
A VARIATIONAL METHOD FOR A CLASS OF PARABOLIC PDES

ALESSIO FIGALLI, WILFRID GANGBO, AND TÜRKAY YOLCU

Abstract. In this manuscript we extend De Giorgi’s interpolation method to a class of para-
bolic equations which are not gradient flows but possess an entropy functional and an underlying
Lagrangian. The new fact in the study is that not only the Lagrangian may depend on spatial vari-
ables, but it does not induce a metric. Assuming the initial condition to be a density function, not
necessarily smooth, but solely of bounded first moments and finite “entropy”, we use a variational
scheme to discretize the equation in time and construct approximate solutions. Then De Giorgi’s
interpolation method is revealed to be a powerful tool for proving convergence of our algorithm.
Finally we show uniqueness and stability in L1 of our solutions.

1. Introduction

In the theory of existence of solutions of ordinary differential equations on a metric space, curves
of maximal slope and minimizing movements play an important role. The minimizing movements in
general are obtained via a discrete scheme. They have the advantage of providing an approximate
solution of the differential equation by discretizing in time while not requiring the initial condition to
be smooth. Then a clever interpolation method introduced by De Giorgi [7, 6] ensures compactness
for the family of approximate solutions. Many recent works [3, 14] have used minimizing movement
methods as a powerful tool for proving existence of solutions for some classes of partial differential
equations (PDEs). So far, most of these studies concern PDEs which can be interpreted as gradient
flow of an entropy functional with respect to a metric on the space of probability measures. This
paper extends the minimizing movements and De Giorgi’s interpolation method to include PDEs
which are not gradient flows, but possess an entropy functional and an underlying Lagrangian which
may be dependent of the spatial variables.

In the current manuscript X ⊂ Rd is an open set whose boundary is of zero measure. We denote
by Pac

1 (X) the set of Borel probability densities on X of bounded first moments, endowed with the
1-Wasserstein distance W1 (cfr. subsection 2.2). We consider distributional solutions of a class of
PDEs of the form

(1.1) ∂t%t + div(%tVt) = 0, in D′((0, T ) × Rd)

(this implicitly means that we have imposed Neumann boundary condition), with

%tVt := %t∇pH
(
x,−%−1

t ∇[P (%t)]
)

on (0, T ) × X

and
t 7→ %t ∈ AC1(0, T ;Pac

1 (X)) ⊂ C([0, T ];Pac
1 (X)).

By abuse of notation, %t will denote at the same time the solution at time t and the function
(t, x) 7→ %t(x) defined over (0, T )×X. (It will be clear from the context which one we are referring
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to.) We recall that the unknown %t is nonnegative, and can be interpreted as the density of a fluid,
whose pressure is P (%t). Here, the data H, U and P satisfy specific properties, which are stated in
subsection 2.1.

We only consider solutions such that ∇[P (%t)] ∈ L1((0, T )×X), and is absolutely continuous with
respect to %t. If %t satisfies additional conditions which will soon comment on, then t 7→ U(%t) :=∫
X U(%t) dx is absolutely continuous, monotone nonincreasing, and

(1.2)
d

dt
U(%t) =

∫
X
〈∇[P (%t)], Vt〉 dx.

The space to which the curve t 7→ %t belongs ensures that %t converges to %0 in Pac
1 (X) as t → 0.

Solutions of our equation can be viewed as curves of maximal slope on a metric space contained
in P1(X). They include the so-called minimizing movements (cfr. [3] for a precise definition) ob-
tained by many authors in case the Lagrangian does not depend on spatial variables (e.g. [13]
when H(p) = 1/2|p|2, [1, 3] when H(x, p) ≡ H(p)). These studies have been very recently extended
to a special class of Lagrangian depending on spatial variables where the Hamiltonian assume the
form H(x, p) = 〈A∗(x)p, p〉 [14]. In their pioneering work Alt and Luckhaus [2] consider differential
equations similar to (1.1), imposing some assumptions not very comparable to ours. Their method
of proof is very different from the ones used in the above cited references and is based on a Galerkin
type approximation method.

Let us describe the strategy of the proof of our results. The first step is the existence part. Let
L(x, ·) be the Legendre transform of H(x, ·), to which we refer as a Lagrangian. For a time step
h > 0, let ch(x, y), the cost for moving a unit mass from a point x to a point y, be the minimal
action minσ

∫ h
0 L(σ, σ̇)dt. Here, the minimum is performed over the set of all paths (not necessarily

contained in X) such that σ(0) = x and σ(h) = y. The cost ch provides a way of defining the
minimal total work Ch(%0, %) (cfr. (2.8)) for moving a mass of distribution %0 to another mass of dis-
tribution % in time h. For measures which are absolutely continuous, the recent papers [4, 8, 9] give
uniqueness of a minimizer in (2.8), which is concentrated on the graph of a function Th : Rd → Rd.
Furthermore, Ch provides a natural way of interpolating between these measures: there exists a
unique density %̄s such that Ch(%0, %h) = Cs(%0, %̄s) + Ch−s(%̄s, %h) for s ∈ (0, h).

Assume for a moment that X is bounded. For a given initial condition %0 ∈ Pac
1 (X) such that

U(%0) < +∞ we inductively construct {%h
nh}n in the following way: %h

(n+1)h is the unique minimizer
of Ch(%h

nh, %) + U(%) over Pac
1 (X). We refer to this minimization problem as a primal problem.

Under the additional condition that L(x, v) > L(x, 0) ≡ 0 for all x, v ∈ Rd such that v 6= 0, one
has ch(x, x) < ch(x, y) for x 6= y. As a consequence, under that condition the following maximum
principle holds: if %0 ≤ M then %h

nh ≤ M for all n ≥ 0.
We then study a problem, dual to the primal one, which provides us with a characterization and

some important regularity properties of the minimizer %h
(n+1)h. These properties would have been

harder to obtain studying only the primal problem. Having determined {%h
nh}n∈N, we consider two

interpolating paths. The first one is the path t 7→ %̄h
t such that

Ch(%h
nh, %h

(n+1)h) = Cs(%h
nh, %̄h

nh+s) + Ch−s(%̄h
nh+s, %

h
(n+1)h), 0 < s < h.
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The second path t 7→ %h
t is defined by

%h
nh+s := arg min

{
Cs(%h

nh, %) + U(%)
}

, 0 < s < h.

This interpolation was introduced by De Giorgi in the study of curves of maximal slopes when√
Cs defines a metric. The path {%̄h

t } satisfies equation (3.42), which is a discrete analogue of the
differential equation (1.1). Then we write a discrete energy inequality in terms of both paths {%̄h

t }
and {%h

t }, and we prove that up to a subsequence both paths converge (in a sense to be made
precise) to the same path %t. Furthermore, %t satisfies the energy inequality

(1.3) U(%0) − U(%T ) ≥
∫ T

0
dt

∫
X

[
L

(
x, Vt

)
+ H

(
x,−%−1

t ∇[P (%t)]
)]

%t dx,

which thanks to the assumptions on H (cfr. subsection 2.1) implies for instance that ∇[P (%t)] ∈
L1((0, T )×X). The above inequality corresponds to what can be considered as one half of the chain
rule:

d

dt
U(%t) ≤

∫
X
〈Vt,∇[P (%t)]〉 dx.

Here Vt is a velocity associated to the path t 7→ %t, in the sense that equation (1.1) holds without
yet the knowledge that %tVt = %t∇pH

(
x,−%−1

t ∇[P (%t)]
)
. The current state of the art allows us to

establish the reverse inequality yielding to the whole chain rule only if we know that

(1.4)
∫ T

0
dt

∫
X
|Vt|α%t dx,

∫ T

0
dt

∫
X
|%−1

t ∇[P (%t)]|α
′
%t dx < +∞

for some α ∈ (1, +∞), α′ = α/(α − 1). In that case, we can conclude that

%tVt = %t∇pH
(
x,−%−1

t ∇[P (%t)]
)

and
d

dt
U(%t) =

∫
X
〈Vt,∇[P (%t)]〉 dx.

In light of the energy inequality (3.43), a sufficient condition to have the inequality (1.4) is that
L(x, v) ∼ |v|α. This is what we later impose in this work.

Suppose now that X may be unbounded. As pointed out in remark 3.18, by a simple scaling
argument we can solve equation (1.1) for general nonnegative densities, not necessarily of unit mass.
Lemma 4.1 shows that if we impose the bound (4.1) on the negative part of U , then U(%) is well-
defined for % ∈ Pac

1 (X). We assume that the initial condition %0 ∈ Pac
1 (X) and

∫
X |U(%0)|dx is

finite, and we start our approximation argument by replacing X by Xm := X ∩ Bm(0) and %0 by
%m
0 := %0χBm(0). Here, Bm(0) is the open ball of radius m, centered at the origin. The previous

argument provides us with a solution of equation (1.1), starting at %m
0 , for which we show that

max
t∈[0,T ]

{∫
Xm

|x|%m
t dx +

∫
Xm

|U(%m
t )| dx

}
is bounded by a constant independent of m. Using the fact that for each m, %m satisfies the en-
ergy inequality (1.3), we obtain that a subsequence of {%m} converges to a solution of equation
(1.1) starting at %0. Moreover, as we will see, our approximation argument also allows to relax the
regularity assumptions on the Hamiltonian H. This shows a remarkable feature of the existence
scheme described before, as it allows to construct solutions of a highly nonlinear PDE as (1.1) by
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approximating at the same time the initial datum and the Hamiltonian (and the same strategy
could also be applied to relax the assumptions on U , cfr. section 4). This completes the existence
part.

In order to prove uniqueness of solution in equation (1.1) we make several additional assumptions
on P and H. First of all, we assume that L(x, v) > L(x, 0) for all x, v ∈ Rd such that v 6= 0 to ensure
that the maximum principle holds. Next, let Q denote the inverse of P and set u(t, ·) := P (%t).
Then equation (1.1) is equivalent to

(1.5) ∂tQ(u) = div a(x,Q(u),∇u) in D′((0, T ) × X),

which is a quasilinear elliptic-parabolic equation. Here a is given by equation (5.2). The study in [15]
addresses contraction properties of solutions of equation (1.5) even when ∂tQ(u) is not a bounded
measure but is merely a distribution, as in our case. Our vector field a does not necessarily satisfy
the assumptions in [15]. (Indeed one can check that it violates drastically the strict monotonicity
condition of [15], for large Q(u).) For this reason, we only study uniqueness of solutions with bounded
initial conditions even if, for this class of solution, a is still not strictly monotone in the sense of [2]
or [15].

The strategy consists first in showing that there exists a Hamiltonian H̄ ≡ H̄(x, %,m) (cfr. equa-
tion (5.3)) such that for each x, −a(x, %,−m) is contained in the subdifferential of H̄(x, ·, ·) at
(%,m). Then, assuming H̄(x, ·, ·) convex and Q Lipschitz, we establish a contraction property for
bounded solutions of (1.1). As a by product we conclude uniqueness of bounded solutions.

The paper is structured as follows: in section 2 we start with some preliminaries and set up
the general framework for our study. The proof of the existence of solutions is then split into
two cases. Section 3 is concerned with the case where X is bounded, and we prove existence of
solutions of equations (1.1) by applying the discrete algorithm described before. In section 4 we
relax the assumption that X is bounded: under the hypotheses that %0 ∈ Pac

1 (X) and
∫
X |U(%0)|dx

is finite, we construct by approximation a solution of equation (1.1) as described above. Section 5
is concerned with uniqueness and stability in L1 of bounded solutions of equation (1.1) when Q is
Lipschitz. To achieve that goal, we impose the stronger condition (5.5) on the Hamiltonian H. We
avoid repeating known facts as much as possible, while trying to provide all the necessary details
for a complete proof.

2. Preliminaries, Notation and Definitions

2.1. Main assumptions. We fix a convex superlinear function θ : [0, +∞) → [0, +∞) such that
θ(0) = 0. The main examples we have in mind are functions θ which are positive combinations of
functions like t 7→ tα with α > 1 (for functions like t 7→ t(ln t)+ or et, cfr. remark 3.19). We consider
a function L : Rd × Rd 7→ R which we call Lagrangian. We assume that:

(L1) L ∈ C2(Rd × Rd), and L(x, 0) = 0 for all x ∈ Rd.
(L2) The matrix ∇vvL(x, v) is strictly positive definite for all x, v ∈ Rd.
(L3) There exist constants A∗, A∗, C

∗ > 0 such that

C∗θ(|v|) + A∗ ≥ L(x, v) ≥ θ(|v|) − A∗ ∀x, v ∈ Rd.

Let us remark that the condition L(x, 0) = 0 is not restrictive, as we can always replace L by
L − L(x, 0), and this would not affect the study of the problem we are going to consider. We also
note that (L1), (L2) and (L3) ensure that L is a so-called Tonelli Lagrangian (cfr. for instance
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[8, Appendix B]). To prove a maximum principle for the solutions of (1.1), we will also need the
assumption:

(L4) L(x, v) ≥ L(x, 0) for all x, v ∈ Rd.

The global Legendre transform L : Rd × Rd → Rd × Rd of L is defined by

L(x, v) := (x,∇vL(x, v)) .

We denote by ΦL : [0, +∞) × Rd × Rd → Rd × Rd the Lagrangian flow defined by

(2.1)
{

d
dt

[
∇vL

(
ΦL(t, x, v)

)]
= ∇xL

(
ΦL(t, x, v)

)
,

ΦL(0, x, v) = (x, v).

Furthermore, we denote by ΦL
1 : [0, +∞) × Rd × Rd → Rd the first component of the flow: ΦL

1 :=
π1 ◦ ΦL, π1(x, v) := x.

The Legendre transform of L, called the Hamiltonian of L, is defined by

H(x, p) := sup
v∈Rd

{
〈v, p〉 − L(x, v)

}
.

Moreover we define the Legendre transform of θ as

θ∗(s) := sup
t≥0

{
st − θ(t)

}
, s ∈ R.

It is well-known that L satisfies (L1), (L2) and (L3) if and only if H satisfies the following conditions:
(H1) H ∈ C2(Rd × Rd), and H(x, p) ≥ 0 for all x, p ∈ Rd.
(H2) The matrix ∇ppH(x, p) is strictly positive definite for all x, p ∈ Rd.
(H3) θ∗ : R → [0, +∞) is convex, superlinear at +∞, and we have

−A∗ + C∗θ∗
(
|p|
C∗

)
≤ H(x, p) ≤ θ∗(|p|) + A∗ ∀x, v ∈ Rd.

Moreover (L4) is equivalent to:
(H4) ∇pH(x, 0) = 0 for all x ∈ Rd.

We also introduce some weaker conditions on L, which combined with (L3) make it a weak Tonelli
Lagrangian:
(L1w) L ∈ C1(Rd × Rd), and L(x, 0) = 0 for all x ∈ Rd.
(L2w) For each x ∈ Rd, L(x, ·) is strictly convex.

Under (L1w), (L2w) and (L3), the global Legendre transform is an homeomorphism, and the Hamil-
tonian associated to L satisfies (H3) and
(H1w) H ∈ C1(Rd × Rd), and H(x, p) ≥ 0 for all x, p ∈ Rd.
(H2w) For each x ∈ Rd, H(x, ·) is strictly convex.
(Cfr. for instance [8, Appendix B].) In this paper we will mainly work assuming (L1), (L2) and
(L3), except in section 4 where we relax the assumptions on L (and correspondingly that on H) to
(L1w), (L2w) and (L3).

Let U : [0, +∞) → R be a given function such that

(2.2) U ∈ C2((0, +∞)) ∪ C([0,+∞)), U ′′ > 0,
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and

(2.3) U(0) = 0, lim
t→+∞

U(t)
t

= +∞.

We set U(t) = +∞ for t ∈ (−∞, 0), so that U remains convex and lower-semicontinuous on the
whole R. We denote by U∗ the Legendre transform of U :

(2.4) U∗(s) := sup
t∈R

{
st − U(t)

}
= sup

t≥0

{
st − U(t)

}
.

When % is a Borel probability density of Rd such U−(%) ∈ L1(Rd) we define the internal energy

U(%) :=
∫

Rd

U(%) dx.

If % represents the density of a fluid, one interprets P (%) as a pressure, where

(2.5) P (s) := U ′(s)s − U(s).

Note that P ′(s) = sU ′′(s), so that P is increasing on [0, +∞).

2.2. Notation and definitions.

If % is a probability density and α > 0, we write

Mα(%) :=
∫

Rd

|x|α%(x) dx

for its moment of order α. If X ⊂ Rd is a Borel set, we denote by Pac(X) the set of all Borel
probability densities on X. If % ∈ Pac(X), we tacitly identify it with its extension defined to be 0
outside X. We denote by P(X) the set of Borel probability measures µ on Rd that are concentrated
on X: µ(X) = 1. Finally, we denote by Pac

α (X) ⊂ Pac(X) the set of % probability density on X
such that Mα(%) is finite. When α ≥ 1, this is a metric space when endowed with the Wasserstein
distance Wα (cfr. equation (2.10) below). We denote by Ld the d–dimensional Lebesgue measure.

Let u, v : X ⊂ Rd → R ∪ {±∞}. We denote by u ⊕ v the function (x, y) 7→ u(x) + v(y) where
it is well-defined. The set of points x such that u(x) ∈ R is called the domain of u and denoted
by domu. We denote by ∂−u(x) the subdifferential of u at x. Similarly, we denote by ∂+u(x) the
superdifferential of u at x. The set of point where u is differentiable is called the domain of ∇u and
is denoted by dom∇u.

Let u : Rd → R ∪ {+∞}. Its Legendre transform is u∗ : Rd → R ∪ {+∞} defined by

u∗(y) = sup
x∈X

{
〈x, y〉 − u(x)

}
.

In case u : X ⊂ Rd → R ∪ {+∞}, its Legendre transform is defined by identifying u with its
extension which takes the value +∞ outside X.

Finally, for f : (a, b) → R, we set

d+f

dt
|t=c := lim sup

h→0+

f(c + h) − f(c)
h

,
d−f

dt
|t=c := lim inf

h→0−

f(c + h) − f(c)
h

.
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Definition 2.1 (c-transform). Let c : Rd × Rd → R ∪ {+∞}, let X ⊂ Rd and let u, v : X →
R ∪ {−∞}. The first c-transform of u, uc : X → R ∪ {−∞}, and the second c-transform of v,
vc : X → R ∪ {−∞}, are respectively defined by

(2.6) uc(y) := inf
x∈X

{
c(x, y) − u(x)

}
, vc(x) := inf

y∈X

{
c(x, y) − v(y)}.

Definition 2.2 (c-concavity). We say that u : X → R ∪ {−∞} is first c-concave if there exists
v : X → R ∪ {−∞} such that u = vc. Similarly, v : X → R ∪ {−∞} is second c-concave if there
exists u : X → R ∪ {−∞} such that v = uc.

For simplicity we will omit the words “first” and “second” when referring to c-transform and
c-concavity.

For h > 0, we define the action Ah(σ) of an absolutely continuous curve σ : [0, h] → Rd as

Ah(σ) :=
∫ h

0
L(σ(τ), σ̇(τ)) dτ

and the cost function

(2.7) ch(x, y) := inf
σ

{
Ah(σ) : σ ∈ W 1,1(0, h; Rd), σ(0) = x, σ(h) = y

}
.

For µ0, µ1 ∈ P(Rd), let Γ(µ0, µ1) be the set of probability measures on Rd × Rd which have µ0 and
µ1 as marginals. Set

(2.8) Ch(µ0, µ1) := inf
γ

{∫
Rd×Rd

ch(x, y)dγ(x, y) : γ ∈ Γ(µ0, µ1)
}

and

(2.9) Wθ,h(µ0, µ1) := h inf
γ

{∫
Rd×Rd

θ

(
|y − x|

h

)
dγ(x, y) : γ ∈ Γ(µ0, µ1)

}
.

Remark 2.3. By remark 2.11 ch is continuous. In particular, there always exists a minimizer for
(2.8) (trivial if Ch is identically +∞ on Γ(%0, %1)). We denote the set of minimizers by Γh(%0, %1).
Similarly, there is a minimizer for (2.9), and we denote the set of its minimizers by Γθ

h(%0, %1).

We also recall the definition of the α-Wasserstein distance, α ≥ 1:

(2.10) Wα(µ0, µ1) := inf
γ

{∫
Rd×Rd

|y − x|α dγ(x, y) : γ ∈ Γ(µ0, µ1)
}1/α

.

It is well-known (cfr. for instance [3]) that Wα metrizes the weak∗ topology of measures on bounded
subsets of Rd. Although we define Wα here for all α ≥ 1, only W1 will be used except after section
3.5.

The following fact can be checked easily:

(2.11) Ch(µ0, µ2) ≤ Ch−t(µ0, µ1) + Ct(µ1, µ2)

for all t ∈ [0, h] and µ0, µ1, µ2 ∈ P(Rd).
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2.3. Properties of enthalpy and pressure functionals. In this subsection, we assume that
(2.2) and (2.3) hold.

Lemma 2.4. The following properties hold:
(i) U ′ : [0, +∞) → R is strictly increasing, and so invertible. Its inverse is of class C1 and

limt→+∞ U ′(t) = +∞.
(ii) U∗ ∈ C1(R) is nonnegative, and (U∗)′(s) ≥ 0 for all s ∈ R.
(iii) lims→+∞(U∗)′(s) = +∞.
(iv) lims→+∞

U∗(s)
s = +∞.

(v) P : [0,+∞) → [0, +∞) is strictly increasing, bijective, limt→+∞ P (t) = +∞, and its inverse
Q : [0, +∞) → [0, +∞) satisfies lims→+∞ Q(s) = +∞.

Proof: (i) Since U is convex and U(0) = 0, we have U ′(t) ≥ U(t)/t. This together with U ′′ > 0
and the superlinearity of U easily imply the result.
(ii) U∗ ≥ 0 follows from U(0) = 0. The remaining part is a consequence of (U∗)′(U ′(t)) = t for
t > 0, together with U∗(s) = 0 (and so (U∗)′(s) = 0) for s ≤ U ′(0+).
(iii) Follows from (i) and the identity (U∗)′(U ′(t)) = t for t > 0.
(iv) Since U∗ is convex and nonnegative we have U∗(s) ≥ s

2(U∗)′
(

s
2

)
, so that the result follows from

(iii).
(v) Observe that P (t) = U∗(U ′(t)) ≥ 0 by (ii). Since U ′ is monotone nondecreasing, for t < 1 we
have P (t) ≤ tU ′(1) − U(t). We conclude that limt→0+ P (t) = 0. The remaining statements follow.
�

Remark 2.5. Let X ⊂ Rd be a bounded set, and let % ∈ Pac(X) be a probability density. Recall
that we extend % outside X by setting its value to be identically 0. If R > 0 is such that X ⊂ BR(0),
we have

∫
Rd θ(|x|)%(x) dx ≤ θ(R). Moreover, since by convexity U(t) ≥ U(1) + U ′(1)(t− 1) ≡ at + b

for t ≥ 0,
∫

Rd U−(%) dx is bounded on Pac(X) by |a| + |b|Ld(X). Hence U(%) is always well-defined
on Pac(X), and is finite if and only if U+(%) ∈ L1(X).

The following lemma is a standard result of the calculus of variations, cfr. for instance [5] (for a
more general result on unbounded domains, cfr. section 4):

Lemma 2.6. Let X ⊂ Rd and suppose {%n}n∈N ⊂ Pac(X) converges weakly to % in L1(X). Assume
that either X is bounded, or X is unbounded and U ≥ 0. Then

lim inf
n→∞

U(%n) ≥ U(%).

2.4. Properties of H and the cost functions.

Lemma 2.7. The following properties hold for 0 < h̄ < h and x, y ∈ Rd:
(i) ch(x, x) ≤ 0.
(ii) ch(x, y) ≤ ch̄(x, y).
(iii)

C∗h θ

(
|x − y|

h

)
+ A∗h ≥ ch(x, y) ≥ h θ

(
|x − y|

h

)
− A∗h ≥ −A∗h.

Proof: (i) Set σ(t) ≡ x for t ∈ [0, h] and recall that L(x, 0) = 0 to get ch(x, x) ≤ Ah(σ) = 0.
(ii) Given σ ∈ W 1,1(0, h̄; Rd) satisfying σ(0) = x and σ(h̄) = y, we can associate an extension to
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(h̄, h], which we still denote σ, such that σ(t) = y for t ∈ (h̄, h]. We have σ ∈ W 1,1(0, h; Rd), σ(0) = x
and σ(h̄) = y. Hence,

ch(x, y) ≤ Ah(σ) = Ah̄(σ) +
∫ h

h̄
L(y, 0) dt = Ah̄(σ).

Since σ ∈ W 1,1(0, h̄; Rd) is arbitrary, this concludes the proof of (ii).
(iii) The first inequality is obtained using (L3) and ch(x, y) ≤ AT (σ) with σ(t) = (1−t/h)x+(t/h)y,
while the second one follows from Jensen’s inequality. �

The next proposition can readily be derived from the standard theory of Hamiltonian systems
(cfr. e.g. [8, Appendix B]):

Proposition 2.8. Under the assumptions (L1), (L2) and (L3), (2.7) admits a minimizer σx,y for
any x, y ∈ Rd. We have that σx,y ∈ C2([0, h]) and satisfies the Euler-Lagrange equation

(2.12) (σx,y(τ), σ̇x,y(τ)) = ΦL(τ, x, σ̇x,y(0)) ∀τ ∈ [0, h],

where ΦL is the Lagrangian flow defined in equation (2.1). Moreover, for any r > 0 and S ⊂ (0, +∞)
a compact set, there exists a constant kS(r), depending on S and r only, such that ||σx,y||C2([0,h]) ≤
kS(r) if |x|, |y| ≤ r and h ∈ S.

Remark 2.9. Let σ be a minimizer of the problem (2.7), and set

p(τ) := ∇vL
(
σ(τ), σ̇(τ)

)
.

(a) The Euler-Lagrange equation (2.12) implies that σ and p are of class C1 and satisfy the
system of ordinary differential equations

(2.13) σ̇(τ) = ∇pH(σ(τ), p(τ)), ṗ(τ) = −∇xH(σ(τ), p(τ))

(b) The Hamiltonian is constant along the integral curve (σ(τ), p(τ)), i.e. H(σ(τ), p(τ)) =
H(σ(0), p(0)) for τ ∈ [0, h].

The following lemma is standard (cfr. for instance [8, Appendix B]):

Lemma 2.10. Under the assumptions in proposition 2.8, let σ be a minimizer of (2.7), and define
pi := ∇vL(σ(i), σ̇(i)) for i = 0, h. For r,m > 0 there exists a constant lh(r,m), depending on h, r,m
only, such that if x, y ∈ Br(0) and w ∈ Bm(0), then:

(a) ch(x + w, y) ≤ ch(x, y) − 〈p0, w〉 + 1
2`h(r,m)|w|2;

(b) ch(x, y + w) ≤ ch(x, y) + 〈ph, w〉 + 1
2`h(r,m)|w|2.

Remark 2.11. This lemma says that −p0 ∈ ∂+ch(·, y)(x), and for y ∈ Br(0) the restriction of c(·, y)
to Br(0) is `h(r,m)-concave. Similarly, ph ∈ ∂+ch(x, ·)(y), and for x ∈ Br(0) the restriction of c(x, ·)
to Br(0) is `h(r,m)-concave.

Lemma 2.12. Suppose (L1), (L2) and (L3) hold. Let a, b, r ∈ (0, +∞) be such that a < b and set
S = [a, b]. Then there exists a constant k̃S(r), depending on S and r only, such that

|ch(x, y) − ch̄(x, y)| ≤ k̃S(r)|h − h̄|

for all h, h̄ ∈ S and all x, y ∈ Rd satisfying |x|, |y| ≤ r.
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Proof: Let kS(r) be the constant appearing in proposition 2.8 and let

E1 := sup
x,v

{|L(x, v)| : |x|, |v| ≤ kS(r)}, E2 := sup
x,v

{
|∇vL(x, v)| : |x| ≤ kS(r), |v| ≤ kS(r)

b

a

}
.

Fix h, h̄ ∈ S such that h̄ < h. For x, y ∈ Rd such that |x|, |y| ≤ r we denote by σ a minimizer of
(2.7). Define σ̄(t) = σ(th̄/h) for t ∈ [0, h̄]. Then σ̄ ∈ C2([0, h̄]), σ̄(0) = x and σ̄(h̄) = y. Then

ch̄(x, y) ≤
∫ h̄

0
L

(
σ̄, ˙̄σ

)
dt =

h̄

h

∫ h

0
L

(
σ,

h

h̄
σ̇
)

ds =
h̄

h
ch(x, y) +

h̄

h

∫ h

0

(
L

(
σ,

h

h̄
σ̇
)
− L(σ, σ̇)

)
ds.

This implies

ch̄(x, y) ≤ h̄

h
ch(x, y) +

h̄

h
hE2

(h

h̄
− 1

)
kS(r) =

h̄

h
ch(x, y) + (h − h̄)E2kS(r),

and so

(2.14) ch̄(x, y) − ch(x, y) ≤ h̄ − h

h
ch(x, y) + (h − h̄)E2kS(r) ≤ |h − h̄|(E1 + E2kS(r)),

where we used the trivial bound ch(x, y) ≤ E1h. Since by lemma 2.7(ii) ch(x, y) ≤ ch̄(x, y), (2.14)
proves the lemma. �

2.5. Total works and their properties. In this subsection we assume that (2.2) and (2.3) hold.

Lemma 2.13. The following properties hold:
(i) For any µ ∈ P(Rd) we have Ch(µ, µ) ≤ 0. In particular, for any µ, µ̄ ∈ P(Rd), Ch̄(µ, µ̄) ≤

Ch(µ, µ̄) if h < h̄.
(ii) For any h > 0, µ, µ̄ ∈ P(Rd),

−A∗h ≤ −A∗h + Wθ,h(µ, µ̄) ≤ Ch(µ, µ̄) ≤ C∗Wθ,h(µ, µ̄) + A∗h.

(iii) For any K > 0 there exists a constant C(K) > 0 such that

(2.15) W1(µ, µ̄) ≤ 1
K

Wθ,h(µ, µ̄) +
C(K)

K
h ∀h > 0, µ, µ̄ ∈ P(Rd).

Proof: (i) The first part follows from ch(x, x) ≤ 0, while the second statement is a consequence of
the first one and Ch̄(µ, µ̄) ≤ Ch(µ, µ̄) + Ch̄−h(µ̄, µ̄).
(ii) It follows directly from Lemma 2.7(iii).
(iii) Thanks to the superlinearity of h, for any K > 0 there exists a constant C(K) > 0 such that

(2.16) θ(s) ≥ Ks − C(K) ∀ s ≥ 0.

Fix now γ ∈ Γθ
h(µ0, µ1). Then

W1(µ, µ̄) ≤
∫

Rd×Rd

|x − y| dγ(x, y)

≤ h

K

∫
Rd×Rd

[
K

|x − y|
h

− C(K)
]

dγ(x, y) +
C(K)

K
h

≤ 1
K

∫
Rd×Rd

θ

(
|x − y|

h

)
dγ(x, y) +

C(K)
K

h =
1
K

Wθ,h(µ, µ̄) +
C(K)

K
h.

�
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Lemma 2.14. Let h > 0. Suppose that {%n}n∈N converges weakly to % in L1(Rd) and that {M1(%n)}n∈N
is bounded. Then M1(%) is finite, and we have

lim inf
n→∞

Ch(%̄, %n) ≥ Ch(%̄, %) ∀ %̄ ∈ Pac
1 (X).

Proof: The fact that M1(%) is finite follows from the weak lower-semicontinuity in L1(Rd) of M1.
Let now γn ∈ Γh(%̄, %n). Since {M1(%n)}n∈N is bounded we have

(2.17) sup
n∈N

∫
Rd

(
|x| + |y|

)
γn(dx, dy) < +∞.

As |x| + |y| is coercive, equation (2.17) implies that {γn}n∈N admits a cluster point γ for the
topology of the narrow convergence. Furthermore it is easy to see that γ ∈ Γ(%̄, %) and so, since ch

is continuous and bounded below, we get

lim inf
n→∞

Ch(%̄, %n) = lim inf
n→∞

∫
Rd×Rd

ch(x, y) dγn(x, y) ≥
∫

Rd×Rd

ch(x, y) dγ(x, y) ≥ Ch(%̄, %).

�

3. Existence of solutions in a bounded domain

Throughout this section we assume that (2.2) and (2.3) hold. We recall that L satisfies (L1),
(L2) and (L3). We also assume that X ⊂ Rd is an open bounded set whose boundary ∂X is of zero
Lebesgue measure, and we denote by X its closure. The goal is to prove existence of distributional
solutions to equation (1.1) by using an approximation by discretization in time. More precisely, in
subsection 3.1 we construct approximate solutions at discrete times {h, 2h, 3h, . . .} by an implicit
Euler scheme, which involves the minimization of a suitable functional. Then in subsection 3.2 we
explicitly characterize the minimizer introducing a dual problem. We then study the properties of
an augmented action functional which allows to prove a priori bounds on the De Giorgi’s variational
and geodesic interpolations (cfr. subsection 3.4). Finally, using these bounds we can take the limit
as h → 0 and prove existence of distributional solutions to equation (1.1) when θ behaves at infinity
like tα, α > 1.

3.1. The discrete variational problem. We fix a time step h > 0 and for simplicity of notation
we set c = ch. We fix %0 ∈ Pac(X), and we consider the variational problem

(3.1) inf
%∈Pac(X)

Ch(%0, %) + U(%).

Lemma 3.1. There exists a unique minimizer %∗ of problem (3.1). Suppose in addition that (L4)
holds. If M ∈ (0, +∞) and %0 ≤ M , then %∗ ≤ M. In other words, the maximum principle holds.

Proof: Existence of a minimizer %∗ follows by classical methods in the calculus of variation, thanks
to the lower-semicontinuity of the functional % 7→ Ch(%0, %)+U(%) in the weak topology of measures
and to the superlinearity of U (which implies that any limit point of a minimizing sequence still
belongs to Pac(X)).

To prove uniqueness, let %1 and %2 be two minimizers, and take γ1 ∈ Γh(%0, %1), γ2 ∈ Γh(%0, %2)
(cfr. remark 2.3). Then γ1+γ2

2 ∈ Γ
(
%0,

%1+%2

2

)
, so that

Ch

(
%0,

%1 + %2

2

)
≤

∫
X×X

c(x, y) d

(
γ1 + γ2

2

)
=

Ch(%0, %1) + Ch(%0, %2)
2

.
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Moreover by strict convexity of U

U
(

%1 + %2

2

)
≤ U(%1) + U(%2)

2
with equality if and only if %1 = %2. This implies uniqueness.

Thanks to (L1) and (L4) one easily gets that ch(x, x) < ch(x, y) for all x, y ∈ X, x 6= y. Thanks
to this fact the proof of the maximum principle is a folklore which can be found in [18]. �

3.2. Characterization of minimizers via a dual problem. The aim of this paragraph is to
completely characterize the minimizer %∗ provided by lemma 3.1. We are going to identify a problem,
dual to problem (3.1), and to use it to achieve that goal.

We define E ≡ Ec to be the set of pairs (u, v) ∈ C(X)×C(X) such that u(x) + v(y) ≤ c(x, y) for
all x, y ∈ X, and we write u ⊕ v ≤ c. We consider the functional

J(u, v) :=
∫

X
u%0 dx −

∫
X

U∗(−v) dx.

To alleviate the notation, we have omitted to display the %0 dependence in J.
We recall some well-known results:

Lemma 3.2. Let u ∈ Cb(X). Then (uc)c ≥ u, (uc)c ≥ u,
(
(uc)c

)
c

= uc, and
(
(uc)c

)c = uc.
Moreover:

(i) If u = vc for some v ∈ C(X), then:
(a) There exists a constant A = A(c,X), independent of u, such that u is A-Lipschitz and

A-semiconcave.
(b) If x̄ ∈ X is a point of differentiability of u, ȳ ∈ X, and u(x̄) + v(ȳ) = c(x̄, ȳ), then

x̄ is a point of differentiability of c(·, ȳ) and ∇u(x̄) = ∇xc(x̄, ȳ). Furthermore ȳ =
ΦL

1

(
h, x̄,∇pH

(
x̄,−∇u(x̄)

))
, and in particular ȳ is uniquely determined.

(ii) If v = uc for some u ∈ C(X), then:
(a) There exists a constant A = A(c,X), independent of v, such that v is A-Lipschitz and

A-semiconcave.
(b) If x̄ ∈ X, ȳ ∈ X is a point of differentiability of v, and u(x̄) + v(ȳ) = c(x̄, ȳ), then

ȳ is a point of differentiability of c(x̄, ·) and ∇v(ȳ) = ∇yc(x̄, ȳ). Furthermore, x̄ =
ΦL

1

(
−h, ȳ,∇pH

(
ȳ,∇v(ȳ)

))
, and in particular ȳ is uniquely determined.

In particular, if K ⊂ R is bounded, the set {vc : v ∈ C(X), vc(X) ∩ K 6= ∅} is compact in C(X),
and weak∗ compact in W 1,∞(X).

Proof: Despite the fact that the assertions made in the lemma are now part of the folklore of the
Monge-Kantorovich theory, we sketch the main steps of the proof.

The first part is classical, and can be found in [12, 16, 17].
Regarding (i)-(a), we observe that by remark 2.11 the functions c(·, y) are uniformly semiconcave

for y ∈ X, so that u is semiconcave as the infimum of uniformly semiconcave functions (cfr. for
instance [8, Appendix A]). In particular u is Lipschitz, with a Lipschitz constant bounded by
‖∇xc‖L∞(X×X).

To prove (i)-(b), we note that ∂−u(x̄) ⊂ ∂−c(·, ȳ)(x̄). Since by remark 2.11 ∂+c(·, ȳ)(x̄) is
nonempty, we conclude that c(·, ȳ) is differentiable at x̄ if u is. Hence

∇u(x̄) = ∇xc(x̄, ȳ) = −∇vL(σ(0), σ̇(0))
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where σ : [0, h] → X is (the unique curve) such that c(x̄, ȳ) =
∫ h
0 L(σ, σ̇) dt (cfr. [8, Section 4 and

Appendix B]). This together with equation (2.12) implies

(3.2) ȳ = ΦL
1

(
h, x̄,∇pH

(
x̄,−∇u(x̄)

))
.

The proof of (ii) is analogous. �

Remark 3.3. By lemma 3.2, if u = vc for some v ∈ Cb(X) we can uniquely define Ld-a.e. a map
T : dom∇u → X such that u(x) + v(Tx) = c(x, Tx). This map is continuous on dom∇u, and since
∇u can be extended to a Borel map on X we conclude that T can be extended to a Borel map on
X, too. Moreover we have ∇u(x) = ∇xc(x, Tx) Ld-a.e., and T is the unique optimal map pushing
any density % ∈ Pac(X) forward to µ̄ := T#(%Ld) ∈ P(X) (cfr. for instance [12, 16, 17]).

Lemma 3.4. If (u, v) ∈ E and % ∈ Pac(X), then J(u, v) ≤ Ch(%0, %) + U(%).

Proof: Let γ ∈ Γ(%0, %). Since U(%(y)) + U∗(−v(y)) ≥ −%(y)v(y) and (u, v) ∈ E , integrating the
inequality we get

(3.3)
∫

X

(
U(%(y)+U∗(−v(y))

)
dy ≥ −

∫
X

%(y)v(y) dy ≥ −
∫

X×X
c(x, y) dγ(x, y)+

∫
X

%0(x)u(x) dx.

Rearranging the expressions in equation (3.3) and optimizing over Γ(%0, %) we obtain the result. �

Lemma 3.5. There exists (u∗, v∗) ∈ E maximizing J(u, v) over E and satisfying uc
∗ = v∗ and

(v∗)c = u∗. Furthermore:
(i) u∗ and v∗ are Lipschitz with a Lipschitz constant bounded by ||∇c||L∞(X×X).
(ii) %v∗ := (U∗)′(−v∗) is a probability density on X, and the optimal map T associated to u∗

(cfr. remark 3.3) pushes %0Ld forward to %v∗Ld.

Proof: Note that if uc
∗ = v∗ and (v∗)c = u∗, then (i) is a direct consequence of lemma 3.2.

Before proving the first statement of the lemma, let us show that it implies (ii). Let ϕ ∈ C(X)
and set

vε := v∗ + εϕ, uε := (vε)c.

Remark 3.3 says that for Ld-a.e. x ∈ X the equation u∗(x) + v∗(y) = c(x, y) admits a unique
solution Tx. As done in [10] (cfr. also [11]) we have that

‖uε − u∗‖∞ ≤ ε‖ϕ‖∞, lim
ε→0

uε(x) − u∗(x)
ε

= ϕ(Tx)

for Ld-a.e. x ∈ X. Hence by the Lebesgue dominated convergence theorem

(3.4) lim
ε→0

∫
X

uε(x) − u∗(x)
ε

%0(x) dx = −
∫

X
ϕ(Tx)%0(x) dx.

Since (u∗, v∗) maximizes J over E , by equation (3.4) we obtain

0 = lim
ε→0

J(uε, vε) − J(u∗, v∗)
ε

= −
∫

X
ϕ(Tx)%0(x) dx +

∫
X

(U∗)′(−v∗(x))ϕ(x) dx.

Therefore

(3.5)
∫

X
ϕ(Tx)%0(x) dx =

∫
X

(U∗)′(−v∗(x))ϕ(x) dx.
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Choosing ϕ ≡ 1 in equation (3.5) and recalling that (U∗)′ ≥ 0 (cfr. lemma 2.4(ii)) we discover that
%v∗ := (U∗)′(−v∗) is a probability density on X. Moreover equation (3.5) means that T pushes %0Ld

forward to %v∗Ld. This proves (ii).
We eventually proceed with the proof of the first statement. Observe that the functional J is

continuous on E , which is a closed subset of C(X)×C(X). Thus it suffices to show the existence of
a compact set E ′ ⊂ E such that E ′ ⊂ {(u, v) : uc = v, vc = u} and supE J = supE ′ J.

If (u, v) ∈ E then u ≤ vc, and so J(u, v) ≤ J(vc, v). But as pointed out in lemma 3.2 v ≤ (vc)c,
and since by lemma 2.4(ii) U∗ ∈ C1(R) is monotone nondecreasing we have J(u, v) ≤ J(vc, v) ≤
J(vc, (vc)c). Set ū = vc and v̄ = (vc)c. Observe that by lemma 3.2 ū = v̄c and v̄ = ūc.

As U∗ ∈ C1(R) and (U∗)′ ≥ 0, the functional λ 7→ e(λ) :=
∫
X U∗(−v̄(x) + λ) dx is differentiable

and
e′(λ) =

∫
X

(U∗)′(−v̄(x) + λ) dx ≥ 0.

Since by lemma 2.4(iv) U∗ grows superlinearly at infinity, so does e(λ). Hence

(3.6) lim
λ→+∞

J(ū + λ, v̄ − λ) = lim
λ→+∞

∫
X

ū%0 dx + λ − e(λ) = −∞.

Moreover, as U∗ ≥ 0 (cfr. lemma 2.4(ii)),

(3.7) lim
λ→−∞

J(ū + λ, v̄ − λ) ≤ lim
λ→−∞

∫
X

ū%0dx + λ = −∞.

Since λ 7→ J(ū + λ, v̄ − λ) is differentiable, (3.6) and (3.7) imply that J(ū + λ, v̄ − λ) achieves its
maximum at a certain value λ̄ which satisfies 1 = e′(λ̄). Therefore we have

(ũ, ṽ) := (ū + λ̄, v̄ − λ̄) ∈ E , J(ū, v̄) ≤ J(ũ, ṽ), and
∫

X
(U∗)′(−ṽ) dx = 1.

This last inequality and the fact that (U∗)′(−ṽ) is continuous on the compact set X ensure the
existence of a point x ∈ X such that −ṽ(x) = U ′(1/Ld(X)

)
. In light of lemma 3.2 and the above

reasoning we have established that the set

E ′ := {(u, v) : (u, v) ∈ E , uc = v, vc = u, v(x) = −U ′(1/Ld(X)
)

for some x ∈ X}
satisfies the required conditions. �

Set
φ(%) := Ch(%0, %) + U(%).

Lemma 3.6. Let %∗ be the unique minimizer of φ provided by lemma 3.1, and let (u∗, v∗) be a
maximizer of J obtained in lemma 3.5. Then %∗ = (U∗)′(−v∗), and

max
E

J = J(u∗, v∗) = φ(%∗) = min
Pac(X)

φ.

Proof: Let T be as in lemma 3.5(ii), and define %v∗ := (U∗)′(−v∗). Note that since T pushes %0Ld

forward to %v∗Ld, we have that (id×T )#(%0Ld) ∈ Γ(%0, %v∗). Therefore, as c(x, Tx) = u∗(x)+v∗(Tx)
for %0Ld-a.e. x ∈ X,

Ch(%0, %v∗) ≤
∫

X
c(x, Tx)%0(x) dx =

∫
X

(
u∗(x) + v∗(Tx)

)
%0(x) dx

=
∫

X
u∗(x)%0(x) dx +

∫
X

v∗(x)%v∗(x) dx.(3.8)
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Since

Ch(%0, %v∗) ≥
∫

X
u∗(x)%0(x) dx +

∫
X

v∗(x)%v∗(x) dx

trivially holds (as u ⊕ v ≤ c), inequality (3.8) is in fact an equality, and so

(3.9) Ch(%0, %v∗) + U(%v∗) =
∫

X
u∗(x)%0(x) dx +

∫
X

(
v∗(x)%v∗(x) + U(%v∗)

)
dx.

Combining (3.9) with the equality −v∗%v∗ = U(%v∗)+U∗(−v∗) (which follows from %v∗ = (U∗)′(−v∗))
we get

Ch(%0, %∗) + U(%∗) = J(u∗, v∗),
which together with lemma 3.4 gives that %v∗ minimizes φ over Pac(X) and supE J = φ(%v∗). Since
the minimizer of φ over Pac(X) is unique (cfr. lemma 3.1), this concludes the proof. �

Remark 3.7. Thanks to lemma 3.2, on dom∇v∗ we can uniquely define a map S by u∗(Sy)+v∗(y) =
c(Sy, y), and we have ∇v∗(y) = ∇yc(Sy, y). This map is the inverse of T up to a set of zero measure,
it pushes %∗Ld forward to %0Ld, and

Sy = ΦL
1

(
−h, y,∇pH

(
y,∇v∗(y)

))
.

Moreover, thanks to lemma 3.6, U ′(%∗) = −v∗ is Lipschitz, and

−∇v∗(y) = ∇[U ′(%∗)](y).

In particular Sy = ΦL
1

(
−h, y,∇pH

(
y,−∇[U ′(%∗)](y)

))
.

We observe that the duality method allows to deduce in an easy way the Euler-Lagrange equa-
tion associated to the functional φ, by-passing many technical problems due to regularity issues.
Moreover it also gives ∇yc(Sy, y) = −∇[U ′(%∗)](y) Ld-a.e. in X (and not only %∗Ld-a.e.).

3.3. Augmented actions. We now introduce the functional

Φ(τ, %0, %) := Cτ (%0, %) + U(%) %0, % ∈ Pac(X),

and we define
φτ (%0) := inf

%∈Pac(X)
Φ(τ, %0, %).

The goal of this subsection is to study the properties of Φ and φτ , in the same spirit as in [3, Chapter
3].

In the sequel, we fix %0 ∈ Pac(X). Lemma 3.6 provides existence of a unique minimizer of
Φ(τ, %0, %) over Pac(X), which we call %τ .

Remark 3.8. (i) Note that φτ (%0) ≤ Φ(τ, %0, %0) ≤ U(%0) (since Cτ (%0, %0) ≤ 0, cfr. lemma 2.7).
(ii) Thanks lemma 3.9 below, τ 7→ φτ is monotone nonincreasing on (0, +∞). Therefore setting

φ0(%0) = U(%0) ensures that τ 7→ φτ remains monotone nonincreasing on [0, +∞), and we have

U(%0) − U(%h) = φ0(%0) − φh(%0) + Ch(%0, %h).

Lemma 3.9. The function τ 7→ φτ (%0) is nonincreasing, and satisfies

(3.10)
Cτ1(%0, %τ1) − Cτ0(%0, %τ1)

τ1 − τ0
≤ φτ1(%0) − φτ0(%0)

τ1 − τ0
≤ Cτ1(%0, %τ0) − Cτ0(%0, %τ0)

τ1 − τ0
∀ 0 < τ0 ≤ τ1.
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The function τ 7→ φτ (%0) is Lipschitz on an interval of the form [τ0, τ1] ⊂ (0, +∞), dφτ (%0)
dτ ∈

L1
loc([0, +∞)), and

(3.11) φτ1(%0) − φτ0(%0) =
∫ τ1

τ0

dφτ (%0)
dτ

(τ) dτ ∀ 0 ≤ τ0 ≤ τ1.

Proof: It is an immediate consequence of the definition of φτ and %τ that, for all τ0, τ1 > 0,

Cτ1(%0, %τ0) − Cτ0(%0, %τ0) ≥ φτ1(%0) − φτ0(%0).

This gives the second inequality in (3.10), which together with lemma 2.13(i) implies that τ 7→ φτ (%0)
is nonincreasing. The first inequality in (3.10) can be established in a similar manner.

Set S := [τ0, τ1] ⊂ (0,+∞), and let r > 0 be such that X is contained in the closed ball of radius
r centered at the origin. Let k̃S(r) be the constant appearing in lemma 2.12, and fix γ ∈ Γτ0(%0, %τ0)
(cfr. remark 2.3). Since %0 and %τ0 are supported inside X̄ we have that γ is supported on X̄ × X̄,
which implies that |cτ0(x, y) − cτ1(x, y)| ≤ k̃S(r) for γ-a.e. (x, y). We conclude that

Cτ0(%0, %τ0) =
∫

Rd×Rd

cτ0 dγ ≤
∫

Rd×Rd

(
cτ1 + k̃S(r)|τ0 − τ1|

)
dγ ≤ Cτ1(%0, %τ0) + k̃S(r)|τ0 − τ1|.

This together with lemma 2.13(i) implies

(3.12) |Cτ0(%0, %τ0) − Cτ1(%0, %τ0)| = Cτ0(%0, %τ0) − Cτ1(%0, %τ0) ≤ k̃S(r)|τ0 − τ1|.
Similarly

(3.13) |Cτ1(%0, %τ1) − Cτ0(%0, %τ1)| ≤ k̃S(r)|τ0 − τ1|.
We combine (3.10), (3.12) and (3.13) to conclude that τ 7→ φτ (%0) is Lipschitz on [τ0, τ1] ⊂ (0, +∞).
Now, since τ 7→ φτ (%0) is nonincreasing, recalling remark 3.8 we have∫ τ1

τ0

∣∣∣dφτ (%0)
dτ

(τ)
∣∣∣ dτ = φτ0(%0) − φτ1(%0) ≤ U(%0) − φτ1(%0).

Since τ1 > τ0 > 0 are arbitrary, we conclude that dφτ (%0)
dτ ∈ L1

loc([0, +∞)) and (3.11) holds. �

For h > 0, we denote by Th the optimal map that pushes %0Ld forward to %hLd as provided by
the previous subsection 3.2. We have

Thx = ΦL
1

(
h, x,∇pH

(
x,−∇uh(x̄)

))
,

with (uh, vh) a maximizer of (u, v) 7→
∫
X %0udx−

∫
X U∗(−v) dx over the set of (u, v) ∈ C(X̄)×C(X̄)

such that u⊕ v ≤ ch. We recall that uh and vh are Lipschitz (cfr. lemma 3.5) and (U∗)′(−vh) = %h

(cfr. lemma 3.6). Moreover, if we define the interpolation map between %0 and %h by

(3.14) T s
hx := ΦL

1

(
s, x,∇pH

(
x,−∇uh(x̄)

))
, s ∈ [0, h],

we have

(3.15) ch(x, Thx) =
∫ h

0
L

(
σx

0 (s), σ̇x
0 (s)

)
ds, with σx

0 (s) := T s
hx.

Finally, since vh = −U ′(%h), denoting by Sh the inverse of Th we also have

(3.16) ∇ych(Shy, y) = −∇[U ′(%h)](y) = ∇vL
(
σShy

0 (h), σ̇Shy
0 (h)

)
for Ld-a.e. y ∈ X.
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Lemma 3.10. For L1-a.e. h > 0 we have

(3.17)
dφt(%0)

dt
|t=h = −

∫
X

H
(
y,−∇[U ′(%h)](y)

)
%h(y) dy.

Proof: For |ε| ≤ h/2, s ∈ [0, h + ε] and Ld-a.e. x ∈ X we define

σx
ε (s) := ΦL

1

(
sh

h + ε
, x,∇pH

(
x,−∇uh(x)

))
.

Because uh is a Lipschitz function we have

(3.18) sup
x,ε

{||σx
ε ||C1[0,h+ε] : |ε| ≤ h/2, x ∈ X} < +∞

Since σx
ε (0) = x and σε(h + ε) = Thx, by the definition of Ch+ε we get

(3.19) Ch+ε(%0, %h) ≤
∫

X
%0(x)

∫ h+ε

0
L

(
σx

ε , σ̇x
ε

)
ds dx =

h + ε

h

∫
X

%0(x)
∫ h

0
L

(
σx

0 ,
h

h + ε
σ̇x

0

)
ds dx

Moreover, since L(x, ·) is convex,

(3.20) L
(
σx

0 , σ̇x
0

)
≥ L

(
σx

0 ,
h

h + ε
σ̇x

0

)
+

ε

h + ε

〈
∇vL

(
σx

0 ,
h

h + ε
σ̇x

0

)
, σ̇x

0

〉
.

Recall that

(3.21)
〈
∇vL

(
σx

0 ,
h

h + ε
σ̇x

0

)
,

h

h + ε
σ̇x

0

〉
= L

(
σx

0 ,
h

h + ε
σ̇x

0

)
+ H

(
σx

0 ,∇vL
(
σx

0 ,
h

h + ε
σ̇x

0

))
,

We combine equations (3.19- 3.21) to obtain

(3.22) Ch+ε(%0, %h) ≤ Ch(%0, %h) − ε

h + ε

∫
X

%0(x)
∫ h

0
H

(
σx

0 ,∇vL
(
σx

0 ,
h

h + ε
σ̇x

0

))
ds dx.

Thanks to (3.18) we can apply the Lebesgue dominated convergence theorem and then use to the
conservation of the Hamiltonian H (cfr. remark 2.9(ii)) to obtain

lim
ε→0

∫
X

%0(x)
∫ h

0
H

(
σx

0 ,∇vL
(
σx

0 ,
h

h + ε
σ̇x

0

))
ds dx =

∫
X

%0(x)
∫ h

0
H

(
σx

0 ,∇vL
(
σx

0 , σ̇x
0

))
ds dx

= h

∫
X

%0(x)H
(
σx

0 (h),∇vL
(
σx

0 (h), σ̇x
0 (h)

))
dx.

Recalling that σx
0 (h) = Thx pushes %0Ld forward to %hLd and exploiting (3.16) in the previous

equality we conclude that

(3.23) lim
ε→0

∫
X

%0(x)
∫ h

0
H

(
σx

0 ,∇vL
(
σx

0 ,
h

h + ε
σ̇x

0

))
ds dx =

∫
X

H
(
y,−∇[U ′(%h)](y)

)
%h(y) dy.

We now distinguish two cases, depending on the sign of ε.
1. If 0 < ε < h/2 we set τ1 = h + ε and τ0 = h in the second inequality in (3.10) to obtain

φh+ε(%0) − φh(%0)
ε

≤ Ch+ε(%0, %h) − Ch(%0, %h)
ε

.

This together with (3.22) yields

φh+ε(%0) − φh(%0)
ε

≤ − 1
h + ε

∫
X

%0(x)
∫ h

0
H

(
σx

0 ,∇vL
(
σx

0 ,
h

h + ε
σ̇x

0

))
ds dx.
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Letting ε tend to 0 and exploiting (3.23) we conclude that

(3.24)
d+φt(%0)

dt
|t=h ≤ −

∫
X

H
(
y,−∇[U ′(%h)](y)

)
%h(y) dy.

2. If −h/2 < ε < 0 we set τ1 = h and τ0 = h + ε in the first inequality in (3.10), and by
rearranging the terms we obtain

Ch+ε(%0, %h) − Ch(%0, %h)
ε

≤ φh+ε(%0) − φh(%0)
ε

.

This, together with (3.22) yields

(3.25) − 1
h + ε

∫ h

0
H

(
σx

0 ,∇vL
(
σx

0 ,
h

h + ε
σ̇x

0

))
ds dx ≤ φh+ε(%0) − φh(%0)

ε
.

We combine (3.23) and (3.25) to get

(3.26) −
∫

X
H

(
y,−∇[U ′(%h)](y)

)
%h(y) dy ≤ d−φt(%0)

dt
|t=h.

Since by lemma 3.9 τ 7→ φτ (%0) is locally Lipschitz on (0, +∞), it is differentiable L1-a.e. Hence
(3.24) and (3.26) yield (3.17) at any differentiability point. �

3.4. De Giorgi’s variational and ”geodesic” interpolations. We fix %0 ∈ Pac(X), a time step
h > 0, and set %h

0 := %0. We consider %h ∈ P ac(X) the (unique) minimizer of Φ(τ, %0, ·) provided by
lemma 3.1, and we interpolate between %h

0 and %h
h along paths minimizing the action Ah: thanks to

[8, Theorem 5.1] there exists a the unique solution %̄h
s ∈ Pac(X) of

Cs

(
%h
0 , %̄h

s

)
+ Ch−s

(
%̄h

s , %h
h

)
= Ch

(
%h

0 , %h
h

)
,

which is also given by (cfr. (3.14) for the definition of T s
h)

%̄h
sLd := (T s

h)#%0Ld, 0 ≤ s ≤ h.

Moreover [8, Theorem 5.1] ensures that T s
h is invertible %̄s-a.e., so that in particular there exists a

unique vector field V h
s defined %̄s-a.e. such that

V h
s (T s

h) = ∂sT
s
h %̄s-a.e.

Recall that by lemma 3.5(i) ||∇uh||L∞(X) ≤ ||∇ch||L∞(X×X). Exploiting equation (3.14) and the
fact that ∂sΦL maps bounded subsets of Rd ×Rd onto bounded subsets of Rd ×Rd, we obtain that
sup0≤s≤h ||∂sT

s
h ||L∞(%̄s) < +∞. Therefore sup0≤s≤h ||V h

s ||L∞(%̄s) < +∞. Finally a direct computation
gives that

(3.27) ∂s%̄
h
s + div(%̄h

sV h
s ) = 0

in the sense of distribution on (0, h) × Rd. Observe that %̄h
0 = %0 and %̄h

h = %h
h.

Remark 3.11. Note that although the range of Th is contained in X, that of T s
h may fail to be in

that set. Indeed even if x and Thx are both in X, the Lagrangian flow provided by L and connecting
x to Thx may not lie entirely in X.
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We set
%s := argmin

{
Cs(%0, %) + U(%) : % ∈ Pac(X)

}
, 0 ≤ s ≤ h.

In a metric space (S, dist) with sCs = dist2, the interpolation s 7→ %s is due to De Giorgi [6] (cfr.
also [3, 7]).

Theorem 3.12. The following energy inequality holds:

U(%0) − U(%h) ≥
∫ h

0
ds

∫
Rd

L(y, Vs)%̄s dy +
∫ h

0
ds

∫
X

H
(
x,−∇U ′(%s)

)
%s dx.

Proof: By lemma 3.10 s 7→ φs(%0) is locally Lipschitz on [0, h], and (3.17) holds. Hence, by
exploiting remark 3.8 we conclude that∫ h

0
dt

∫
X

H
(
x,−∇[U ′(%s)]

)
%s dx ≤ φ0(%0) − φh(%0) = U(%0) − U(%h) − Ch(%0, %h)

= U(%0) − U(%h) −
∫ h

0
dt

∫
X

L(T s
h(x), ∂sT

s
h(x))%0(x) dx

= U(%0) − U(%h) −
∫ h

0
dt

∫
Rd

L(y, Vs(y))%̄s(y) dy.

(We remark that the last integral has to be taken on the whole Rd, as we do not know in general
that the measures %̄s are concentrated on X, cfr. remark 3.11.) �

We now iterate the argument above: lemma 3.6 ensures the existence of a sequence {%h
kh}∞k=0 ⊂

Pac(X) such that

%h
(k+1)h := argmin

{
Ch(%h

kh, %) + U(%) : % ∈ Pac(X)
}

.

As above, we define

(3.28) %h
kh+s := argmin

{
Cs(%h

kh, %) + U(%) : % ∈ Pac
1

}
, 0 ≤ s ≤ h.

The arguments used before can be applied to (%kh, %(k+1)h) in place of (%0, %h) to obtain a unique
map Tkh : X → X such that (id × Tkh)#(%khLd) ∈ Γh(%kh, %(k+1)h). Moreover, for s ∈ (0, h) we
define %̄h

kh+s to be the interpolation along paths minimizing the action Ah, that is %̄kh+s is the
unique solution of

Cs

(
%h

kh, %̄h
kh+s

)
+ Ch−s

(
%̄h

kh+s, %
h
(k+1)h

)
= Ch

(
%h

kh, %h
(k+1)h

)
.

We denote by (uh
kh+s, v

h
kh+s) the solution to the dual problem to (3.28) provided by lemma 3.5.

Replacing uh by uh
kh in (3.14) we obtain the interpolation maps T s

kh. As before, we consider the
interpolation measures %̄h

kh+sLd := (T s
kh)#%h

khLd, and we define %̄h
kh+s-a.e. the velocities V h

kh+s by
V h

kh+s(T
s
kh) = ∂sT

s
kh. As in (3.27), one can easily see that the curve of densities s 7→ %̄h

s satisfies the
continuity equation

(3.29) ∂s%̄
h
s + div(%̄h

sV h
s ) = 0

in the sense of distribution on (0, +∞) × Rd.
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Corollary 3.13. For h > 0, for any j ≤ k ∈ N, we have

U(%h
jh) − U(%h

kh) ≥
∫ kh

jh
ds

∫
Rd

L(y, V h
s )%̄h

s dy +
∫ kh

jh
ds

∫
X

H
(
x,−∇[U ′(%h

s )]
)
%h

s dx.

Proof: The result is a direct consequence of theorem 3.12. �

3.5. Stability property and existence of solutions. As before, we fix %0 ∈ Pac(X) and make
the additional assumption that U(%0) is finite. We fix T > 0 and we want to prove existence of
solutions to equation (1.1) on [0, T ]. Recall that by lemma 2.13(i) Cs(%, %) ≤ 0 for any s ≥ 0,
% ∈ Pac

1 . This together with the definition of %h
kh+s yields

Ch

(
%h

kh, %h
kh+s

)
+ U

(
%h

kh+s

)
≤ U

(
%h

kh

)
, 0 ≤ s ≤ h.

By adding over k ∈ N the above inequality, thanks to remark 2.5 we get

(3.30)
∞∑

k=0

Ch

(
%h

kh, %h
(k+1)h

)
≤ U

(
%h
0

)
− lim inf

n→∞
U

(
%h

nh

)
≤ U

(
%h
0

)
+ |a| + |b|Ld(X).

Similarly, using corollary 3.13, the fact that H ≥ 0 and (L3), for any N > 0 integer we have

U(%h
0) ≥ U(%h

Nh) +
∫ Nh

0
ds

∫
Rd

L(y, V h
s )%̄h

s dy%h
s dx

≥
∫ Nh

0
ds

∫
Rd

θ(|V h
s |)%̄h

s dy%h
s dx − A∗Nh − |a| − |b|Ld(X).(3.31)

We also recall that vh
t : X → R is a Lipschitz function (cfr. lemma 3.5(i)) which satisfies

vh
t = −U ′(%h

t ), so that setting
βh

t := U∗(−vh
t ) = P (%h

t )
we have

(3.32) %h
t ∇[U ′(%h

t )] = −(U∗)′(−vh
t )∇vh

t = ∇[U∗(−vh
t )] = ∇[P (%h

t )] = ∇βh
t Ld-a.e.

We start with the following:

Lemma 3.14. Let A∗ be the constant provided in assumption (L3). We have

(3.33) U(%h
t ) ≤ U(%0) + A∗t.

Moreover, for any K > 0 there exists a constant C(K) > 0 such that, for any h ∈ (0, 1],

(3.34) W1(%̄h
t , %h

t ) ≤ C0

K
+ 2

A∗ + C(K)
K

h ∀ t ∈ [0, T ],

(3.35) W1(%̄h
t , %h

kh) ≤ C0

K
+

A∗ + C(K)
K

h ∀ t ∈ [kh, (k + 1)h], k ∈ N,

(3.36) W1

(
%h

t , %h
s

)
≤ C0

K
+ 2

A∗ + C(K)
K

[(t − s) + h] ∀ 0 ≤ s ≤ t,

(3.37) W1

(
%̄h

t , %̄h
s

)
≤ C0

K
+

A∗ + C(K)
K

[(t − s) + h] ∀ 0 ≤ s ≤ t.

Here C0 is a positive constant independent of t, K, and h ∈ (0, 1].
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Proof: Let t ∈ [kh, (k + 1)h] for some k ∈ N. Then by lemma 2.13(ii) we have

(3.38) U(%h
t ) − A∗(t − kh) ≤ U(%h

t ) + Ct−kh(%h
t , %h

kh) ≤ U(%h
kh).

In particular U(%h
(k+1)h) ≤ U(%h

kh) + A∗h for all k ∈ N, so that adding over k we get

U(%h
t ) ≤ U(%h

kh) + A∗(t − kh) ≤ U(%h
(k−1)h) + A∗[h + (t − kh)]

≤ . . . ≤ U(%0) + A∗[kh + (t − kh)] = U(%0) + A∗t.

This proves (3.33).
Now, since Ch ≤ Ct−kh (cfr. lemma 2.13(i)), we have

Ch(%h
kh, %h

t ) ≤ U(%h
kh) − U(%h

t ) ∀ t ∈ [kh, (k + 1)h],

which combined with equation (3.38) and remark 2.5 gives

(3.39) Ch(%h
kh, %h

t ) ≤ U(%0) + A∗h + |a| + |b|Ld(X) ∀ t ∈ [kh, (k + 1)h].

Moreover, as %h
kh = %̄h

kh for any k ∈ N, using again lemma 2.13(ii) we get

Ch(%h
kh, %h

(k+1)h) = Ct−kh(%h
kh, %̄h

t ) + C(k+1)h−t(%̄
h
t , %h

(k+1)h)

≥ Ct−kh(%h
kh, %̄h

t ) − A∗h ≥ Ch(%h
kh, %̄h

t ) − A∗h.

Thanks to lemma 2.13(ii)-(iii), for any K > 0 there exists a constant C(K) > 0 such that

W1(%h
kh, %h

t ) ≤ 1
K

Ch(%h
kh, %h

t ) +
A∗ + C(K)

K
h,

W1(%h
kh, %̄h

t ) ≤ 1
K

Ch(%h
kh, %̄h

t ) +
A∗ + C(K)

K
h.

Using the triangle inequality for W1 and combining together the estimates above, (3.34) and (3.35)
follow.

Finally, to prove equations (3.36) and (3.37), we observe that (3.30) combined with lemma 2.13(iii)
gives

W1

(
%h

Nh, %h
Mh

)
≤

N−1∑
j=M

W1

(
%h
(j+1)h, %h

jh

)
≤ 1

K

N−1∑
j=M

Ch(%h
(j+1)h, %h

jh) +
A∗ + C(K)

K
h(N − M)

≤ 1
K

[
U

(
%h
0

)
+ |a| + |b|Ld(X)

]
+

A∗ + C(K)
K

h(N − M).

Combining this estimate with (3.34) and (3.35) we obtain the desired result. �

Lemma 3.15. (i) The curve t 7→ %̄h
t ∈ Pac

1 (Rd) is continuous on [0, T ].
(ii) The curve t 7→ %h

t ∈ Pac(X) is continuous on [0, T ] (with respect to W1).

Proof:
(i) Thanks to (3.29) and (3.31), it is not difficult to show t 7→ %̄h

t ∈ Pac
1 (Rd) is (uniformly)

continuous on [0, T ] (cfr. [3, Chapter 8]).
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(ii) Without loss of generality we can restrict the study of (ii) to the set [0, h]. Before starting
our argument, let us recall that since X is bounded the weak∗ convergence coincides with the W1

convergence on Pac(X). Fix s ∈ (0, h], and let S ⊂ (0, h] be a closed interval. Lemma 2.12 yields
that t 7→ Ct(%o, %) is Lipschitz on S, with a Lipschitz constant k̃S independent of %. Since X is
bounded and Pac(X) is precompact for the weak∗ convergence, it is also precompact for W1. Now,
given % ∈ Pac(X), by definition of %t we have Φ(t, %0, %t) ≤ Φ(t, %0, %), and so

(3.40) Φ(s, %0, %t) ≤ Φ(s, %0, %) + 2|t − s|k̃S

Let {%tn}n∈N be an arbitrary subsequence of {%t}t∈S converging to %∗ as tn → s. Then, thanks to
3.40 and the fact that Φ(s, %0, ·) is lower semicontinuous for the weak∗ topology we obtain

Φ(s, %0, %
∗) ≤ Φ(s, %0, %),

that is %∗ minimizes Φ(s, %0, ·) over Pac(X). Hence, thanks to lemma 3.1 %∗ = %s. Since the limit %∗

is independent of the subsequence {tn}n∈N and we are on a metric space, we conclude that {%t}t∈S

converges to %s as t → s. This prove that t 7→ %h
t is continuous at s.

It remains to show that t 7→ %h
t is continuous at 0. The fact that ct(x, x) ≤ 0 (cfr. lemma 2.7)

shows that Ct(%0, %0) ≤ 0. Hence, using the definition of %t we obtain

Ct(%0, %t) + U(%t) ≤ Ct(%0, %0) + U(%0) ≤ U(%0).

Combining the above estimate with 2.13(iii) we conclude that for each K > 0 there exists a constant
C(K) independent of t such that

(3.41) −(A∗ + C(K))t + KW1(%0, %t) + U(%t) ≤ U(%0).

Let {%tn}n∈N is be subsequence of {%t}t∈S converging to %∗ as tn → 0. Then the lower semicontinuity
of U with respect to the weak∗ topology together with (3.41) give

KW1(%0, %
∗) + U(%∗) ≤ U(%0).

Letting K → +∞ we obtain W1(%0, %
∗), that is %∗ = %0. By the arbitrariness of the sequence

{tn}n∈N we conclude as before that t 7→ %h
t is continuous at 0. �

We can now prove the compactness of our discrete solutions.

Proposition 3.16. There exists a sequence hn → 0, a density % ∈ Pac([0, T ] × X), and a Borel
function V : [0, T ] × X → Rd such that:

(i) The curves t 7→ %hn
t ∈ Pac(X) and t 7→ %̄hn

t ∈ Pac(Rd) converge to t 7→ %t := %(t, ·) with
respect to the narrow topology. Moreover the curve t 7→ %t := %(t, ·) is uniformly continuous
and limt→0+ %t = %0 in (Pac(X), W1).

(ii) The vector-valued measures %̄n
t (x)V hn

t (x)dxdt converge narrowly to %t(x)Vt(x)dxdt, where
Vt := V (t, ·).

(iii) ∂t%t + div(%tVt) = 0 holds on (0, T ) × X in the sense of distribution.

Proof: First of all, let us recall that the narrow topology is metrizable (cfr. [3, Chapter 5]).
Thanks to lemma 3.15 and the estimates (3.36) and (3.37), as K > 0 is arbitrary it is easy to see

that the curves t 7→ %h
t and t 7→ %̄h

t are equicontinuous with respect to the 1-Wasserstein distance.
Since bounded sets with respect to W1 are precompact with respect to the narrow topology on
Rd (cfr. for instance [3, Chapter 7]), by Ascoli-Arzelà Theorem we can find a sequence hn → 0
such that t 7→ %hn

t ∈ Pac(X) and t 7→ %̄hn
t ∈ Pac(Rd) converge uniformly (locally in time) to a

narrow-continuous curve t 7→ µt ∈ P(X) (which is the same for both %hn
t and %̄hn

t thanks to (3.34)).
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Moreover t 7→ µt is supported in X as so is %hn
t , and the initial condition w∗-limt→0+ %̄hn

t = %0 holds
in the limit.

Concerning the vector-valued measure V h
t %h

t , recalling that H ≥ 0, thanks to corollary 3.13 and
remark 2.5 we have ∫ T

0
dt

∫
Rd

L(x, V h
t )%̄h

t dx ≤ U(%0) + |a| + |b|Ld(X).

By (L3) this gives∫ T

0
dt

∫
Rd

θ(|V h
t |)%̄h

t dx ≤ U(%0) + |a| + |b|Ld(X) + A∗T =: C1.

The above inequality, together with the superlinearity of θ and the uniform convergence of %̄h to µt,
implies easily that the vector-valued measure V h

t %̄h have a limit point λ, which is concentrated on
[0, T ]×X. Moreover, the superlinearity and the convexity of θ ensure that λ � µ, and there exists
a µ-measurable vector field V : [0, T ] × X → Rd such that λ = V µ, and∫ T

0
dt

∫
X

θ(|Vt|) dµt ≤ C1.

To conclude the proof of (i) and (ii) we have to show that µ � Ld+1. We observe that thanks to
equation (3.33) ∫ T

0
dt

∫
X

U(%hn
t ) dx =

∫ T

0
U(%hn

t ) dt ≤ TU(%0) + A∗
T 2

2
,

so that by the superlinearity of U any limit point of %hn is absolutely continuous. Hence µ = %Ld,
and (i) and (ii) are proved.
Finally from equation (3.29) we deduce that

(3.42) ∂t%̄
hn
t + div(%̄hn

t V hn
t ) = 0 on (0, T ) × X

in the sense of distribution, so that (iii) follows taking the limit as n → ∞. �

We are now ready to prove the following existence result. To simplify the notation, given two
nonnegative functions f and g, we write f & g if there exists two nonnegative constants c0, c1 such
that c0f + c1 ≥ g. If both & and . hold, we write f ∼ g.

Theorem 3.17. Let X ⊂ Rd be an open bounded set whose boundary is of zero Lebesgue measure,
and assume that H satisfies (H1), (H2) and (H3). Assume that U satisfies (2.2) and (2.3), and let
%0 ∈ Pac

1 (X) be such that U(%0) is finite. Let %t and Vt be as in proposition 3.16. Then we have
P (%t) ∈ L1(0, T ;W 1,1(X)), ∇[P (%t)] is absolutely continuous with respect to %t, and

(3.43) U(%0) − U(%T ) ≥
∫ T

0
dt

∫
X

[
L

(
x, Vt

)
+ H

(
x,−%−1

t ∇[P (%t)]
)]

%t dx.

Furthermore, if θ(t) ∼ tα for some α > 1 and U satisfies the doubling condition

(3.44) U(t + s) ≤ C(U(t) + U(s) + 1) ∀ t, s ≥ 0,

then %t ∈ ACα(0, T ;Pac
α (X)),

(3.45) U(%T1) − U(%T2) = −
∫ T2

T1

dt

∫
X

〈
∇[P (%t)], Vt

〉
dx,
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for T1, T2 ∈ [0, T ]. In particular

Vt(x) = ∇pH
(
x,−%−1

t ∇[P (%t)]
)

%t-a.e.,

and %t is a distributional solution of equation (1.1) starting from %0.
Suppose in addition that (H4) holds. If %0 ≤ M for some M ≥ 0 then %t ≤ M for every t ∈ (0, T )
(maximum principle).

Proof: The maximum principle is a direct consequence of lemma 3.1. We first remark that the
last part of the statement is a simple consequence of equations (3.43) and (3.45) combined with
proposition 3.16(i)-(iii). So it suffices to prove equations (3.43) and (3.45).
We first prove (3.43). Corollary 3.13 implies that, if T ∈ [khn, (k + 1)hn] for some k ∈ N, since
L ≥ −A∗ and H ≥ 0 we have

U(%hn
0 ) − U(%hn

(k+1)hn
) ≥

∫ T

0
dt

∫
Rd

[
L(x, V hn

t )%̄hn
t + H

(
x,−∇[U ′(%hn

t )]
)
%hn

t

]
dx − A∗hn.

We now consider two continuous functions w, w̄ : [0, T ] × Rd → Rd with compact support. Then∫ T

0
dt

∫
Rd

[
L(x, V hn

t )%̄hn
t + H

(
x,−∇[U ′(%hn

t )]
)
%hn

t

]
dx

≥
∫ T

0
dt

∫
Rd

[
〈V hn

t , w̄(t, x)〉%̄hn
t − H(x, w̄(t, x))%̄hn

t

]
dx

+
∫ T

0
dt

∫
X

[
〈−∇[U ′(%hn

t )], w(t, x)〉%hn
t − L(x,w(t, x))%hn

t

]
dx.

Thanks to proposition 3.16(i)-(ii) we immediately get

lim
n→∞

∫ T

0
dt

∫
Rd

[
〈V hn

t , w̄(t, x)〉%̄hn
t − H(x, w̄(t, x))%̄hn

t

]
dx

=
∫ T

0
dt

∫
Rd

[
〈Vt, w̄(t, x)〉%t − H(x, w̄(t, x))%t

]
dx,

so that taking the supremum among all continuous functions w̄ : [0, T ] × Rd → Rd with compact
support we obtain

lim inf
n→∞

∫ T

0
dt

∫
Rd

L(x, V hn
t )%̄hn

t dx ≥
∫ T

0
dt

∫
Rd

L(x, Vt)%t dx.

Concerning the other term, we observe that, thanks to remark 2.5, as L ≥ −A∗ we have that∫ T

0
dt

∫
Rd

H
(
x,−∇[U ′(%hn

t )]
)
%hn

t dx

is uniformly bounded with respect to n. In particular, since by (H3) H(x, p) ≥ |p| − C1 for some
constant C1, thanks to equation (3.32) we get that∫ T

0
dt

∫
Rd

|∇[P (%hn
t )]| dx =

∫ T

0
dt

∫
Rd

|∇[U ′(%hn
t )]|%hn

t dx
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is uniformly bounded. This implies that, up to a subsequence, the vector-valued measures ∇[P (%hn
t )]dxdt

converges weakly to a measure ν of finite total mass. Therefore we obtain

+∞ > lim inf
n→∞

∫ T

0
dt

∫
Rd

H
(
x,−∇[U ′(%hn

t )]
)
%hn

t dx

≥ lim
n→∞

∫ T

0
dt

∫
X

[
〈−∇[U ′(%hn

t )], w(t, x)〉%hn
t − L(x,w(t, x))%hn

t

]
dx

=
∫ T

0
dt

∫
X
−〈w(t, x), ν(dt, dx)〉 −

∫ T

0
dt

∫
X

L(x,w(t, x))%t dx.

By the arbitrariness of w we easily get that the measure ν(dt, dx) is absolutely continuous with
respect to %tdxdt, so that ν(dt, dx) = et(x)%t(x)dxdt for some Borel function e : [0, T ] × X → Rd.
We now observe that by Fatou Lemma we also have∫ T

0

(
lim inf
n→∞

∫
Rd

|∇[P (%hn
t )]| dx

)
dt < +∞,

which gives

(3.46) lim inf
n→∞

∫
Rd

|∇[P (%hn
t )]| dx < +∞ for t ∈ [0, T ] \ N ,

with L1(N ) = 0. Hence, for any t ∈ [0, T ] \ N there exists a subsequence %
hnk(t)

t such that

lim inf
n→∞

∫
Rd

|∇[P (%hn
t )]| dx = lim

k→∞

∫
Rd

|∇[P (%
hnk(t)

t )]| dx,

and P (%
hnk(t)

t ) converges weakly in BV (X) and Ld-a.e. to a function βt. As a consequence Dβt =

et%tLd, so that βt ∈ W 1,1(X). Since Q is continuous, we deduce that %
hnk(t)

t = Q
(
P (%

hnk(t)

t )
)

converges Ld-a.e. to Q(βt). Recalling that %
hnk(t)

t also converges weakly to %t, we obtain Q(βt) = %t,
that is βt = P (%t). Moreover, from the equality ∇βt = et%t, we get ∇[P (%t)] = et%t. We have
proved that P (%t) ∈ L1(0, T ; W 1,1(X)) and ∇[P (%t)] is absolutely continuous with respect to %t.

Finally %hn

(k+1)hn
converges weakly∗ to %T , and the term U(%hn

T ) is lower-semicontinuous under weak∗

convergence, and this concludes the proof of equation (3.43).
We now prove equation (3.45). Let us observe that the assumption θ ∼ tα implies that L(x, v) &

|v|α and H(x, p) & |p|α′
, where α′ = α/(α − 1). Hence, thanks to equation (3.43) we have

(3.47) +∞ >

∫ T

0
dt

∫
X

L(x, Vt)%t dx &
∫ T

0
||Vt||αLα(%t)

dt

and

(3.48) +∞ >

∫ T

0
dt

∫
X

H(x,−et)%t dx &
∫ T

0
||et||α

′

Lα′
(%t)

dt.

Since
∂t%t + div

(
%tVt

)
= 0,

(3.47) implies that the curve t 7→ %t is absolutely continuous with values in the α-Wasserstein space
Pα(X), and we denote by V̄ its velocity field of minimal norm (cfr. [3, Chapter 8]). Moreover,
thanks to equation (3.48), et ∈ Lα′

(%t) for a.e. t ∈ (0, T ).
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Denoting by |%′| the metric derivative of the curve t 7→ %t (with respect to the α-Wasserstein
distance, cfr. equation (2.10)), by (3.47) and [3, theorem 8.3.1] we have

(3.49) |%′|(t) ≤ ||V̄t||Lα(%t) ≤ ||Vt||Lα(%t) < +∞.

Since et%t = ∇P (%t) with P (%t) ∈ W 1,1(X) for a.e. t, we can apply [3, Theorem 10.4.6] to conclude
that, for L1-a.e. t, U has a finite slope at %Ld, |∂U|(%t) = ||et||Lα′

(%t)
, and et = ∂oU(%t). The last

statement means that et is the element of minimal norm of the convex set ∂U(%t), and so it belongs
to the closure of {∇ϕ : ϕ ∈ C∞

c (X)} in Lα′
(%t). Let Λ ⊂ (0, T ) be the set of t such that

(a) ∂U(%t) 6= ∅;
(b) U is approximately differentiable at t;
(c) (8.4.6) of [3] holds.

We use equations (3.48), (3.49), and the fact that |∂U|(%t) = ||et||Lα′ (%t)
for L1-a.e. t ∈ (0, T ), to

conclude that

(3.50)
∫ T

0
|∂U|(%t)|%′|(t)dt ≤ 1

α′

∫ T

0
||et||α

′

Lα′ (%t)
dt +

1
α

∫ T

0
||Vt||αLα(%t)

dt < +∞.

By [3, Proposition 9.3.9] U is convex along α-Wasserstein geodesics, and so exploiting equation
(3.50) and invoking [3, Proposition 10.3.18] we obtain that L1

(
(0, T ) \ Λ

)
= 0 and t 7→ U(%t)

is absolutely continuous. Thus its pointwise, distributional, and approximate derivatives coincide
almost everywhere, and by [3, Proposition 10.3.18] and the fact that et ∈ ∂U(%t) we get

(3.51)
d

dt
U(%t) =

∫
X
〈et, V̄t〉%tdx.

Because V and V̄ are both velocity fields for t 7→ %t we have∫
X
〈∇φ, Vt − V̄t〉%tdx = 0

for all φ ∈ C∞
c (X) for L1-a.e. t ∈ (0, T ), and since et belongs to the closure of {∇ϕ : ϕ ∈ C∞

c (X)}
in Lα′

(%t) we conclude by a density argument that∫
X
〈et, Vt − V̄t〉%tdx = 0

for L1-a.e. t ∈ (0, T ). This together with equation (3.51) finally yields

(3.52) U(%T1) − U(%T2) = −
∫ T2

T1

dt

∫
X
〈et, V̄t〉%tdx = −

∫ T2

T1

dt

∫
X
〈et, Vt〉%tdx,

as desired. �

Remark 3.18. If %0 is a general nonnegative integrable function on X which does not necessarily have
unit mass, we can still prove existence of solutions to equation (1.1). Indeed, defining c :=

∫
X %0 dx,

we consider %c
t ∈ Pac(X) a solution of equation (1.1) for the Hamiltonian Hc(x, p) := cH(x, p/c)

and the internal energy U c(t) := U(ct), starting from %c
0 := %0/c. Then %t := c%c

t solves equation
(1.1). Moreover, using this scaling argument also at a discrete level, we can also construct discrete
solutions starting from %0.
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Remark 3.19. We believe that the above existence result could be extend to more general functions
θ by introducing some Orlicz-type spaces as follows: for θ : [0, +∞) → [0, +∞) convex, superlinear,
and such that θ(0) = 0, we define the Orlicz-Wasserstein distance

Wθ(µ0, µ1) := inf
{

λ > 0 : inf
γ∈Γ(µ0,µ1)

∫
X×X

θ

(
|x − y|

λ

)
dγ ≤ 1

}
.

We also define the Orlicz-type norm

‖f‖θ,µ := inf
{

λ > 0 :
∫

X
θ

(
|f |
λ

)
dµ(x) ≤ 1

}
.

It is not difficult to prove that the following dynamical formulation of the Orlicz-Wasserstein distance
holds:

(3.53) Wθ(µ0, µ1) = inf
{∫ 1

0
‖Vt‖θ,µt dt : ∂tµt + div(µtVt) = 0

}
.

Now, in order to prove the identity (3.45) of the previous theorem in the case where θ does not
necessarily behave as a power function, one should extend the results of [3] to this more general
setting. We believe such an extension to be reachable although not straightforward. However this
kind of effort goes beyond the scope of this paper.

4. Existence of solutions in unbounded domains for weak Tonelli Lagrangians

The aim of this section is to extend the existence result proved in the previous section to
unbounded domains X, using an approximation argument where we construct our solutions in
X ∩ Bm(0) for smoothed Lagrangians Lm, and then we let m → +∞. In order to be able to pass
to the limit in the estimates and find a solution, we need to assume the existence of two constants
c > 0 and a ∈

(
d

d+1 , 1
)

such that

(4.1) U−(t) := max{−U(t), 0} ≤ cta ∀ t ≥ 0.

The above assumption, together with (2.2) and (2.3), are satisfied by positive multiples of the
following functions: t ln t, or tα with α > 1. Under this additional assumption we now prove
some lemmas and proposition which easily allow to construct our solution as a limit of solutions in
bounded domains (cfr. subsection 4.2).

Thanks to assumption (4.1) we can prove that if M1(%) is finite then U−(%) :=
∫

Rd U−(%) dx is
finite, and so U(%) =

∫
Rd U(%) dx is well-defined.

Lemma 4.1. There exists C = C(d, a) such that U−(%) ≤ C(M1(%)a + 1). Consequently U(%) is
well defined whenever M1(%) is finite. Furthermore C can be chosen so that∫

BR(0)c

U−(%) dx ≤ CM1(%)aRd(1−a)−a ∀R ≥ 0.
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Proof: We use assumption (4.1) to obtain∫
BR(0)c

U−(%) dx ≤ c

∫
BR(0)c

%adx = c

∫
BR(0)c

(|x|%)a 1
|x|a

dx

≤ c
(∫

BR(0)c

|x|%dx
)a(∫

BR(0)c

|x|−a/(1−a)dx
)1−a

≤ cM1(%)a
(∫ +∞

R
r(d−1− a

1−a)dr
)1−a

=: c1(d, a)M1(%)aRd(1−a)−a.(4.2)

This proves the second statement of the lemma. Observing that

(4.3)
∫

BR(0)
U−(%) dx ≤ c

∫
BR(0)

%adx ≤ c

∫
BR(0)

(1 + %) dx ≤ c
(
Ld(BR(0)) + 1

)
= c̃Rd + c,

we combine (4.2) and (4.3) to conclude the proof. �

We now prove a lower-semicontinuity result.

Proposition 4.2. Suppose that {%n}n∈N ⊂ Pac
1 (Rd) converges weakly in L1(Rd) to %, and that

supn∈N M1(%n) < +∞. Then % ∈ Pac
1 (Rd) and lim infn→∞ U(%n) ≥ U(%).

Proof: The fact that % ∈ Pac
1 (Rd) follows from the lower-semicontinuity with respect to the weak

L1-topology of the first moment.
We now suppose without loss of generality that lim infn→∞ U(%n) is finite. Fix ε > 0. We have

to prove that lim infn→∞ U(%n) ≥ U(%) − ε. By lemma 4.1 we can find R > 0 such that

(4.4) sup
n∈N

∫
BR(0)c

U−(%n) dx ≤ ε.

By lemma 2.6 and the fact that U and U+ ≥ 0 are convex we get
(4.5)

lim inf
n→∞

∫
BR(0)

U(%n) dx ≥
∫

BR(0)
U(%) dx, lim inf

n→∞

∫
BR(0)c

U+(%n) dx ≥
∫

BR(0)c

U+(%) dx,

Combining equations (4.4) and (4.5) we obtain lim infn→∞ U(%n) ≥ U(%) − ε. This concludes the
proof. �

We remark that, thanks to the above results, minimizing Φ(h, %0, ·) over Pac
1 (X) still makes sense

even when X is unbounded, provided that %0 ∈ Pac
1 (X).

4.1. Properties on moments in the case X is unbounded. Fix T > 0, and for any h >
0 suppose that we are given a sequence {%h

k}0≤k≤T/h ⊂ Pac
1 , not necessarily produced by any

minimization procedure, such that

(4.6) Ch(%h
k , %h

k+1) + U(%h
k+1) ≤ U(%h

k).

Assume that

(4.7) m∗(1) := sup
h

{
M1(%h

0) +
∫

Rd

|U(%h
0)| dx

}
< +∞.

For instance, if %h
0 = %0 for all h > 0, equation (4.7) holds if M1(%0) and

∫
Rd |U(%0)| dx are both

finite.
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Set U+(%) :=
∫
X U+(%) dx, where U+(t) := max{U(t), 0}. By equations (2.11) and (4.6)

(4.8) Clh(%h
0 , %h

l ) ≤
l−1∑
k=0

Ch(%h
k , %h

k+1) ≤ U(%h
0) + U−(%h

l ) − U+(%h
l ),

which together with lemma 2.13(ii), implies

(4.9) −A∗hl + Wθ,lh(%h
0 , %h

l ) + U+(%h
l ) ≤ U(%h

0) + U−(%h
l ).

Lemma 4.3. If %, %̄ ∈ Pac
1 , then

M1(%̄) ≤ [A∗ + C(1)]h + Ch(%, %̄) + M1(%) ∀h > 0,

where C(1) is the constant provided by lemma 2.13(iii).

Proof: We have
|y| ≤ |y − x| + |x|

so that integrating the above inequality with respect to γ ∈ Γ(%, %̄) we obtain

(4.10) M1(%̄) ≤
∫

Rd×Rd

|y − x| dγ(x, y) + M1(%),

and since γ ∈ Γ(%, %̄) is arbitrary we conclude that

M1(%̄) ≤ W1(%, %̄) + M1(%).

This together with lemma 2.13(ii)-(iii) gives the desired estimate. �

The following proposition shows that M1(%h
k) is uniformly bounded for kh ≤ T , provided that it

is bounded for k = 0.

Proposition 4.4. Suppose (4.6) and (4.7) hold. Then there exists a constant C̄, depending on
m∗(1) and T only, such that the following holds:

M1(%h
k) +

∫
Rd

|U(%h
k)| dx ≤ C̄ ∀ k, h, with kh ≤ T.

Proof: We recall that by assumption %h
k ∈ Pac

1 for all k, h, so that M1(%h
k) < +∞. Suppose kh ≤ T .

By lemma 4.3 and by equation (4.8)

(4.11) M1(%h
k) ≤ Ckh(%h

0 , %h
k)+ [A∗ +C(1)]hk +M1(%h

0) ≤ U(%h
0)−U(%h

k)+ [A∗ +C(1)]hk +M1(%h
0).

Let C be the constant provided by lemma 4.1. We use that lemma and equation (4.11) to obtain

(4.12) M1(%h
k) + U+(%h

k) ≤ U+(%h
0) + C

(
1 + Ma

1 (%h
k)

)
+ [A∗ + C(1)]hk + M1(%h

0).

Define for t ≥ 0
f(t) := sup

m≥0
{m : m − C(ma + 1) ≤ t}.

Observe that f(t) ≥ t, and f is nondecreasing. Thus, recalling that M1(%h
k) < +∞, by equation

(4.12) we get

(4.13) M1(%h
k) ≤ f

(
U+(%h

0) + [A∗ + C(1)]T + M1(%h
0)

)
:= f0

and
U+(%h

k) ≤ U+(%h
0) + C

(
1 + Ma

1 (%h
k)

)
+ [A∗ + C(1)]T + M1(%h

0).
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By lemma 4.1 and (4.13)
U−(%h

k) ≤ C̃
(
fa
0 + 1

)
for kh ≤ T,

where C̃ depend on C, T , m∗(1), A∗ and C(1) only. This concludes the proof. �

Remark 4.5. It is easy to check that the estimates proved in this subsection depend on L only
through the function θ and the constants A∗, A∗, C

∗ appearing in (L3). Hence such estimates are
uniform if {Lm}m∈N is a sequence of Lagrangians satisfying (L1), (L2) and (L3) with the same
function θ and the same constants A∗, A∗, C

∗.

4.2. Existence of solutions. In this paragraph we briefly sketch how to prove existence of solutions
in the case when X is not necessarily bounded and L satisfies (L1w), (L2w) and (L3), leaving the
details to the interested reader. We remark that our approximation argument could also be used to
relax some of the assumptions on U .

Let X ⊂ Rd be an open set whose boundary has zero Lebesgue measure. We fix %0 ∈ Pac(X),
and we assume that M1(%0) and

∫
X |U(%0)| dx are both finite. Let us remark that under assumption

(4.1) we have that
∫
X U−(%0) dx is controlled by M1(%) (cfr. lemma 4.1). Hence the finiteness of

M1(%0) and
∫
X |U(%0)| dx is equivalent to assume that both M1(%0) and U(%0) are finite.

Assuming that L satisfies (L1w), (L2w) and (L3), we consider a sequence of Lagrangians {Lm}m∈N
converging to L in C1(Rd × Rd) and which satisfy (L1), (L2) and (L3) with the same function θ as
for L and constants A∗ +1, A∗ +1, C∗ +1 (we slightly increase the constants of L to ensure that one
can construct such a sequence). We denote by Hm the Hamiltonians associated to Lm. Consider
now the increasing sequence of bounded sets Xm defined as

Xm := X ∩ Bm(0),

and observe that, for each m ∈ N, the set Xm is open and its boundary has zero Lebesgue measure
(since ∂Xm ⊂ ∂X ∪ ∂Bm(0)). We now apply the variational scheme in Xm starting from %m

0 :=
%0χBm(0) (cfr. remark 3.18) with Lagrangian Lm. In this way we construct approximate discrete
solutions {%h,m

kh } on Xm which satisfy the discrete energy inequality

U(ρm
0 ) − U(ρh,m

(k+1)h) ≥
∫ T

0

∫
Rd

[
Lm(x, V h,m

t )%̄h,m
t + Hm

(
x,−∇[U ′(%h,m

t )]
)
%h,m

t

]
dx dt − A∗h.

Moreover, thanks to proposition 4.4 (cfr. remark 4.5) the measures {%h,m
kh } have uniformly bounded

first moments for all k, h, m, with kh ≤ T . This fact together with lemma 4.1 implies that also
U−(%h,m

kh ) is uniformly bounded. Therefore, taking the limit as h → 0 (cfr. subsection 3.5) we obtain
a family of curves t 7→ %m

t satisfying the energy bound (3.43) and such that

sup
m∈N, t∈[0,T ]

{
M1(%m

t ) +
∫

Rd

|U(%m
t )| dx

}
< +∞.

(Indeed U−(%m
t ) are uniformly bounded, and t 7→ U(%m

t ) is bounded too, cfr. equation (3.33).)
Moreover

∂t%
m
t + div(ρm

t V m
t ) = 0 on (0, T ) × Rd,

with

sup
m∈N

∫ T

0

∫
Rd

θ(|V m
t |)%m

t dx dt < +∞
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(by equation (3.43)), which implies a uniform continuity in time of the curves [0, T ] 3 t 7→ %m
t .

Thanks to these bounds, it is not difficult to take the limit as m → +∞ (cfr. the arguments in
subsection 3.5) and find a uniformly continuous curve t 7→ %t which satisfies

∂t%t + div(%tVt) = 0 on (0, T ) × Rd

in the sense of distributions and

U(ρ0) − U(ρT ) ≥
∫ T

0

∫
Rd

[
L(x, Vt)%t + H

(
x,−∇[U ′(%t)]

)
%t

]
dx dt.

(Here we used that U(ρm
0 ) → U(ρ0) and proposition 4.2.) Once this estimate is established, the

proof of (3.45) is the same as in the bounded case. Hence we obtain:

Theorem 4.6. Let X ⊂ Rd be an open set whose boundary is of zero Lebesgue measure, and
assume that H satisfies (H1w), (H2w) and (H3). Assume the U satisfies (2.2), (2.3) and (4.1),
and let %0 ∈ Pac

1 (X) be such that M1(%0) and U(%0) are both finite. Then there exists a narrowly
continuous curve t 7→ %t ∈ Pac

1 (X) on [0, T ] starting from %0 and a Borel time-dependent vector
field Vt on Rd such that M1(%t) is bounded on [0, T ] (so that in particular U−(ρt) is bounded), the
continuity equation

∂t%t + div(%tVt) = 0 on (0, T ) × Rd

holds in the sense of distributions, and (3.43) holds true. Moreover ∇[P (%t)] ∈ L1(0, T ; L1(X)) and
∇[P (%t)] is absolutely continuous with respect to %t.

Furthermore, if θ(t) ∼ tα for some α > 1 and U satisfies the doubling condition (3.44) then %t is
a solution of (1.1) starting from %0, that is

Vt(x) = ∇pH
(
x,−%−1

t (x)∇[P (%t(x))]
)

%t-a.e.

Moreover (1.2) (or equivalently (3.45)) holds. Finally, if (H4) holds and %0 ≤ M for some M ≥ 0,
then %t ≤ M for all t ∈ [0, T ] (maximum principle).

Remark 4.7. When θ(t) ∼ tα with α > 1, it is not difficult to see that if
∫
X |x|α%0 dx is finite so is∫

X |x|α%t dx (here %t is any limit curve constructed using the minimizing movement scheme). Hence
one can generalize lemma 4.1 proving that the α-moment of % controls U−(ρ) assuming only that
condition (4.1) holds for some a ∈ ( d

d+α , 1), and the above theorem still holds under this weaker
assumption on U . In particular if %0 ∈ Pα(X) then % ∈ ACα(0, T ;Pα(X)).

Remark 4.8 (Extension to manifolds). The above existence theorem can be easily extended to
Riemannian manifolds. Indeed in the compact case the proof is more or less exactly the same, while
in the noncompact case one has to replace the first moment by

∫
X d(x, x0)%t dvol(x), where x0 is

any (fixed) point in M , d denotes the Riemannian distance, and vol is the volume measure.

5. Uniqueness of solutions

Throughout this section we assume that H satisfies (H1), (H2w), (H3) and (H4). We further
assume that U satisfies (2.2) and (2.3), X ⊂ Rd is an open set whose boundary is of zero Lebesgue
measure, and we denote by X its closure. We suppose that either X is bounded or X is unbounded
but condition (4.1) holds. We suppose that θ(t) ∼ tα for some α > 1 and U satisfies the doubling
condition (3.44). Our goal is to prove uniqueness of distributional solutions of equation (1.1) when
the initial condition %0 is bounded. The ellipticity conditions we impose seem to be different from
what is usually imposed in the literature. Our proof of uniqueness of solution follows the same line
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as that of [15], except that most of our assumptions are not always comparable with the ones there.
In the sequel

Ω := (0, T ) × X, Ω̃ := (0, T ) × Ω.

5.1. A new Hamiltonian. We consider the density function %t of equation (1.1) provided by
theorem 4.6, which satisfies the property that ∇[P (%t)] ∈ L1(Ω) and is absolutely continuous with
respect to %t. If we set u(t, ·) := P (%t) we have

(5.1) ∂tQ(u) = div a(x,Q(u),∇u) in D′(Ω),

where

(5.2) a(x, s, m) :=
{

−∇mH̄(x, s,−m) if s > 0
0 if s = 0,m = ~0,

and H̄ : Rd × [0, +∞) × Rd → [0, +∞) is defined by

(5.3) H̄(x, s, m) :=


s2H(x, m

s ) if s > 0
0 if s = 0,m = ~0

+∞ if s = 0,m 6= ~0

Here, ~0 := (0, . . . , 0).
For each x ∈ Rd, H̄(x, ·, ·) is of class C2((0, +∞)× Rd), and the gradient of H̄(x, ·, ·) at (s,m) is

given by

∇H̄(x, s, m) =
(

2sH(x, m
s ) − s

〈
∇pH(x, m

s ), m
s

〉
s∇pH(x, m

s )

)
for s > 0 and m ∈ Rd. Observe that

(5.4) ∇2H̄(x, ·, ·) =
(

2H − 2
〈
∇pH, m

s

〉
+ 〈∇ppH · m

s , m
s 〉 ∇pH −∇ppH · m

s
∇pH −∇ppH · m

s ∇ppH

)
.

Here H,∇pH,∇ppH are all evaluated at
(
x, m

s

)
. Since H(x, ·) is convex we have that

〈∇2H̄(x, ·, ·)(0, λ), (0, λ)〉 = 〈∇ppH · λ, λ〉 ≥ 0.

for λ ∈ Rd. Hence, the matrix in equation (5.4) is nonnegative definite if and only if for every
λ ∈ Rd

0 ≤ 〈∇2H̄(x, ·, ·)(1, λ), (1, λ)〉

= 2H − 〈∇pH,
m

s
〉 + 〈∇ppH · m

s
,
m

s
〉 + 2〈∇pH,λ〉 − 2〈∇ppH · m

s
, λ〉 + 〈∇ppH · λ, λ〉

= 2H − 2
〈
∇pH,λ − m

s

〉
+ 〈∇ppH ·

(
λ − m

s

)
, λ − m

s
〉.

Equivalently, H̄(x, ·, ·) is convex on (0, +∞) × Rd if and only if

(5.5) 2H − 2〈∇pH, w〉 + 〈∇ppH · w, w〉 ≥ 0 ∀w ∈ Rd.

This is what we assume in the sequel.

Remark 5.1. H(x, p) = |p|r satisfies condition (5.5) if and only if r ≥ 2. If A(x) is a symmetric non-
negative definite matrix then H(x, p) = 〈A(x)p, p〉 satisfies condition (5.5). Moreover, by linearity,
if H1 and H2 satisfy condition (5.5) so does H1 + H2.

Remark 5.2. Suppose assumption (5.5) holds.
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(a) Since H̄ ≥ 0 we have that (0,~0) belongs to the subdifferential of H̄(x, ·, ·) at (0,~0). In other
words −a(x, 0,~0) belongs to the subdifferential of H̄(x, ·, ·) at (0,~0).

(b) The convexity of H̄(x, ·, ·) is equivalent to

〈a(x, s1,m1) − a(x, s2,m2),m1 − m2〉 ≥ −(s1 − s2)
{

2
(
s1H

(
x,−m1

s1

)
− s2H

(
x,−m2

s2

))
+

〈
∇pH

(
x,−m1

s1

)
,m1

〉
−

〈
∇pH

(
x,−m2

s2

)
,m2

〉}
5.2. Additional properties satisfied by bounded solutions. We assume that (5.5) holds. Let
%t ∈ AC1(0, T ;Pac

1 (X)) be a solution of equation (1.1) satisfying (1.2) such that t 7→ U(%t) is
absolutely continuous, monotone nonincreasing, and ∇[P (%t)] ∈ L1(Ω) and is absolutely continuous
with respect to %t. Observe that %t satisfies in fact equation (3.43) and the inequality there becomes
an equality. Suppose there exists a constant M > 0 such that %t ≤ M. Because θ(t) ∼ tα, (H3)
implies that for c̄ > 0 sufficiently small

c̄
(∣∣%−1

t ∇[P (%)]
∣∣α′

− 1
)
≤ H(x,−%−1

t ∇[P (%t)]),

so that multiplying both sides of the above inequality by %t we deduce

(5.6) c̄
(
M1−α′∣∣∇[P (%t)]

∣∣α′
− %t

)
≤ %tH(x,−%−1

t ∇[P (%t)])

Taking c̄ > 0 small enough, (L3) ensures

(5.7) c̄(%t|Vt|α − %t) ≤ %tL(x, Vt), c̄|%tVt|α ≤ Mα−1%t

(
c̄ + L(x, Vt)

)
.

Using the fact that equality holds in equation (3.43) and exploiting equations (5.6) and (5.7), it is
easy to show that existence of a constant CM , which depends only on M and θ, such that

(5.8)
∫ T

0
dt

∫
X

∣∣∣∇[P (%t)]
∣∣∣α′

dx,

∫ T

0
dt

∫
X

%|Vt|α%t dx,

∫ T

0

∫
X
|%tVt|α%tdx ≤ CM

where Vt := ∇pH
(
x,−%−1

t ∇[P (%t)]
)
. Also, choosing CM large enough and using (L3), (H3) and

equation (5.8), we have

(5.9)
∫ T

0
dt

∫
X

%t

∣∣H(x,−%−1
t ∇[P (%t)])

∣∣ dx,

∫ T

0
dt

∫
X

%t

∣∣L(x, Vt)
∣∣ dx ≤ CM .

Remark 5.3. Since %t ∈ AC1(0, T ;Pac
1 (X)), U is strictly convex, and t 7→ U(%t) is absolutely

continuous, we have %t ∈ C([0, T ];L1(X)).

Observe that by equation (5.8) we have that u(t, ·) = P (%t) satisfies ∇u ∈ Lα′
(Ω), while the last

inequality in (5.8) gives a(·, Q(u),∇u) ∈ Lα(Ω). Since %t satisfies equation (1.1), by an approxima-
tion argument and thanks to remark 5.3 we have

(5.10)
∫

Ω
Q(u)∂tE =

∫
Ω
〈a(x,Q(u),∇u),∇E〉

for any E ∈ W 1,α′
(Ω) such that E(t, ·) ≡ 0 for t near 0 and T .
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As in [15], for η ∈ C2(R) convex monotone nondecreasing such that η′ and η′′ are bounded we
define qη, η∗ : R2 → R by

qη(z, zo) :=
∫ z

zo

η′(s − zo)Q′(s) ds, z, zo ∈ R,

η∗(w, zo) := sup
z∈R

{η′(z − zo)(w − Q(z)) + qη(z, zo)}, w, zo ∈ R.

Lemma 5.4. Suppose vo ∈ W 1,α′
(X) ∩ L∞(X) and γ ∈ C∞

c ((0, T ) × Rd) is nonnegative. Then

(5.11)
∫

Ω
−qη(u, vo)∂tγ + 〈a(x,Q(u),∇u),∇[η′(u − vo)γ]〉 ≤ 0.

Proof: The proof is identical to that of [15, Lemma 1]. �

5.3. Uniqueness of bounded solutions. In this subsection, for i = 1, 2, we consider %i
t ∈

AC1(0, T ;Pac
1 (X)) solutions of equation (1.1) satisfying (1.2) and such that t 7→ U(%i

t) is abso-
lutely continuous and monotone nonincreasing. We impose that ∇[P (%i

t)] ∈ L1(Ω) is absolutely
continuous with respect to %i

t. We further assume existence of a constant M > 0 such that %i
t ≤ M .

The goal of the subsection is to show that

t 7→
∫

X
|%1

t − %2
t |dx is monotone nondecreasing.

Once such an estimate is proved, it extends immediately to solutions whose initial datum belongs
to L1 and has bounded first moment, and which are constructed by approximation (cfr. section 4)
as a limit of solutions with bounded initial data. We are neither claiming any uniqueness result in
a more general setting nor we are claiming to be able to provide optimal conditions under which
uniqueness fail.

We define u1, u2 on Ω̃ by

u1(t1, t2, x) := P (%1(t1, x)), u2(t1, t2, x) := P (%2(t2, x)).

If r ∈ R we set r+ = max{0, r} and r− = max{0, r}.
To achieve the main goal of this subsection, we first prove a lemma whose proof is more or less a

repetition of the arguments presented on [15, pages 31-33]. Since a does not satisfy the assumptions
imposed in that paper, we felt the need to show that the arguments there go through.

Lemma 5.5. If min[0,M ] P
′ > 0 and γ̃ ∈ C∞

c ((0, T )2) is nonnegative, then

(5.12) −
∫

Ω̃

(
Q(u1) − Q(u2)

)+(∂t1 γ̃ + ∂t2 γ̃) ≤ 0.

Proof: Let fn ∈ C∞
c (Rd) be such that 0 ≤ fn ≤ 1, fn(x) = 1 for |x| ≤ n, fn(x) = 0 for |x| ≥ n + 2,

and |∇fn| ≤ 1. Let η ∈ C2(R) be a convex nonnegative function such that η(z) = 0 for z ≤ 0,
η(z) = z − 1/2 for z ≥ 1. Set

η+
δ (z) := δη

(z

δ

)
, η−δ (z) := δη

(
−z

δ

)
, q±δ := qη±

δ
,

so that

(5.13) (η−δ )′(z) = −(η+
δ )′(−z).



A VARIATIONAL METHOD FOR A CLASS OF PARABOLIC PDES 35

We fix t2 and apply lemma 5.4 to

vo = u2(·, t2, ·) ≡ u2(t2, ·), η = η+
δ , γ = γ̃(·, t2)fn.

Then, we integrate the subsequent inequality with respect to t2 over (0, T ) to obtain

(5.14)
∫

Ω̃
−q+

δ (u1, u2)∂t1(γ̃fn) +
〈
a(x,Q(u1),∇u1),∇[(η+

δ )′(u1 − u2)γ̃fn]
〉
≤ 0.

Similarly,

(5.15)
∫

Ω̃
−q−δ (u2, u1)∂t2(γ̃fn) +

〈
a(x,Q(u2),∇u2),∇[(η−δ )′(u2 − u1)γ̃fn]

〉
≤ 0.

We exploit equations (5.13), (5.14) and (5.15) to obtain∫
Ω̃

γ̃
〈
a(x,Q(u1),∇u1) − a(x,Q(u2),∇u2), (∇u1 −∇u2)(η+

δ )′′(u1 − u2)fn + (η+
δ )′(u1 − u2)∇fn

〉
≤

∫
Ω̃

(
q+
δ (u1, u2)∂t1 γ̃ + q−δ (u2, u1)∂t2 γ̃

)
fn

This together with remark 5.2(b) yields
(5.16)∫

Ω̃
fn(η+

δ )′′(u1 − u2)(Q(u2) − Q(u1))(E1 − E2)γ̃ +
∫

Ω̃
R1

n ≤
∫

Ω̃
(q+

δ (u1, u2)∂t1 γ̃ + q−δ (u2, u1)∂t2 γ̃)fn,

where
R1

n := γ̃
〈
a(x,Q(u1),∇u1) − a(x,Q(u2),∇u2), (η+

δ )′(u1 − u2)∇fn

〉
.

Ei(t1, t2, x) := %i(ti, x)
(
2H(x,−ei(ti, x)) +

〈
∇pH

(
x,−ei(ti, x)

)
, ei(ti, x)

〉)
, i = 1, 2,

with %i(ti, x)ei(ti, x) := ∇[P (%i)](ti, x). We observe that, thanks to 5.9, it is not difficult to show
that E1, E2 ∈ L1(Ω̃).

Now, the second inequality in (5.8) gives

V 1
t := ∇pH

(
x,−(%1

t )
−1∇[P (%1

t )]
)
∈ Lα(%1

t ) ⊂ L1(%1
t ),

and so a(x,Q(u1),∇u1) ∈ L1(Ω̃). Similarly a(x,Q(u2),∇u2) ∈ L1(Ω̃). Hence

|R1
n| ≤ A1|∇fn| ≤ A1

where A1 ∈ L1(Ω̃). Since |∇fn| → 0 as n → ∞, we use the dominated convergence theorem to
conclude that

∫
Ω̃ T 1

n → 0 as n → ∞. Since u1 and u2 are bounded, we may apply the Lebesgue
dominated convergence theorem to the first term in the left hand side of (5.16) and to the right
hand side, to conclude that

(5.17) −
∫

Ω̃
(η+

δ )′′(u1 − u2)|Q(u1) − Q(u2)||E1 − E2|γ̃ ≤
∫

Ω̃

(
q+
δ (u1, u2)∂t1 γ̃ + q−δ (u2, u1)∂t2 γ̃

)
.

Recall that u1 and u2 have their ranges contained in the compact set [0, P (M)]. Moreover, since
min[0,M ] P

′ > 0, Q is Lipschitz on [0, P (M)] for some Lipschitz constant C̄M . Then (5.17) gives

(5.18) −C̄M

∫
Ω̃
(η+

δ )′′(u1 − u2)|u1 − u2||E1 − E2|γ̃ ≤
∫

Ω̃

(
q+
δ (u1, u2)∂t1 γ̃ + q−δ (u2, u1)∂t2 γ̃

)
.
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Recalling that

(5.19) |q±δ (z, zo)| ≤ (Q(z) − Q(zo))±, |(η+
δ )′(z)| ≤ z+, |z(η+

δ )′′(z)| ≤ sup
a∈R

|aη′′(a)|,

and that, as δ → 0+,

(5.20) q±δ (z, zo) → (Q(z) − Q(zo))±, (η+
δ )′(z) → z+, z(η+

δ )′′(z) → 0,

we conclude the proof of the lemma by combining (5.18), (5.19) and (5.20). �

Theorem 5.6. Suppose H satisfies (H1), (H2w), (H3) and (H4). Suppose U satisfies (2.2), (2.3)
and the doubling condition (3.44). Assume min[0,M ] P

′ > 0 for any M > 0, X ⊂ Rd is an open set
whose boundary is of zero Lebesgue measure, and θ(t) ∼ tα with α > 1. Suppose for i = 1, 2 that %i

t ∈
ACα(0, T ;Pac

α (X)) are solutions of equation (1.1) satisfying (1.2). Assume further that t 7→ U(%i
t) is

absolutely continuous, monotone nonincreasing, and ∇[P (%i
t)] ∈ L1(Ω) and is absolutely continuous

with respect to %i
t. If %1

0, %
2
0 are bounded then t 7→

∫
X |%1

t − %2
t |dx is monotone nondecreasing.

Proof: As shown in [15] this theorem is a direct consequence of equation (5.12). �
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