A NOTE ON INTERIOR W?2!*¢ ESTIMATES FOR THE
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ABSTRACT. By a variant of the techniques introduced by the first two authors
in [DF] to prove that second derivatives of solutions to the Monge-Ampere
equation are locally in Llog L, we obtain interior W2:11€ estimates.

1. INTRODUCTION

Interior W?2? estimates for solutions to the Monge-Ampeére equation with bounded
right hand side

(1.1) detD>u=f inQ, u=0 ond, 0<A<f<A,

were obtained by Caffarelli in [C] under the assumption that |f — 1| < ¢(p) locally.
In particular u € Wli’cp for any p < oo if f is continuous.

Whenever f has large oscillation, W?2P estimates are not expected to hold for
large values of p. Indeed Wang showed in [W] that for any p > 1 there are homoge-
nous solutions to (1.1) of the type

u(tz, ty) = ' Tu(x,y) for t >0,

which are not in W?2P.

Recently the first two authors, motivated by a problem arising from the semi-
geostrophic equation [ACDF, ACDF2], showed that interior W?! estimates hold
for the equation (1.1) [DF]. In fact they proved higher integrability in the sense
that

ID%u| |log [|D?u|||* € LL, Yk >o0.

In this short note we obtain interior W2!*¢ estimates for some small ¢ =
e(n,A\,A) > 0. In view of the examples in [W] this result is optimal. We use
the same ideas as in [DF], which mainly consist in looking to the L' norm of || D?ul|
over the sections of u itself and prove some decay estimates. Below we give the
precise statement.

Theorem 1.1. Let u: Q — R,
u=0 on 09, B, CcQcC B,,

be a continuous conver solution to the Monge-Ampére equation

(1.2) det D*u = f(x) inQ, 0< A< f<A,
for some positive constants X\, A. Then
lullw21+e 0y < C, with Q' = {u < —|jul|p=/2},
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where €,C > 0 are universal constants depending on n, X\, and A only.

By a standard covering argument (see for instance [DF, Proof of (3.1)]), this
implies that u € W2 T5(Q).

Theorem 1.1 follows by slightly modifying the strategy in [DF]: We use a covering
lemma that is better localized (see Lemma 3.1) to obtain a geometric decay of the
“runcated” L' energy for || D?u|| (see Lemma 3.3).

We also give a second proof of Theorem 1.1 based on the following observation:

In view of [DF] the L! norm of || D?ul| decays on sets of small measure:

C

2

D%l = MY < o7

for an appropriate universal constant C' > 0 and for any M large. In particular,
choosing first M sufficiently large and then taking € > 0 small enough, we deduce
(a localized version of) the bound

1
Mite
Applying this estimate at all scales (together with a covering lemma) leads to the
local W21T¢ integrability for || D?ul.

We believe that both approaches are of interest, and for this reason we include
both. In particular, the first approach gives a direct proof of the Wlicl te regularity
without passing through the Llog L estimate.

We remark that the estimate of Theorem 1.1 holds under slightly weaker as-
sumptions on the right hand side. Precisely if

det D%u = p

with p being a finite combination of measures which are bounded between two
multiples of a nonnegative polynomial, then the I/Vlicl *+€ regularity still holds (see
Theorem 3.7 for a precise statement).

The paper is organized as follows. In section 2 we introduce the notation and
some basic properties of solution to the Monge-Ampeére equation with bounded
right hand side. Then, in section 3 we show both proofs of Theorem 1.1, together
with the extension to polynomial right hand sides.

{lID*ull = M}| < [{ID*ull = 1}|

After the writing of this paper was completed, we learned that Schmidt [S] had
just obtained the same result with related but somehow different techniques.

2. NOTATION AND PRELIMINARIES

Notation. Given a convex function u :  — R with Q@ C R™ bounded and
convex, we define its section Sj,(xg) centered at 2o at height h as

Sh(zo) ={x € Q :  wu(x) <u(zxo) + Vu(zo) - (x — o) + h}.
We also denote by Sp,(zg) the closure of Sy, (o).
The norm ||A|| of an n X n matrix A is defined as
||A]| := sup Ax.

lz]<1
We denote by |F| the Lebesgue measure of a measurable set F'.
Positive constants depending on n, A, A are called universal constants. In general
we denote them by ¢, C, ¢;, C;.
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Next we state some basic properties of solutions to (1.2).

2.1. Scaling properties. If Sy (z¢) CC Q, then (see for example [C]) there exists
a linear transformation A : R™ — R", with det A = 1, such that

(2.1) 0B s, C A(Sh(x0) — z0) C o' B,

for some ¢ > 0, small universal.

Definition 2.1. We say that Sp, (o) has normalized size o if
a = [|A|?

for some matrix A that satisfies the properties above. (Notice that, although A
may not be unique, this definition fixes the value of a up to multiplicative universal
constants.)

It is not difficult to check that if u is C? in a neighborhood of xq, then Sy (o)
has normalized size || D?u(x)| for all small A > 0 (if necessary we need to lower
the value of o).

Given a transformation A as in (2.1), we define @ to be the rescaling of u

z

(2.2) a(z) = h™u(x), =Tz :=h"Y2A(x —x0).
Then @ solves an equation in the same class

det D%*i = f, with  f(Z) == f(z), A< f <A,
and the section S;(0) of @ at height 1 is normalized i.e

0By C 51(0) c o By,  $1(0) = T(Sh(x0)).

Also
D?*u(z) = AT D?u(%)A,
hence
(2.3) I1D?u(x)|| < [|A[I*|D*a(@)]l,
and
(2.4) 11 < D*u(z) < 7ol = NlAP? < |[D*u(@)]| < y2l All*

2.2. Properties of sections. Caffarelli and Gutierrez showed in [CG]| that sec-
tions Sp,(x) which are compactly included in € have engulfing properties similar to
the engulfing properties of balls. In particular we can find § > 0 small universal
such that:
1) If hy < hg and Ssp, (1) N Ssp, (2) # O then
Sshy(21) C Spy(2).
2) If hy < hy and o1 € Sp,, (72) then we can find a point z such that
Ssh, (Z) C Sh, (.’L‘l) N Sh, (.1‘2)
3) If 1 € T}LZ(SUQ) then
Sshy (#1) C San, (22).
Now we also state a covering lemma for sections.
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Lemma 2.2 (Vitali covering). Let D be a compact set in Q0 and assume that to
each x € D we associate a corresponding section Sy(x) CC Q. Then we can find a
finite number of these sections Sp,(z;), i =1,...,m, such that

m
DcC U Sh, (x4), with Ssn, (x;) disjoint.
i=1
The proof follows as in the standard case: we first select by comptactness a finite
number of sections Ssp,; (2;) which cover D, and then choose a maximal disjoint set
from these sections, selecting at each step a section which has maximal height
among the ones still available (see the proof of [St, Chapter 1, §3, Lemma 1] for
more details).

3. PROOF OF THEOREM 1.1
We assume throughout that u is a normalized solution in S1(0) in the sense that
det D*u=f in Q, A< f<A,

and
S,(0) CC 9, oB; C S1(0) C o' By.
In this section we show that

(3.1) / ||D2u||1+5dx <C,
S1(0)

for some universal constants € > 0 small and C large. Then Theorem 1.1 easily
follows from this estimate and a covering argument based on the engulfing properties
of sections. Without loss of generality we may assume that u € C2, since the general
case follows by approximation.

3.1. A direct proof of Theorem 1.1. In this section we give a selfcontained
proof of Theorem 1.1. As already mentioned in the introduction, the idea is to get
a geometric decay for [ no 50 | D?ul|.

Lemma 3.1. Assume 0 € Si(y) CC Q for somet > 1 and y € Q. Then

)

/ |D?ulldz < Co |{Cy'T < D?u < CoI} 1 85(0) 1 Suly)
1(0)

for some Cy large universal.

Proof. By convexity of u we have

/ | D?u||dx < Audz = / u, < Ch,
S1(0) 51(0) 951(0)

where the last inequality follows from the interior Lipschitz estimate of u in S2(0).
The second property in Subsection 2.2 gives

S5(0) N Se(y) O Ss2(2)
for some point z, which implies that
195(0) N Se(y)| = &1
for some ¢; > 0 universal. The last two inequalities show that the set
{||D2u|| < QClcl_l}
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has at least measure ¢;/2 inside S5(0) N Sy (y).
Finally, the lower bound on det D?u implies that

Co'I < D*>u< Col  inside {||D%ul| < 2Cic; '},
and the conclusion follows provided that we choose Cj sufficiently large. (]
By rescaling we obtain:
Lemma 3.2. Assume Sap(z0) CC Q, and xg € S;(y) for some t > h. If
Sh(xo) has normalized size a,

then

/S ID*ull dz < Coa [{Cg ' < [[D*ull < Coa} N Ssn(wo) N Se(y)|-
n(zo
Proof. The lemma follows by applying Lemma 3.1 to the rescaling @ defined in
Section 2 (see (2.2)). More precisely, we notice first that by (2.3) we have
ID*u(@)l|l < ol D*a(@)], & =Tu,
hence
| det T'| / | D?ul| da < a/ | D?al| dz.
Sh(@o) 51(0)

Also, by (2.4) we obtain

{Co'T < D*u<Col} CT({Cy e < ||D?%ul| < Coa}).
which together with
$5(0) =T(Ssn)s Supn(§) = T(Si(v)),
implies that

[{C5'1 < D22 < oI} 01 85(0) 0 5y (3)|

is bounded above by

[det T| |{C; "o < | D?ul| < Coar} N Ssn(wo) N Se(y)| -
The conclusion follows now by applying Lemma 3.1 to u. O

Next we denote by Dy, k > 0, the closed sets

(3:2) Dy = {z € 5,(0) : |D?u(a)]| = M*},

for some large M. As we show now, Lemma 3.2 combined with a covering argument
gives a geometric decay for [, [|D?ul.

Lemma 3.3. If M = Cy, with Ca a large universal constant, then

[ iptulde<a-n) [0t da,
Dy Dy,

for some small universal constant T > 0.
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Proof. Let M > Cy (to be fixed later), and for each x € Dy consider a section
Sp(x) of normalized size a = CoM*,

which is compactly included in S5(0). This is possible since for A — 0 the normal-
ized size of Sp(x) converges to || D?u(x)| (recall that u € C?) which is greater than
MF+1 > o, whereas if h = § the normalized size is bounded above by a universal
constant and therefore by a.

Now we choose a Vitali cover for Dy with sections Sy, (z;), i =1,...,m. Then
by Lemma 3.2, for each i,

/ | D2ullde < C2M* |{M* < | D?ull < C2M*Y 1 Sgn, (1) 1 51(0)]
Sh,; (4

Adding these inequalities and using
Dy C UShi (Sﬂl), Ssh,; (xl) disjoint,
we obtain

/ |D2ulldx < C2MP |{M* < | D?ul < CEM*} 1 54(0)]
D41

<C | D?ul|dx
Dy \Dk+1
provided M > CZ. Adding Cka+1 | D%u|| to both sides of the above inequality,
the conclusion follows with 7= 1/(1 + C). O

By the above result, the proof of (3.1) is immediate: indeed, by Lemma 3.3 we
easily deduce that there exist C,e > 0 universal such that

/ |D?u| dx < Ct™2¢  Vt>1.
{z€51(0): || D2u(x)|| >t}
Multiplying both sides by t~(1=¢) and integrating over [1,00) we obtain

o0 o0 C
/ t—(l—f)/ | D?ul| dz dt < C/ Tl =2
1 {2€51(0): | D2u(z)||>t} 1 <

and we conclude using Fubini.

3.2. A proof by iteration of the Llog L estimate. We now briefly sketch how
(3.1) could also be easily deduced by applying the Llog L estimate from [DF] inside
every section, and then performing a covering argument.

First, any K > 0 we introduce the notation

Fr = {||D?u|| > K} N S1(0).

Lemma 3.4. Suppose u satisfies the assumptions of Lemma 3.1. Then there exist
universal constants Cy and Cy such that, for all K > 2,

G 1 2
Fgl< ———— I < D*u<Cpl .
|F| < Klog (i) {Cy'I < D*u < Col} N Ss(0) NSy (y)|
Indeed, from the proof of Lemma 3.1 the measure of the set appearing on the
right hand side is bounded below by a small universal constant c¢; /2, while by [DF]
|Fr| < C/Klog(K) for all K > 2, hence

¢ i) [{C5 T < D*u < CoI} N S5(0) N Sly)] -

Frl< ———
| Kl*clKlog
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Exactly as in the proof of Lemma 3.2, by rescaling we obtain:

Lemma 3.5. Suppose u satisfies the assumptions of Lemma 3.2. Then,

Cq
Klog(K)

)

{IID?ull = ek} N Sp(wo)| < [{Ca " < | D?ull } 1 Son(wo) N St (y)

for all K > 2.

Finally, as proved in the next lemma, a covering argument shows that the mea-
sure of the sets Dy defined in (3.2) decays as M~(1729F which gives (3.1).

Lemma 3.6. There exist universal constants M large and € > 0 small such that
Disa| < M7%|Dy).

Proof. As in the proof of Lemma 3.3, we use a Vitali covering of the set Dy41 with
sections Sy (z) of normalized size o = CoM*, i.e.

Dpy1 C UShi (x4), Ssn, (z;) disjoint sets.

We then apply Lemma 3.5 above with

K :=Cy'M,
so that oK = M**1, and find that for each i
2Cy
Dis1 N Sp. (2:)] < —=2% 1Dy, O Ssn. (1),
| Di41 0 S, ()| < Mlog(M)l k N Ssn, ()]
provided that M > Cy. Summing over i and choosing M > e*“0 we get
2C)y 1
D < ——|Dg| < —|D
| k+1| = MlOg(M)‘ k| = 2M| k‘7
and the lemma is proved by choosing ¢ = log(2)/log(M). O

3.3. More general measures. It is not difficult to check that our proof applies
to more general right hand sides. Precisely we can replace f by any measure p of
the form

N
(3.3) wu= Zgl(ac)|Pl(ac)|°‘l dz, 0<A<g; <A, P, polynomial, «; > 0.
i=1

We state the precise estimate below.
Theorem 3.7. Let u: Q — R,
u=0 on dQ, B, CQCB,,
be a continuous convex solution to the Monge-Ampére equation
det D*u=p in Q, p(2) <1,
with p as in (3.3). Then
lullw21+e 0y < C, with Q' = {u < —|jul| = /2},

where €,C > 0 are universal constants.
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The proof follows as before, based on the fact that for u as above one can prove
the existence of constants 3 > 1 and ~ > 0, such that, for all convex sets 3,1

B
(3. M9z (1) vecs.

In this general situation, we need to write the scaling properties of v with respect
to the measure pu. More precisely the scaling inclusion (2.1) becomes

o hu(Sh(we)) ™% Bi C A(Sh(wo) — x0) C o~  hu(Sn(z0))™* Bu,
and
Ta = h~ u(Sh(z0)) ™ A (x — x0).
Also we define the normalized size a of Sp(zg) (relative to the measure p) as

a = h~ (S (o)) || Al

With this notation the statements of the lemmas in Section 3 apply as before.
Indeed, first of all we observe that (3.4) implies that p is doubling, so all prop-
erties of sections stated in Section 2.2 still hold.
Then, in the proof of Lemma 3.1, we simply apply (3.4) with S = S1(0) and
E = {det(D?u) < ¢} (c2 > 0 small) to deduce that

v|E|? < Cu(E) = C/Edet(DQu) < |E|.

This implies that, if co > 0 is sufficiently small, the set
{ID*u|| < 2Cicr '} N {det(D?u) > ca}

has at least measure ¢;/4, and the result follows as before.
Moreover, since (3.4) is affinely invariant, Lemma 3.2 follows again from Lemma
3.1 by rescaling. Finally, the proof of Lemma 3.3 is identical.
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1Although this will not be used here, we point out for completeness that (3.4) is equivalent to
the so-called Condition (f1oc), first introduced by Caffarelli and Gutierrez in [CG]. Indeed, using
(3.4) with E = S\ F one sees that |F|/|S| < 1 implies p(F)/u(S) < 1—+/2, and then an iteration
and covering argument in the spirit of [CG, Theorem 6] shows that (3.4) is actually equivalent to
Condition (ftoo).
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