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AN APPROXIMATION LEMMA ABOUT THE CUT LOCUS,
WITH APPLICATIONS IN OPTIMAL TRANSPORT THEORY

A. FIGALLI AND C. VILLANI

Abstract. A path in a Riemannian manifold can be approximated by a path
meeting only finitely many times the cut locus of a given point. The proof of this
property uses recent works of Itoh–Tanaka and Li–Nirenberg about the differential
structure of the cut locus. We present applications in the regularity theory of
optimal transport.

1. Motivations

Various authors have investigated lately the regularity of optimal transport for
non-Euclidean cost functions [5, 6, 8, 10, 11, 12, 13, 14, 15]. In most of these papers,
the cost function is defined on Ω × Λ, where Ω, Λ are bounded open subsets of R

n;
but some of these papers deal with genuinely curved geometries [8, 11, 12]. To do
this, two main strategies have been proposed:

(a) localize the transport using charts, and then apply the a priori estimates in
R

n. This is how Loeper [11] proves Hölder regularity for optimal transport on the
sphere; his proof strongly uses the fact that in this geometry there is an independent
argument to prove that the optimal transport map stays a positive distance away
from the cut locus.

(b) establish regularity estimates directly on the solution. This was done by
Loeper and the second author in [12].

Strategy (b) has the interest to provide more information “in the large”. Strategy
(a) seems to be easier, but the reasoning for the localization is quite nontrivial if one
does not know a priori the continuity of optimal transport [11]. (Once continuity
has been established, localizing becomes very easy, and then one can also apply the
higher-order Hölder regularity estimates from [13].) Anyway there is motivation for
a direct non-Euclidean approach to the regularity theory.

So what’s the big deal? The reader’s first guess might be that one should try to
repeat the Euclidean proofs with minor changes. The main obstacle arising in the
proof is the cut locus issue: a typical cost function arising in a geometric context,
involving the geodesic distance, will always present singularities. For instance, the
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argument in [8, 10, 12] is based on a maximum-type principle for the function

(1) [0, 1] ∋ t 7→ c(x, yt) − c(x, yt),

where t 7→ ∇xc(x, yt) is (a perturbation of) a straight segment as t varies in [0, 1].
(In the language of the above-mentioned works, (yt) is a c-segment.) Even if we
know a priori that yt remains within the domain of smoothness of c(x, · ), there will
be values of x such that c(x, yt) is not a smooth function of t.

Kim and McCann [8] solve this problem in the particular case of the squared
geodesic distance on the sphere, noting that if a c-segment (yt) with base x goes
through cut(x) = {−x}, one can still perturb just a bit the point x into x̂, in such
a way as to avoid the path (yt). Then all inequalities which are established for x̂ in
place of x, also hold for x by passing to the limit.

But the argument used by Kim and McCann is not robust: In general the cut
locus of a point in an n-dimensional Riemannian manifold is much larger than a
point, in fact it may have dimension as large as n− 1. So we expect that for generic
manifolds (even for an ellipsoid) the event of a given one-dimensional curve meeting
the cut locus is stable under perturbation.

In [12] a different density argument was proposed for the squared geodesic distance
on a Riemannian manifold whose cut locus is nonfocal, i.e. such that for any (x, ξ)
in the unit tangent bundle, dtξ expx is invertible at t = tC(x, ξ), the cut time of the
geodesic starting at x with unit velocity ξ. Instead of avoiding the cut locus, one
seeks to cross it in the most controllable way, namely on a discrete set of times.
In [12] it is shown that, given a path (yt) and a point x in a Riemannian with a
nonfocal cut locus, it is possible to perturb (yt) into another path (ŷt), crossing the
cut locus of x transversally.

The construction of [12] is strongly based on the nonfocality assumption. In the
present paper we shall prove a similar approximation lemma by a completely different
and more “probabilistic” argument, which will apply in a more general context. Our
main assumption is that the cut locus has locally finite (n−1)-dimensional Hausdorff
measure. That this assumption is satisfied by the squared distance on a Riemannian
manifold is guaranteed by recent and rather subtle results about the structure of the
cut locus, proven independently by Itoh and Tanaka [7] and Li and Nirenberg [9]
(see [9, Theorem 1.3]).

The plan of this paper is the following: In Section 2 we present our main result,
called “transversal approximation” lemma. In Section 3 we show how to use this
approximation lemma in practical situations, and we shall quote some applications.

Some of these results were included, in a less complete form, in [16, Chapter 12].
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This paper is dedicated to Neil Trudinger, as a tribute to his lasting and constantly
renewed influence on the theory of fully nonlinear elliptic equations.

2. Transversal approximation lemma

For simplicity we shall restrict to the case when the cost function c is the squared
geodesic distance on a Riemannian manifold. By convention, all Riemannian mani-
folds will be implicitly assumed to be smooth, complete and connected.

Lemma 1. Let M be a Riemannian manifold. For any x in M , any C2 path
(yt)0≤t≤1 drawn in M can be approximated in C2 topology by a path (ŷt)0≤t≤1 such
that {t ∈ (0, 1); ŷt ∈ cut(x)} is discrete.

Proof of Lemma 1. According to independent results by Itoh and Tanaka [7] and Li
and Nirenberg [9],

(2) Hn−1[K ∩ cut(x)] < +∞,

where K ⊂ M is any compact set, and Hn−1 is the (n − 1)-dimensional Hausdorff
measure; see for instance [9, Corollary 1.3].

Since cut(x) has empty interior, for any fixed t0 ∈ [0, 1] we can perturb the path
(yt) in C2 topology into a path (ỹt), such that ỹt0 /∈ cut(x). Repeating this operation
finitely many times, we can ensure that ỹtj lies outside cut(x) for each tj = j/2k,

where k ∈ N and j ∈ {0, . . . , 2k}. If k is large enough, then for each j the path
(ỹt)tj≤t≤tj+1

can be written as a straight line segment, in some well-chosen local
chart. Moreover, since cut(x) is closed, for any j there will be εj > 0 and rj > 0
such that on the interval [tj −εj , tj +εj] the path ỹt is entirely contained in the small
ball Bj = B(ỹtj , rj), and the larger ball 2Bj = B(ỹtj , 2rj) does not meet cut(x).

If we prove that the path (ỹt) can be approximated on each interval [tj−1+εj−1, tj−
εj] by a path (ŷt) meeting cut(x) at most finitely many times, then we can “patch
together” these pieces by smooth paths defined on the intervals [tj − εj, tj + εj] and
staying within 2Bj. Obviously the resulting approximation will meet cut(x) at most
finitely many times.

All this shows that we just have to treat the case when (yt) takes values in a small
open subset U of R

n and is a straight line. In these coordinates, Σ := cut(x) ∩ U
has finite Hn−1 measure. Without loss of generality, we can assume that U is the
cylinder B(0, σ) × (−τ, τ) for some σ, τ > 0, and yt = t en for t ∈ (−τ, τ) (where
(e1, . . . , en) is an orthonormal basis of R

n).
For any z ∈ B(0, σ) ⊂ R

n−1, let yz
t = (z, t). The goal is to show that Hn−1(dz)-

almost surely, yz
t intersects Σ in at most finitely many points. To do this one can
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apply the co-area formula in the following form (see [3, p. 109] and [4, Sections
2.10.25 and 2.10.26]): let f : (z, t) 7−→ z (defined on U), then

Hn−1[Σ] ≥

∫

f(Σ)

H0[Σ ∩ f−1(z)]Hn−1(dz).

By assumption the left-hand side is finite, and the right-hand side is exactly
∫

#{t; yz
t ∈

Σ}Hn−1(dz); so the integrand is finite for almost all z, and in particular there is a
sequence zk → 0 such that each (yzk

t ) intersects Σ finitely many often. �

Remark 2. The conclusion of Lemma 1 also applies for much more general cost
functions, with a suitable definition of cut locus (as the complement of the domain
of smoothness of the cost function), under the assumption that the cut locus of
any point has locally finite (n−1)-dimensional Hausdorff measure. See Assumption
(Cutn−1) in [16, Chapter 12] for a precise statement.

3. Application to regularity theory

Let µ, ν be two probability measures on a compact Riemannian manifold M
equipped with its geodesic distance d; assume that µ gives zero mass to count-
ably (n − 1)-rectifiable sets. By [16, Theorem 10.28 and Remark 10.33], there is a
map T solving the Monge–Kantorovich problem with initial measure µ, final mea-
sure ν, and cost function c = d2/2; it is uniquely determined up to modification on
a µ-negligible set. Moreover, µ(dx)-almost surely, T (x) /∈ cut(x). The problem is to
study the smoothness of T .

Works by Loeper [10], Ma, Trudinger and Wang [13] and others suggest that the
three basic conditions to develop a regularity theory for T are

(a) an estimate that the transport map T does not approach the cut locus:

(3) ∃σ > 0; ∀x ∈M, d(T (x), cut(x)) ≥ σ;

(b) a c-convexity condition on the domain of smoothness of the cost function:

(4) ∀x ∈M, ∇xc
(
x,M \ cut(x)

)
is convex

(or strictly convex in some appropriate sense);

(c) a suitable version of the Ma–Trudinger–Wang condition, for instance the
MTW(K0, C0) condition used in [12]:

(5) −(3/2)
∂2

∂p2
η

∂2

∂x2
ξ

c(x, y) ≥ K0 |ξ|
2
x |η̃|

2
x − C0

〈
ξ, η̃

〉
x
|ξ|x |η̃|x,
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where η̃ := −∇2
xyc(x, y) · η = (dv expx)

−1η, and it is assumed at least that K0 ≥ 0.
The meaning of the left-hand side in (5) is the following: first freeze y and differ-
entiate c(x, y) twice with respect to x in the direction ξ ∈ TxM . Then, considering
the result as a function of y, parameterize y by p = −∇xc(x, y), and differentiate
twice with respect to p in the direction η ∈ TyM . When we say that (5) is satis-
fied, we really mean that it is satisfied as soon as y /∈ cut(x) (otherwise the partial
derivatives may be meaningless).

Assumption (c) can be considered as given a priori. It is shown in [12] that it
sometimes automatically implies assumption (b). But the least satisfactory assump-
tion is certainly (a) (“stay-away property”), which one really would like to deduce
from (b) and (c), together with some suitable geometric conditions.

This seems to be a difficult problem. Some particular cases (spherical or nearly
spherical geometry in some sense) are well-understood [1, 2], but there are very few
general results establishing this stay-away property. One such result is established
in [12, Theorem 6.1]: it is sufficient that M has no “focalizing uniquely minimiz-
ing geodesic” (i.e. no geodesic which is the unique minimizing curve between its
endpoints, but whose endpoints are conjugate), and that M is “uniformly regular”,
in the sense of the following definition. We shall denote by d the geodesic distance
on a Riemannian manifold M ; by TIL(x) the tangent injectivity locus, which is the
largest open domain of injectivity of the exponential map expx; and by TCL(x) the
tangent cut locus, which is the boundary of TIL(x). In case of need, see [12] for
more information.

Definition 3 (Uniform regularity). With the above notation, the cost c = d2/2 is
said to be uniformly regular if there are ε0, κ, λ > 0 and C > 0 such that

(a) for all x ∈M , TIL(x) is κ-uniformly convex;

(b) For any x ∈ M , let (pt)0≤t≤1 be a C2 curve drawn in TIL(x), and let yt =
expx(pt); let further x ∈M . If

(6) ∀t ∈ (0, 1), |p̈t| ≤ ε0 d(x, x) |ṗt|
2, |ṗt| ≤ C,

then for any t ∈ (0, 1),

(7) d(x, yt)
2 − d(x, yt)

2 ≥ min
(
d(x, y0)

2 − d(x, y0)
2, d(x, y1)

2 − d(x, y1)
2
)

+ 2 λ t(1 − t) d(x, x)2 |p1 − p0|
2.

Uniform regularity is an “integral” manifestation of the Ma–Trudinger–Wang con-
dition. If everything is smooth, one can deduce it from the MTW(K0, C0) condition
with an adaptation of the Kim–McCann method; see [12]. But the left-hand side
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of (7) is not a smooth function of t because of cut locus issues. We shall now
show how to use the approximation result from Lemma 1 to bypass this regularity
problem.

Theorem 4. Let M be a compact Riemannian manifold, and let c = d2/2. Assume
that there are κ > 0, K0 > 0, C0 <∞ such that

(i) TIL(x) is κ-uniformly convex, for all x in M ;

(ii) c satisfies MTW(K0, C0).

Then c is uniformly regular.

The proof of this theorem is a variant of the proof of Theorem 3.1 in [12]; the
main difference is that it relies on Lemma 1 rather than [12, Lemma 4.4].

Proof of Theorem 4. Let x, x, (pt)0≤t≤1 and (yt)0≤t≤1 be as in Definition 3. By
density and Lemma 1, we may assume that y0, y1 /∈ cut(x) and that yt meets cut(x)
only at finitely many times t1, . . . , tN−1, all the other conditions in Definition 3 being
unchanged (apart from a slight increase in ε0, but we can slightly reduce it from the
beginning). We may also assume x 6= x and p0 6= p1, otherwise everything is trivial.
We let t0 = 0, tN = 1, and we define h(t) = −c(x, yt) + c(x, yt) + δ t(1 − t), where
δ > 0 will be chosen later.

On each time-interval (tj, tj+1) we have yt /∈ cut(x), so qt = −∇yc(x, yt) =
(expyt

)−1(x) is well-defined, h is a smooth function of t, and by convexity of TIL(yt)
we have [qt, qt] ⊂ TIL(yt), where qt = −∇yc(x, yt) = (expyt

)−1(x). As in the proof
of [12, Theorem 3.1], one checks that if ε0 ≤ K0/8 and δ = λ d(x, x)2 |p1 − p0|

2, with

λ :=
K0

(
1 − 2σ η0 diam(M)

)2

+

12C0

(
1 + σ diam(M)

) , σ := max |ṗ|, η0 ≥ sup
0≤t≤1

(
|p̈t|

|qt − qt| |ṗt|2

)
,

then the identity ḣ(t) = 0 gives ḧ(t) > 0, for any t ∈ (tj , tj+1). This implies that
the function h cannot have any maximum on (tj , tj+1).

Since h is continuous on [0, 1], it achieves its maximum at one of the times tj
(0 ≤ j ≤ N). The goal is to show that necessarily j = 0 or j = N . Indeed, let

j ∈ {1, . . . , N − 1}. If ḣ is continuous at tj and ḣ(tj) 6= 0, clearly tj cannot be a

maximum of h. The same is true if ḣ is discontinuous at tj , because by semiconvexity

of t → −c(x, yt), necessarily ḣ(t+j ) > ḣ(t−j ). Finally, if ḣ is continuous at tj and

ḣ(tj) = 0, the same computations as before show that ḧ(t) is strictly positive when

t is close to (but different from) tj , then the continuity of ḣ implies that h is strictly
convex around tj , so it cannot have a maximum at tj .
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The only possibility left out for h is to achieve its maximum at t0 = 0 or tN = 1,
and we obtain (7). �

Combining the theorem above with [12, Theorem 5.1], we obtain the continuity
of the optimal transport map under some weak assumptions on the measures:

Corollary 5. Let M be a compact Riemannian manifold, and let c = d2/2. Assume
that there are κ > 0, K0 > 0, C0 <∞, c0 > 0 such that

(i) TIL(x) is κ-uniformly convex, for all x in M ;

(ii) c satisfies MTW(K0, C0);

(iii) limε→0

(
supx∈M

µ[Bε(x)]
εn−1

)
= 0;

(iv) there exists c0 > 0 such that ν[A] ≥ c0vol [A] for all A ⊂M Borel.

Then the optimal transport map between µ and ν, for the cost d2/2, takes the form
T (x) = expx ∇ψ(x), where ψ is a C1 semiconvex function. In particular T is con-
tinuous.

Remark 6. The reasoning used in the proof of Theorem 4 was also used to prove
Theorem 12.42 in [16] (dealing with general cost functions) and Proposition 2.5
in [17]. These two results, closely related to Theorem 4, establish the equivalence
between the Ma–Trudinger–Wang condition and an “integral” inequality in the style
of the one appearing in Definition 3. The same strategy is used to prove Theorem 5.5
in [17], a perturbative smoothness result for optimal transport on an approximation
of a uniformly regular manifold.
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Université de Nice Sophia-Antipolis

Laboratoire J.-A. Dieudonné

CNRS UMR 6621

Parc Valrose

06108 Nice Cedex 02

FRANCE

e-mail: figalli@unice.fr

Cédric Villani

ENS Lyon & Institut Universitaire de France

UMPA, UMR CNRS 5669

46 allée d’Italie

69364 Lyon Cedex 07



AN APPROXIMATION LEMMA ABOUT THE CUT LOCUS 9

FRANCE

e-mail: cvillani@umpa.ens-lyon.fr


