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Abstract

In this paper we introduce a new transportation distanogé®st non-negative
measures inside a domaih This distance enjoys many nice properties, for in-
stance it makes the space of non-negative measures isam@eodesic space
without any convexity assumption on the domain. Moreovemieshow that the
gradient flow of the entropy functionilz[p log(p) — p] dxwith respect to this dis-
tance coincides with the heat equation, subject to the @tdoundary condition
equal to 1.

Résune

Dans ce papier, nous introduisons une nouvelle distandespace des mesures
positive dans un domaire. Cette distance satisfait plusieurs propriétés irssaates :
par exemple, elle fait de I'espace des mesures positivet2lan espace géodésique
sans aucune hypothéese de convexité sur le domaine. Deoplusontre que le flot
gradient de la fonctionnelle d’entrop@[p log(p) — p] dx par rapport a cette dis-
tance donne lieu a I'eéquation de la chaleur, avec conditi® Dirichlet égale a 1
sur le bord.

Keywords: transportation distances, gradient flows, heat equatidr¢HDet
boundary conditions.

1 Introduction

Nowadays, it is well-know that transportation distancesvieen probability measures
can be successfully used to study evolutionary equatioraeMrecisely, one of the
most surprisingly achievement of [8, 11, 12] has been thayne&olution equations of
the form

d%p(t) = div(Vp(t) - p()VV — p(B)(VW = p(1)))
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can be seen as gradient flows of some entropy functionalseosptiice of probability
measures with respect to the Wasserstein distance

Wa(u, v) = inf{ \/f|x— yi2dy(x,y) : néy =pu, niy = v}.

Besides the fact that this interpretation allows to provteamy estimates and functional
inequalities (see [13, 14] for more details on this areagctiis still very active and in
continuous evolution), this point of view provides a powénariational method to
prove existence of solutions to the above equations: giteneastepr > 0, construct
an approximate solution by iteratively minimizing

PR W+[[plog@)+PV+%P(W*p)]dx

We refer to [2] for a general description of this approach.

Let us observe that the choice of the distance on the spacelodlipility measures
plays a key role, and by changing it one can construct saistio more general classes
of evolution equations, see for instance [1, 5, 7]. Howeakthe distances considered
up to now need the two measures to have the same mass (whichaugcaling can
always be assumed equal to 1). In particular, since the nemsains constant along
the evolution, if one restricts to measures concentratesllmounded domain, then the
approach described above will always produce solutionsatalmlic equations with
Neumann boundary conditions.

Motivated by the intent to find an analogous approach to cocissolutions of
evolution equations subject to Dirichlet boundary corditiin this paper we introduce
a new transportation distan?éh, between measures. As we will see, the main features
of the distanc&Vh, are:

e It metrizes the weak convergence of positive Borel measar&sbelonging to
the space

Ma(Q) = {ﬂ : f d(x, 0Q) dp(x)<c>o}, 1

see Proposition 2.7. Observe theb(Q) contains all positive finite measures on
Q and that the claim we are making is perfectly analogous ta Whppens for
the common Wasserstein distances, but without any massaimms

e The resulting metric spaceM(Q2), Why) is always geodesic, see Proposition
2.9. This is a particularly interesting property comparedvhat happens in
the classical Wasserstein space: indeed the sp&¢Q), W) is geodesic if and
only if Q is convex. In our case, the convexity of the open set is natired.
(Actually, not even connectedness is needed!)

e The natural approach via minimizing movements to the studhe gradient
flow of the entropy leads to weak solution of the heat equatigh Dirichlet
boundary condition, see Theorem 3.5. Interesting enough, this approach
the regularity of the boundary 6f does not play any role.

As a drawback, the entropy functional do not have the sanee prigperties it has in
the classical Wasserstein space. In particular:

¢ Itis notgeodesically convex. Still, it has some sort of convexitygarties along
geodesics, see Remark 3.4.



e Due to the lack of geodesic convexity, we were not able to @r=ow kind of
contractivity result for the flow.

e Actually, we are not even able to prove uniqueness of thet lahthe mini-
mizing movements scheme. (Of course one knows by standaEdt@&ihniques
that weak solutions of the heat equation with Dirichlet baany conditions are
unique, therefore a posteriori it is clear that the limit tmbe unique - what we
are saying here is that we do not know whether such uniquemagbe deduced
a priori via techniques similar, e.g., to those appeared]in [

The distanc&Vh, is defined in the following way (theb' stands to recall that we
have some room to play with th®undary ofQ2). Let Q c RY be a bounded open set,
and letM,(Q) be defined by (1). We define the distarwéd, on M»(Q2) as a result of
the following problem:

Problem 1.1 (A variant of the transportation problem) Letu,v € Mx(Q). The set
of admissible coupling&pm(y, v) is defined as the set of positive measyres Q x Q
satisfying

Mo = H TV =V (2)

For any non-negative measupeon Q x Q, we define itsostC(y) as

Cly) = j: _Ix—yiPdy(x.y).
QxQ
The distance Wi, v) is then defined as:

W) = inf CO).
The diference betweeWh, and\W, relies on the fact that an admissible coupling is a
measure on thelosureof Q x Q , rather than just o® x Q, and that the marginals are
required to coincide with the given measures only ingdeThis means that we can
usedQ as an infinite reserve: we can ‘take’ as mass as we wish frorndgbadary, or
‘give’ it back some of the mass, provided we pay the trangpiomn cost. This is why
this distance is well defined for measures which do not haws@ime mass.

Although this approach could be applied for more generaiscibgn jusix — y?
and for a wider class of entropy functionals, we preferreprtivide a complete result
only in the particular case of the heat equation, in ordevtadctechnicalities and gen-
eralizations which would just obscure the main ideas. Werref Section 4 for some
possible generalizations, a comparison between our andabsicalL?>-approach, and
some open problems.

AcknowledgementsWe gratefully thank the referee for his valuable comments,
which helped us having a clearer understanding of the ptiegerf\Wb,.

2 General properties of the distanceN b,

The aim of this section is to describe the main propertieh@fistancéVh,.
For any positive Borel measugein Q, definemy(u) as

M) 1= f A2(x, AQ)du(¥).
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Figure 1: Example of admissible transport plan

so thatMx(Q) is precisely the set of measunesuch thaim(u) < co. Observe that if
A c Qs any set which is at a positive distanc&om 9Q andu € My(Q), then the
inequality

co > Mp(u) > fA 2du = r2u(A), 3)

shows thaj(A) < co. o
Lety be a non-negative measure Qrx Q. We will write yE for the restriction of

y to the rectanglé x B c Q x Q. Observe that there is a natural splittingyointo 4
parts:

Y=Ya Y Y+ Voo
We now remark that, iy € Aom(y, v), then

7750 € Apm(u,v) and C(y —¥jg) < C(y).
Hence, when looking for optimal plans, it is not restrictieeassume that

Y50 = 0. 4)
Observe that from the bound
YAXQUQUA) < y(Ax Q) +y(Q x A) = u(A) + v(A) < oo,

valid for any Borel sefA c Q with positive distance froMQ and anyy € Apm(u, v)
satisfying (4), it easily follows the weak compactness & #iet of admissible plans
satisfying (4) (in duality with functions i€.(Q x Q \ dQ x dQ)). Thus from the weak
lower semicontinuity of
vy » C),

we get the existence of optimal plans

We will denote the set of optimal plans by fu, v), and we will always assume
that an optimal plan satisfies (4).

We now prove thaWWh, is a distance onV1»(Q2). For the triangle inequality we
need the following variant of the classical gluing lemma(g& Lemma 5.3.2]):



Lemma 2.1 (A variant of the gluing lemma) Fix u1, u2, uz € Mo(Q), and lety*?
Abm(uz, 12), Y% € Apm(uz, pz) such that(y?)%2 = (32%)%2 = 0. Then there exists a

positive Borel measurg'23 onQ x Q x Q such that

2,123 _ 12, 112
Yy =Yy tro
223,123 _ 23 | 123
gy =Yy o toT

whereco'? and o?® are both concentrated on the diagonaldsd x 42, i.e. on the set
of pairs of pointq(x, X) : x € 0Q}.

Let us point out that, in contrast with the classical resultpur case the second
marginal ofy? on Q does not necessarily coincides with the first marginalsf and
so the two measures cannot be ‘glued’ together in a trivigi wa

Proof. In order to clarify the structure of the proof, it is convemiéo seeuy, uz, uz as
measures o lx(Q1), Ma(Q2), M2(Q3) respectively, wher€, Q,, Q3 are three dis-
tinct copies ofQ. In this way we haver'2 e M, (Q; x Q2), ¥% € M, (Q2 x Q3), and
¥ € M, (Q1 x Qy x Q3). However, since in fac®; = Q, = Qs, sometimes we
will identify Q, with Q, Q4, or Q3. Furthermore, we will use? to denote both the
canonical projection fronf2; x Q, ontoQ,, and the one froni, x Q3 onto Q.

From the hypothesis we know that

mir e = 1? = 158,
also, since.? is locally finite an application of (a simple variant of) tHassical gluing

lemma guarantees the existence of a pi&i & M+(§1 X Qp X 53) such that

12 123 _ ( 12,Q
Y )5’

23 123 _ (yza)ﬁ
a

Then define
= (22, 7%, 1) (r%)0) € M(9Q2 X 02 X Q) = M(9Q1 X 0 X Q)
= (7', 7%, 1) (D)) € M(Qa X 8Q2 X 0Q3) = M(Q1 X 9Q; X 0Q3),

and finally define

7123 = ;};123_’_ 0_12 + 0_23'

We prove thay'?® satisfies the thesis. Observe that
12, 123_ 12,123 12 12 12 23 _ 12\Q 2 2 23\Q 1 2 12\0Q
n2y' % = iy B+ mot? + mifo®® = (r)2 + (2, 1) (YY) + (L 1) (r D))
0Q Q
= ("2 + (7. 1)((FP)sa) + N =77+ (2P 1 (r)se)-

and that £2, 12)4((y*%)%,) is concentrated on the diagonal @® x Q. Similar for

23,,123
LY O

Theorem 2.2 Wby is a distance onM3(2)) The function Whis a distance on the set
My(Q) which is lower semicontinuous with respect to weak converge duality with
functions in G(Q).



Proof. The facts thaWWh,(u, v) = 0 if and only ifu = v and the symmetry are obvious.
For the triangle inequality we need to use the version ofgjlémma we just proved.
Fix 1, 12, 3 € M2(Q) and lety*?, 22 be two optimal plans from; to u» and fromu,
to s respectively. Use lemma 2.1 to find a 3-phei?® such thatr;?y1?% = y12 + o2
andrnz%y*% = y2% 4+ 023, with o2 ando*2 concentrated on the diagonalsast x 4.
Then we havéry'®), = (mpy'? + 0*?), = p1. Similarly, we haverly'?d)|, = ps,

thereforer’?y'?3 € Apm(us, u3) and it holds

Whp (1, u3) < \fflxl — Xal2dhy123
< \/flxl—X2|2d7123+ \/f|X2_>%|2d7123
= \/ f P = XPd(y*? + 01?) + \/ f P = xaPd(y? + 0%)
= \/flxl—xz|2d712+ \/flxz—X3|2d723

= WQ(/J:L, /,[2) + WQ@Zvﬂs)v

where in the fourth step we used the fact tiv&t ando?2 are concentrated on a diago-
nal.

For the lower semicontinuity, le:f), (vn) be two sequences weakly converging to
u, v respectively, and for any € N choosey,, € Opt(un, vn). It is immediate to check
that the sequenceyy) is relatively compact in duality with functions iB.(Q x Q \
0Q x 9Q), so that up to passing to a subsequence, not relabeled, wassame that
(v,,) weakly converges to somein duality withC.(Qx Q\ 8Q x dQ). Since obviously
Y|, = K andnZy|, = v we have

WiEgGe) < [ x-yidy < lim [ - yidyy(xy) = lim WEGun, 7).
n—oo n—oo
From now onP : Q — dQ will be a measurable map such that
X = P(X)| = d(x, 0Q) ¥ XxeQ.

It is well-known that such a map is uniquely defined 6ha.e. x € Q. (Indeed,P(x)
is uniquely defined whenever the Lipschitz functid@, 0Q) is differentiable, and is
given byP(x) = x — Vd(x, 0Q)?/2.) Here we are just defining it on the whdlevia a
measurable selection argument (we omit the details).

We will use the notation Id © — Q to denote the identity map dp.

To better understand the properties of optimal plans, lset(x, y) := |x—y|*> and

&(x.y) = min{jx - y2, d*(x, 9Q) + d(y, 9Q)}.
Also, define the sefl c Q x Q by

A= {(x, V)€ QxQ 1 |x—yP < d?(x,00Q) + d?(y, aQ)}. (5)
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Recall that a functiop on Q is saidc-concave provided

¢(x) = inf c(x.y) - ¥(y).
yeQ

for somey : Q — R. Thec-transform ofy is the functions® defined by
¢°(y) = inf c(x.y) — ¢(y),
XeQ
and thec-superdiferentiald ¢ of thec-concave functior is the set

O i={(xy) €QxQ 1 ¢(x) = c(x.Y) - ¥°)}.

Analogously, one can speak abamutoncavity, c-transform, ancc-Superditerential.
Let us remark that sinag € are Lipschitz o2 x Q, c-concave and-toncave functions
are Lipschitz too.

Proposition 2.3 (Characterization of optimal plans) Let ¥ be a Borel measure on
QxQ\0Qx0Q satisfying[ |d?(x, Q) + d?(y, 0Q) | dy(xy) < 0. Then the following
three things are equivalent:

(i) 7 is optimal for the coupley| . 75y, for Problem 1.1,.
(ii) y is concentrated orA and the sesuppf) U 9Q x 9Q is &-cyclically monotone.

(iii) there exists a c-concave functignsuch thaty and¢® are both identically0 on
0Q, andsuppf) c dSe.

Also, for each optimal plawy it holds
Ix—yl=d(x0Q),  ya-ae.(xy). (6)

Similarly fory5,.

Moreover, if(y") is a sequence of optimal plans for Problem 1.1 (each one with
respect to to its own marginals) which weakly converges maesplany in duality with
functions in G(Q x Q \ 4Q x 8Q), theny is optimal as well.

Finally, givenu, v € M,(Q) there exists a c-concave functiprsuch thatp and¢*®
are both identically0 ondQ, and every optimal plap between: andv is concentrated
ondSe.

Proof. Let us first assume that has finite mass. Define := ni)/, V= niy, and let
1, v be the restriction dfii, v to Q respectively.

We start proving thati = (ii). We show first thay is concentrated ofl. Define
the plany by

~ . 1 1 2 2
Y=yt (7, Pon )y (y|5x§\y() + (P o, %) (ylﬁxﬁ\y()’ (7)

and observe that € Apm(y, v) and
f X =y d¥(x.y) = f X =y dy + j: _[d(x 09) + d*(y. 9Q)| dy(x.y)
A QXO\A

Sle—ylzdy(x,y),
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with strict inequality if y(Q x Q \ A) > 0. Thus from the optimality of we deduce
thaty is concentrated orl. This implies that

f &(x.y) dy(x.y) = f I~ yP dy(x,y). ®)

Now we show thay is an optimal transport plan (in the classical sense) frcim
y for the cost” Suppose by contradiction that it is not optimal. Then theists some
plany such thatrln = i, 72y = v and

f &(x.y) dy < f &(x.y) dy. ©)

Let 77 be the plan constructed via formula (7) replacyngy 5. As before, frony €
Apm(u, v) we deriverj e Aom(u, v), and

f X~ yPi(x,y) = f &x.y)dn(x.y).

Hence from (8) and (9) we contradict the optimalityyofor Problem 1.1.

This shows that any optimal planis an optimal transport plan (in the classical
sense) fronu to v for the costc” Hence, applying the standard transport theory from
optimal transport, we deduce that the support of any optpteai for Problem 1.1 is
¢-cyclically monotone.

Now, takex € 9Q and observe that the plah:= y + xx is still optimal for Problem
1.1. Hence by the above argument the set sEpp({(X, X)} is €-cyclically monotone.
From the validity of

E(xy) =0, YX,y € 0Q,
(%2 +8(Y.2 > 8&xy) YxyeQ, zeiQ,

and it is easy to verify the-Cyclically monotonicity of supp() U {(X, X)} implies that
the set
suppf) U 0Q x 9Q

is E-cyclically monotone as well, as desired.
Now we prove thati{) = (iii). From the standard theory of transport problems (see
e.g. [14, Theorem 5.10]) there existg-@dncave function such that supp oQ x
0Q c 5. We claim thatp and¢® are both constant a#Q. Indeed, sincex;y) € 65¢
for any (x,y) € 0Q x 9Q we have

e(X) + ) =ExY) =0,  VXyeaQ,

which gives the claim. In particular, up to adding a consteug can assume thatis
identically 0 ondQ, which implies in particular that® is identically 0 ordQ too.

The fact thatp is c-concave follows immediately from the fact that for ang Q
the function

X o cxy) =min{lx—y? inf |x— 22+ d*(y, 6Q)},
260

is c-concave. It remains to prove thais concentrated 08 ¢ and thai® = 0 ondQ.
For the first part, we observe that

FonAc . (10)



Indeed, assume thatd, yo) € 3¢ N A. Then

¢(Xo0) = €(X0,Yo) — SOE(YO),
@(X) < &% Yo) — ¢5(Yo),  VxeQ.

Moreover, sinceXp, o) € A we havec(X, Yo) = ¢(Xo, Yo) While in generak(x, yo) <
c(X, Yo)- Hence

¢(Xo0) = (X0, Yo) — SOE(YO),
o(Q) <c(xYo) — ¢“(Yo).  VXeQ,

which easily implies thatq, yo) € S ¢.
~ For the second part, observe that the diagépak) : x € 9Q} is included both in
d5¢ and inA, thus from (10) it is included i8S ¢. This means that

@°(X) = o(X) + ¢°(X) = c(x, X) = O, VX € 0Q,

which givesp®(x) = 0 in 0Q as desired.

We finally show {ii) = (i). Lety be any plan in Am(u,v). Since suppt) C
8% (x), we havep(X) + ¢°(y) = c(x,y) = |x — y|?> on the support of, while for general
X, yit holdsg(X)+¢°(y) < c(x,y) = [x-y[?. Also, the functionsg, ¢ are Lipschitz (so in
particularly bounded), and thus integrable with respeatiypmeasure with finite mass.
Furthermore, since is identically 0 ondQ andnyy|, = 73|, we have[ edryy =
fcpdn}g"/. The analogous result holds for fef. Thanks to these considerations we
obtain

[ ix=yParixy = [ 1ot + 0] drixy)
- f o(x) drly(X) + f ¢°(y) drgy (¥)
- [etartzo9+ [ wmarize
- [Tt + (17 y)

< f Ix— yi* d¥,
which concludes the proof.

Now, let us consider the case whghas infinite mass.

The proof of () = (ii) works as in the case of finite mass. Indeed, the only argu-
ment coming from the classical transport theory that we isstik implication ‘support
not é-cyclically monotone implies plan not optimal for the castand it is immedi-
ate to check that the classical argument of finding a bettepetitor from the lack of
¢-cyclical monotonicity of the support works also for infmitnass.

The implication {i) = (iii) follows as above, as the statemerifsgnd {ii ) concern
only properties of the support ¢f

To prove (i) = (i), the only dificulty comes from the fact that a prigsiand¢°©
may be not integrable. However, it is easy to see thattbencavity ofy combined
with the fact thatp and¢® both vanish odQ implies

o(x) < d?(x,0Q), ¢%(x) < d?(x,0Q), VxeQ.



Hence bothy andy® are semi-integrable, and this allow us to conclude as ali®e=
for instance Step 4 in the proof of [2, Theorem 6.1.4].)
To prove (6), let

A= {(x,y) eQXIQ : |X—y] >d(x,oQ) = |x— P(x)l},
and assume by contradiction th@f’(A) > 0. Then we define
7! = (1d, P)amiy gy,

and set
~0Q

Y= vg+ Ve Vo
Sinceryyy’ = myyy’ we haveryy = niy. MoreoverrZy|, = ngy|, by construction,
so thaty e Apm(uo, 11). Since

f |x—y|2d77(x,y)<f X — y? dy(x, y),
Qx0Q

Qx0Q

f_ B X = yI? dF(x,y) = j: B X = yiZ dy(x, ),
QxO\QxIQ Qx0\QxIQ

we haveC(y) < C(y), which gives the desired contradiction.

The stability of optimal plans now follows as in the clasioptimal transport
problem by exploiting the equivalence between (i) and e for instance [14, The-
orem 5.20]. Finally, the last statement follows from thedaing observation: let
(7)i=0 € Opt(1, v) be a countable dense subset, and define

Vo - = Z %%-

i~0

Theny,, € Orr(u,v) by the convexity of the constraints (2) and the linearitytfod
cost. Furthermore, since its support contains the suppbaisthey,’'s, and since they
are dense inside®@(u, v), the support oy, contains that of any optimal plan. Hence
it suffices to applyij = (iii) to v, to conclude. m|

Remark 2.4 The idea on which is based the proof of the last part of the @lpowpo-
sition is well-known for the classical transport problenec@ntly, the first author used
the same tool to prove a similar result for the optimal pattensport problem (see
[6]). Observe also that here the fact that the cost func8dhe squared distance does
not play any crucial role. Therefore many of the statememtis section hold for
much more general cost functions (we will not stress thisijay further).

The following result is the analogue in our setting of Brelsitheorem on existence
and uniqueness of optimal transport maps [3, 4]:

Corollary 2.5 (On uniqueness of optimal plans)Letu, v € M(Q2), and fixy € Opt(u, v).
Then:

(i) If u < L9, thenyg is unique, and it is given bgtd, T)4u, where T: Q — Q is
the gradient of a convex function. (Howewvgas a whole may be not uniquely
defined as there may be multiple ways of bringing the masstfrerhoundary to
v if no hypothesis om are made).
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(i) If u,v < £9, theny is unique.

Proof. Thanks to the equivalencé) (& (iii) of the previous theorem, the result
follows exactly as in the classical transport problem, seéfstance [2, Theorem 6.2.4
and Remark 6.2.11]. m]

Remark 2.6 Let us point out that given a sequengg)(c My(Q2) weakly converges
to someu € M»(Q) in duality with functions inC¢(€2), the following two things are
equivalent:

- Mp(un) — Mp(u),

- lim sup f d2(x, 0Q) dun(X) = 0.
r—0 neN
{d(x,0Q)<r}

Proposition 2.7 (The spacéM»(Q2), Why)) A sequencéu,) ¢ M»(€2) converges to
u € My(Q) with respect to Whif and only if it converges weakly in duality with

functions in G(Q) and my(un) — Mp(w).
Moreover the spacéM,(Q), Why) is Polish, and the subse¥.\(Q) of M,(Q)
consisting of measures with mass less or equal te Mis compact.

Proof. Suppose thaWWhy(un, u) — 0, and letO denote the vanishing measure. Then,
sincemy(u) = Why(u, 0), from the triangle inequality we immediately geb(un) —
mp(). Now, giveny € C¢(Q), fix ¢ > 0 and find a Lipschitz functiogr such that

supp{) c suppé),
squlso(X) -y(X)| < e

Observe that from inequality (3) and the uniform boundw(u,), m(1), we have that
the mass ofin, u on suppg) is uniformly bounded by some const&htThus, choosing

Yn € Op1(un, 1) We have
<2Ce+ 'fz,bdun - fz,bdu'

' f ¢ dun — f pdu
- 20s +| w0 dy(ey) - [ w6 draty)

<2Ce + f [ (X) — w(Y)| dyn(X.Y)
supp{)xsupp()

< 2Ce + Lip(y) IX =yl dyn(X,y)
supp()xsupp()

< 2Ce + CLip(y) \/ f IX - yl2dy,(x.y)
supp{)xsupp()

< 2Ce + C Lip(t) Why(sun, ).

Letting firstn — oo and there — 0, we obtain the weak convergence.

Conversely, letg,) be a sequence weakly convergingitand satisfyingn(un) —
my(w), and choosg, € Opt(un, 1t). Up to passing to a subsequence, thanks to Proposi-
tion 2.3 we may assume that,) weakly converges to some optimal pkarin duality
with functions inC.(Q x Q \ 8Q x dQ). Choose > 0, define

A = {(x,y) eQxQ : dx Q) <r, d(y,09Q) < r},

11



and recall that supp) c A, A being defined by (5). Hence

T [ x-yPdxn <M [ c-yRyge)+ T [y (c)
oxQ OxXQ\A A

< f IX - yI2dy(x,y) + 2Ai_m fdz(x, Q) dy,(x.y) + 2r!i_m fdz(y, Q) dy,(x.y)
OXQ\A A A

_ f x= Y dy(xy) + 2 im f (%, 09) () + 2 I f d2(y. 592) duy).
QxQ\A {d(x.0Q)=<r} {d(y.0Q)<r}

where in the second step we used the fact hat Q \ A is closed. Letting | O,
using Remark 2.6, the stability of optimality statement abgdsition 2.3 above and
observing that the result does not depend on the subseqcleosen, we get

T W) = [ - Y dr(x3) = WEGu.p) = O
axQ
as desired.

The claim on the compactness 8w (Q) is easy. It is also immediate to check
thatuy Mcy is dense ilM(Q), so that to prove the separability M,(Q) it is enough
to prove the separability of each of thé.\(Q2)'s, which follows by standard means by
considering the set of rational combination of Dirac massesered at rational points.
Thus we only prove completeness. Let)(be a Cauchy sequence with respeditb,.
We observe that,(u,) are uniformly bounded. Moreover thanks to inequality (8 t
set{un} is weakly relatively compact in duality with functions@(Q2), which implies
the existence of a subsequenpg Y weakly converging to some measwye By the
lower semicontinuity ofV b, with respect to weak convergence we get

mp(u) = Wa(u, 0) < lim Wa(up,, 0),

k—oo

so thatu € M»(Q2). Again by the lower semicontinuity &b, we have

sz(/.l,/.lm) < Il_m sz(/‘lnk’#m)’

k— o0

SO
lim Whp(u, um) < lim Wy (un,, m) = O.
m—oo mk—oo

Remark 2.8 Note carefully that in the above proposition we are talkibguwt weak
convergence in duality with functions with compact suppoei®, and not, e.g., with
continuous and bounded functions@ Indeed, the mass can ‘disappear’ inside the
boundary, so that in general we only have

lim inf 1in(€2) > u(Q2),

for any sequencguninay € M2(Q) such thatW by (un, 1) — 0.
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This mass
disappears
_. tothe boundary
- att=1

This mass appears from
the boundary at t=0

Figure 2: Geodesic interpolation is always possible in feee M2(Q), Why). Indeed,
the mass can ‘appear’ onlytat 0, can ‘vanish’ only at = 1, and fort € (0, 1) it moves
along straight segments inside In particular, in the open interval (0), a geodesic
with respect toVhy, is also a geodesic with respecté.

Proposition 2.9 (Geodesics)lhe spacé M»(Q2), WIyp) is a geodesic space. A curve
[0,1] > t & w is a minimizing geodesic with constant speed if and onlyefelexists
v € Opr(uo, 11) such that

pe = (1= Ot + tn%),y, Vte (0,1). (11)

Also, given a geodesigy), for any te (0, 1) and se [0, 1] there is a unique optimal
planyg from y to us, which is given by

¥ = (-t + %, (1 - 9t + 1),

wherey € Opt(uo, u1) is the plan which induces the geodesic via Equatibh). Fur-
thermore, the plany? is the unique optimal transport plan fromto s for the classical
transport problem.

In particular, the spacéMy(Q), Why) is non-branching, and the massafinside
Q is constant - possibly infinite - ford (0, 1).

Observe that Equation (11) doest hold fort = 0, 1, as the marginals gf generally
charge als@Q. We further remark that such a statement would be false éxcldssical
Wasserstein distand#,. Indeed, ify is an optimal plan fok\,, then the measures

defined by (11) willnotin general be concentrateddh unless is convex.

Proof. The only new part with respect to the classical case is thatjs an optimal
plan fromug to w3, then the measurgs defined by (11) are concentrated(and
not just in its convex hull). Once this result is proved, testrof the proof becomes
exactly the same as in the standard case of the Wasserstinali, see [2, Paragraph
7.2]. Hence, we are going to prove only this new part.

To this aim, recall that thanks to Proposition 2.3 we knowt #meoptimal plary is
concentrated on the st defined in (5). Thus to conclude it is enough to show that
for every (x,y) € A the segmenti— (1 - t)x + ty is entirely contained if. Argue by
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contradiction and assume that for sobee(0, 1) it holds (1- t)x + ty ¢ Q, then from
d(x,0Q) < |x-(A-x+tyl =t|x-¥,
d(y,0Q) <ly-(1-Dx+tyl= (1 - Ix-yl,
we deduce
(% 00) + d*(y. Q) < @ + (1 -1 Ix = yP < x -y,
which contradictsX, y) € A. m|
Remark 2.10 (A comparison betweeWh, and W,) Let u,v € M>(Q) and assume

that 0 < u(Q) = v(Q) < . Then any plany which is optimal for the classical
transportation cost is admissible for the new one. Theeefa have the inequality:

Why(u, v) < Wao(u, v), Y, v e Ma(Q) s.t.u(Q) = v(Q) > 0. (12)

Figure 3: For measures with the same amount of mass, thencistdl, is smaller
than the classical,: as the picture shows, it may be much better to exchange the ma
with the boundary rather than internally.

Proposition 2.11 (An estimate on the directional derivatie) Letu, v € M»(Q) and
w: Q — RY a bounded vector field with compact support. Alsoylet Opr(u, v), and
definey; := (Id + tw)zu. Then

lim suprg('ut’y) — W) <-2

t—0 t

f W0y — %) dy(%.y).

Proof. Observe that since is compactly supported i€, for t > 0 suficiently small
e € Mo(Q), so that the statement makes sense. Now it is simple to ¢hatthe plan
v, defined by

yoi= ((d +tw) o 7', 7%,

belongs to Am(ut, v). Hence
W) < f X~y dyi(x.y) = f X+ tw(x) — Y2 dy(x.y)
= W, v) - 2t f W0y - %) dy(xy) + £ f WP dy (x. ).

and the conclusion follows. O

14



3 The heat equation with Dirichlet boundary condition
as a ‘gradient flow’

This section contains an application of our new transpioriatistance: we are going
to show that the gradient flow of the entropy functiogﬁ@[lp log(o) — p] dx coincides
with the heat equation, with Dirichlet boundary conditiajual to 1. To prove such a
result, we will first study some of the properties of the epy#rshowing in particular a
lower bound on its slope, see Proposition 3.2. Then, foliovthe strategy introduced
in [8], we will apply the minimizing movement scheme to pramer result. Finally
we will show that the discrete solutions constructed by miring movements enjoy
a comparison principle: ifof )ker and ke are two discrete solution for a time step
7> 0, andoj < pg, thenp; < p; forall k € N. Lettingr — 0, this monotonicity result
allows to recover the classical maximum principle for thatregjuation.

To be clear: we will not state any result concerning existerfcthe gradient flow
of the entropy (we will not identify the slope of the entropgr the infinitesimal de-
scription of the distancé/b,). What we will do is a work ‘by hands’: we will show
that we have compactness in the minimizing movements sclamerove that any
limit is a weak solution of the heat equation with Dirichletumdary conditions.

3.1 The entropy
The entropy functiondE : M,(Q) — R U {+co} is defined as

" [ oo ity =pri,
E(w) =

+00 otherwise
wheree : [0, +00) — [0, +00) is given by
€2 :=zlog(® - z+ 1.

From now on, since we will often deal with absolutely conting measures, by abuse
of notation we will sometimes useto denote the measure[jdb. In particular, we

will write Aom(p, p') in place of Aom(pLY) . p'LY),)-

Proposition 3.1 (Semicontinuity and compactness of sublels) The functional E:
M3(Q) - R U {+oo} takes value if0, +o0], it is lower semicontinuous with respect to
Wh, and its sublevels are compact.

Proof. If u = p£9 , thanks to Jensen inequality we have

lo®

{2)-da o) g Lo oo

This inequality bounds the mass@fn terms of the entropy, which gives the relative
compactness of the sublevels®thanks to Proposition 2.7. The bouigu) > 0 is
immediate a® > 0. Finally, the lower semicontinuity follows from the comiy and
superlinearity ofe and from fact that convergence with respecity, implies weak
convergence (see Proposition 2.7). m|
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We recall that thelopeof the functionak defined on the metric spacd:(Q2), Why)

is defined as: (E() - E0)*
IVE|(u) := “r?j,UpW'

Proposition 3.2 (Bound of the slope in terms of Fisher’s infamation) The slope of
E is bounded from below by the square root of the Fisher in&tiom F : M,(Q) —
[0, +o0]:

4f|V\/,5|2dx it = pL%), and y5 € HY(Q),
Fy={ U

+00 otherwise.

Proof. Takeu € M3(Q2), definem := u(Q), and letM(Q2) be the set of non-negative
measures o® with massm. On My (Q), we can consider the Wasserstein distance
W,. Consider the functiondt : (Mmn(Q), W) —» R U {+oo}. It is well-known that
IVE|(u) = +/F(w) for all u € My, see [2, Chapter 10]. Then, it is easily checked by a
scaling argument that the formula remains true for arbitrae= 0. Hence, taking into
account inequality (12), we obtain

_ (E@-EM)* _ (Ew) -EM" _
|VE|(;1)2MILT§12)SJVJE# W) ZAL%;EE;I Wa (g, v) VF().

as desired. O
Proposition 3.3 (A directional derivative of E) Letu = p£% € M,(Q) be such that

E(u) < +c0, and letw : Q — RY be a C° vector field with compact support. Define
ue := (Id + tw)zu. Then

. E(uw) - .

lim M = fpleWdX.

t—0 t Q
Proof. Sincew is compactly supportedy € My(Q) for suficiently smallt, and the
proof is exactly the same as the one in the Wasserstein case. m|

Remark 3.4 [A source of dificulties] It is important to underline that the entroiy

is not geodesically convex on the spacel£(Q2), Why). Indeed, since for instance the
mass can disappear at the boundarytferl, it is possible that an high concentration
of mass neadQ gives limy1 E(u) = +oo, while E(u1) < +o0. (Observe that, once
the mass has reachég, it does not contribute any more to the energy!) Still, since
fort, s € (0, 1) the optimal transport plan f&/ b, coincides with the optimal transport
plan forW, (see Proposition 2.9),— E(u;) is convex in the open interval (D) (see
for instance [2, Chapter 9]).

3.2 Minimizing movements for the entropy

In this paragraph we apply the minimizing movements to qoest weak solution to
the heat equation with Dirichlet boundary condition.

We briefly review the minimizing movement scheme, refertm{] for a detailed
description and general results. Fig € M,(Q) such thatE(pg) < +oo (given the
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E(u)
"E(i)

E(uo) »

0 1

Figure 4: For typicalig, u1, @ geodesic connecting them takes mass from the boundary
att = 0 and leaves mass &t= 1. In this case the graph of— E(w) looks like

in the picture: in the interval (@) the function is convex and converges#o as

t — 0,1. The value oE(uo) andE(u;) has basically no connection with the values in
intermediate times.

lack of convexity ofE, we need to assume that the entropy at the initial point igefini
thus in particular the measure is absolutely continuouns) fix a time stepr > 0. Set
pg = po, and define recursively,, , as the unique minimizer of
Wk (w, o},
4 - E(u)+ té(ll or)

2t
(see Proposition 3.6 below). Then, we definedigerete solution t p(t) € M2(Q)
by

o (1) :=pp, fort e [nr, (n+ 1)7).

We recall that the spadelé’l(Q) is defined as the closure ff () with respect
to thew1-norm. (Observe that this definition requires no smoothassamptions on
0€x.) Then we say that € W-(Q) has trace 1 iff — 1 € W>!(Q). (More in general,
given a smooth functiog : Q — R, one may say that € W-1(Q) has tracep if
f—¢eW(Q).)

Our main theorem is the following:

Theorem 3.5 With the above notation, for any sequenge| O there exists a sub-
sequence, not relabeled, such that, for ang t0, p™(t) converges to some limit
measurep(t) in (Mz(Q),Wh,) as k —» o. The map t— (p(t) — 1) belongs to

L2 ([0, +00), Wy '(€2)), and t p(t) is a weak solution of the heat equation

S = a0, w
p(0) = po.

We recall that a weakly continuous curve of measure u; € M»(Q) is said to be
a weak solution of (14) if

[oduta- [ oaut= [ (fQAsodyr(x))dr, 10<t<s VpeCo(Q),
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In order to prove this theorem, we need the following lemmiaictv describes the
behavior of a single step of the minimizing movements scheme

Proposition 3.6 (A step of the minimizing movement)Let u € M,(Q2) andr > 0.
Then there exists a unique minimume Mo(Q) of

o E(0) + %. (15)

Such a minimum satisfies:
() pe = pe LY, Withp, — 1 € WyH(Q).

(i) The restriction toQ x Q of any optimal transport plan from, to u is induced by
amap T, which satisfies

T(Xz_ X.OT(X) =-Vp(x), L9-aex (16)

Proof. The existence of a minimum, = p,jjd|Q follows by a standard compactness-
semicontinuity argument, while the uniqueness is a dir@esequence of the convexity
of Wbﬁ(-,/,c) with respect to usual linear interpolation of measuresthedstrict con-
vexity of E(-).

It is well known that at minimum of (15) the slope is finite (§8eLemma 3.1.3]).
Hence yp: € HY(Q) by Proposition 3.2, and so. € W-}(Q) by Holder inequality.
Moreover, thanks to (27) below we have

e—d(x,(?Q)z/(ZT) < PT(X) < e3Diam@)d(x,(?Q)/(2‘r) VXe Q, (17)

which easily implies thap, has trace 1 0dQ (we postpone the proof of (17) to the
next section, where we will prove also other useful inedigalionp, - see Proposition
3.7). This showsi}.

To prove (i), we start by observing that Corollary 2.5 and the absolatdicuity
of u, guarantee the existence ®f Now, choose &> vector fieldw with compact
support inQ and defing! := (Id + tw)go.. Using the minimality of, we get

E(e}) - Epr) + th(ptf’ﬂ)z—TWt%(pr,u) .0

Dividing by t and lettingt | 0, thanks to Propositions 3.3 and 2.11 we get

fpdiVWdX—f(W,T;ld)deZ 0.
Q Q T

Exchangingv with —w and exploiting the arbitrariness wfthe result follows. m|

To prove Theorem 3.5 we will use the following a priori bourwd the discrete
solution, see [2, Lemma 3.2.2 and Equation (3.2.3)]:

1% WG] o7,

m-1
T . . :
32, +3 Z IVER(0) < E(oi) ~E(f) ~ ¥n<meN. (18)

Proof of Theorem3.5. - Compactness argumentLet {ry kv be a sequence converg-
ing to 0. First of all we observe that, thanks to (13) and tleguralityE(o™(t)) < E(oo),
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the mass of the measureg’s(t) is uniformly bounded for alk € N, t > 0. Then a stan-
dard diagonal argument shows that there exists a subsezjuaiaelabeled, such that
o™ (t) converges to somg(t) in (M(Q), Why) for anyt € Q.. Now, thanks to the
uniform bound on the discrete speed

1 m-1 W (pfk’ka . .
5 LR = < Eph) ~ B} < Eoo).
i=n

(which is a direct consequence of (18)) we easily get

Why(o™ (1), p™(9)) < V2E(o) [t- S+ 1]  VO<s<t, (19)

which implies the convergence pf«(t) for everyt > 0.

- Any limit point is a weak solution of the heat equation. Let ¢ | 0 be a sequence
such thaip™(t) converges to somg(t) in (M2(Q2), Why) for anyt > 0. We want to
prove that — p(t) is a weak solution of the heat equation. For any0O,n e N, let T}
be the map which inducey}()g, wherey] € Orr(o7, ,, of) (see Corollary 2.5(i)). Fix
¢ € CZ(Q) and observe that

T
n+1°

1
[ eprade- [@oTopnaax= [ ( [ oo - ari+ a0), ld—T,:>da)p;+1dx
Q Q Q
=- f(Vgo, Th = ld)pp, 1 X+ R(z, n)
Q
= Tf(Vt,D, Vor.1) dx+ R(,n)
Q

= —Tf App; ., dx+ R(7,n),
Q
(20)

where at the third step we used (16), and the reminder Rérnm) is bounded by
IR(r, )| < (LipVe) fQ ITZ —1d?of, , dx = Lip(Ve)WIB (0%, o7, ,)- (21)
Now, since the support af is contained ir and((T)«0%,4) |, = 72 ((75)3) we have

f e, dx— f (0 TDhy dx = f_ o) A (X, ).
Q Q QxQ

By Proposition 2.3 we havie — y| = d(y, dQ) for (y7)5,-a.€. & y), which implies

WL, 1, p) > f_ X~ Y2 dyD)2(x.Y)

Qxsuppl)

- [ 4007 o) > € G5 x suppe)),
Qxsuppp)

wherec, := Minyesuppg) d(y, 9Q)? > 0. Hence

T ™ AT ” ||°° T T
[ o= [ (0o Topmaax < WL,
Q Q Cyp
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Combining the above estimate with (20) and (21), we obtain

fg PP dX— fg gppdx = -1 fg Ag pq dx+ R(z, ), (22)

where
= . lleolloo o
IRz, )] < | Lip(Ve) + == |WE (o, o). (23)
(4
Now, choose 0< t < s, let T = 7, and add up Equation (22) from = [t/7y] to
m = [s/7x] — 1 to get

[s/m]-1

[s/7x] .
fgppfk(s)dx_fwfk(t)dx:f (fA(pka(l’)dX)dl’+ Z Rtk [r/7d)-
Q Q [t/ 7] Q

n=[t/7y]

We want to take the limit in the above equationras| 0. TheWh,-convergence of
p™(r) to p(r) combined with Proposition 2.7 gives that the left hand sideverges to
o, ep(8) dx— [, @p(t) dx. For the same reasofy Ap p™(r) dx— [, App(r) dxfor any
r > 0. Thus, since the mass of the measureg) is uniformly bounded we get

f IAg (1)) dX < [IAgll f p™(r) dx < Co
Q Q

for some positive constaf, so that by the dominated convergence theorem we get

T[S/7k] s
f (ngop’k(r)dx) drﬁf (fAtpp(r)dx) dr,
Ti[t/7k] Q t Q

asty | 0. Finally, thanks to (18) and (23) the reminder term is bachioly
[S/Tk]_l ||(P||oo ) [S/Tk]_l

> R lr/nd) >, WB e,

n=[t/7y] n=[t/7]

< (Lip(V(p) +
®

< ZTk(Lip(Vso) s %) E(oo).
C‘P

and thus it goes to 0 ag | 0. In conclusion we proved that

Lgop(S)dx—Lgop(t)dx=fts(LAgop(r)dx) dr, VO0<t<s YgpeCX(Q).

Thanks to Equation (19) it is immediate to check that the etinv p(t) € Ma(Q)

is continuous with respect td/ty, and therefore weakly continuous. Finally, since
p7(0) = po for anyr > 0, p(0) = pp and the initial condition is satisfied.

- The curvet = (p(t) - 1) belongs toLZ ([0, +e0), W, (). From inequality (18) and
Proposition 3.2 we know that

fom (L|v\/p7(t)|2dx) dt < %f: IVER(o™()) dt < E(g‘)),

which means that the functios— +/p™(t) are equibounded ih2 ([0, +e0), H3(2)).

loc
This implies that — +/p(t) belongs td-2 ([0, +0), H}(Q)), so that by Holder inequal-

ity t = p(t) € L2 ([0, +o0), WHL(Q)). Moreover, thanks to Fatou lemma,

loc
fo‘” lim inf (LW Vo dx) dt < +oo,
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which gives
lim in f|V \/pfk(t)|2dx< +oo  forae.t>0,
—+o0 o

and by Holder inequality we get
liminf f|Vka(t)| dx< +c  fora.e.t>0,
k—o+oo )

Now, for anyt such that the above liminf is finite, consider a subsequlkn@epending
ont) such that

supf|Vp%(t)|dx< +00.
neN JQ

Then, recalling thgd™(t) — p(t) in (M2(Q), W), sincep™ (t) is uniformly bounded
in W-(Q) and belong taW,(€2) by Proposition 3.6(i), we easily get thait(t) — p(t)
weakly inW-(Q), ando(t) - 1 € W2H(Q) as desired. o

3.3 A comparison principle

In this section we prove the following monotonicity resudt the minimizing move-
ment scheme dE with respect toVby: if we have two measures ji satisfyingu > [,
thenu, > i, for everyr > 0, whereu,, fi, are the unique minimizers of (15) farand
[ respectively. It is interesting to underline that:

e Once monotonicity for the single time step is proven, a maxmprinciple for
weak solutions of heat equation can be proved as a direcieqorsce, see
Corollary 3.9.

e Although our strategy is not new (for instance, it has beeadus the context
of the classical transportation problem in [10, 1] to proveaximum principle),
the fact of having no mass constraints makes it mdieient, and the properties
of minimizers that we are able to deduce are in some sens&sito

e The argument that we are going to use holds in much more gesigrations,
see Remark 3.10. (This in not the case when one deals witHdbksical trans-
portation problem, where the fact that the cost functiorsBasc(x, X) < ¢(x,y)
for all x,y € Q plays an importantrole, see [1, 7].)

The proof of the monotonicity relies on a set of inequalitretid for each mini-
mizer of (15). In the next proposition we are going to assumaét = pjjd|Q e Ma(Q)
is an absolutely continuous measure and thatO0 is a fixed time step. Also, we will
denote byu, = ,of£"|Q the unique minimizer of (15) (which is absolutely continu-
ous by Proposition 3.6), by the unique optimal plan fop(p,), by T the map which
induces;/g, and byS the map which induceﬁg seen fronp, (see Corollary 2.5).

Proposition 3.7 With the notation above, the following inequalities hold:

e Lety,y, € Qbe Lebesgue points fpr, and assume thatys also a Lebesgue
pointfor S. Then

S(yp)?
o

oglo(ye) + 2= e SUOE - (29)

< 10g(o:(y2)) + |
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e Let xe Q be a Lebesgue point for boghand T, and assume that(X) € Q.
Assume further that g Q is a Lebesgue point fqr,. Then

Ix=T(x)P x-y?
PO < toglor ) + X (25)
27
o Lety € Q be alebesgue point fer.. Then, for any y € 0Q2, we have
2 _ 2
log (o+(y1 ))+ 28(y1)| ly2 25()’1)I . (26)
T T
e Letye Q be a Lebesgue point for.. Then
d2 ,0Q 3d(y, 0€2) Diam(Q
TEID < tog(prty)) < XL DEME) @)

(This is the key inequality that shows that minimizers haaeetl on 6Q, see
(17))

e Letye Q be aLebesgue point for both and S, and assume tha(y§ € 9Q.
Then

2
0g (o) + TL2D — g (28)

Proof. - Heuristic argument. We start with (24). Consider a poigt € Q and
observe that the mags(y1) comes fronS(y;). (It does not matter wheth&ty,) € Q
or S(y1) € 0Q.) We now make a small perturbation ef in the following way: we
pick a small amount of mass fro8(y;1) and, instead than moving it ta, we move it
to y». In terms of entropy, we are earning lpg(S(y1))) because of the less mass in
S(y1) and paying logéi(y2)) because of the greater amount of masgatn terms of
the transportation cost, we are earnh&gﬂ and paymgM But sincep; is a
minimizer of (15), what we are earning must be less or equwlhat we are paying,
and we get (24).

Inequality (25) is analogous: here we are just considetingé points which are
sent to the boundary by. In this case, if we decide to send some small magato
a pointy € Q, we are not earning in terms of entropy but just payingde@f), while
in terms of cost we are earniﬁ-?é]%x)'2 and payindxg—f‘z.

To prove inequality (27) we argue as follows. Consider firglointy € Q and
perturbp, by picking some small mass from one of the nearest poigtdn 9Q and

putting it ontoy. In this way we pay logt.(y)) in terms of entropy an&z(‘gﬂ in terms
of cost, so that by minimality we get

d*(y, 99)

2t
The other part of the inequality comes by taking some smadisnady and putting it
on one of the nearest pointymn 42, sayP(y): we earn log.(y)) in terms of entropy

andS= in terms of cost, and we are payif¢5P%" more because of the new cost.
This g|ves

2 —log(p(y))- (29)

log(o-(y)) +

IS(y) - yl2 IS(y)—F’(y)I2 IS(y) — yI? + 3y — P(y)IDlam(Q)
27 27 27

from which the claim follows.
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The proof of (28) is a sort of converse of (29). IndeedS&g € dQ we know that
the mass o/ is coming from the boundary. Hence we can perjuripy taking a bit
less of mass from the boundary, so that there is a bit less 8§ mg. In this way we
obtain the opposite of (27), and equality holds.

- Rigorous proof. We will prove rigorously only (24), the proof of the other in-
equalities being analogous.

Fix y1,¥2 € Q, and two positive real numberss > 0, with r small enough so that
Br(y1) U Bi(y2) € Q. Let Tr : RY — RY be the map defined by BiY:=y - y1 + Y», and
lety € Opt(p, p;) be the unique optimal plan. Define the pldrf as

& o o Br(y1)® Br(y1) 1 Br(y1)
Y=y + (=g +&((r s Tyrg J),
and set
Wt = ﬂﬁyr’g.

Observe that}y"* = iy, " € Apm(p, 115, andu;® = ot L9, with

p=(y) if y € Br(y1)® N Br(y2)",
pYE(Y) =1 (1-&)pe(y) if y € Br(y1),
po(Y) + &p(Y = Y2 + Y1) if y € Br(y2).

From the minimality ofo, we get
[ eoadxs 5200 < [ eiax 500
Q 27' Q 2T
Hence

1
[ ety [y S dy
Br (y1)UBK (y2) T JBi(y1)UB (¥2)

1-¢) 5
— - d _ d
st,wn A=y o f%) ly = S)Ipa(y) dy

+ & (y) + ep-(y — Y1 +¥2)) dy
B (y2)

1
+ 5 f ly — SMP(o=(y) + &p-(y — y1 + ¥2)) dy,
T Br(yZ)
which we write as

[ (0ot - (@- 2o + 5y - SOIEpc) dy
Br(yl) T
< [ (oot + eply - y2 4 y0) - o)
Br(yZ)

P
+oly - SM)Poely - y2 + yl))dy-
Dividing by £ and lettinge | 0 we obtain

[ (000 + - 508 oy
Br(y1) g

1
= jl;,(yz) (e((pl(y)) " Z'y a S(y)|2) Py — Y2 +y1)dy.

Now, sincey,, y, are both Lebesgue points of, andy; is also a Lebesgue point &f,
dividing both sides by (B, (0)) and letting | 0 we obtain (24). m|
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Proposition 3.8 (Monotonicity) Letu > i € My(Q), T > 0, andu,, fi, the minima of
the minimizing problenil5). Thenu, > ji..

Proof. From the uniqueness part of Proposition 3.6, it follows lgakiat the map
u — e is continuous with respect to the weak topology. Therefageean assume by
approximation that both andy are absolutely continuous, say= p.£% andy = 5.£9.
Also, recall that by Proposition 3.6(i) bofh andv. are absolutely continuous, say
wr = p L9 andyd; = p.L9. Lety € Opr(p, p;) andy € Opr(p, 5;), and letT, T be the
maps which inducg$ andy$} respectively.

Argue by contradiction, and assume that= {5, > p.} c Q satisfieso;(A) > 0.
Two cases arise: eitheng“ls concentrated of2 x A or it is not, i.e. either the mass of
o In A comes entirely fronf2 or it is partly taken from the boundary.

Case 1: the mass g8, in Acomes entirely fromQ. Let B := T-1(A), and observe
that(B) = fi-(A). LetC c B be the set of pointg € B such thafl (x) ¢ A. We remark
thatu(C) > 0, as otherwise we would have

p1e(A) = 11(T(B)) = u(T(T(B))) = u(B) = fi(B) = fic(A).
which contradicts the definition &. Define
Cy = {xeC : T(x)eQ}, C, = {xeC : T(x)easz}.

SinceC = C; U Cy, eitheru(C;) > 0 or u(Cy) > 0. Suppose we are in the first
case. Then, as botr‘qc1 and'f|c1 map subsets of the support@bf positive Lebesgue
measure into sets of positive Lebesgue measure, we caw &ind; a Lebesgue point
for bothT andT such thafl (x) andT () are Lebesgue points for bath andg;. With
this choice ofx we apply (24) withy; = T(X) andy, = T(x) to get

Ix— T(X)I2 X — T(X)I2

log (p-(T(x))) + < log (p-(T(3))) +

Similarly, using (24) fop; with y; = T(x) andy, = T(X) we obtain

2 2
log (3. (F () + ( A < tog e (r0oy + X O

Adding up the last two inequalmes we get

log (o-(T () + log (B-(T () < log (p-(T(x))) + log (5:(T (x))).
which contradicts definition o, and the choice o, as we have

TR EA = p(T(Q)2po(T(X¥) = log(p-(T(x))) > log(p-(T(x))).

TR eA = p(T(¥)>pA(T(X¥) = log(p:(T(x))) > log(p-(T(X))).

It remains to exclude the possibilif(Cz) > 0. Fix x € C; a Lebesgue point for
both T andT, such thaff (x) is a Lebesgue point for boih andg.. We apply (25)
with y = T(X) to obtain

Ix=TMXP
2t

Now, we use (26) fop, with y; = T(X), S(y1) = x, andy, = T(X), to get

x=TMP _ Ix=T(XP
27 - 2r

< log (pr(T(x)) + XTI T(X"Z

log (5:(T(x))) +
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SinceT(x) € Awe havep,(T(x)) < 5.(T(x)), which together with the above inequali-
ties implies
Ix=TXP
2t

< log (p.(F(x)) + ¥ T T(X)'2

T(X)|2 Ix - T(x)I?
2r

<log (5:(T (%)) +

again a contradiction. 3
Case 2: the mass op, in A comes partly from 9Q. Let S be the map which
induces;%2 seen fronp;, and letD c A be the set of pointg such that the mags ()

comes from the boundary, i.8 == {y € A : S(y) € 4Q}. Fixy € D a Lebesgue point
for p., pr, andS. Thanks to (27) we have

d? ,69
l0g(p-(y) + TLID
while applying (28) withp? (recall thatS(y) € 69) we obtain
d?(y, 0Q
095 + T - g
But this is absurd age D c A. m|

Thanks to Proposition 3.8, we immediately obtain the folloyy

Corollary 3.9 (Comparison principle) Letuo, vo € M2(Q2), assume thaip > fip, and

let 7x | O be a sequence of time steps such that the correspondingtlissmlutions
u(t), a™(t) associated te, fig respectively converge to two solutigisji; of the heat
equation, as described in Theorem 3.5. Then i for all t € [0, +c0).

Remark 3.10 (Dfferent energies and costs)rhe proof of the above theorem relies
entirely on the set of inequalities proved in Proposition 3ere we want to point out
that a corresponding version of such inequalities is truadne general cases.

Indeed, letc : Q x Q — R U {+oo} be a continuous cost function, and define the
Cost of transporas the infimum of

f_ c(xy) dy(x.y).
QxQ

among ally € Abm(up, ). Lete : [0,+00) — R be a superlinear convex function.
Then, a minimizep, for

p f e(o(X))dx+ Cost of transportd, uo),
Q

always exists, and arguing as in the proof of Propositiorit3s/possible to check that
for p;-a.e.y1, ¥2, and anyx such that X, y;) belongs to the support of an optimal plan
from u to p1, we have

€ (p1(y1)) + (X, Y1) < €. (p1(Y2)) + (X, Y2),
and similarly for the other inequalities. Then the convegite implies that
€(z)<€(n)<€(n) Y0<z <2,

and the proof of the monotonicity goes on like in the case wayaed. In particular
it is interesting to observe that the choitf&, y) = |x — y|? in this setting does not play
any role.
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4 Comments and open problems

e All our results could be extended to more general cost fonand more general
entropies. For instance, by considerir{g, y) = |x — y|P with p > 1, ande(2) =
zlog(2) — azwith @ € R, one can construct a weak solution of

p(0) = po,

(whereApp denotes thep-Laplacian ofp), subject to the Dirichlet boundary
condition

d
{ So) = Awold)

PO, = €7 fora.e.t>0.

e |tis interesting to observe that our approach - as in thesidab\Wasserstein one
- allows to introduce a drift term in the fliusion: by considering the entropy
fQ[p ngp - p + Vp] dxfor some smooth functioW : Q — R we obtain a weak
solution of

dgtp(t) Ap(t) + div(pVV)
p(0) = po,
subject to the Dirichlet boundary condition

pM),, = €',  foraet>0.

e A standard approach for constructing weak solutions to ta Bquation with
Dirichlet boundary condition equal to a functigrconsists viewing the equation
as the gradient flow off, [Vp[? on the set of functionp € H}(Q) = {p €
HY(Q) : tracep) = ¢}, with respect to thé.>-norm. However, although this
approach allows to treat general boundary conditions,rihoabe used to add
a drift term: givenF = F(x,u,p) : Q@ xR x RY — R, the gradient flow of a
functional of the formfQ F(x, o, Vp) dxis given by

dﬂtp(t) = divi(Fp(x.p(1). Vo(0)) = Fu(x. p(0). V(1)

and it is easy to check by a direct computation that there shioice ofF which
allows to obtaimp(t) — div(oVV) as the right-hand side.

e Although it is possible to prove uniqueness of solution byghuPDE methods,
it is not clear to us if one can use a transportation approaghdve this result.
In particular it is not clear if, as in the classical Wassiestaset — Why(ot, ot)
is decreasing along gradient flows of the entrgf&p log(o) dx.

¢ In Proposition 2.11 we only proved an upper bound for thevdévie of Why.
We conjecture that the following formula should be truet ket u; an absolutely
continuous curve with values ioM, (2), Wky). Then:

(@) There exists a velocity fiel; € L ([0, +o0), L%(Q, ut)) such that

loc

d .
d—t/.lt + le(Wtﬂt) =0

in [0, +o0) x Q. (Observe that, since by definition the continuity equation
can be tested only against smooth functions with suppaders, +co)xQ,
the mass ofi; is not necessarily constant.)

26



(b) Givenu € My(Q), for a.e.t > 0 we have

d
d—thi(ﬂt,u) =-2 f (W, Yy = X) dy(x,y),
QxQ

wherey is any optimal plan betwegn andu.

For any Borel subsdt c 9Q, one can define a variant of our distance: given two
non-negative measurgsandy onQ, we set

WE, (1, v) = inf j_‘ X = yPdy(x, ).

Y =Y =vJoxQ
#‘}"Q\F #)"Q\F X

The diference between this distance and YN&,-distance considered in this
paper is that now only' can be used as an infinite reserve of mass, and not the
wholedQ. This distance may be useful to study evolution equationsre/one
what to impose Dirichlet boundary conditions Brand Neumann conditions on
0Q \ T, at least whem is convex. Moreover, it is likely that this distance may
be used to study crowds motions, where some people want &pe$momQ

and the only available exit in ol (see for instance [9], where the authors use a
W,-gradient flow approach to model this kind of phenomena).
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