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Abstract. Starting from a mass transportation proof of the Brunn-Minkowski
inequality on convex sets, we improve the inequality showing a sharp estimate
about the stability property of optimal sets. This is based on a Poincaré-type
trace inequality on convex sets that is also proved in sharp form.

1. Introduction

We deal with the Brunn-Minkowski inequality: given E and F non-empty subsets
of Rn, we have

|E + F |1/n ≥ |E|1/n + |F |1/n , (1)

where E +F = {x+y : x ∈ E , y ∈ F} is the Minkowski sum of E and F , and where
|·| stands for the (outer) Lebesgue measure on Rn. The central role of this inequality
in many branches of Analysis and Geometry, and especially in the theory of convex
bodies, is well explained in the excellent survey [Ga] by R. Gardner. Concerning
the case E and F are open bounded convex sets (shortly: convex bodies), it may
be proved (see [BZ, HM]) that equality holds in (1) if and only if E and F are
homothetic, i.e.

∃λ > 0 , x0 ∈ Rn : E = x0 + λF . (2)

Theorem 1 provides a refined Brunn-Minkowski inequality on convex bodies, in the
spirit of [Dk, Gr, Sc, Ru]. We define the relative asymmetry of E and F as

A(E, F ) := inf
x0∈Rn

{
|E∆(x0 + λF )|

|E| : λ =

( |E|
|F |

)1/n
}

, (3)

and the relative size of E and F as

σ(E, F ) := max

{ |F |
|E| ,

|E|
|F |

}
. (4)

We note that A(E, F ) = A(F, E) and σ(E, F ) = σ(F, E).

Theorem 1. If E and F are convex bodies, then

|E + F |1/n ≥ (|E|1/n + |F |1/n
) {

1 +
A(E, F )2

C0(n)σ(E, F )1/n

}
. (5)

In [FMP], inequality (5) was derived as a corollary of the sharp quantitative
Wulff inequality, with a constant C0(n) ≈ n7 and with explicit examples proving the
sharpness of decay rate of A(E, F ) and σ(E, F ) in the regime β(E, F ) → 0. Here,
we introduce the Brunn-Minkowski deficit of the pair (E,F ) by setting

β(E, F ) :=
|E + F |1/n

|E|1/n + |F |1/n
− 1 ,

1



so that (5) becomes equivalent to

C0(n)
√

β(E, F )σ(E, F )1/n ≥ A(E, F ) . (6)

As in [FMP], our approach to (5) is based on the theory of mass transportation. A
one dimensional mass transportation argument is at the basis of the beautiful proof of
(1) by Hadwiger and Ohmann [HO], see [Fe, 3.2.41] and [Ga, Proof of Theorem 4.1].
The impact of mass transportation theory in the field of sharp functional-geometric
inequalities is now widely recognized, with many old and new inequalities treated
from a unified and elegant viewpoint (see [Vi, Chapter 6] for an introduction). A
proof of the Brunn-Minkowski inequality in this framework is already contained in
the seminal paper by McCann [McC], see also Step two in the proof of Theorem 1.

In Section 3 of this note we present a direct proof of (5), independent from the
structure theory for sets of finite perimeter that was heavily used in [FMP]. As a
technical drawback, this approach does not provide a polynomial bound on C0(n),
but only an exponential behavior in n. However, we believe this proof is more
broadly accessible and substantially simpler. A technical element of this proof that
we believe of independent interest is the Poincaré-type trace inequality on convex
sets proved in Section 2, with a constant having sharp dependence on the dimension
n and on the ratio between the in-radius and the out-radius of the set (see Remark 3).

2. A Poincaré-type trace inequality on convex sets

In this section we aim to prove the following Poincaré-type trace inequality for a
convex body:

Lemma 2. Let E be a convex body such that Br ⊂ E ⊂ BR, for 0 < r < R. Then

n
√

2

log(2)

R

r

∫

E

|∇f | ≥ inf
c∈R

∫

∂E

|f − c| dHn−1 , (7)

for every f ∈ C∞(Rn) ∩ L∞(Rn).

It is quite easy to prove (7) by a contradiction argument, if we allow to replace
n(R/r) by a constant generically depending on E. However, in order to prove
Theorem 1, we need to express this dependence just in terms of n and R/r, and
thus require a more careful approach. Let us also note that, by a standard density
argument, (7) holds true for every f ∈ BV (Rn) ∩ L∞(Rn) (see [AFP, EG]), in the
form

n
√

2

log(2)

R

r
|Df |(E) ≥ inf

c∈R

∫

∂E

|tr E(f)− c| dHn−1 ,

where |Df | denotes the total variation measure of Df and where tr E(f) is the trace
of f on ∂E, defined as an element of L1(Hn−1b∂E) (see [AFP, Theorem 3.87]).
However, we shall not need this stronger form of the inequality.

Given a convex body E containing the origin in its interior, we introduce a weight
function on directions defined for ν ∈ Sn−1 as

‖ν‖E := sup{x · ν : x ∈ E} .

When F is a set with Lipschitz boundary and outer unit normal νF , we define the
anisotropic perimeter of F with respect to E as

PE(F ) :=

∫

∂F

‖νF (x)‖E dHn−1(x) ,
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and recall that PE(E) = n|E|. Then, the anisotropic isoperimetric inequality, or
Wulff inequality,

PE(F ) ≥ n|E|1/n|F |(n−1)/n , (8)

holds true, as it can be shown starting from (1) (see [Ga, Section 3]).

Proof of Lemma 2. Let us set

τ(E) := inf
F

Hn−1(E ∩ ∂F )

Hn−1(F ∩ ∂E)

where F ranges over the class of open sets of Rn with smooth boundary such that
|E∩F | ≤ |E|/2. Then, fixed f ∈ C∞(Rn)∩L∞(Rn), we set Ft = {x ∈ Rn : f(x) > t}
for every t ∈ R. The proof of the lemma is then achieved on combining the following
two statements.

Step one: We have that
∫

E

|∇f | ≥ τ(E)

∫

∂E

|f −m| dHn−1 ,

where m is a median of f in E, i.e.

|Ft ∩ E| ≤ |E|
2

, ∀t ≥ m,

|Ft ∩ E| > |E|
2

, ∀t < m .

Indeed, let g = max{f − m, 0} and let Gt = {x ∈ Rn : g(x) > t}. Then by
the Coarea Formula, the choice of m and the definition of τ(E) (note that Ft is
admissible in τ(E) for a.e. t ≥ m by Morse-Sard Lemma)

∫

E∩Fm

|∇f | =
∫

E

|∇g| =
∫ ∞

0

Hn−1(E ∩ ∂Gt) dt

≥ τ(E)

∫ ∞

0

Hn−1(Gt ∩ ∂E) dt = τ(E)

∫

∂E

g dHn−1

= τ(E)

∫

∂E

max{f −m, 0} dHn−1 .

The choice of m allows to argue similarly with max{m− f , 0} in place of g and to
eventually achieve the proof of step one.

Step two: We have that

τ(E) ≥ r

R

(
1− 1

21/n

)
.

To prove this, let us consider an admissible set F for τ(E) and set for simplicity

λ :=
Hn−1(E ∩ ∂F )

Hn−1(F ∩ ∂E)
. (9)

On denoting F1 = F ∩ E and F2 = E \ F , we have that

E ∩ ∂F1 = E ∩ ∂F2 = E ∩ ∂F , with νF = νF1 = −νF2 on E ∩ ∂F .
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Therefore

PE(E) ≥ PE(F1) + PE(F2)−
∫

E∩∂F1

‖νF1‖E dHn−1 −
∫

E∩∂F2

‖νF2‖E dHn−1

≥ PE(F1) + PE(F2)− 2 RHn−1
(
E ∩ ∂F

)

= PE(F1) + PE(F2)− 2 RλHn−1
(
F ∩ ∂E

)

≥ PE(F1) + PE(F2)− 2 RλHn−1
(
∂F1

)

≥
(

1− 2λ
R

r

)
PE(F1) + PE(F2) ,

(10)

where we have used (9) and the elementary inequality

r ≤ ‖ν‖E ≤ R ,

for every ν ∈ Sn−1. On combining (10), the anisotropic isoperimetric inequality (8)
and the fact that PE(E) = n|E|, we come to

n|E| ≥ n|E|1/n

{(
1− 2λ

R

r

)
|F1|1/n′ + |F2|1/n′

}
,

i.e. we have proved that

λ t1/n′ ≥ r

2R

(
t1/n′ + (1− t)1/n′ − 1

)
,

where t = |F1|/|E|. As t ∈ (0, 1/2] by construction and

s1/n′ + (1− s)1/n′ − 1 ≥ (2− 21/n′)s1/n′ , ∀s ∈ (0, 1/2] ,

the proof of step two is easily concluded. ¤

Remark 3. Let us point out that the dependence on n and R/r given in the above
result, that is n(R/r), is sharp. In Rn = Rn−1 ×R, it suffices to consider the box E
defined as

E = Q× [−R0, R0] , Q =
[
−r

2
,
r

2

]n−1

.

We clearly have that Br ⊂ E ⊂ BR, with R =
√

R2
0 + (n− 1)r2. Now, let us

consider as a test set for the trace constant the half-space F = Rn−1 × (0,∞), so
that

∂F ∩ E = Q× {0} , ∂E ∩ F = (∂Q× (0, R0)) ∪ (Q× {R0}) .

The boundary ∂Q is the union of 2(n − 1) cubes of dimension (n − 2) and size r.
Thus,

Hn−1(∂F ∩ E) = rn−1, Hn−1(∂E ∩ F ) = 2(n− 1)R0r
n−2 + rn−1.

For R0 À
√

n− 1 r we have R ≈ R0, and therefore

n
√

2

log(2)

R

r
≤ τ(E) ≤ 2(n− 1)R0r

n−2 + rn−1

rn−1
≈ n

R0

r
≈ n

R

r
.

This shows the sharpness of our trace constant, up to a numeric factor.

4



3. Proof of Theorem 1

This section is devoted to the proof of Theorem 1. We consider two convex bodies
E and F , and we aim to prove (6). Without loss of generality, we may assume that
|E| ≥ |F |. By approximation, we can also assume that E and F are smooth and
uniformly convex. Eventually, we can directly consider the case

β(E, F )σ(E, F )1/n ≤ 1 . (11)

Indeed, as we always have A(E,F ) ≤ 2, if β(E, F )σ(E, F )1/n > 1 then (6) holds
trivially with C0(n) = 2. Observe further that, since σ(E, F ) ≥ 1, (11) implies

β(E, F ) ≤ 1 . (12)

We divide the proof in several steps.

Step one: John’s normalization. A classical result in the theory of convex
bodies by F. John [J] ensures the existence of a linear map L : Rn → Rn such that

B1 ⊂ L(E) ⊂ Bn .

We note that

β(E,F ) = β
(
L(E), L(F )

)
, A(E, F ) = A

(
L(E), L(F )

)
, |L(E)| ≥ |L(F )| .

Therefore in the proof of Theorem 1 we may also assume that

B1 ⊂ E ⊂ Bn . (13)

In particular, under this assumption one has 1 ≤ r ≤ R ≤ n, so that by Lemma 2
we can write

n2
√

2

log(2)

∫

E

|∇f | ≥ inf
c∈R

∫

∂E

|f − c|dHn−1 (14)

for every f ∈ C∞(Rn) ∩ L∞(Rn).

Step two: Mass transportation proof of Brunn-Minkowski. We prove
the Brunn-Minkowski inequality by mass transportation. By the Brenier Theorem
[Br1, Br2], there exists a convex function ϕ : Rn → R such that its gradient T = ∇ϕ
defines a map T ∈ BV (Rn, F ) pushing forward |E|−11E(x)dx to |F |−11F (x)dx, i.e.

1

|F |
∫

F

h(y) dy =
1

|E|
∫

E

h(T (x)) dx , (15)

for every Borel function h : Rn → [0,∞). As shown by Caffarelli [Ca1, Ca2], under
our assumptions the Brenier map is smooth up to the boundary, i.e. T ∈ C∞(E, F ).
Moreover, the push-forward condition (15) takes the form

det∇T (x) =
|F |
|E| , ∀x ∈ E . (16)

We are going to consider the eigenvalues {λk(x)}k=1,...,n of ∇T (x) = ∇2ϕ(x), ordered
so that λk ≤ λk+1 for 1 ≤ k ≤ n− 1. We also define, for every x ∈ E,

λA(x) =

∑n
k=1 λk(x)

n
, λG(x) =

( n∏

k=1

λk(x)
)1/n

.

Thanks to (16) we have

λG(x) =

( |F |
|E|

)1/n
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for every x ∈ E. We are in the position to prove the Brunn-Minkowski inequality.
Let S(x) := x+T (x), then S(E) ⊂ E +F . As det∇S =

∏n
k=1(1+λk) > 1, we have

| det∇S| = det∇S. Thus

|E + F |1/n ≥ |S(E)|1/n =

(∫

E

det∇S

)1/n

=

(∫

E

n∏

k=1

(1 + λk)

)1/n

. (17)

We observe that
n∏

k=1

(1 + λk) = 1 +
n∑

m=1

∑

{1≤i1<···<im≤n}

m∏
j=1

λij . (18)

Note that the set of indexes (i1, . . . , im) with 1 ≤ ij < ij+1 ≤ n counts
(

n
m

)
elements.

For each fixed m ≥ 1, the arithmetic-geometric mean inequality implies that

∑

{1≤i1<···<im≤n}

m∏
j=1

λij ≥
(

n

m

) ∏

{1≤i1<···<im≤n}

(
m∏

j=1

λij

)1/(n
m)

. (19)

This last term is equal to
(

n

m

) n∏

k=1

λ
(n−1

m−1)/(n
m)

k =

(
n

m

)
λm

G . (20)

On putting (18), (19) and (20) together, and applying the binomial formula to
(1 + λG)n we come to

n∏

k=1

(1 + λk)− (1 + λG)n =
n∑

m=1

Γm , (21)

where Γm denotes the difference between the left and the right hand side of (19).
We observe that Γm ≥ 0 whenever 1 ≤ m ≤ n, and in particular Γ1 = n(λA − λG).
On combining this with (17), (16), and λG = (det∇T )1/n, we find that

|E + F |1/n ≥
(∫

E

(1 + λG)n

)1/n

= |E|1/n

(
1 +

( |F |
|E|

)1/n
)

= |E|1/n + |F |1/n ,

i.e. we prove the Brunn-Minkowski inequality for E and F .

Step three. Lower bounds on the deficit. In this step we aim to prove

1

|E|
∫

E

|∇T (x)− λGId | dx ≤ C(n)
√

β(E, F )
√

β(E, F ) + σ(E,F )−1/n . (22)

Let us set, for the sake of brevity,

s =
1

|E|
∫

E

det∇S , t = (1 + λG)n .

From Step two we deduce that

|E + F |1/n − (|E|1/n + |F |1/n)

|E|1/n
≥ s1/n − t1/n =

s− t∑n
h=1 s(n−h)/nt(h−1)/n

. (23)
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As t ≤ s and |E|s = |S(E)| ≤ |E + F |,
n∑

h=1

s(n−h)/nt(h−1)/n ≤ ns(n−1)/n ≤ n

( |E + F |
|E|

)(n−1)/n

= n

((
1 + β(E, F )

) |E|1/n + |F |1/n

|E|1/n

)n−1

≤ C(n) ,

(24)

where we have also made use of (12) and of the fact that |F | ≤ |E|. A similar argu-
ment shows that the left hand side of (23) is controlled by 2β(E, F ), and therefore
we conclude that

C(n)β(E, F ) ≥ s− t =
1

|E|
∫

E

( n∏

k=1

(1 + λk)− (1 + λG)n

)
dx . (25)

Then, by (25) and (21), as Γm ≥ 0 whenever 1 ≤ m ≤ n and Γ1 = n(λA − λG), we
get

C(n)β(E,F ) ≥ 1

|E|
∫

E

n∑
m=1

Γm(x) dx ≥ 1

|E|
∫

E

Γ1(x) dx =
n

|E|
∫

E

(λA − λG) . (26)

An elementary quantitative version of the arithmetic-geometric mean inequality
proved in [FMP, Lemma 2.5], ensures that

7n2(λA − λG) ≥ 1

λn

n∑

k=1

(λk − λG)2 .

In particular, as (λn − λ1)
2 ≤ 2[(λn − λG)2 + (λG − λ1)

2] we obtain from (26)

C(n)β(E, F ) ≥ 1

|E|
∫

E

(λn − λ1)
2

λn

dx . (27)

By Hölder inequality

1

|E|
∫

E

(λn − λ1)dx ≤ C(n)

√
β(E, F )

1

|E|
∫

E

λn . (28)

As λ1 ≤ (|F |/|E|)1/n = σ(E, F )−1/n, from (28) we come to

1

|E|
∫

E

λn ≤ C(n)

√
β(E, F )

1

|E|
∫

E

λn + σ(E, F )−1/n ,

which easily implies

1

|E|
∫

E

λn ≤ C(n)
(
β(E, F ) + σ(E, F )−1/n

)
(29)

by Young’s inequality. We eventually combine (29) with (28), and prove that

1

|E|
∫

E

(λn − λ1) dx ≤ C(n)
√

β(E, F )
√

β(E, F ) + σ(E, F )−1/n . (30)

Then (22) follows immediately.
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Step four. Trace inequality. On combining (22) with (14), we conclude that,
up to a translation of F ,

C(n)
√

β(E, F )
√

β(E, F ) + σ(E, F )−1/n|E| ≥
∫

∂E

|T (x)− λGx| dHn−1(x) .

If F ′ = λ−1
G F and P : Rn \F ′ → ∂F ′ denotes the projection of Rn \F ′ over F ′, then,

since by construction T takes value in F , we get

C(n)
√

β(E, F )
√

β(E, F ) + σ(E, F )−1/n ≥ λG

|E|
∫

∂E\F ′
|P (x)− x| dHn−1(x) . (31)

We now consider the map Φ : (∂E \ F ′)× (0, 1) → E \ F ′ defined by

Φ(x, t) = tx + (1− t)P (x) .

Let {εk(x)}n−1
k=1 be a basis of the tangent space to ∂E at x. Since Φ is a bijection,

we find

|E \ F ′| =
∫ 1

0

dt

∫

(∂E\F ′)

∣∣∣∣(x− P (x)) ∧
(n−1∧

k=1

(
tεk(x)

+ (1− t)dPx(εk(x))
))∣∣∣∣dHn−1(x),

(32)

where dPx denotes the differential of the projection P at x. As P is the projection
over a convex set, it decreases distances, i.e. |dPx(e)| ≤ 1 for every e ∈ Sn−1. Thus,

|tεk(x) + (1− t)dPx(εk(x))| ≤ 1 , ∀k ∈ {1, . . . , n− 1} .

Recalling that λG = σ(E, F )−1/n, we combine this last inequality with (31) and (32)
to get

|E \ F ′|
|E| ≤ 1

|E|
∫

∂E\F ′
|x− P (x)| dHn−1(x)

≤ C(n)σ(E, F )1/n
√

β(E, F )
√

β(E, F ) + σ(E, F )−1/n

≤ C(n)σ(E, F )1/n
√

β(E, F )
(√

β(E, F ) + σ(E, F )−1/2n
)

= C(n)

(√
β(E, F )σ(E, F )1/n + β(E, F )σ(E, F )1/n

)

≤ C(n)
√

β(E, F )σ(E, F )1/n ,

where in the last inequality we have used (11). As

A(E, F ) ≤ |E∆F ′|
|E| = 2

|E \ F ′|
|E| ,

this proves (6) and we achieve the proof of the theorem.

We conclude noticing that the constant C0(n) in the above theorem can be taken
to be

C0(n) ≈ p(n) cn
0 ,

where p(n) is a polynomial in n, and c0 is any constant greater than
√

2. Indeed, a
quick inspection of the proof shows that all the terms to be considered for C(n) are
polynomials, except for the estimate given in Step three –more precisely in (24)–
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which gives a term like n cn, with c > 2 (recall that, up to loosing a numeric factor in
C0(n), we can assume from the beginning that β(E, F ) is smaller than an arbitrarily
small constant). Eventually, when applying Hölder inequality in (28) we take a
square root of the constant C(n) appearing in (27), thus coming to the choice c0 >

√
2.
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