measure is absolutely continuous), and fix a time stepτ > 0. Set
ρτ0 := ρ0, and define recursivelyρτn+1 as the unique minimizer of

µ 7→ E(µ) +
Wb2

2(µ, ρτn)

2τ

(see Proposition 3.6 below). Then, we define thediscrete solution t7→ ρτ(t) ∈ M2(Ω)
by

ρτ(t) := ρτn for t ∈ [nτ, (n+ 1)τ).

We recall that the spaceW1,1
0 (Ω) is defined as the closure ofC∞0 (Ω) with respect

to theW1,1-norm. (Observe that this definition requires no smoothnessassumptions on
∂Ω.) Then we say thatf ∈ W1,1(Ω) has trace 1 iff − 1 ∈ W1,1

0 (Ω). (More in general,

given a smooth functionφ : Ω → R, one may say thatf ∈ W1,1(Ω) has traceφ if
f − φ ∈W1,1

0 (Ω).)
Our main theorem is the following:

Theorem 3.5 With the above notation, for any sequenceτk ↓ 0 there exists a sub-
sequence, not relabeled, such that, for any t≥ 0, ρτk(t) converges to some limit
measureρ(t) in (M2(Ω),Wb2) as k → ∞. The map t 7→ (

ρ(t) − 1
)

belongs to
L2

loc([0,+∞),W1,1
0 (Ω)), and t 7→ ρ(t) is a weak solution of the heat equation



















d
dt
ρ(t) = ∆ρ(t),

ρ(0) = ρ0.
(14)

We recall that a weakly continuous curve of measuret 7→ µt ∈ M2(Ω) is said to be
a weak solution of (14) if
∫

Ω

ϕdµs(x) −
∫

Ω

ϕdµt(x) =
∫ s

t

(∫

Ω

∆ϕdµr (x)

)

dr, ∀ 0 ≤ t < s, ∀ ϕ ∈ C∞c (Ω),
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In order to prove this theorem, we need the following lemma, which describes the
behavior of a single step of the minimizing movements scheme.

Proposition 3.6 (A step of the minimizing movement)Let µ ∈ M2(Ω) and τ > 0.
Then there exists a unique minimumµτ ∈ M2(Ω) of

σ 7→ E(σ) +
Wb2

2(µ, σ)

2τ
. (15)

Such a minimum satisfies:

(i) µτ = ρτLd|Ω, with ρτ − 1 ∈W1,1
0 (Ω).

(ii) The restriction toΩ×Ω of any optimal transport plan fromµτ to µ is induced by
a map T, which satisfies

T(x) − x
τ

ρτ(x) = −∇ρτ(x), Ld − a.e. x (16)

Proof. The existence of a minimumµτ = ρτLd|Ω follows by a standard compactness-
semicontinuity argument, while the uniqueness is a direct consequence of the convexity
of Wb2

2(·, µ) with respect to usual linear interpolation of measures andthe strict con-
vexity of E(·).

It is well known that at minimum of (15) the slope is finite (see[2, Lemma 3.1.3]).
Hence

√
ρτ ∈ H1(Ω) by Proposition 3.2, and soρτ ∈ W1,1(Ω) by Hölder inequality.

Moreover, thanks to (27) below we have

e−d(x,∂Ω)2/(2τ) ≤ ρτ(x) ≤ e3Diam(Ω)d(x,∂Ω)/(2τ) ∀ x ∈ Ω, (17)

which easily implies thatρτ has trace 1 on∂Ω (we postpone the proof of (17) to the
next section, where we will prove also other useful inequalities onρτ - see Proposition
3.7). This shows (i).

To prove (ii ), we start by observing that Corollary 2.5 and the absolute continuity
of µτ guarantee the existence ofT. Now, choose aC∞ vector fieldw with compact
support inΩ and defineρt

τ := (Id + tw)#ρτ. Using the minimality ofρτ we get

E(ρt
τ) − E(ρτ) +

Wb2
2(ρt

τ, µ) −Wb2
2(ρτ, µ)

2τ
≥ 0.

Dividing by t and lettingt ↓ 0, thanks to Propositions 3.3 and 2.11 we get
∫

Ω

ρdivw dx−
∫

Ω

〈w, T − Id
τ
〉ρdx≥ 0.

Exchangingw with −w and exploiting the arbitrariness ofw the result follows. �

To prove Theorem 3.5 we will use the following a priori bound for the discrete
solution, see [2, Lemma 3.2.2 and Equation (3.2.3)]:

1
2

m−1
∑

i=n

Wb2
2(ρτi , ρ

τ
i+1)

τ
+
τ

2

m−1
∑

i=n

|∇E|2(ρτi ) ≤ E(ρτm) − E(ρτn) ∀ n ≤ m ∈ N. (18)

Proof of Theorem3.5. - Compactness argument.Let {τk}k∈N be a sequence converg-
ing to 0. First of all we observe that, thanks to (13) and the inequalityE(ρτk(t)) ≤ E(ρ0),
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the mass of the measuresρτk(t) is uniformly bounded for allk ∈ N, t ≥ 0. Then a stan-
dard diagonal argument shows that there exists a subsequence, not relabeled, such that
ρτk(t) converges to someρ(t) in (M2(Ω),Wb2) for any t ∈ Q+. Now, thanks to the
uniform bound on the discrete speed

1
2

m−1
∑

i=n

Wb2
2(ρτk

i , ρ
τk
i+1)

τ
≤ E(ρτm) − E(ρτn) ≤ E(ρ0),

(which is a direct consequence of (18)) we easily get

Wb2(ρτk(t), ρτk(s)) ≤
√

2 E(ρ0) [t − s+ τk] ∀ 0 ≤ s≤ t, (19)

which implies the convergence ofρτk(t) for everyt ≥ 0.
- Any limit point is a weak solution of the heat equation.Let τk ↓ 0 be a sequence
such thatρτk(t) converges to someρ(t) in (M2(Ω),Wb2) for any t ≥ 0. We want to
prove thatt 7→ ρ(t) is a weak solution of the heat equation. For anyτ > 0, n ∈ N, let Tτ

n

be the map which induces (γτn)Ω
Ω

, whereγτn ∈ Opt(ρτn+1, ρ
τ
n) (see Corollary 2.5(i)). Fix

ϕ ∈ C∞c (Ω) and observe that

∫

Ω

ϕρτn+1 dx−
∫

Ω

(

ϕ ◦ Tτ
n
)

ρτn+1 dx=
∫

Ω

(∫ 1

0
〈∇ϕ ◦ ((1− λ)Tτ

n + λId
)

, Id − Tτ
n〉dλ

)

ρτn+1 dx

= −
∫

Ω

〈∇ϕ,Tτ
n − Id〉ρτn+1 dx+ R(τ, n)

= τ

∫

Ω

〈∇ϕ,∇ρτn+1〉 dx+ R(τ, n)

= −τ
∫

Ω

∆ϕ ρτn+1 dx+ R(τ, n),

(20)

where at the third step we used (16), and the reminder termR(τ, n) is bounded by

|R(τ, n)| ≤ (Lip∇ϕ)
∫

Ω

|Tτ
n − Id|2ρτn+1 dx= Lip(∇ϕ)Wb2

2(ρτn, ρ
τ
n+1). (21)

Now, since the support ofϕ is contained inΩ and
(

(Tτ
n)#ρ

τ
n+1

)

|Ω = π
2
#

(

(γτn)Ω
Ω

)

we have

∫

Ω

ϕρτn dx−
∫

Ω

(

ϕ ◦ Tτ
n
)

ρτn+1 dx=
∫

Ω×Ω
ϕ(y) d(γτn)Ω∂Ω(x, y).

By Proposition 2.3 we have|x− y| = d(y, ∂Ω) for (γτn)Ω
∂Ω

-a.e. (x, y), which implies

Wb2
2(ρτn+1, ρ

τ
n) ≥

∫

Ω×supp(ϕ)
|x− y|2 d(γτn)Ω∂Ω(x, y)

=

∫

Ω×supp(ϕ)
d(y, ∂Ω)2 d(γτn)Ω∂Ω(x, y) ≥ cϕ (γτn)Ω∂Ω

(

Ω × supp(ϕ)
)

,

wherecϕ := miny∈supp(ϕ) d(y, ∂Ω)2 > 0. Hence

∣

∣

∣

∣

∣

∫

Ω

ϕρτn dx−
∫

Ω

(

ϕ ◦ Tτ
n
)

ρτn+1 dx
∣

∣

∣

∣

∣

≤ ‖ϕ‖∞
cϕ

Wb2
2(ρτn+1, ρ

τ
n).
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Combining the above estimate with (20) and (21), we obtain
∫

Ω

ϕρτn+1 dx−
∫

Ω

ϕρτn dx = −τ
∫

Ω

∆ϕ ρτn+1 dx+ R̃(τ, n), (22)

where
∣

∣

∣R̃(τ, n)
∣

∣

∣ ≤
(

Lip(∇ϕ) +
‖ϕ‖∞

cϕ

)

Wb2
2(ρτn, ρ

τ
n+1). (23)

Now, choose 0≤ t < s, let τ = τk, and add up Equation (22) fromn = [t/τk] to
m= [s/τk] − 1 to get

∫

Ω

ϕρτk(s) dx−
∫

Ω

ϕρτk(t) dx=
∫ τk[s/τk]

τk[t/τk]

(∫

Ω

∆ϕ ρτk(r) dx

)

dr +
[s/τk]−1
∑

n=[t/τk]

R̃(τk, [r/τk]).

We want to take the limit in the above equation asτk ↓ 0. TheWb2-convergence of
ρτk(r) to ρ(r) combined with Proposition 2.7 gives that the left hand sideconverges to
∫

Ω
ϕρ(s) dx−

∫

Ω
ϕρ(t) dx. For the same reason

∫

Ω
∆ϕ ρτk(r) dx→

∫

Ω
∆ϕ ρ(r) dx for any

r ≥ 0. Thus, since the mass of the measuresρτk(t) is uniformly bounded we get
∫

Ω

|∆ϕ ρτk(r)| dx≤ ‖∆ϕ‖∞
∫

Ω

ρτk(r) dx≤ C0

for some positive constantC0, so that by the dominated convergence theorem we get
∫ τk[s/τk]

τk[t/τk]

(∫

Ω

∆ϕ ρτk(r) dx

)

dr →
∫ s

t

(∫

Ω

∆ϕ ρ(r) dx

)

dr,

asτk ↓ 0. Finally, thanks to (18) and (23) the reminder term is bounded by
∣

∣

∣

∣

∣

∣

∣

[s/τk]−1
∑

n=[t/τk]

R̃(τk, [r/τk])

∣

∣

∣

∣

∣

∣

∣

≤
(

Lip(∇ϕ) +
‖ϕ‖∞

cϕ

) [s/τk]−1
∑

n=[t/τk]

Wb2
2(ρτk

n , ρ
τk
n+1)

≤ 2τk

(

Lip(∇ϕ) +
‖ϕ‖∞
cϕ

)

E(ρ0),

and thus it goes to 0 asτk ↓ 0. In conclusion we proved that
∫

Ω

ϕρ(s) dx−
∫

Ω

ϕρ(t) dx=
∫ s

t

(∫

Ω

∆ϕ ρ(r) dx

)

dr, ∀ 0 ≤ t < s, ∀ ϕ ∈ C∞c (Ω).

Thanks to Equation (19) it is immediate to check that the curve t 7→ ρ(t) ∈ M2(Ω)
is continuous with respect toWb2, and therefore weakly continuous. Finally, since
ρτ(0) = ρ0 for anyτ > 0, ρ(0) = ρ0 and the initial condition is satisfied.
- The curve t 7→ (

ρ(t)−1
)

belongs toL2
loc([0,+∞),W1,1

0 (Ω)). From inequality (18) and
Proposition 3.2 we know that

∫ ∞

0

(
∫

Ω

∣

∣

∣∇
√

ρτk(t)
∣

∣

∣

2
dx

)

dt ≤ 1
4

∫ ∞

0
|∇E|2(ρτk(t)) dt ≤ E(ρ0)

2
,

which means that the functionst 7→
√

ρτk(t) are equibounded inL2
loc([0,+∞),H1

0(Ω)).
This implies thatt 7→

√

ρ(t) belongs toL2
loc([0,+∞),H1(Ω)), so that by Hölder inequal-

ity t 7→ ρ(t) ∈ L2
loc([0,+∞),W1,1(Ω)). Moreover, thanks to Fatou lemma,

∫ ∞

0
lim inf
k→+∞

(∫

Ω

∣

∣

∣∇
√

ρτk(t)
∣

∣

∣

2
dx

)

dt < +∞,
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which gives

lim inf
k→+∞

∫

Ω

∣

∣

∣∇
√

ρτk(t)
∣

∣

∣

2
dx< +∞ for a.e.t ≥ 0,

and by Hölder inequality we get

lim inf
k→+∞

∫

Ω

∣

∣

∣∇ρτk(t)
∣

∣

∣ dx< +∞ for a.e.t ≥ 0,

Now, for anyt such that the above liminf is finite, consider a subsequencekn (depending
on t) such that

sup
n∈N

∫

Ω

∣

∣

∣∇ρτkn (t)
∣

∣

∣ dx< +∞.

Then, recalling thatρτk(t) → ρ(t) in (M2(Ω),Wb2), sinceρτkn (t) is uniformly bounded
in W1,1(Ω) and belong toW1,1

0 (Ω) by Proposition 3.6(i), we easily get thatρτk(t)→ ρ(t)
weakly inW1,1(Ω), andρ(t) − 1 ∈W1,1

0 (Ω) as desired. �

3.3 A comparison principle

In this section we prove the following monotonicity result for the minimizing move-
ment scheme ofE with respect toWb2: if we have two measuresµ, µ̃ satisfyingµ ≥ µ̃,
thenµτ ≥ µ̃τ for everyτ ≥ 0, whereµτ, µ̃τ are the unique minimizers of (15) forµ and
µ̃ respectively. It is interesting to underline that:

• Once monotonicity for the single time step is proven, a maximum principle for
weak solutions of heat equation can be proved as a direct consequence, see
Corollary 3.9.

• Although our strategy is not new (for instance, it has been used in the context
of the classical transportation problem in [10, 1] to prove amaximum principle),
the fact of having no mass constraints makes it more efficient, and the properties
of minimizers that we are able to deduce are in some sense stronger.

• The argument that we are going to use holds in much more general situations,
see Remark 3.10. (This in not the case when one deals with the classical trans-
portation problem, where the fact that the cost function satisfiesc(x, x) ≤ c(x, y)
for all x, y ∈ Ω plays an important role, see [1, 7].)

The proof of the monotonicity relies on a set of inequalitiesvalid for each mini-
mizer of (15). In the next proposition we are going to assume thatµ = ρLd|Ω ∈ M2(Ω)
is an absolutely continuous measure and thatτ > 0 is a fixed time step. Also, we will
denote byµτ = ρτLd|Ω the unique minimizer of (15) (which is absolutely continu-
ous by Proposition 3.6), byγ the unique optimal plan for (ρ, ρτ), by T the map which
inducesγΩ

Ω
, and byS the map which inducesγΩ

Ω
seen fromρτ (see Corollary 2.5).

Proposition 3.7 With the notation above, the following inequalities hold:

• Let y1, y2 ∈ Ω be Lebesgue points forρτ, and assume that y1 is also a Lebesgue
point for S . Then

log(ρτ(y1)) +
|y1 − S(y1)|2

2τ
≤ log(ρτ(y2)) +

|y2 − S(y1)|2
2τ

. (24)
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• Let x ∈ Ω be a Lebesgue point for bothρ and T, and assume that T(x) ∈ ∂Ω.
Assume further that y∈ Ω is a Lebesgue point forρτ. Then

|x− T(x)|2
2τ

≤ log(ρτ(y)) +
|x− y|2

2τ
. (25)

• Let y1 ∈ Ω be a Lebesgue point forρτ. Then, for any y2 ∈ ∂Ω, we have

log
(

ρτ(y1)
)

+
|y1 − S(y1)|2

2τ
≤ |y2 − S(y1)|2

2τ
. (26)

• Let y∈ Ω be a Lebesgue point forρτ. Then

−d2(y, ∂Ω)
2τ

≤ log
(

ρτ(y)
) ≤ 3d(y, ∂Ω) Diam(Ω)

2τ
. (27)

(This is the key inequality that shows that minimizers have trace 1 on ∂Ω, see
(17).)

• Let y ∈ Ω be a Lebesgue point for bothρτ and S , and assume that S(y) ∈ ∂Ω.
Then

log
(

ρτ(y)
)

+
d2(y, ∂Ω)

2τ
= 0. (28)

Proof. - Heuristic argument. We start with (24). Consider a pointy1 ∈ Ω and
observe that the massρτ(y1) comes fromS(y1). (It does not matter whetherS(y1) ∈ Ω
or S(y1) ∈ ∂Ω.) We now make a small perturbation ofρ1 in the following way: we
pick a small amount of mass fromS(y1) and, instead than moving it toy1, we move it
to y2. In terms of entropy, we are earning log(ρ1(S(y1))) because of the less mass in
S(y1) and paying log(ρ1(y2)) because of the greater amount of mass aty2. In terms of
the transportation cost, we are earning|y1−S(y1)|2

2τ and paying|y2−S(y1)|2
2τ . But sinceρ1 is a

minimizer of (15), what we are earning must be less or equal towhat we are paying,
and we get (24).

Inequality (25) is analogous: here we are just considering those pointsx which are
sent to the boundary byT. In this case, if we decide to send some small mass atx onto
a pointy ∈ Ω, we are not earning in terms of entropy but just paying log(ρτ(y)), while

in terms of cost we are earning|x−T(x)|2
2τ and paying|x−y|2

2τ .
To prove inequality (27) we argue as follows. Consider first apoint y ∈ Ω and

perturbρτ by picking some small mass from one of the nearest point toy on ∂Ω and

putting it ontoy. In this way we pay log(ρτ(y)) in terms of entropy andd
2(y,∂Ω)

2τ in terms
of cost, so that by minimality we get

d2(y, ∂Ω)
2τ

≥ − log
(

ρτ(y)
)

. (29)

The other part of the inequality comes by taking some small mass aty and putting it
on one of the nearest point toy on∂Ω, sayP(y): we earn log(ρτ(y)) in terms of entropy
and |S(y)−y|2

2τ in terms of cost, and we are paying|S(y)−P(y)|2
2τ more because of the new cost.

This gives

log(ρτ(y)) +
|S(y) − y|2

2τ
≤ |S(y) − P(y)|2

2τ
≤ |S(y) − y|2 + 3|y− P(y)|Diam(Ω)

2τ
,

from which the claim follows.
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The proof of (28) is a sort of converse of (29). Indeed, asS(y) ∈ ∂Ω we know that
the mass ofy is coming from the boundary. Hence we can perturbρτ by taking a bit
less of mass from the boundary, so that there is a bit less of mass iny. In this way we
obtain the opposite of (27), and equality holds.

- Rigorous proof. We will prove rigorously only (24), the proof of the other in-
equalities being analogous.

Fix y1, y2 ∈ Ω, and two positive real numbersr, ε > 0, with r small enough so that
Br(y1) ∪ Br(y2) ⊂ Ω. Let Tr :Rd → Rd be the map defined by Tr(y) := y− y1 + y2, and
let γ ∈ Opt(ρ, ρτ) be the unique optimal plan. Define the planγr,ε as

γ
r,ε := γBr (y1)c

Ω
+ (1− ε)γBr (y1)

Ω
+ ε

(

(

π1,Tr
)

#γ
Br (y1)

Ω

)

,

and set
µr,ε
τ := π2

#γ
r,ε.

Observe thatπ1
#γ

r,ε
= π1

#γ, γ
r,ε ∈ Adm(ρ, µr,ε

1 ), andµr,ε
τ = ρ

r,ε
τ Ld, with

ρr,ε
τ (y) =



















ρτ(y) if y ∈ Br(y1)c ∩ Br(y2)c,

(1− ε)ρτ(y) if y ∈ Br(y1),
ρτ(y) + ερτ(y− y2 + y1) if y ∈ Br(y2).

From the minimality ofρτ we get
∫

Ω

e(ρτ) dx+
1
2τ

C(γ) ≤
∫

Ω

e(ρr,ε
τ ) dx+

1
2τ

C(γr,ε).

Hence
∫

Br (y1)∪Br (y2)
e(ρτ(y)) dy+

1
2τ

∫

Br (y1)∪Br (y2)
|y− S(y)|2ρτ(y) dy

≤
∫

Br (y1)
e((1− ε)ρτ(y)) dy+

(1− ε)
2τ

∫

Br (y1)
|y− S(y)|2ρ1(y) dy

+

∫

Br (y2)
e
(

ρτ(y) + ερτ(y− y1 + y2)
)

dy

+
1
2τ

∫

Br (y2)
|y− S(y)|2(ρτ(y) + ερτ(y− y1 + y2)

)

dy,

which we write as
∫

Br (y1)

(

e(ρτ(y)) − e((1− ε)ρτ(y)) +
ε

2τ
|y− S(y)|2ρτ(y)

)

dy

≤
∫

Br (y2)

(

e
(

ρτ(y) + ερτ(y− y2 + y1)
) − e(ρτ(y))

+
ε

2τ
|y− S(y)|2ρτ(y− y2 + y1)

)

dy.

Dividing by ε and lettingε ↓ 0 we obtain
∫

Br (y1)

(

e′
(

ρτ(y)
)

+
1
2τ
|y− S(y)|2

)

ρτ(y) dy

≤
∫

Br (y2)

(

e′
(

ρ1(y)
)

+
1
2τ
|y− S(y)|2

)

ρτ(y− y2 + y1) dy.

Now, sincey1, y2 are both Lebesgue points ofρτ, andy1 is also a Lebesgue point ofS,
dividing both sides byLd(Br(0)) and lettingr ↓ 0 we obtain (24). �
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Proposition 3.8 (Monotonicity) Letµ ≥ µ̃ ∈ M2(Ω), τ > 0, andµτ, µ̃τ the minima of
the minimizing problem(15). Thenµτ ≥ µ̃τ.
Proof. From the uniqueness part of Proposition 3.6, it follows easily that the map
µ 7→ µτ is continuous with respect to the weak topology. Therefore we can assume by
approximation that bothµ andν are absolutely continuous, sayµ = ρLd andµ̃ = ρ̃Ld.
Also, recall that by Proposition 3.6(i) bothµτ andντ are absolutely continuous, say
µτ = ρτLd andµ̃τ = ρ̃τLd. Let γ ∈ Opt(ρ, ρτ) andγ̃ ∈ Opt(ρ̃, ρ̃τ), and letT, T̃ be the
maps which induceγΩ

Ω
andγ̃Ω

Ω
respectively.

Argue by contradiction, and assume thatA := {ρ̃τ > ρτ} ⊂ Ω satisfies ˜ρτ(A) > 0.
Two cases arise: either ˜γA

Ω
is concentrated onΩ × A or it is not, i.e. either the mass of

ρ̃τ in A comes entirely fromΩ or it is partly taken from the boundary.
Case 1: the mass of̃ρτ in A comes entirely fromΩ. Let B := T̃−1(A), and observe

thatµ̃(B) = µ̃τ(A). LetC ⊂ B be the set of pointsx ∈ B such thatT(x) < A. We remark
thatµ(C) > 0, as otherwise we would have

µτ(A) ≥ µτ(T(B)) = µ
(

T−1(T(B))
) ≥ µ(B) ≥ µ̃(B) = µ̃τ(A),

which contradicts the definition ofA. Define

C1 :=
{

x ∈ C : T(x) ∈ Ω
}

, C2 :=
{

x ∈ C : T(x) ∈ ∂Ω
}

.

SinceC = C1 ∪ C2, eitherµ(C1) > 0 or µ(C2) > 0. Suppose we are in the first
case. Then, as bothT |C1

andT̃ |C1
map subsets of the support of ˜ρ of positive Lebesgue

measure into sets of positive Lebesgue measure, we can findx ∈ C1 a Lebesgue point
for bothT andT̃ such thatT(x) andT̃(x) are Lebesgue points for bothρτ andρ̃τ. With
this choice ofx we apply (24) withy1 = T(x) andy2 = T̃(x) to get

log
(

ρτ(T(x))
)

+
|x− T(x)|2

2τ
≤ log

(

ρτ(T̃(x))
)

+
|x− T̃(x)|2

2τ

Similarly, using (24) for ˜ρτ with y1 = T̃(x) andy2 = T(x) we obtain

log
(

ρ̃τ(T̃(x))
)

+
|x− T̃(x)|2

2τ
≤ log

(

ρ̃τ(T(x))
)

+
|x− T(x)|2

2τ

Adding up the last two inequalities we get

log
(

ρτ(T(x))
)

+ log
(

ρ̃τ(T̃(x))
) ≤ log

(

ρτ(T̃(x))
)

+ log
(

ρ̃τ(T(x))
)

,

which contradicts definition ofC1 and the choice ofx, as we have

T(x) < A ⇒ ρτ(T(x)) ≥ ρ̃τ(T(x)) ⇒ log
(

ρτ(T(x))
) ≥ log

(

ρ̃τ(T(x))
)

,

T̃(x) ∈ A ⇒ ρ̃τ(T̃(x)) > ρτ(T̃(x)) ⇒ log
(

ρ̃τ(T̃(x))
)

> log
(

ρτ(T̃(x))
)

.

It remains to exclude the possibilityµ(C2) > 0. Fix x ∈ C2 a Lebesgue point for
bothT andT̃, such thatT̃(x) is a Lebesgue point for bothρτ and ρ̃τ. We apply (25)
with y = T̃(x) to obtain

|x− T(x)|2
2τ

≤ log
(

ρτ(T̃(x))
)

+
|x− T̃(x)|2

2τ
.

Now, we use (26) for ˜ρτ with y1 = T̃(x), S(y1) = x, andy2 = T(x), to get

log
(

ρ̃τ(T̃(x))
)

+
|x− T̃(x)|2

2τ
≤ |x− T(x)|2

2τ
.
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SinceT̃(x) ∈ A we haveρτ(T̃(x)) < ρ̃τ(T̃(x)), which together with the above inequali-
ties implies

|x− T(x)|2
2τ

≤ log
(

ρτ(T̃(x))
)

+
|x− T̃(x)|2

2τ

< log
(

ρ̃τ(T̃(x))
)

+
|x− T̃(x)|2

2τ
≤ |x− T(x)|2

2τ
,

again a contradiction.
Case 2: the mass of̃ρτ in A comes partly from ∂Ω. Let S̃ be the map which

induces ˜γΩ
Ω

seen from ˜ρτ, and letD ⊂ A be the set of pointsy such that the mass ˜ρτ(y)

comes from the boundary, i.e.D := {y ∈ A : S̃(y) ∈ ∂Ω}. Fix y ∈ D a Lebesgue point
for ρτ, ρ̃τ, andS̃. Thanks to (27) we have

log
(

ρτ(y)
)

+
d2(y, ∂Ω)

2τ
≥ 0,

while applying (28) with ˜ρτ (recall thatS̃(y) ∈ ∂Ω) we obtain

log
(

ρ̃τ(y)
)

+
d2(y, ∂Ω)

2τ
= 0.

But this is absurd asy ∈ D ⊂ A. �

Thanks to Proposition 3.8, we immediately obtain the following:

Corollary 3.9 (Comparison principle) Letµ0, ν0 ∈ M2(Ω), assume thatµ0 ≥ µ̃0, and
let τk ↓ 0 be a sequence of time steps such that the corresponding discrete solutions
µτk(t), µ̃τk(t) associated toµ0, µ̃0 respectively converge to two solutionsµt, µ̃t of the heat
equation, as described in Theorem 3.5. Thenµt ≥ µ̃t for all t ∈ [0,+∞).

Remark 3.10 (Different energies and costs)The proof of the above theorem relies
entirely on the set of inequalities proved in Proposition 3.7. Here we want to point out
that a corresponding version of such inequalities is true inmore general cases.

Indeed, letc : Ω × Ω → R ∪ {+∞} be a continuous cost function, and define the
Cost of transportas the infimum of

∫

Ω×Ω
c(x, y) dγ(x, y),

among allγ ∈ Adm(µ0, µ). Let e : [0,+∞) → R be a superlinear convex function.
Then, a minimizerρ1 for

ρ 7→
∫

Ω

e(ρ(x))dx+ Cost of transport (ρ, µ0),

always exists, and arguing as in the proof of Proposition 3.7it is possible to check that
for ρ1-a.e.y1, y2, and anyx such that (x, y1) belongs to the support of an optimal plan
from µ to ρ1, we have

e′−(ρ1(y1)) + c(x, y1) ≤ e′
+
(ρ1(y2)) + c(x, y2),

and similarly for the other inequalities. Then the convexity of e implies that

e′−(z1) ≤ e′
+
(z1) ≤ e′−(z2) ∀ 0 ≤ z1 < z2,

and the proof of the monotonicity goes on like in the case we analyzed. In particular
it is interesting to observe that the choicec(x, y) = |x− y|2 in this setting does not play
any role.
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4 Comments and open problems

• All our results could be extended to more general cost function and more general
entropies. For instance, by consideringc(x, y) = |x− y|p with p > 1, ande(z) =
zlog(z) − αzwith α ∈ R, one can construct a weak solution of



















d
dt
ρ(t) = ∆pρ(t),

ρ(0) = ρ0,

(where∆pρ denotes thep-Laplacian ofρ), subject to the Dirichlet boundary
condition

ρ(t)|∂Ω = eα−1, for a.e.t ≥ 0.

• It is interesting to observe that our approach - as in the classical Wasserstein one
- allows to introduce a drift term in the diffusion: by considering the entropy
∫

Ω

[

ρ logρ − ρ + Vρ
]

dx for some smooth functionV : Ω → R we obtain a weak
solution of



















d
dt
ρ(t) = ∆ρ(t) + div

(

ρ∇V
)

ρ(0) = ρ0,

subject to the Dirichlet boundary condition

ρ(t)|∂Ω = e−V, for a.e.t ≥ 0.

• A standard approach for constructing weak solutions to the heat equation with
Dirichlet boundary condition equal to a functionφ consists viewing the equation
as the gradient flow of

∫

Ω
|∇ρ|2 on the set of functionsρ ∈ H1

φ(Ω) := {ρ ∈
H1(Ω) : trace(ρ) = φ}, with respect to theL2-norm. However, although this
approach allows to treat general boundary conditions, it cannot be used to add
a drift term: givenF = F(x, u, p) : Ω × R × Rd → R, the gradient flow of a
functional of the form

∫

Ω
F(x, ρ,∇ρ) dx is given by

d
dt
ρ(t) = divx

(

Fp
(

x, ρ(t),∇ρ(t)
)

)

− Fu
(

x, ρ(t),∇ρ(t)
)

,

and it is easy to check by a direct computation that there is nochoice ofF which
allows to obtain∆ρ(t) − div(ρ∇V) as the right-hand side.

• Although it is possible to prove uniqueness of solution by purely PDE methods,
it is not clear to us if one can use a transportation approach to prove this result.
In particular it is not clear if, as in the classical Wassestein case,t 7→Wb2(ρt, ρ̃t)
is decreasing along gradient flows of the entropy

∫

Ω
ρ log(ρ) dx.

• In Proposition 2.11 we only proved an upper bound for the derivative of Wb2.
We conjecture that the following formula should be true: lett 7→ µt an absolutely
continuous curve with values in (M+(Ω),Wb2). Then:

(a) There exists a velocity fieldwt ∈ L1
loc([0,+∞), L2(Ω, µt)) such that

d
dt
µt + div(wtµt) = 0

in [0,+∞) × Ω. (Observe that, since by definition the continuity equation
can be tested only against smooth functions with support inside [0,+∞)×Ω,
the mass ofµt is not necessarily constant.)
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(b) Givenµ ∈ M2(Ω), for a.e.t ≥ 0 we have

d
dt

Wb2
2(µt, µ) = −2

∫

Ω×Ω
〈wt, y− x〉 dγ(x, y),

whereγ is any optimal plan betweenµt andµ.

• For any Borel subsetΓ ⊂ ∂Ω, one can define a variant of our distance: given two
non-negative measuresµ andν onΩ, we set

WbΓ2(µ, ν) := inf
π1

#γ|
Ω\Γ
=µ, π2

#γ|
Ω\Γ
=ν

∫

Ω×Ω
|x− y|2dγ(x, y).

The difference between this distance and theWb2-distance considered in this
paper is that now onlyΓ can be used as an infinite reserve of mass, and not the
whole∂Ω. This distance may be useful to study evolution equations where one
what to impose Dirichlet boundary conditions onΓ and Neumann conditions on
∂Ω \ Γ, at least whenΩ is convex. Moreover, it is likely that this distance may
be used to study crowds motions, where some people want to escape fromΩ
and the only available exit in onΓ (see for instance [9], where the authors use a
W2-gradient flow approach to model this kind of phenomena).
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vecteurs, (French) C. R. Acad. Sci. Paris Sér. I Math., 305 (1987), no. 19, 805–
808.

[4] Y. Brenier, Polar factorization and monotone rearrangement of vector-valued
functions, Comm. Pure Appl. Math., 44 (1991), no. 4, 375–417.
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