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ABSTRACT. Starting from the quantitative isoperimetric inequality [21, 17], we
prove a sharp quantitative version of the Cheeger inequality.

A Cheeger set E for an open subset 2 C R™, n > 2, is any minimizer of the
variational problem

cm(Q)—inf{fE(—‘i):ECQ,O<\E|<oo}, (1)

where |E| is the Lebesgue measure of E, and P(E) denotes its distributional perime-
ter, see [3, Chapter 3]. In order to avoid trivial situations, it is assumed that 2 has
finite measure and that the parameter m satisfies the constraints

m> where n,:nﬁl' (2)

Under these assumptions on 2 and m, it is not difficult to show that Cheeger sets
always exist. The study of qualitative properties of Cheeger sets has received par-
ticular attention in recent years, see for example [1, 9, 10, 11, 28, 29, 27]. Another
interesting question is how to provide lower bounds on ¢,,(2) in terms of geometric
properties of €2. The basic estimate in this direction is the Cheeger inequality,

Qe (Q) > | B e (B), (3)

where B is the Euclidean unit ball. The bound is sharp, in the sense that equality
holds in (3) if and only if 2 = xy + rB for some zy € R" and > 0. In this note we
strengthen this lower bound in terms of the Fraenkel asymmetry of ), defined as

QA B
A(Q):inf{' <x|OQJ|” ) :yrBy:\Q\,xoeR”},

where A denotes the symmetric difference between sets. Note that A(2) = 0 if and
only if €2 is a ball.

Theorem. Let 2 be an open set in R", n > 2, with || < oo, and let m satisfy (2).
Then

Q") (62) 2 |BIP0/) (B) {1 " (%” | .

where C(n,m) is a constant depending only on n and m.

As will be seen from the proof, a possible value for C'(m,n) is given by

2 n 61n’
m—(1/n') (2 —2/")3/2"
This kind of improvement on a given sharp geometric-functional inequality has been

extensively considered in the literature, e.g. concerning the isoperimetric inequality
[4,7,32,20, 24, 25, 21, 30, 18, 2|, Sobolev inequalities [8, 12, 13, 22, 14], Faber-Krahn

C(n,m) =
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and isocapacitary inequalities [31, 26, 5, 6, 23, 18, 19], the Gaussian isoperimetric
inequality [15] and the Wulff inequality [16, 17]. In particular, inequality (4) im-
proves an analogous result contained in [23], where the exponent 3 is found in place
of the exponent 2; in turn, the exponent 2 is sharp as we will notice below.

In the proof of the theorem we will use the quantitative isoperimetric inequality

P(E)  n| B/ 2] {1+ (o) } , 5)

where the exponent 2 is sharp, see [21, 17, 30] (here, Cy(n) is a constant depending
only on the dimension n, which can be chosen equal to (27311/%, see [17]). The

strategy consists in showing that, if £ is the Cheeger set of an almost optimal {2 in
(3), then, first, |2\ E| is correspondingly small and, secondly, £ is almost optimal
in the isoperimetric inequality (and thus, by (5), it is close to a ball).

To begin with, we notice that ¢,,(B) = %. Indeed, if F' C B has finite and
positive measure, and r € (0, 1] is such that |r B| = |F|, then P(F) > P(r B) by

the isoperimetric inequality. Therefore,
P(F) | P(B) _nlBp o PB).
N (L | B|™
where in the last inequality we have used (2) and r < 1. This ensures that
cm(B) = % and, by the well-known characterization of the equality cases in the
isoperimetric inequality, B is the only Cheeger set for B. A similar argument proves
in fact the validity of (3). Indeed, assume without loss of generality that |Q2] = |B|
and consider E C 2, with finite and positive measure. If r € (0, 1] is such that
|E| = |r B|, then, again by the isoperimetric inequality,
P(B) _ \roanP(B) _ P(B)
B |B[™ — |B™

cm(B)

and (3) follows.
We notice that inequality (4) is sharp in the decay rate of A(€2). Indeed, by (1)

we know that ¢,,(Q2) < %, and, from ¢,,(B) = % = n|B|'™™, we immediately
get
o o P(Q)
m—(1/n’) . m—(1/n') I/ 2 \°%
12 cm(2) — | B| cm(B) < n|B (n|B|1/”|Q|1/”' 1) :

Then, being the exponent 2 sharp in (5), it is a fortiori sharp in (4).
We can now prove our result.

Proof of the theorem. Without loss of generality, we can assume that |Q| = |B).
Since we always have A(2) < 2, if ¢,,(©2) > 2¢,,(B), then (4) is verified as soon as
we take C'(n,m) > 4. We are therefore going to assume that ¢,,(2) < 2¢,(B).

Let £ C Q a Cheeger set for €2, so that

PE)

Note that, up to a translation of E (and, correspondingly, of 2), we can also assume

that EA(B)|
A(E) = E (7)
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for some r € (0, 1]. We now divide the argument in two steps.

Step one: We introduce the isoperimetric deficit 6(E) of E, defined as
P(E)

)(E)= ——-—-—1
B = e
and prove the following inequalities concerning E':
1
Cm(B)\ m=07)
Bl = ol (=) )
cm (§2) — em(B)
S(E) < : 9
) < =g )
In order to prove (8), note that, by the isoperimetric inequality,
P(E) 1 1/n')—
——— >n|B] /”|E|( /n")—m
B[
Thus, by (6), recalling that c,,(B) = n|B|'™™, we have
’ B|1/n nC (B)
E m—(1/n') > TL| — |B m—(1/n") *m
B > TR Sy,
that is (8). We now prove (9). On dividing by n|B|'/™ the inequality
P(E) 1/n')—m 1-m
cm(2) — e (B) > B ||/ =m | Bt
we find that
() — cm(B)

> (L+o(E))|E|Y)m — | Bt/

= §(B)|E|/)mm 4 (|B|M/m)=m | p|A/n)=my

By (2) and |E| < || = |B|, the second term on the right hand side is non negative,
therefore we have proved that

el —cn(B) _ O(E) _  H(E)
n|B|1/n - |E|m—(1/n’) — |B|m—(1/n’)’

as desired.

Step two: Thanks to (7), we can estimate A(2) as follows:
IQA(Q) < [QAB| < |QAE| + |EA(r B)| + |BA(r B)|
=2(19] - [E]) + |[EIA(E) < 2(1Q] - [E]) + [QA(E) .
By (8) we find that

(10)

]
cm(Q) m—(ll/n'>
Since t* < s+ at® ! (t —s) whenever a > 1 and 0 < s < ¢, and t* < s+ as® 1(t —s)
whenever 0 < a < 1 and 0 < s < ¢, minding that ¢,,(Q2) > ¢,,(B) we get

9 em(®) —cn(B)
m—(1/n)  em(B)

9] 5| < (cn( @77 — By

] - Bl < (11)
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On the other hand, by (9) and (5)

mms%w¢%qggﬂﬂ, (12)

and combining (10), (11) and (12), we find

2 cm(Q) — ¢ (B) cm(Q) — ¢ (B)
40 < ot () )“MWV cnB)

Since ¢,(Q) < 2¢,,(B), we finally get

Ammcmm¢%®@§w%

where C'(n,m) is defined as

2
We have thus achieved the proof of the theorem. O

To conclude, let us remark that the above argument may be repeated in the case
the Euclidean perimeter P(F) in (1) is replaced by some anisotropic perimeter

Py(E) = 8EQZJ(VE(%“))OZH"_l(93)

(here E has smooth boundary, vg is its outer unit normal vector field, and ¢ : R" —
[0, 00) is a convex function with ¢ (tv) = ty(v) > 0 for every t > 0 and v € IB). The
only relevant change consists in replacing (5) with the corresponding quantitative
version of the Wulff inequality proved in [17].
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