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Abstract. Starting from the quantitative isoperimetric inequality [21, 17], we
prove a sharp quantitative version of the Cheeger inequality.

A Cheeger set E for an open subset Ω ⊂ Rn, n ≥ 2, is any minimizer of the
variational problem

cm(Ω) = inf

{
P (E)

|E|m : E ⊂ Ω , 0 < |E| < ∞
}

, (1)

where |E| is the Lebesgue measure of E, and P (E) denotes its distributional perime-
ter, see [3, Chapter 3]. In order to avoid trivial situations, it is assumed that Ω has
finite measure and that the parameter m satisfies the constraints

m >
1

n′
, where n′ =

n

n− 1
. (2)

Under these assumptions on Ω and m, it is not difficult to show that Cheeger sets
always exist. The study of qualitative properties of Cheeger sets has received par-
ticular attention in recent years, see for example [1, 9, 10, 11, 28, 29, 27]. Another
interesting question is how to provide lower bounds on cm(Ω) in terms of geometric
properties of Ω. The basic estimate in this direction is the Cheeger inequality,

|Ω|m−(1/n′)cm(Ω) ≥ |B|m−(1/n′)cm(B) , (3)

where B is the Euclidean unit ball. The bound is sharp, in the sense that equality
holds in (3) if and only if Ω = x0 + rB for some x0 ∈ Rn and r > 0. In this note we
strengthen this lower bound in terms of the Fraenkel asymmetry of Ω, defined as

A(Ω) = inf

{ |Ω∆(x0 + r B)|
|Ω| : |r B| = |Ω| , x0 ∈ Rn

}
,

where ∆ denotes the symmetric difference between sets. Note that A(Ω) = 0 if and
only if Ω is a ball.

Theorem. Let Ω be an open set in Rn, n ≥ 2, with |Ω| < ∞, and let m satisfy (2).
Then

|Ω|m−(1/n′)cm(Ω) ≥ |B|m−(1/n′)cm(B)

{
1 +

(
A(Ω)

C(n,m)

)2
}

, (4)

where C(n, m) is a constant depending only on n and m.

As will be seen from the proof, a possible value for C(m,n) is given by

C(n,m) =
2

m− (1/n′)
+

61 n7

(2− 21/n′)3/2
.

This kind of improvement on a given sharp geometric-functional inequality has been
extensively considered in the literature, e.g. concerning the isoperimetric inequality
[4, 7, 32, 20, 24, 25, 21, 30, 18, 2], Sobolev inequalities [8, 12, 13, 22, 14], Faber-Krahn
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and isocapacitary inequalities [31, 26, 5, 6, 23, 18, 19], the Gaussian isoperimetric
inequality [15] and the Wulff inequality [16, 17]. In particular, inequality (4) im-
proves an analogous result contained in [23], where the exponent 3 is found in place
of the exponent 2; in turn, the exponent 2 is sharp as we will notice below.

In the proof of the theorem we will use the quantitative isoperimetric inequality

P (E) ≥ n|B|1/n|E|1/n′
{

1 +

(
A(E)

C0(n)

)2
}

, (5)

where the exponent 2 is sharp, see [21, 17, 30] (here, C0(n) is a constant depending

only on the dimension n, which can be chosen equal to 61 n7

(2−21/n′ )3/2 , see [17]). The

strategy consists in showing that, if E is the Cheeger set of an almost optimal Ω in
(3), then, first, |Ω \ E| is correspondingly small and, secondly, E is almost optimal
in the isoperimetric inequality (and thus, by (5), it is close to a ball).

To begin with, we notice that cm(B) = P (B)
|B|m . Indeed, if F ⊂ B has finite and

positive measure, and r ∈ (0, 1] is such that |r B| = |F |, then P (F ) ≥ P (r B) by
the isoperimetric inequality. Therefore,

P (F )

|F |m ≥ P (r B)

|r B|m =
n|B|rn−1

|B|mrnm
≥ n|B|1−m =

P (B)

|B|m ,

where in the last inequality we have used (2) and r ≤ 1. This ensures that

cm(B) = P (B)
|B|m and, by the well-known characterization of the equality cases in the

isoperimetric inequality, B is the only Cheeger set for B. A similar argument proves
in fact the validity of (3). Indeed, assume without loss of generality that |Ω| = |B|
and consider E ⊂ Ω, with finite and positive measure. If r ∈ (0, 1] is such that
|E| = |r B|, then, again by the isoperimetric inequality,

P (E)

|E|m ≥ rn−1−nm P (B)

|B|m ≥ P (B)

|B|m = cm(B) ,

and (3) follows.
We notice that inequality (4) is sharp in the decay rate of A(Ω). Indeed, by (1)

we know that cm(Ω) ≤ P (Ω)
|Ω|m , and, from cm(B) = P (B)

|B|m = n|B|1−m, we immediately
get

|Ω|m−(1/n′)cm(Ω)− |B|m−(1/n′)cm(B) ≤ n|B|1/n

(
P (Ω)

n|B|1/n|Ω|1/n′ − 1

)
.

Then, being the exponent 2 sharp in (5), it is a fortiori sharp in (4).
We can now prove our result.

Proof of the theorem. Without loss of generality, we can assume that |Ω| = |B|.
Since we always have A(Ω) ≤ 2, if cm(Ω) ≥ 2 cm(B), then (4) is verified as soon as
we take C(n,m) ≥ 4. We are therefore going to assume that cm(Ω) ≤ 2 cm(B).

Let E ⊂ Ω a Cheeger set for Ω, so that

P (E)

|E|m = cm(Ω) . (6)

Note that, up to a translation of E (and, correspondingly, of Ω), we can also assume
that

A(E) =
|E∆(r B)|

|E| , (7)
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for some r ∈ (0, 1]. We now divide the argument in two steps.

Step one: We introduce the isoperimetric deficit δ(E) of E, defined as

δ(E) =
P (E)

n|B|1/n|E|1/n′ − 1 ,

and prove the following inequalities concerning E:

|E| ≥ |Ω|
(

cm(B)

cm(Ω)

) 1
m−(1/n′)

, (8)

δ(E) ≤ cm(Ω)− cm(B)

cm(B)
. (9)

In order to prove (8), note that, by the isoperimetric inequality,

P (E)

|E|m ≥ n|B|1/n|E|(1/n′)−m .

Thus, by (6), recalling that cm(B) = n|B|1−m, we have

|E|m−(1/n′) ≥ n|B|1/n

cm(Ω)
= |B|m−(1/n′) cm(B)

cm(Ω)
,

that is (8). We now prove (9). On dividing by n|B|1/n the inequality

cm(Ω)− cm(B) ≥ P (E)

|E|1/n′ |E|(1/n′)−m − n|B|1−m ,

we find that

cm(Ω)− cm(B)

n|B|1/n
≥ (1 + δ(E))|E|(1/n′)−m − |B|(1/n′)−m

= δ(E)|E|(1/n′)−m + (|E|(1/n′)−m − |B|(1/n′)−m) .

By (2) and |E| ≤ |Ω| = |B|, the second term on the right hand side is non negative,
therefore we have proved that

cm(Ω)− cm(B)

n|B|1/n
≥ δ(E)

|E|m−(1/n′) ≥
δ(E)

|B|m−(1/n′) ,

as desired.

Step two: Thanks to (7), we can estimate A(Ω) as follows:

|Ω|A(Ω) ≤ |Ω∆B| ≤ |Ω∆E|+ |E∆(r B)|+ |B∆(r B)|
= 2(|Ω| − |E|) + |E|A(E) ≤ 2(|Ω| − |E|) + |Ω|A(E) .

(10)

By (8) we find that

|Ω| − |E| ≤ |Ω|
cm(Ω)

1
m−(1/n′)

(
cm(Ω)

1
m−(1/n′) − cm(B)

1
m−(1/n′)

)
.

Since ta ≤ sa +ata−1(t−s) whenever a ≥ 1 and 0 < s ≤ t, and ta ≤ sa +asa−1(t−s)
whenever 0 < a ≤ 1 and 0 < s ≤ t, minding that cm(Ω) ≥ cm(B) we get

|Ω| − |E| ≤ |Ω|
m− (1/n′)

cm(Ω)− cm(B)

cm(B)
. (11)
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On the other hand, by (9) and (5)

A(E) ≤ C0(n)

√
cm(Ω)− cm(B)

cm(B)
, (12)

and combining (10), (11) and (12), we find

A(Ω) ≤ 2

m− (1/n′)

(
cm(Ω)− cm(B)

cm(B)

)
+ C0(n)

√
cm(Ω)− cm(B)

cm(B)
.

Since cm(Ω) ≤ 2cm(B), we finally get

A(Ω) ≤ C(n,m)

√
cm(Ω)− cm(B)

cm(B)
,

where C(n,m) is defined as

C(n,m) =
2

m− (1/n′)
+ C0(n) .

We have thus achieved the proof of the theorem. ¤
To conclude, let us remark that the above argument may be repeated in the case

the Euclidean perimeter P (E) in (1) is replaced by some anisotropic perimeter

Pψ(E) =

∫

∂E

ψ(νE(x))dHn−1(x)

(here E has smooth boundary, νE is its outer unit normal vector field, and ψ : Rn →
[0,∞) is a convex function with ψ(tν) = tψ(ν) > 0 for every t > 0 and ν ∈ ∂B). The
only relevant change consists in replacing (5) with the corresponding quantitative
version of the Wulff inequality proved in [17].
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