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Abstract. The aim of this note is to investigate the size of the singular set of a general class of
free interface problems. We show porosity of the singular set, obtaining as a corollary that both its
Hausdorff and Minkowski dimensions are strictly smaller than n− 1.

1. Introduction

Let Ω ⊂ Rn be an open set. Given E ⊂ Ω and u ∈W 1,2(Ω) we define

Fα,βε (u,E) := ε P (E,Ω) +

∫
Ω
aE(x)|∇u|2, (1.1)

where aE(x) := β1E(x) + α1Ω\E(x), ε ∈ (0, 1) and 0 < α < β <∞ are given constants, and P (E,Ω)
denotes the perimeter of E relative to Ω. We are interested in the regularity of (Λ, r0)-minimizers of
F in Ω, namely in couples (u,E) such that

Fα,βε (u,E) ≤ Fα,βε (v,E) + Λ|E∆F | (1.2)

for all F ⊂ Ω, v ∈ W 1,2(Ω) such that E∆F b Bx,r b Ω, u = v on Ω \ Bx,r, r ≤ r0. Minimizers and

(Λ, r0)-minimizers of Fα,βε naturally arise in several problems from material sciences, see [1, 6, 10, 8]
and references therein.

In [10] it has been established that if (u,E) is (Λ, r0)-minimizer, then ∂E is regular outside a
relatively closed set of vanishing Hn−1 measure (here and in the sequel, Hn−1 denotes the (n − 1)-
dimensional Hausdorff measure). More precisely if we define the regular set

Reg(E) :=
{
x ∈ ∂E ∩ Ω : ∂E is a C1,γ hypersurface in a neighborhood of x for some γ ∈ (0, 1)

}
(1.3)

and the singular set
Σ(E) := (∂E ∩ Ω) \ Reg(E) , (1.4)

then Hn−1(Σ(E)) = 0, see Section 2.5 below for a more detailed discussion. On the other hand
nothing is known concerning the Hausdorff dimension of Σ(E). In this note we will address this issue
by proving the following:

Theorem 1.1. There is a constant κ = κ(n, β/α) > 0 such that, for every (Λ, r0)-minimizer of Fα,βε ,

dimHΣ(E) ≤ n− 1− κ. (1.5)

Note that κ depends only on n and β/α but not on ε, see also the comments after Theorem 1.3
below.

A well-known classical strategy to study the dimension of singular sets in geometric problem is the
study of blow-ups of minimizers around a singular point. If one is able to classify the singularities
of blow-ups then, applying the so-called Federer dimension reduction argument (see for instance [15,
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Appendix]), one can obtain estimates on the dimension of the singular set of a generic minimizer. In
order to apply this strategy one needs to have some monotonicity formula at hand. Indeed, roughly
speaking, a monotonicity (or almost monotonicity) formula allows one to classify blow-up limits in
a sufficiently precise way to understand the dimension of their singularities. For minimizers of (1.1)
monotonicity formulas are known only under some very restrictive assumptions (see [10, Lemma 3.1])
and thus are not suitable to study blows limit. To prove Theorem 1.1 we will then follow a different
route, namely we will show that Σ(E) is σ-porous in ∂E for some σ = σ(n, β/α) > 0, see Definition
1.2. From this fact Theorem 1.1 will follow by classical results in measure theory, see Lemma 3.1. In
particular Theorem 1.1 will be a consequence of Theorem 1.3 below. Moreover, by using Lemma 3.2
one can actually provide an estimate on the Minkowski content of Σ(E).

To explain Theorem 1.3 we need the following definition:

Definition 1.2. Given Σ ⊂ K ⊂ B1, we say that Σ is (σ, %̂)-porous in K if the following holds: For
every x ∈ K and every % ≤ %̂, there exists y ∈ K ∩Bx,% and r ∈ (σ%, %) such that

By,r ∩K ⊂ K \ Σ.

Let us also introduce the following notation, which will be useful in the sequel. Given (u,E) a
(Λ, r0)-minimizer of F in B1, x ∈ B1, and % ≤ dist(x, ∂B1), we define the normalized Dirichlet energy
of u as

Du(x, %) :=
1

%n−1

∫
Bx,%

|∇u|2. (1.6)

In case x is the origin we will simply write Du(%). We can now state the main result of this paper

Theorem 1.3. There is a positive constant σ = σ(n, β/α) such that the following holds: For every

(Λ, r0)-minimizer of Fα,βε in B1 there exists a radius %̂ = %̂
(
n, r0, Λ/ε, αDu(1)/ε

)
> 0 such that

Σ(E) ∩B1/2 is (σ, %̂)-porous in ∂E ∩B1.

Note that σ depends only on n and β/α. This is crucial in showing that the constant κ appearing
in Theorem 1.1 depends only on n and β/α as well. On the other hand the radius %̂ shall be thought
of a regularity scale, i.e., as the scale at which the perimeter term becomes dominant. In this respect
the fact that it depends also on ε, Λ, and Du(1) is quite natural. This can be seen for instance by
looking at the asymptotic behavior of the family of minimizers of the following problems as ε→ 0:

min
{
Fα,βε (u,E) : |E| = |Ω|/2 u = u0 on ∂Ω

}
(Pε)

where Ω = [0, 1]2 is the unit square in R2 and u0 = x1. In this case minimizers exhibit finer and finer
microstructures, and the gradient jumps along a finer and finer family of curves which propagate in
the direction e2.

We conclude this first section by recalling that the use of porosity in the study of the dimension
of the singular set of minimizers of variational problems when no monotonicity formulas are available
already appeared in [9] for minimizers of quasi-convex functionals, and in [3, 11, 13] concerning the
Mumford-Shah functional. In particular, by using the porosity of the singular set of minimizers of the
Mumford-Shah functional, the authors have been able to prove in [5] a higher integrability property
of the gradients of the minimizers conjectured by De Giorgi in the 90’s.

The proof of Theorem 1.3 is based on the following idea which we believe can be applied also to
different types of problem. First, to remove the dependence on ε we notice that by scaling one can
reduce itself to the case ε = 1, the price to pay being that the size of the Dirichlet energy increases
by a factor 1/ε. Then, by a comparison argument we show that either the Dirichlet energy is below a
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fixed threshold C0 or it decays geometrically (see Lemma 2.1). By scaling this implies that, below a
suitable scale that can depend on ε, one has reduced itself to the case ε = 1 and Du(x, ρ) ≤ C1 (see
Lemma 2.2), hence removing the dependence on ε.

We then prove the porosity result. For this we observe that, by known excess-type regularity
theorems (see Theorem 2.4 and [10, Section 5]) it follows that Reg(E) is open relatively to ∂E and
Hn−1(Σ(E)) = 0. This implies in particular that, given a (Λ, r0)-minimizer in B1 with ε = 1 and
Du(1) ≤ C1, there exists a ball inside B1/2 where ∂E is regular. Our observation is that, using a simple
contradiction argument based on the compactness of (Λ, r0)-minimizers, the radius of this “regularity
ball” is universal. This fact combined with the fact the (Λ, r0)-minimizers are invariant under scaling
allows to transfer this information inside any ball and prove that, inside any ball B%(x), there exists
a ball with comparable radius where ∂E is smooth (see the proof of Theorem 1.3 in Section 3). This
concludes the proof of the porosity of the singular set.

As pointed out to us by Frank Morgan, the result of Theorem 1.1 could be obtained by combining
part of the techniques of this paper together with a general argument due to Almgren and written up
by White in [16]. Roughly speaking, Almgren’s argument asserts that every time that one has a family
of compact sets K satisfying suitable scaling and closure properties (in our case this should be thought
as the class of singular sets of all (Λ, r0)-minimizers of F), then the set of s such that Hs(K) = 0
for all K ∈ K is open. Although this argument is very general, it is worth to point out that it only
gives estimates on the Hausdorff dimension of Σ(E), while knowing that the singular set is porous is a
stronger informations that allows us, for instance, to deduce estimates also on the Minkowski content
of Σ(E) (see Lemma 3.2 below).

Finally let us observe that both these arguments are robust enough to be applied also to the family
of anisotropic energies considered in [8].

This paper is organized as follows: in Section 2 we summarize some known results concerning
(Λ, r0)-minimizers and we prove some preliminary lemmas with a particular attention in underlining
the dependence of the constants on the parameters. Then, in Section 3 we provide the proofs of
Theorems 1.1 and 1.3.

After the writing of this paper was completed, we learned that Fusco and Julin [7] had just obtained
similar results with related but somehow different techniques.

Acknowledgments: The second author is partially supported by NSF Grant DMS-1262411. Both
authors acknowledge the support of the ERC ADG Grant GeMeThNES.

2. Preliminaries and technical lemmas.

In this section we prove some technical lemmas that we will need in the sequel.

2.1. Scaling. Let (u,E) be a (Λ, r0)-minimizer of Fα,βε in B1. Then:

•Horizontal scaling: For every x ∈ B1 and r ≤ dist(x, ∂B1), let us define ux,r(y) := r−1/2u(x + ry)

and Ex,r := (E − x)/r. Then (ux,r, Ex,r) is a (Λr, r0/r)-minimizer of Fα,βε in B1. Note also that

Du(x, %) = Dux,r(0, %/r). (2.1)

•Vertical scaling: For every µ > 0, define v(x) :=
√
µu(x). Then (v,E) is a (Λ/ε, r0)-minimizer of

Fα/µε,β/µε1 and

Dv(x, %) = µDu(x, %). (2.2)
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2.2. Upper density estimates. Let (u,E) be a (Λ, r0)-minimizer of F1,β/α
1 in B1. Testing the

minimality of (u,E) with (u,E \Bx,%) we obtain

P (E,Bx,%) +
β − α
α

∫
E∩Bx,%

|∇u|2 ≤ nωn%n−1 + Λ%n ∀x ∈ B1, % ≤ min{dist(x, ∂B1), r0}. (2.3)

2.3. The equation for u and some consequences. Let (u,E) be a (Λ, r0)-minimizer of F1,β/α
1 in

B1. If we test the minimality of (u,E) with (u+ ηϕ,E), ϕ ∈W 1,2
0 (Bx,%), and we let η → 0, we get

β

∫
E∩Bx,%

∇u · ∇ϕ+ α

∫
Bx,%\E

∇u · ∇ϕ = 0 ∀ϕ ∈W 1,2
0 (Bx,%). (2.4)

In particular, if v denotes the harmonic function with the boundary data of u on ∂Bx,r, plugging
ϕ := u− v in (2.4) and using that ∫

Bx,%

∇v · (∇u−∇v) = 0,

we obtain ∫
Bx,%

|∇u−∇v|2 ≤ (β − α)2

α2

∫
Bx,%∩E

|∇u|2. (2.5)

We can now prove the following Lemma, see also [10, Lemma 2.2].

Lemma 2.1. Let (u,E) be a (Λ, r0)-minimizer of F1,β/α
1 in B1. There exists a constant C0 =

C0(n, β/α) > 0 such that

either Du(x, %) ≤ C0 (2.6)

or Du(x, %/16) ≤ 1

4
Du(x, %) (2.7)

for every x ∈ B1 and % ≤ min{dist(x, ∂B1), r0, 1/Λ}.

Proof. Let C0 � 1 to be fixed and assume that for some x ∈ B1 and % ≤ min{dist(x, ∂B1), r0, 1/Λ}
we have ∫

Bx,%

|∇u|2 > C0%
n−1,

so that (2.6) fails. By the above inequality, (2.3), and using that Λ% ≤ 1, we get

β − α
α

∫
Bx,%∩E

|∇u|2 ≤ nωn + 1

C0

∫
Bx,%

|∇u|2,

that combined with (2.5) gives∫
Bx,%

|∇u−∇v|2 ≤ C(n, β/α)

C0

∫
Bx,%

|∇u|2, (2.8)

where v is the harmonic function with the same boundary data of u on ∂Bx,%. We notice that as a
consequence of the harmonicity of v the function |∇v|2 is subharmonic, hence

1

rn

∫
Bx,r

|∇v|2 ≤ 1

%n

∫
Bx,%

|∇v|2 ∀ r ∈ (0, %).
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Applying this inequality with r = %/λ with λ ≥ 1, together with (2.8) and the fact that |∇u|2 ≤
2|∇v|2 + 2|∇u−∇v|2, we deduce that

λn−1

%n−1

∫
Bx,%/λ

|∇u|2 ≤ 2λn−1

%n−1

∫
Bx,%/λ

|∇u−∇v|2 +
2λn−1

%n−1

∫
Bx,%/λ

|∇v|2

≤ 2λn−1

%n−1

∫
Bx,%

|∇u−∇v|2 +
2

λ%n−1

∫
Bx,%

|∇v|2

≤ C(n, β/α)λn−1

C0%n−1

∫
Bx,%

|∇u|2 +
2

λ%n−1

∫
Bx,%

|∇u|2,

(2.9)

where in the last inequality we have also used that
∫
Bx,%
|∇v|2 ≤

∫
Bx,%
|∇u|2 since v is harmonic.

Choosing λ = 16 we have
2

λ
=

1

2λ1/2
,

hence, if C0 � 1 is sufficiently big to ensure that

C(n, β/α)λn−1

C0
≤ 1

2λ1/2
,

(2.7) follows from (2.9). �

The above lemma allows us to show that below a certain scale (which depends only on the total
energy Du(1)) the normalized energy Du(x, %) is bounded only in terms of n and β/α. This fact will
be crucial in showing that the constant σ appearing in Theorem 1.3 (as well as the constant κ in
Theorem 1.1) depends only on n and β/α.

Lemma 2.2. Let (u,E) be a (Λ, r0)-minimizer of F1,β/α
1 in B1. There exist a constant C1 =

C1(n, β/α) > 0 and a radius %1 = %1(n, r0,Λ, Du(1)) > 0 such that

Du(x, %) ≤ C1 ∀x ∈ B1/2, ∀ % ≤ %1. (2.10)

Proof. By continuity it is enough to prove (2.10) at almost every point in B1/2. Let C1 � 1 to be

fixed, and for every Lebesgue point x ∈ B1/2 of |∇u|2 we define

%(x) := sup
{
% ∈ (0, 1/2) : Du(x, %) ≤ C1

}
.

Since x is a Lebesgue point for |∇u|2,

lim
%→0

Du(x, %) = lim
%→0

%

∫
Bx,%

|∇u|2 = 0.

Hence %(x) > 0 and (2.10) will follow if we can show that %(x) ≥ %1 for some %1 = %1(n, r0,Λ, Du(1)) >
0. We claim that if C1 is sufficiently big, depending only on n and β/α , then for every x ∈ B1/2 and
k ∈ N such that

16k%(x) ≤ min{1/2, r0, 1/Λ} (2.11)

we have
Du(x, 16k%(x)) ≥ C14k. (2.12)

We will prove (2.12) by induction on k, the case k = 0 being trivial. To prove the induction step we
first notice as a preliminary observation that

Du(x, r) =
1

rn−1

∫
Bx,r

|∇u|2 ≤ 1

rn−1

∫
Bx,%

|∇u|2 =
%n−1

rn−1
Du(x, %) ∀ r ∈ (0, %). (2.13)
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We now assume that (2.11) holds for k and that (2.12) holds for k − 1. Then, if C1 ≥ C016n−1 where
C0 is the constant in Lemma 2.1, applying (2.13) with r = 16k−1%(x) and % = 16k%(x) we deduce that

Du(x, 16k%(x)) ≥ 16−(n−1)Du(x, 16k−1%(x)) ≥ 16−(n−1)C14k ≥ 16−(n−1)C1 ≥ C0.

Hence, we can apply Lemma 2.1 and the inductive step to infer that

Du(x, 16k%(x)) ≥ 4Du(x, 16k−1%(x)) ≥ C14k ,

proving (2.12) for k. Let now k0 = k0(x) be the first k such that (2.11) fails for k = k0 + 1. Then,
since 16k0%(x) ≥ min{1/2, r0, 1/Λ}/16, according to (2.12) we get

C14k0 ≤ Du(x, 16k0%(x)) ≤ C(n, r0,Λ)Du(1) . (2.14)

This proves that k0(x) ≤ k(n, r0,Λ, Du(1)) therefore, by (2.11), %(x) ≥ %1(n, r0,Λ, Du(1)) > 0, as
desired. �

2.4. Lower density estimates. Section 2.2 provides an upper-bound for P (E,Bx,%) in terms of %n−1.
We now focus on the lower bound. In order to show that the constant σ appearing in the conclusion
of Theorem 1.3 depends only on n and β/α we need the lower bound on the density to depend only
on this ratio. On the other hand the scale at which the density estimates become valid depends also
on r0, Λ and Du(1).

Lemma 2.3. Let (u,E) be a (Λ, r0)-minimizer of F1,β/α
1 in B1. There exist a constant C2 =

C2(n, β/α) > 0 and a radius %2 = %2(n, r0, β/α,Λ, Du(1)) > 0 such that

P (E,Bx,%) ≥ %n−1/C2 ∀x ∈ B1/2, % ≤ %2. (2.15)

Proof. Let %1 = %1(r0,Λ, Du(1)) be the radius appearing in Lemma 2.2 so that

Du(x, %) ≤ C1

for every x ∈ B1/2 and % ≤ %1, with C1 = C1(n, β/α). If we consider v = ux,% and F = Ex,% for x ∈ B1

and % ≤ min{%1, r0, δ/Λ) with δ � 1 to be fixed, we see that (v, F ) is a (δ, 1)-minimizer of F1,β/α
1 in

B1. In addition

Dv(1) ≤ C1(n, β/α). (2.16)

Hence, if δ is sufficiently small (depending only on C1) we can argue as in [10, Section 3] to obtain
the lower density estimates

P (F,B%) ≥ %n−1/Ĉ ∀ % ≤ 1/2 , (2.17)

see Lemmas 3.1 and 3.3 and the subsequent corollaries in [10]. In particular, as it is clear from the

proofs in [10], the constant Ĉ in (2.17) depends only on Dv(1), which in turn depends only on n and
β/α (thanks to (2.16)). Scaling back to E, (2.17) implies (2.15). �

A standard consequence of the lower density estimates is that Hn−1(∂E \ ∂∗E) = 0, where ∂∗E is
the reduced boundary of E, see [12, Theorem 16.14]. In particular, up to enlarge C2 and reduce %2,

combining Lemma 2.3 and Section 2.2 we have that, if (u,E) be a (Λ, r0)-minimizer of F1,β/α
1 in B1,

%n−1/C2 ≤ Hn−1(∂E ∩Bx,%) ≤ C2%
n−1 ∀x ∈ ∂E ∩B3/4, % ≤ %2, (2.18)

for some C2 = C2(n, β/α) and %2 = %2(n, r0, β/α,Λ, Du(1)).
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2.5. The ε-regularity theorem and convergence of minimizers. We recall the following theorem
which has been proved in [10] for Λ = 0, see Section 5 therein. Since, at small scales, volume terms
are lower order with respect to surface terms, the proof can be repeated almost verbatim for (Λ, r0)-
minimizers.

Theorem 2.4. Let (u,E) be a (Λ, 1)-minimizer of F1,β/α
1 in Bx,%. There exist δ1 = δ1(n, β/α) > 0

and γ = γ(n, β/α) > 0 such that, if

Λ%+Du(x, %) + inf
ν∈Sn−1

∫
∂E∩Bx,%

|νE − ν|2 ≤ δ1 , (2.19)

then ∂E ∩B%/2 is a C1,γ hypersurface.

As shown in [10, Section 5], Theorem 2.4 implies that Hn−1(Σ(E)) = 0. A useful classical conse-
quence of Theorem 2.4 is the following lemma concerning convergence of minimizers:

Lemma 2.5. Let (uk, Ek) be a sequence of (Λ, 1)-minimizers of F1,β/α
1 in B1 such that

sup
k∈N

Duk(1) <∞. (2.20)

Then, up to a subsequence, there exists (u,E) a (Λ, 1)-minimizer of F1,β/α
1 in B1 such that

‖uk − u‖W 1,2(B3/4) → 0, |(Ek∆E) ∩B3/4| → 0 .

Moreover P (Ek, ·) → P (E, ·) as Radon measures in B3/4, and ∂Ek ∩ B3/4 → ∂E ∩ B3/4 in the
Kuratowski sense. Finally, if x0 ∈ Reg(E) ∩ B1/2 and ∂Ek ∩ B3/4 3 xk → x0, then there exists a
radius % > 0 (depending on E and x0) such that, for k sufficiently large, ∂Ek ∩Bxk,% ⊂ Reg(Ek).

Proof. The first part of the statement concerning the strong W 1,2-convergence of uk is classical, see
for instance the proof of Theorem 4.1 in [1] (note that the sequence (uk, Ek) is precompact according
to (2.20) and (2.3)). Also, Kuratowski convergence of ∂Ek to ∂E is an easy consequence of the density
estimates (2.18).

Concerning the last part of the statement we start noticing that, by elliptic regularity, if x0 ∈
Reg(E)∩B1/2 then u is Lipschitz in a neighborhood of x0 [10, Theorem 5]. In particular, taking into

account the C1 regularity of ∂E at x0, there exits a radius % = %(x0,Λ, β/α) such that

2Λ%+Du(x0, 4%) + inf
ν∈Sn−1

∫
∂E∩2Bx0,4%

|νE − ν|2 ≤ δ1/2 ,

where δ1 is the constant appearing in (2.19). By the strong convergence of the sequence (uk, Ek) and
the convergence of xk to x0 we immediately see that, for k large enough,

2Λ%+Duk(xk, 2%) + inf
ν∈Sn−1

∫
∂Ek∩2Bxk,2%

|νEk − ν|
2 ≤ δ1 .

Theorem 2.4 now implies that ∂Ek ∩Bxk,% ⊂ Reg(Ek), as desired. �

3. Proof of Theorems 1.1 and 1.3

We now provide the proofs of Theorems 1.1 and 1.3.
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Proof of Theorem 1.3. Let (u,E) be a (Λ, r0)-minimizer of Fα,βε in B1. We aim to prove that Σ(E)∩
B1/2 is (σ, %̂)-porous in ∂E, where σ = σ(n, β/α) and %̂ = %̂

(
n, r0, Λ/ε, αDu(1)/ε

)
. To this end let us

set

v :=
√
α/ε u (3.1)

and note that, according to Section 2.1, (v,E) is a (Λ/ε, r0) minimizer of F1,β/α
1 . Moreover

Dv(1) = αDu(1)
/
ε. (3.2)

We now define

%̂ := min
{

1/2, r0, ε/Λ, %1(n, r0,Λ, Dv(1))}, (3.3)

where %1 the radius appearing in Lemma 2.2. Note that, according to (3.2),

%̂ = %̂
(
n, r0, Λ/ε, αDu(1)/ε

)
and that, by Lemma 2.2,

Dv(x, %) ≤ C1 ∀x ∈ B1/2 , % ≤ %̂. (3.4)

Finally, for x ∈ ∂E ∩B1/2 and % ≤ %̂ we set

p(x, %) :=
1

%
sup

{
r ∈ (0, %) : there exists y s.t. By,r ∩ ∂E ⊂

(
∂E \ (Σ(E) ∩B1/2)

)
∩Bx,%

}
,

so that the conclusion of Theorem 1.3 is equivalent to p(x, %) ≥ σ for some σ = σ(n, β/α) (note that
% ≤ %̂ ≤ 1/2 and x ∈ B1/2 imply Bx,% ⊂ B1).

Let us argue by contradiction and assume that there exists a sequence (uk, Ek) of (Λk, r0,k)-

minimizers of Fαk,βkεk in B1, with βk/αk = β/α, for which there exist a point xk ∈ ∂Ek ∩ B1/2

and a radius %k ≤ %̂k (%̂k as in (3.3)) such that

p(xk, %k)→ 0 as k →∞.

If we define vk as in (3.1) and set wk := vxk,%kk and Fk := Exk,%kk , we get a sequence of (1, 1)-minimizers

of F1,β/α in B1, with 0 ∈ ∂E and for which

pk := sup
{
r : there exists y s.t. By,r ∩ ∂Fk ⊂

(
∂Fk \ Σ(Fk)

)
∩B1

}
≤ p(xk, %k)→ 0. (3.5)

According to (3.4) and Section 2.1

Dwk(1) = Dvk(xk, %k) ≤ C1 ,

hence, thanks to Theorem 2.4, there exists a (1, 1)-minimizer (w∞, E∞) of F1,β/α
1 in B1 such that

‖wk − w∞‖W 1,2(B3/4) → 0 |(Fk∆F∞) ∩B3/4| → 0 ,

and 0 ∈ ∂F∞. By Lemma 2.3 Hn−1(∂F∞ ∩ B1/2) > 0 and Hn−1(Σ(F∞)) = 0, hence there exists a

regular point x0 ∈ ∂F∞ ∩B1/2. By the Kuratowski convergence of ∂Fk ∩B1/2 to ∂F∞ ∩B1/2, we can

find a sequence of points yk ∈ ∂Fk ∩ B1/2 such that yk → x0. According to Theorem 2.4 there exists
a radius % > 0 such that, for k large, ∂Fk ∩ Byk,% ⊂ Reg(Fk). Since this last fact is in contradiction
with (3.5), this concludes the proof of Theorem 1.3. �

Before proving Theorem 1.1, let us recall the following lemma concerning porous sets. Its proof can
be obtained by following the same argument given in the Introduction of [14] or in [4, Lemma 5.10].
The key point is that a Ahlfors regular set (i.e., a set satisfying (3.6) below) admits a “dyadic cubes”
decomposition, as shown for instance in [2, Appendix].
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Lemma 3.1. Let Σ ⊂ B1/2 be a closed set and let K ⊂ B1 be a relatively closed set such that Σ ⊂ K.

Let us assume that Σ is (σ, %̂)-porous in K and that there exits a constant Ĉ such that

%n−1/Ĉ ≤ Hn−1(K ∩Bx,%) ≤ Ĉ%n−1 ∀x ∈ K ∩B3/4 % ≤ %̂. (3.6)

Then there exists κ = κ(n, σ, Ĉ) > 0 such that dimH Σ ≤ n− 1− κ.

Let us also remark that arguing as in [5, Lemma 3.3] one can actually show the following stronger
statement on the measure of the %-neighborhood of Σ, see Equations (3.7) and (3.8) in [5]. This
implies that the Minkowski dimension of Σ is bounded by n− 1− κ.

Note that (as it should) the constant C̃ below depends also on %̂ while κ does not.

Lemma 3.2. Let Σ and K be as in Lemma 3.1, then there exists constant C̃ = C̃(n, σ, Ĉ, %̂) > 0 and

κ = κ(n, σ, Ĉ) > 0 such that∣∣{x ∈ B1 : dist(x,Σ) ≤ %}
∣∣ ≤ C̃%1+κ ∀% ≤ 1/2 .

We now prove Theorem 1.1.

Proof of Theorem 1.1. By Theorem 1.3 Σ(E) ∩ B1/2 is (σ, %̂)-porous in ∂E ∩ B1 with σ = σ(n, β/α)

and %̂ = %̂
(
n, r0, Λ/ε, αDu(1)/ε

)
. Moreover, using (2.18) and arguing as in the proof of Theorem 1.3,

we see that for every (Λ, r0)-minimizer of Fα,βε it holds

%n−1/C2 ≤ Hn−1(∂E ∩Bx,%) ≤ C2%
n−1 ∀x ∈ ∂E ∩B3/4, % ≤ %̂1,

where C2 = C2(n, β/α) and %̂1 = %̂1

(
n, r0, β/α,Λ/ε, αDu(1)/ε

)
. We can then apply Lemma 3.1 to

deduce that there exists κ = κ(n, β/α) > 0 such that

dimH
(
Σ(E) ∩B1/2

)
≤ n− 1− κ.

A simple scaling and covering argument then concludes the proof. �
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E-mail address: guido.dephilippis@math.uzh.ch

Department of Mathematics, The University of Texas at Austin, 1 University Station C1200, Austin
TX 78712, USA

E-mail address: figalli@math.utexas.edu


