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ABSTRACT. Starting from a mass transportation proof of the Brunn-Minkowski
inequality on convex sets, we improve the inequality showing a sharp estimate
about the stability property of optimal sets. This is based on a Poincaré-type
trace inequality on convex sets that is also proved in sharp form.

1. INTRODUCTION

We deal with the Brunn-Minkowski inequality: given E and F' non-empty subsets
of R™, we have
B+ FIV" > B[+ |F|Y" (1)
where E4+ F ={x+y:xz € E,y € F} is the Minkowski sum of E and F, and where
|-| stands for the (outer) Lebesgue measure on R™. The central role of this inequality
in many branches of Analysis and Geometry, and especially in the theory of convex
bodies, is well explained in the excellent survey [Ga] by R. Gardner. Concerning
the case E and F' are open bounded convex sets (shortly: convex bodies), it may
be proved (see [BZ, HM]) that equality holds in (1) if and only if £ and F are
homothetic, i.e.
IAN>0,20 e R": E=ux0+\F. (2)
Theorem 1 provides a refined Brunn-Minkowski inequality on convex bodies, in the
spirit of [Dk, Gr, Sc, Ru]. We define the relative asymmetry of E and F' as
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A(EF) = x;gﬂg” { | CA= (m) } : (3)

and the relative size of E and F as

._ £ |E]
o(E,F):= max{E,m} . (4)

We note that A(E, F) = A(F,E) and o(E, F) = o(F, E).

Theorem 1. If E and F' are convex bodies, then

In [FMP], inequality (5) was derived as a corollary of the sharp quantitative
Wulff inequality, with a constant Cy(n) ~ n” and with explicit examples proving the
sharpness of decay rate of A(E, F) and o(E, F) in the regime 3(E, F) — 0. Here,
we introduce the Brunn-Minkowski deficit of the pair (E, F') by setting

‘E—FF’I/R
E. F):= —




so that (5) becomes equivalent to

Co(n)\/B(E. F)o(E, F)n > A(E.F). (6)

As in [FMP], our approach to (5) is based on the theory of mass transportation. A
one dimensional mass transportation argument is at the basis of the beautiful proof of
(1) by Hadwiger and Ohmann [HO], see [Fe, 3.2.41] and [Ga, Proof of Theorem 4.1].
The impact of mass transportation theory in the field of sharp functional-geometric
inequalities is now widely recognized, with many old and new inequalities treated
from a unified and elegant viewpoint (see [Vi, Chapter 6] for an introduction). A
proof of the Brunn-Minkowski inequality in this framework is already contained in
the seminal paper by McCann [McC], see also Step two in the proof of Theorem 1.

In Section 3 of this note we present a direct proof of (5), independent from the
structure theory for sets of finite perimeter that was heavily used in [FMP]. As a
technical drawback, this approach does not provide a polynomial bound on Cy(n),
but only an exponential behavior in n. However, we believe this proof is more
broadly accessible and substantially simpler. A technical element of this proof that
we believe of independent interest is the Poincaré-type trace inequality on convex
sets proved in Section 2, with a constant having sharp dependence on the dimension
n and on the ratio between the in-radius and the out-radius of the set (see Remark 3).

2. A POINCARE-TYPE TRACE INEQUALITY ON CONVEX SETS

In this section we aim to prove the following Poincaré-type trace inequality for a
convex body:

Lemma 2. Let E be a convex body such that B, C E C Bg, for 0 <r < R. Then
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for every f € C®°(R™) N L*(R").

It is quite easy to prove (7) by a contradiction argument, if we allow to replace
n(R/r) by a constant generically depending on E. However, in order to prove
Theorem 1, we need to express this dependence just in terms of n and R/r, and
thus require a more careful approach. Let us also note that, by a standard density
argument, (7) holds true for every f € BV(R") N L>*(R") (see [AFP, EG]), in the
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where |D f| denotes the total variation measure of D f and where tr g(f) is the trace
of f on OF, defined as an element of L'(H"'|0F) (see [AFP, Theorem 3.87)).
However, we shall not need this stronger form of the inequality.

Given a convex body £ containing the origin in its interior, we introduce a weight
function on directions defined for v € S"! as

V|| :=sup{z-v:x € E}.

When F'is a set with Lipschitz boundary and outer unit normal v, we define the
anisotropic perimeter of F' with respect to E as

Po(F) = / el ).



and recall that Pg(E) = n|E|. Then, the anisotropic isoperimetric inequality, or
Waulff inequality,

Pg(F) > n|B'/"| |00, (8)

holds true, as it can be shown starting from (1) (see [Ga, Section 3]).

Proof of Lemma 2. Let us set

. H"HENOF)
T(E) = ugf H1(F 1 OF)

where F' ranges over the class of open sets of R™ with smooth boundary such that
|ENF| < |E|/2. Then, fixed f € C*°(R")NL>®(R"), weset F; = {z € R": f(x) >t}
for every t € R. The proof of the lemma is then achieved on combining the following
two statements.

Step one: We have that

[viznE) [ 1f-mlae
E OF
where m is a median of f in FE, i.e.

|E]

|FtﬂE|§7, Vit >m,

E
|EOE|>%, Vt<m.

Indeed, let ¢ = max{f —m,0} and let G; = {z € R" : g(z) > t}. Then by
the Coarea Formula, the choice of m and the definition of 7(E) (note that F; is
admissible in 7(FE) for a.e. t > m by Morse-Sard Lemma)

/ |Vf|:/|Vg|:/ H=Y(E 1 0G,) dt
ENF,, E 0
> r(E) / H™Y(G, N OF) dt — 7(E) / gdH™
0 0

E

=7(E) [ max{f—m,0}dH"".
OF

The choice of m allows to argue similarly with max{m — f,0} in place of g and to
eventually achieve the proof of step one.

Step two: We have that

T(E)Z%(l—#).

To prove this, let us consider an admissible set F' for 7(E) and set for simplicity

_ H"Y(ENOF)
A= HL(FNOE)" ®)

On denoting I} = FNE and F, = E \ F, we have that
ENoF, = ENJF, =ENOJF, with vp = vp = —vp, on ENOF.




Therefore

Po(E) > Po(Fy) + Po(Fs) — / il dH — / lplls dH!

ENoFy ENOF,
> Pp(Fy) + Pg(Fy) —2RH" ' (ENOF)
= Pp(Fy) + Pp(Fy) —2RAH" ' (F N OE) (10)
> Pp(Fy) + Pg(Fy) —2RAH" ' (0F)

> (1 — 2\ ?) Pp(Fy) + Pg(F),

where we have used (9) and the elementary inequality
r<fvle <R,

for every v € S"71. On combining (10), the anisotropic isoperimetric inequality (8)
and the fact that Pg(E) = n|E|, we come to

R ’ 1
n|E| > n|E|1/"{ (1 —22 = ) |Fy | | M7 } :
r
i.e. we have proved that
> (P - - 1)
where t = |F1|/|E|. As t € (0,1/2] by construction and
s (1= )V — 1> (2 =2V Vs e (0,1/2],
the proof of step two is easily concluded. O

Remark 3. Let us point out that the dependence on n and R/r given in the above
result, that is n(R/r), is sharp. In R” = R"~! x R, it suffices to consider the box F
defined as

T 7":|"_1

E=Qx[-Ro,Ro], Q= [—575

We clearly have that B, C E C Bpg, with R = \/RZ+ (n— 1)r2. Now, let us
consider as a test set for the trace constant the half-space FF' = R"™! x (0, 00), so
that

OFNE=Qx {0}, OENF =(dQ x (0,Ro)) U (Q x {Ro}).

The boundary Q) is the union of 2(n — 1) cubes of dimension (n — 2) and size r.
Thus,

HYOFNE)=r""",  H'"NOENF)=2(n—1)Ryr" ™+ """
For Ry > /n — 1r we have R =~ Ry, and therefore

nv?2 E <
log(2) r —

2(n — 1)Ror™ 2 + ! R R
7(E) < (n=1) 07"1 T a0 anl,
rT

This shows the sharpness of our trace constant, up to a numeric factor.



3. PROOF OF THEOREM 1

This section is devoted to the proof of Theorem 1. We consider two convex bodies
E and F, and we aim to prove (6). Without loss of generality, we may assume that
|E| > |F|. By approximation, we can also assume that E and F' are smooth and
uniformly convex. Eventually, we can directly consider the case

B(E,F)o(E,F)'/" < 1. (11)

Indeed, as we always have A(E, F) < 2, if 8(E, F)o(E,F)"™ > 1 then (6) holds
trivially with Cy(n) = 2. Observe further that, since o(E, F') > 1, (11) implies

B(E,F)<1. (12)

We divide the proof in several steps.

Step one: John’s normalization. A classical result in the theory of convex
bodies by F. John [J] ensures the existence of a linear map L : R" — R" such that
B, C L(E) C B,.

We note that
B(E,F) = B(L(E), L(F)), A(E.F)=A(L(E),L(F)), |L(E) >|L(F)|.

Therefore in the proof of Theorem 1 we may also assume that
B, CECB,. (13)

In particular, under this assumption one has 1 < r < R < n, so that by Lemma 2

we can write
Ty I (1)
> 1n —cldH"™
log(2)
for every f € C(R"™) N L*(R™).
Step two: Mass transportation proof of Brunn-Minkowski. We prove
the Brunn-Minkowski inequality by mass transportation. By the Brenier Theorem

[Brl, Br2], there exists a con_vex function ¢ : R™ — R such that its gradient T = Vo
defines a map T € BV(]R” ) pushing forward |E| " g(z)dz to |F|'1p(z)dz, i.e.

i =g [ (15)

for every Borel function /i : R" — [0,00). As shown by Caffarelli [Cal, Ca2], under
our assumptions the Brenier map is smooth up to the boundary, i.e. T'€ C*(E, F).
Moreover, the push-forward condition (15) takes the form

F
det VT(z) = :—EI VieE. (16)

We are going to consider the eigenvalues {\(z) }x=1._n of VT(z) = V?¢(z), ordered
so that Ay < A\gyq for 1 <k <n — 1. We also define, for every x € F,

Ma(z) = 2=t (@) Ao(z) = (ﬁxk(:p))lm.

n

Thanks to (16) we have



for every x € E. We are in the position to prove the Brunn-Minkowski inequality.
Let S(z) := 2+ T(z), then S(E) C E+F. Asdet VS = [[;_,(1+ Ag) > 1, we have
| det VS| = det VS. Thus

|E+ F|Y" > |S(E)|V™ = (/EdetVS) (/ H 1+)\k))1/n. (17)

We observe that
T+ _1+Z > HAZ]. (18)
k=1 m=1 {1<i;<-<im<n} j=1

Note that the set of indexes (71, ..., 4y,) with 1 <i; < i;41 < n counts (:1) elements.
For each fixed m > 1, the arithmetic-geometric mean inequality implies that

2 ﬁAZ(@ 1 (1@[&])1/(:;)' (19)

{1<i1 < <im<n} j=1 {1<i1 < <im<n} Jj=1

This last term is equal to

(n) IH A (Z) v (20)

On putting (18), (19) and (20) together, and applying the binomial formula to
(14 A\g)"™ we come to

[T+ = 1+ xe)" Zrm, (21)

k=1

where I';,, denotes the difference between the left and the right hand side of (19).
We observe that I',,, > 0 whenever 1 < m < n, and in particular T'; = n(As — Ag).
On combining this with (17), (16), and A = (det VT)'/", we find that

1/n ’F‘ 1/n
Berrn ([aarar) =igp (14 () ) = 1Ep e,
E

i.e. we prove the Brunn-Minkowski inequality for £ and F.

Step three. Lower bounds on the deficit. In this step we aim to prove

% /E VT(2) ~ Aald | do < Cn)\/B(E, F)y[B(E.F) + o(B, F)/n.  (22)

Let us set, for the sake of brevity,

1
s:—/detVS, t=(1+ )"
E] J&
From Step two we deduce that
|E + F|V/» — (|E|Y™ + |F|V/™) o U _ s—t (23)
|E|1/n = Sr_, s(=h)/np(h=1)/n *



Ast <sand |E|s=|S(F)| <|E+F]|,

n (n—1)/n
Zs(n—h)/nt(h—l)/n < ns=D/n < g <|E + F|)
— |E] 24)
‘E|1/n + ’F|1/n

:n(<1+ﬁ(E,F)> G >n_1§C’(n),

where we have also made use of (12) and of the fact that |F| < |F|. A similar argu-
ment shows that the left hand side of (23) is controlled by 26(E, F'), and therefore
we conclude that

1 - n
C(n)B(E,F) ZS_t:E/E(IH<1+)\k)_<1+)\G) )dx. (25)

Then, by (25) and (21), as I';, > 0 whenever 1 < m < n and I'y = n(Ag — A\g), we
get

1
C(n)ﬁ(E,F)zm/ZF z)dx > ‘E|/ dr = ’E’/ —Xg). (26)

An elementary quantitative version of the arithmetic-geometric mean inequality
proved in [FMP, Lemma 2.5], ensures that

n

1
(Mg — Ag) > ™ D> (= 2a).

" k=1
In particular, as (A, — A1)? < 2[(\, — Ag)? + (A¢ — M\1)?] we obtain from (26)

1 (An — A1)?

CONE, F) 2 r | 2

dx . (27)

By Holder inequality

1
‘E‘/ A)dz < Cln )\/H(E,F)E/E)\n. (28)

As M\ < (|F|/|EN)Y" = o(E, F)~Y/", from (28) we come to

1 " 1 - 1/

which easily implies

1
[ 0 < Cl (BB )+ ot F )
E
by Young’s inequality. We eventually combine (29) with (28), and prove that

‘E‘/ ) de < O(n)/B(E. F)\/B(E, F) + o(E.F)~t".  (30)

Then (22) follows immediately.




Step four. Trace inequality. On combining (22) with (14), we conclude that,
up to a translation of F',

WA FIO(E.F)+ (B F)01E| > [ [T(0) = Agal a0~ (o).

If I/ =)\ 'F and P : R"\ I’ — OF' denotes the projection of R™\ F’ over F”, then,
since by construction 7" takes value in F, we get

A
)VB(E. F)\/B(E, F) + o(E,F)~1n > 7€ |P(z) — x| dH"L(z). (31)
1Bl Jor
We now consider the map @ : (OF \ F') x (0,1) — E\ F’ defined by
O(z,t) =t + (1 —1t)P(x).

Let {ex(z)}7Z] be a basis of the tangent space to OE at x. Since ® is a bijection,
we find

1
|E\ F/| = / dt /
0 (OE\F")

(x — P(z)) A (n/\1 (tsk(x)

1 (32)
- t>dPx<sk<m>>)) ‘dH”*(x),

where dP, denotes the differential of the projection P at x. As P is the projection
over a convex set, it decreases distances, i.e. |dP,(e)| <1 for every e € S"1. Thus,

ten(z) + (1 — )dPy(epn(2))| < 1, VEke{l,...,n—1}.

Recalling that A\¢ = o(FE, F)~'/" we combine this last inequality with (31) and (32)
to get

E\F| _ 1
B 18] Jom

< C(n)o (B, F)Y"\/B(E, F)\/B(E, F) + o(E, F)-
< C(n)o(E, F)"\/B(E, F) <\/@ E.F)+o(E, F)—1/2n>

| — P(x)| dH" " (x)

—Cn <\/ﬁ (E, F)o(E, F)'n + B(E, F)o(E, F)l/">

< C(n)\/B(E, F)o(E, F)/",
where in the last inequality we have used (11). As
[EAFT] _|E\ F|
|E Bl

this proves (6) and we achieve the proof of the theorem.

A(E,F) <

We conclude noticing that the constant Cy(n) in the above theorem can be taken
to be
Co(n) ~ p(n) cf,
where p(n) is a polynomial in n, and ¢ is any constant greater than v/2. Indeed, a
quick inspection of the proof shows that all the terms to be considered for C'(n) are
polynomials, except for the estimate given in Step three —more precisely in (24)-



which gives a term like n ¢", with ¢ > 2 (recall that, up to loosing a numeric factor in
Co(n), we can assume from the beginning that 3(E, F') is smaller than an arbitrarily
small constant). Eventually, when applying Hélder inequality in (28) we take a
square root of the constant C(n) appearing in (27), thus coming to the choice ¢y > v/2.
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