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Abstract

Given a Tonelli Hamiltonian H : T*M — R of class C*, with k > 2, we prove the
following results: (1) Assume there exist a recurrent point of the projected Aubry set
%, and a critical viscosity subsolution u, such that u is a C! critical solution in an open
neighborhood of the positive orbit of Z. Suppose further that w is “C? at . Then there
exists a C* potential V : M — R, small in C? topology, for which the Aubry set of
the new Hamiltonian H + V is either an equilibrium point or a periodic orbit. (2) If M
is two dimensional, (1) holds replacing “C' critical solution + C? at Z” by “C® critical
subsolution”.

These results can be considered as a first step through the attempt of proving the
Maiié’s conjecture in C? topology. In a second paper [27], we will generalize (2) to arbitrary
dimension. Moreover, such an extension will need the introduction of some new techniques,
which will allow us to prove in [27] the Mafié’s density Conjecture in C* topology. Our
proofs are based on a combination of techniques coming from finite dimensional control
theory and Hamilton-Jacobi theory, together with some of the ideas which were used to
prove C'-closing lemmas for dynamical systems.
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1 Introduction

Let (M, g) be a smooth compact Riemannian manifold without boundary of dimension n > 2.
Given H : T*M — R a smooth Tonelli Hamiltonian, the Mané conjecture in C* topology (with
k > 2) asserts that, for generic potentials V' € C*¥(M), the projected Aubry set fl(H +V)
associated to the Hamiltonian H 4 V is either an equilibrium point or a periodic orbit.

This paper is the first of a series of articles where we plan to make progress toward a
proof of the Mané Conjecture in C? topology. The aim of this first paper is to show how to
prove the density part of the Mané Conjecture in C? topology under the following assumptions
(Theorem 2.1): there exist a recurrent point of the projected Aubry set Z, and a critical viscosity
subsolution u, such that u is a C'! critical solution in an open neighborhood of the positive orbit
of Z, and v is “C? at 7. Then, in two dimensions we show how to replace the above assumption
by replacing “C! critical solution + C? at the point” with “C? critical subsolution” (Theorem
2.4). In a second paper we will perform the extension of this last result to arbitrary dimension
[27, Theorem 1.1]. Moreover, the proof of this last result will involve the introduction of some
new ideas and techniques, which will allow us to prove the (density part of the) Mafié Conjecture
in C! topology [27, Theorem 1.2].



Before describing our results in detail, we first introduce the Aubry-Mather theory from both
the Lagrangian and the Hamiltonian points of view. Some conventions and standing notation
are gathered in Appendix A.

1.1 Aubry-Mather theory from the Lagrangian viewpoint

Let L : TM — R be a C* Tonelli Lagrangian, that is, a Lagrangian of class C* (with k& > 2)
satisfying the two following assumptions:

(L1) Superlinear growth: For every K > 0, there is a finite constant C(K) such that
L(z,v) > K|jv||s + C(K) Y (z,v) € TM.

(L2) Strict convexity: For every (z,v) € TM, the second derivative along the fibers g%(m, v)
is positive definite.

The critical value of L is defined as

)=~ jot { FAG: 0.7 17 € C(0.71,01).2(0) =2(D)}. (1)

where A(~; [0,7]) denotes the action of the C' curve ~ : [0,T] — M on the time interval [0, T],
that is,

T
A0.7) = [ LO.40) at.
By the assumptions on L, the critical value c[L] is necessarily finite, and satisfies

inf  L(z,v) < —c[L] < inf L(z,0).
(zv)eTM zeM

To each closed curve v € C’Il)er([O, T, M ), we can associate a probability measure p, on T'M
by

/ fd -—1/Tf( (©),4(0) dt Y feCOTM,R)
TM M’Y_T 0 7 7 , )

Following Mané [35], we call holonomic probability measure any element in the set

Hi={iy | T > 0,7 € Cher (0,71, 0) },

where Crl)er([O,T],M ) is the space of periodic C' curves parameterized over [0,7T] and the
closure is taken with respect to the weak-* topology on the space of measures. Define the
action functional
Ap: P(TM) — RU {+o0}
1 — Ap(p) = [, Ldp.

By construction, we have
inf{Ar(n)|pe M} =—c[L].

The set H is a (nonempty) closed convex subset of P(T'M), which is not compact (with respect
to the weak-* topology). However, thanks to (L1), the set Ho := HN{Ap < —¢(L) + 1} is a
compact convex subset of H. This implies that Ay attains a minimum on H, that is,

cll] = —min {Ar(u)}-



The measures p € H such that Ay () = —c[L] are called minimizing measures. It can be shown
that they are invariant under the Euler-Lagrange flow ¢F [35], and they minimize the functional
Ar among all Borel probability measures on T'M which are invariant under ¢F.

The Mather set of L is the nonempty compact subset of TM defined as

MEI):= |J  Suwp(p),

Ap(p)=—c[L]
and the projected Mather set M(L) C M is given by
M(L) =7 (M(L)).
In [37], Mather proved the following result:

Mather’s Graph Theorem I. The set M(L) € TM is invariant under ¢F. Moreover the
map 7|z : M(L) — M is injective, and

-1
(WlM(L)) : M(L) - M(L)

is Lipschitz.
Following Mather [38], for every T' > 0 we define the function hy : M x M — R as

hr(z,y) = inf{A(v; [0,7]) [y € C*([0,T], M), 7(0) = z, ¥(T) = y}.
The Peierls barrier associated with L is the function h : M x M — R defined by
b, y) = limint {hr (2, ) + c[LIT}.

It is immediately seen that the following inequalities hold for all T' > 0, for every z,y,z € M:
h(z,z) < h(x,y) + hr(y, 2) + c[L]|T,
h(z,z) < hp(z,y) + c[L]T + h(y, 2).
In particular, we deduce that the following “triangle inequality” holds:
h(z,z) < h(z,y) + h(y, 2) Va,y,z € M.

By compactness of M and (1.1), it is not difficult to prove that there is at least one point x € M
such that h(z,z) = 0. Hence the above triangle inequality shows that h is finite everywhere on
M x M. The projected Aubry set A(L) is then defined as the nonempty compact set given by

A(L) = {x e M| hiz,z) = o}. (1.2)

We observe that for every x € A(L) there exist a sequence {1}, }ren of real numbers tending to
+00, and a sequence {7y }xen of C! curves v : [0,Tx] — M, such that v;(0) = v (T%) and

Jim A(7i; [0, Ti]) + ¢[L] T}, = 0.

Applying the Arzela-Ascoli Theorem, it can be shown that the sequence {4} of curves ('yk, ﬁk) :
[0,T%] — TM is relatively compact, so that for each integer I > 0 the sequence of curves

0 ift>0

te=L1] F>{ Ye(Te +1) ift <0



admits, up to a subsequence, a uniform limit. Then, one can show that such limit curve is
uniquely determined [38], and deduce that to each z € A(L) it can be associated in a unique
way a C*~! curve ~, : R — M, with ~,(0) = z, which solves the Euler-Lagrange equation

d [OL . oL .
{5 0e0.0:0) } = SE a0 4a0) iR
Then, the Aubry set of L is the compact subset of T'M defined by

A(L) = {(%(t),qiw(t)) |z € A(L),t € R}.

It can be proved that Aubry set A(L) contains the Mather set M (L). Moreover, in [38] Mather
showed the following result:

Mather’s Graph Theorem II. The set A(L) ¢ TM is invariant under ¢*. Moreover the
map 7 zp, : A(L) = M is injective, its image coincides with A(L), and

(ram) AL - AL)

is Lipschitz.

In other terms, Mather’s Graph Theorems state that M(L) C A(L) are contained in the
graph of a Lipschitz section of TM.

1.2 Aubry-Mather theory from the Hamiltonian viewpoint

The Tonelli Hamiltonian H : T*M — R associated to L by Legendre-Fenchel duality is defined
as
H(z,p) = {p(v) = L(z,v)} T3 M.
(@,p) = max yp(v) — L(z,) V(z,p) €T,
Thanks to our assumptions on L, it is well-known that H is of class C* and satisfies both
properties of superlinear growth and strict convexity in T* M:

(H1) Superlinear growth: For every K > 0, there is a finite constant C*(K) such that

H(z,p) = Kllpll. + C*(K)  V(x,p) € T"M.

(H2) Strict convezity: For every (x,p) € T*M, the second derivative along the fibers %ig (z,p)

is positive definite.

Under the above assumptions, the Hamiltonian flow ¢/ of H is of class C*¥~1, and is conjugated
with the Euler-Lagrange flow ¢ of L. The critical value or Manié critical value of H is defined
as

c[H] := ¢[L], (1.3)
while the Aubry set “seen in T*M” is defined as
AH) =L (A(L)) ,

where £ : TM — T*M denotes the Legendre transform (see Appendix A). By construction
fl(H ) is a nonempty compact subset of 7* M which is invariant under ¢/*. In a series of papers
[16, 17, 18], Fathi established a deep link between the concept of Aubry sets and the concept
of viscosity solutions of the Hamilton-Jacobi associated with H, which we now describe.



A continuous function u : M — R is called a wviscosity subsolution of the Hamilton-Jacobi
equation

H(z,du(z)) =c VeeM, (1.4)
if, for every C* function ¢ : M — R such that ¢ > u and every z € M, the following holds:
o(z) =u(z) = H(z,d¢(z)) <c.

This is equivalent to asking that

b

u(y(b)) —u(v(a)) < / L(y(t),%(t)) dt + c(b — a) (1.5)

a

for every C* curve v : [a,b] — M.
A continuous function u : M — R is called a viscosity solution of (1.4) if, for every C!
function ¢ : M — R such that ¢ < u and every z € M, the following holds’:

o) =ulz) = H(zdd(:)) =c.

As shown by Fathi, a continuous function w : M — R is a viscosity solution of (1.4) if and only if
it is a viscosity subsolution of (1.4) and, for each z € M, thereis a C*~! curve 7, : (—00,0] — M
such that

0
u(z) —u(v.(-T)) = [TL(vx(t),ﬁx(t)) dt + T VT > 0. (1.6)

In [16], Fathi proved the following result:
Fathi’s Weak KAM Theorem. The critical Hamilton-Jacobi equation

H(z,du(z)) = c[H] VeeM (1.7)
admits at least one viscosity solution.

Let us recall that, by the compactness of M, c¢[H] is the only value of ¢ for which the
Hamilton-Jacobi equation (1.4) admits a viscosity solution. Indeed, if a continuous function
u : M — R is a viscosity subsolution of (1.4) for some ¢ € R, then for every C! curve
v :[0,T] = M one has

~2fjulloc < u((T)) —u(x(0)) < / L(3(t),4(0)) dt + T,

I1We notice that the definitions of viscosity subsolution and viscosity solution given here are equivalent to
the usual definitions: usually, a continuous function u : M — R is called a viscosity solution of the first-order
partial differential equation

F(z,u(z),du(z)) =0 Vo e M,
if it satisfies the two following properties:

(i) (u is supersolution) For every C' function ¢ : M — R such that ¢ < u and every z € M, it holds
P(z) =u(z) = F(z,6(2),dd(2)) > c,

(ii) (u is subsolution) For every C'' function ¢ : M — R such that ¢ > u and every z € M, it holds
P(z) =u(z) = F(2,6(2),dd(2)) <c,

Since H is convex in the p variable with bounded sublevel sets, the above definitions are equivalent to the one
given in the paper.



where ||u||o, denotes the supremum norm of u. Hence, letting T — +o0, (1.1) yields?
¢ > c[L] = c[H]. (1.8)

On the other hand, if v, : (—00,0] — M is a C! curve such that (1.6) is satisfied and @ is a
viscosity solution of (1.7), then for every T' > 0 we have

a(Vz(O)) - a(Vz(_T))

/_T L(va(t), ¥ (t)) dt + c[H]T
= u('yz(O)) - u(’yz(—T)) + (C[H] —)T.

Hence, letting T — 400 we get ¢ < ¢[H], which together with (1.8) proves that ¢ = c¢[H], as
desired. Incidentally, the above argument shows that ¢[H] may also be viewed as the infimum
of the values ¢ € R for which there exists a smooth function u : M — R satisfying

H(z,du(z)) <c Vo e M

(see also [13]). In the sequel, we call critical viscosity solution (resp. subsolution) any continuous
function u : M — R which is a viscosity solution (resp. subsolution) of (1.7). If the solution
(resp. subsolution) u is indeed C, then we call it simply a critical solution (resp. subsolution).
We mention that critical viscosity solutions are sometimes referred as weak KAM solutions.

As shown by Fathi and Siconolfi [25], every critical viscosity subsolution is differentiable on
the projected Aubry set, and it can always be extended outside the projected Aubry set to a
(strict) critical subsolution of class C*':

Fathi-Siconolfi’s Theorem. Let u : M — R be a critical viscosity subsolution. Then u is
differentiable on the projected Aubry set and satisfies

(z,du(z)) € A(H) Ve A(H).

Moreover, there is a critical subsolution v : M — R of class C' which coincides with u on A(H)
and satisfies
H(z,dv(z))) < c[H] Vee M\ A(H).

The above result combined with Mather’s Theorem implies that the differential of any crit-
ical viscosity subsolution u : M — R is Lipschitz on the projected Aubry set, does not depend
on u, and satisfies H(z, du(z)) = ¢[H] for every x € A(H). In [7] Bernard improved the Fathi-
Siconolfi’s Theorem as follows (we refer the reader to [20, 46] for a survey on the Fathi-Siconolfi’s
and Bernard’s Theorems):

Bernard’s Theorem. If u is a critical viscosity subsolution, then there exists a critical sub-
solution v of class C''! whose restriction to the projected Aubry set is equal to w.

The latter result is optimal: there are Hamiltonians which admit C':! critical subsolutions
but no C? critical subsolutions (see [20]).

2We leave the reader to check that, by an easy concatenation procedure, c[L] could also be defined as

c[L] :== — liminf {%A(’y; [0,77) |y € C*([0,T], M), 4(0) = V(T)} .

T—~+o0



Another result on the regularity of viscosity (sub)solutions which will be used in the sequel
is the following theorem of Fathi [19] (see also [44]):

Fathi’s C'! Theorem. Let u be a critical viscosity subsolution, and assume that u is a C!
viscosity solution on some open set V. Then u is C*! inside V.

Several works have been devoted to the regularity of critical viscosity solutions [3, 6, 19, 44],
to the structure of general Aubry sets [23, 39, 40, 48], or to the structure of generic Aubry sets
[8, 9, 35, 36]. The purpose of the present paper is to take a first step toward a proof of the
Mané Conjecture in C? topology.

1.3 The Mané Conjecture

Following Mafié [35], given a Tonelli Lagrangian L : TM — R of class C* (with k > 2) and a
potential V : M — R of class C* (with k > 2), we define the Lagrangian Ly : TM — R by

Ly (z,v) := L(z,v) — V(z) v (xz,v) € TM.

Denote by C*(M) the set of C* potentials on M equipped with the C* topology. The Maiié
conjecture in C* topology (with k > 2) can be stated as follows:

Mainé’s Conjecture. For every Tonelli Lagrangian L : TM — R of class CF (with k > 2),
there is a residual subset (i.e., a countable intersection of open and dense subsets) G of C*(M)
such that, for every V' € G, the Aubry set of the Lagrangian Ly is either an equilibrium point
or a periodic orbit.

Equivalently, if we denote by Hy the Hamiltonian Hy : T*M — R associated with Ly, that

is

Hy(z,p) = H(z,p) + V(x)  V(x,p) € T"M,
the Mafié Conjecture asserts that for generic potentials V' € C*¥(M) the set fl(HV) is either an
equilibrium point or a periodic orbit.

The Mané’s Conjecture in smooth topology was solved positively by Massart [36] in the case
of orientable closed surfaces. However, Massart made use of purely two-dimensional arguments
which cannot be generalized to higher dimension.

A natural way to attack the Mané Conjecture in any dimension would be to prove first a
density result, then a stability result. Namely, given an Hamiltonian of class C* satisfying (H1)
and (H2), first one could show that the set of potentials V' € C¥(M) such that A(Hy ) is either
a hyperbolic equilibrium point or a hyperbolic periodic orbit is dense, and then prove that the
latter property is open in C* topology. Since the stability part is contained in the results in
[12] (see Section 7), we can consider that the Mané Conjecture reduces to the density part:

Maié’s density Conjecture. For every Tonelli Lagrangian L : TM — R of class C* (with
k > 2) there exists a dense set D in C*(M) such that, for every V € D, the Aubry set of the
Lagrangian Ly is either an equilibrium point or a periodic orbit.

The aim of the present paper and [27] is to show that the approach, which was adopted (by
Pugh [41, 42], Pugh and Robinson [43], and Mai [34]) to prove closing lemmas for dynamical
systems and Hamiltonian vector fields, proves the Mafié density Conjecture in C'* topology, and
could be used to show the validity of the Mafé density Conjecture in C? topology. In the next
section, we present our results.



2 Statement of the results

Our first goal is to show how to close an Aubry set in C? topology under the assumption that
there exists a critical viscosity subsolution which is a C! (or equivalently C*!, by Fathi’s The-
orem) critical solution in an open neighborhood of a positive orbit of a recurrent point of the
projected Aubry set, and which is C? at that point.

Let z € A(H), fix u : M — R a critical viscosity subsolution, and denote by O%(z) the
positive orbit of x in the projected Aubry set, that is,

Ot (x) := {71'* (¢f (z,du(z))) | t > 0},

Note that, thanks to Mather’s and Fathi-Siconolfi’s Theorems, the positive orbit of any
point of the projected Aubry set belongs to A(H) and does not depend on u. Moreover, if a
point z € A(H) does not belong to the projection of a periodic orbit of A(H), it is well-known
that its positive orbit O (z) cannot be closed. A point z € A(H) is called recurrent if there
exists a sequence of times t;; — 400 such that

klir& * (¢g(m, du(x))) =z,
where u : M — R is again any critical viscosity subsolution. As before, the above definition
does not depend on u.

We now formalize the concept of a C''! function being C? at one point. Let v: V — R be a
function of class C*! in an open set ¥ C M. Thanks to Rademacher’s Theorem, its differential
dv is differentiable almost everywhere in M. Let Dom(Hess?v) C V be the set of points where
dv is differentiable. Then, for every x € Dom(Hess?v), the function v is two times differentiable
at z, and its Hessian with respect to the metric g is the symmetric bilinear form on T, M defined
as

Hess%v(z)[¢, 7] := <<ngv) (x),77> véEne T, M,

where V¢ denotes the covariant derivative with respect to g (see [47]). We call generalized
Hessian of v at x € V the set of symmetric bilinear form on 7, M defined by

Hessv(z) := conv <{klim Hess%v(zk) |z — x, o) € Dom(Hessgv)}> ,
—00

where conv denotes the convex envelope, and the limit is taken in the fiber bundle of symmetric
bilinear forms on the fibers of TM. By construction, Hess%v(x) is a nonempty compact convex
set of symmetric bilinear forms on 7, M for any x € M. Then, the informal sentence “v is C?
at a point x” that we used before in the introduction, means that Hess%v(x) is a singleton.
(This definition is motivated by the fact that a C':! function is C? on an open set V if and only
if its generalized Hessian is a singleton at every point of V.)

Recall that, by Fathi’s C!'! Theorem (see Subsection 1.2), C! viscosity solutions are C'*:'.
So it make sense to talk about their generalized Hessian.
Our first result is the following:

Theorem 2.1. Let H : T*M — R be a Tonelli Hamiltonian of class C* with k > 2, and
fix e > 0. Assume that there are a recurrent point & € A(H), a critical viscosity subsolution
u: M — R, and an open neighborhood V of OF (a_r) such that the following properties are
satisfied:

(i) u is of class C' in V;
(i) H(x,du(x)) = c[H] for every x € V;



(iii) Hess9u(Z) is a singleton.

Then there exists a potential V : M — R of class C*, with ||V c2 < €, such that c[Hy] = c[H]
and the Aubry set of Hy is either an equilibrium point or a periodic orbit.

In the above theorem, the generalized Hessian of u at  depends upon the Riemannian
metric g. However, it is worth noticing that assumption (iii) does not depend on the metric g.
Such an assumption is motivated by some recent results of Arnaud [3, 4, 5]. Let us also point
out that, since the graph of du is invariant under the Hamiltonian flow in V, assumption (iii)
implies that HessJu is a singleton for any x € O (:E)

We note that since the Mather set is a compact set invariant under the Lagrangian flow,
it necessarily contains recurrent points. (Indeed, given any minimal invariant subset of M(L),
minimality implies that all orbits are dense in such a subset.) Thus, the following result is a
straightforward corollary of Theorem 2.1:

Corollary 2.2. Let H : T*M — R be a Tonelli Hamiltonian of class C* with k > 2, and fix
€ > 0. Assume that there is a critical viscosity solution which is of class C? in a neighborhood
of M(L). Then there exists a potential V : M — R of class C*, with ||V||cz < €, such that
c[Hy]| = c[H] and the Aubry set of Hy is either an equilibrium point or a periodic orbit.

This result applies to the case of Maifié Lagrangians: given X a C*-vector field on M with
k > 2, the Mané Lagrangian Lx : TM — R associated to X is defined by

2
x

Lx(z,v) ::%HU—X(I')H Y (x,v) € TM,

while the Mané Hamiltonian Hx : TM — R is given by
1 2 *
Since Lx > 0 and u = 0 is solution of the Hamilton-Jacobi equation
Hx (z,du(z)) =0 Vee M,

by the discussion in Subsections 1.1 and 1.2 we deduce that ¢c[Hx] = 0 and u = 0 is a critical
solution for Hyx. Then Theorem 2.1 yields the following closing-type result:

Corollary 2.3. Let X be a vector field on M of class C* with k > 2. Then for every ¢ > 0
there is a potential V : M — R of class C%, with |V||¢2 < €, such that the Aubry set of Hx +V
is either an equilibrium point or a periodic orbit.

In the present paper we prove the following variant of Theorem 2.1 in the case of surfaces,
leaving to [27] the (nontrivial) extension to arbitrary dimension:

Theorem 2.4. Assume that dim M =2, let H : T*M — R be a Tonelli Hamiltonian of class
C* with k > 2, and fiz ¢ > 0. Assume that there are a recurrent point © € A(H), a critical
viscosity subsolution u : M — R, and an open neighborhood V of O (i), such that u is at least
of class C*¥*1 on V. Then there exists a potential V : M — R of class C*, with ||[V||c: < €,
such that c[Hy| = c¢[H| and the Aubry set of Hy is either an equilibrium point or a periodic
orbit.

In analogy with Theorem 2.1, one could check that the above result is still true when
replacing C? with “C%1+4 (C2 at the point”. To achieve this, some minor modifications in the
proof would be needed. However, since we did not see any big improvement in stating the result
in this sharper form, we have preferred to state it under this more “conventional” assumptions.

The extension of Theorem 2.4 to arbitrary dimension will be performed in [27, Theorem
1.1], where we will need some refined versions of the results presented here. Moreover, the

10



combinations of some of the techniques and ideas introduced here and in the proof of [27,
Theorem 1.1] will allow us to show the validity of the Mafé’s density conjecture in C'* topology
(i.e., for every € > 0 there exists a potential V : M — R of class C? such that ||[V]|c1 < e,
c[Hy] = c[H], and the Aubry set of Hy is either an equilibrium point or a periodic orbit, see
[27, Theorem 1.2]).

The proofs of both Theorems 2.1 and 2.4 involve techniques from finite dimensional control
theory, together with ideas coming from the proof of the classical closing lemma [41, 42, 43, 34].

Let us point out that the assumptions of Theorem 2.1 have no reason to be satisfied for gen-
eral Hamiltonians. This motivated us to introduce Theorem 2.4 (and then to extend Theorem
2.4 to any dimension in [27, Theorem 1.1]). Indeed, even if, in general, critical subsolutions
are at most C*! (see the discussion after the statement of Bernard’s Theorem), it may be
possible to prove the generic existence of smooth critical viscosity subsolutions (at least in a
neighborhood of a positive orbit). We plan to address this question in a future work.

As we will see, Theorem 2.4 is proved from Theorem 2.1 by “locally transforming” a critical
subsolution into a critical solution for a different Hamiltonian (see Section 6). Although this
may look a “cheap trick”, the proof is still very involved. Moreover, at this moment we do not
see how to adapt the construction used in the proof of Theorem 2.1 to address directly the case
of subsolution (without passing to the case of solutions).

Let us now briefly explain the difficulties behind the proof of Theorem 2.1, and the strat-
egy to bypass them. Since T is recurrent, the curve ¢t — 7* ((bfl (i,du(f))) passes near T
infinitely many times. Then, the rough idea would be to choose a time 7" > 1 such that
T :=mn* ((;57}5 (E, du(a‘s))) is sufficiently close to Z, and then try to “close” the trajectory in one
step. There are many points to address here:

1) It is not possible to close the trajectory in one step by adding a potential small in C2-
norm: indeed, if we add a potential V small in C? topology, the Hamiltonian vector field
associated to Hy is close in C' topology to the Hamiltonian vector field of H. However, if one
wants to close the orbit in only one step, then VV can be small only in C topology, due to the
fact that the potential V has to be supported in a small neighborhood of the orbit in order not
to intersect with the curve ¢ — 7* (gbfl (:f, du(;i))) for t € [0,7]3. Hence, to close the trajectory
we will use Mai Lemma D.1: roughly speaking, fixed an error size ¢ > 0 and a small radius r
which “ideally represents” the distance between T and Zr, the idea is to close the trajectory
in 1/e steps where at each step we “move” Zr in the direction of Z by a size er. (Actually the
strategy is much more involved, as we have to take care that the modification we do at every
“approaching step” does not influence the modifications done before, and moreover does not
“destroy” the property of Z of being recurrent, see Subsection 5.3.)

In order to perform the strategy described above, we need to be able to go from one point
to another by adding a small potential. To this aim, using techniques and results from control
theory, in Section 3 we prove a general result which allows to connect points by Hamiltonian
trajectories.

2) Point 1 above deals with the “closing part of our statement”, i.e., finding a closed orbit for
Hy . However, we still need this new orbit to belong to the Aubry set of the new Hamiltonian.
In order to do this, we have first to control the action of the Lagrangian Ly along this closed
trajectory (see Subsection 5.4) and then to construct a suitable global critical subsolution which
will allow us to deduce that the curve belongs to the projected Aubry set (Subsection 5.5). The
first part will need again a general “control theory” result proved in Section 4.

3This is the analogous of the classical “closing lemma”: fixed k > 0, one asks whether, given a vector field
X with a recurrent point #, one can find a vector field Y close to X in C* topology which has a periodic orbit.
The “cheap strategy” of closing the trajectory in one step proves that the closing lemma is true when k = 0,
while for k = 1 new deep ideas have been introduced to solve the problem [41, 42, 43, 34]. Let us recall that
the problem for k£ > 2 is still open, though many results suggest it may be false when k is sufficiently large (or
that at least there is no possibility to prove such a result by means of “local techniques”, see [28, 31, 32]), unless
some additional assumptions are made [29, 30, 33].
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The combination of Points 1 and 2 will conclude the proof of Theorem 2.1.

The paper is organized as follows: in Sections 3 and 4, using techniques from finite di-
mensional control theory, we prove connecting results for Hamiltonian trajectories by adding
potentials, where we further control the Lagrangian action of the trajectories. It is important to
point out that these results (which are essential for the proof of Theorem 2.1) are very general,
and they may be useful for other applications. The proofs of our two theorems are given in
Sections 5 and 6. In Section 7, we will make some final comments on our results and the Mané
conjecture.

Finally, there are five short appendices that contain either technical results or auxiliary
results, like some tools of control theory, and the exact statement of Mai Lemma which plays
a crucial role in our proofs.

Acknowledgements: The authors are grateful to Didier Auroux, Patrick Bernard, Bernard Bon-
nard, Jean-Michel Coron, Albert Fathi, Gilles Lebeau, Jean-Baptiste Pomet, Rafael Ruggiero,
Emmanuel Trélat, and Constantin Vernicos for enlightening discussions.

3 Connecting Hamiltonian orbits by potentials

3.1 Statement of the result

Let n > 2 be fixed. We denote a point x € R" either as z = (z1,...,2p) or in the form
x = (z1,%), where & = (z2,...,2,) € R"7 1. Let H : R” x R® — R be a Hamiltonian* of class
C*k, with k > 2, satisfying (H1), (H2) and the additional hypothesis

(H3) Uniform boundedness in the fibers: For every R > 0 we have

A*(R) := sup{ﬁ(x,p) [p| < R} < +o0.

Note that, under these assumptions, the Hamiltonian H generates a flow ¢7 which is of class
C*k=1 and complete (see [24, corollary 2.2]). Let 7 € (0,1) be fixed. We suppose that there
exists a solution

({f(),ﬁ()) : [037__] — R" x R"

of the Hamiltonian system

i1l

B(t) = V,H(2(t)p(1))
{f)(t) = —V.H(z(t),p(t)) (3.1)

~—

on [0, 7] satisfying the following conditions®:
(A1) z° = (0,2°) := z(0) = 0,, and Z(0) = ey;
(A2) 7 = (7,27) := &(7) = (7,0,-1) and Z(7) = ey;

(A3) |a(t) — el‘ < 1/2 for any t € [0, 7).

4Note that we identify T*(R™) with R” x R™. For that reason, throughout Section 3 the adjoint variable p
will always be seen as a vector in R™.

5The purpose of this section is to prove connecting results which can be applied to connect Hamiltonian
trajectories associated with Hamiltonians H : T*M — R of class at least C2. Let us remark that any local
Hamiltonian trajectory of a Hamiltonian H : T*M — R of class C? can be sent via a local diffeomorphism of
class C* (from an open set of M to an open subset of R") to a Hamiltonian trajectory of the form (Z(-),(-))
in R™ x R™ satisfying (A1)-(A3) and associated with a Hamiltonian H : R® x R® — R of class C2. We note
however that, whenever H is merely C2, we cannot assume that (z(-), p(-)) in R® x R” satisfies z(t) = (t,0n—1)
vVt € [0,7] up to a smooth change of coordinates.
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For every (z°,p%) € R™ x R satisfying H(2°,p°) = 0, we denote by
(X( . (x0>p0))7p( 3 (xO’pO))> : [O, +OO) — R” x R"

the solution of the Hamiltonian system

{ B(t) = Y (a(t),p(0) 52
pt) = =V H(x(t),p(t))
satisfying
z(0) =2 and p(0) =p°. (3.3)
Since the curve Z(-) is transverse to the hyperplane II7 := {x = (?,i) € R"} at time T,

there is a neighborhood V° of (560,;50 = 15(0)) in R™ x R™ such that the Poincaré mapping
7: VY — R with respect to the section II” is well-defined. That is, it is C*~! and satisfies

(2%, p°) =7 and Xy (7(«°,p°); (2% p°) =7 V(a°,p°) €V°, (3.4)
where X7 denotes the first coordinate of X. Our aim is to show that, given a point (3:0 =

(0,2%),p°) such that H(z°, p°) = 0 and sufficiently close to (z",p°), and chosen a point (z/ =
(7,27),p") satisfying H(z/,p’) = 0 and sufficiently close to the final state

(X (7(2°,p%); (2%, %)), P(r (2", p°); (9607100)))7

there exists a time 77 close to 7(2°, p°), together with a potential V : R® — R of class C* whose
support and C?-norm® are controlled, such that the solution (z(-),p(:)) : [0, 7] — R™ x R™ of
the Hamiltonian system”

{ B(t) = VpHy(x(t),p(t)) = VpH (z(t), p(t)) (3.5)
p(t) = —VoHy(x(t),p(t)) = =V H(x(t),p(t)) — VV (x(t)) '

starting at (z(0),p(0)) = (2°,p°) satisfies (z(T7),p(T')) = (zf,p). Since we also want to
estimate the action of the new “connecting” Hamiltonian trajectory, we introduce some more
notation. ~ -
We denote by Ly : R™ x R™ — R the Lagrangian associated to Hy by Legendre-Fenchel
duality, i.e., - -
Ly (z,v) = L(z,v) — V() V(z,v) € R" x R",
where L is the Lagrangian associated to H. For every (z°,p°) € R” x R", T > 0, and every
C? potential V : R™ — R, we denote by Ay ((z°,p°); T') the action of the curve v : [0,7] — R"
defined as the projection (onto the z variable) of the Hamiltonian trajectory t — ¢f'v (20, p°),

that is,
Av (@5 T) = /OTEV( (o @), 5 (= (08 @ ,p>))) dt  (3.6)

- /OTE(7T (o™ (28%). i(” (o (a°p )))) (3.7)
_V< ( v (20 p ))) dt.

6Recall that the C2-norm of a compactly supported C? function V : R” — R is defined as
IVligz == lIVlleo + IVVloo + [[Hess V|oo,

where || - ||co denotes the supremum norm. For C%! function, the definition of the C**1-norm is the same just
replacing the sup norm of the Hessian with the esssup (since the Hessian is only defined a.e.).
7As in Section 1, we define Hy ,: R® x R” — R by

Hy(z,p) := H(z,p) + V(z)  V(z,p) € R™ x R™.
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Note that, when V' = 0, we have

We are now ready to state our result:

Proposition 3.1. Let H : R® x R — R be a Hamiltonian of class C* with k > 2 satisfying
(H1)-(H3), and let (z(-),p(-)) : [0,7] = R™ x R™ be a solution of (3 1) with H(z°,p°) = 0 and
satisfying (A1)-(A8). Then there are §,7,€ € (0,1) with BZ"(( ,p°),6) €V, and K > 0, such
that the following property holds: For everyr € (O, T), (0, e), and every z° = (0,2°),p°, xf =
(7,27),p € R satisfying

‘,%0

) |p0 - 230} < 57 (38)

|(7,87) = X (r(a® ) (=°,0%)|, (r(@® ) (2%, ")) < re, (3.9)

H(2%p°) = H(2!,p') =0, (3.10)
there exist a time T > 0 and a potential V : R™ — R of class C* such that:
(i) Supp(V) C C((mo,po);T(a:O,po);r> R
(ii) [Vlc2 < Ke;
(i41) |Tf —T(xo,p0)| < Kre;

(iv) $HY (x(%pO) = («f,p%);

(v) ’AV ) A((z,p%); 7(2°,p°)) — A((xo,po);r(xo,po);xf)’ < Kr2e?,
Here C((:I:O 3T ,r) is the “cylinder” defined as
C((@p)ir @ p%ir) = {X (6 ") + (0.9 [t € (0,70 3l < 7)o (31D)
and

A((2%p°); (2%, p%); 27) == (P(7(2%, p°); (2%, p7)), 27 — X (7(2%,p"); (2°,0%))).  (3.12)

3.2 Proof of Proposition 3.1

Given 20 = (0,2°),p%, 2/ = (7,27), p’ such that (3.8)-(3.10) are satisfied, we are going to show
the existence of a time T/ > 0 and a function v : [0,T/] — R"™ of class C¥~! such that the
solution to the system

i(t) = VyH((t)p(t)
{P(t) = VH(:z:() p(t)) — v(t), (3.13)

starting at (20, p°), satisfies (z(T7),p(T7)) = («/,p’). In this way, if we can find a function
V : R® — R of class C* such that VV(z(t)) = v(t) for all t € [0,T7], then the solution of
the Hamiltonian system (3.5), starting at (29, p°), will satisfy (iv). By suitably estimating the
Cl-norm of v and by constructing V carefully, we will also ensure that all the other properties
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1
| Ve
1

C (20, p9);T(x0 pO);r)

Figure 1: By adding a potential V, small in C? topology and supported inside the “cylin-
der” C (( , p) ( °);
)

r), we can connect a point z° to any point z/ = (%,:if) such that
|a:f - X (r(=°,p%; )| < re.

are satisfied.
Since the Hamiltonian is preserved along the flow, we will work in the hypersurface
{(x,p) | H(z,p) = o} C R™ x R™.
For every p € R™, denote by p the n — 1 last coordinates of p, that is the element p € R*~!

such that p = (]917 ) (We use the same convention as for z,y € R™.) By (A3) and the Implicit
Function Theorem, there is a bounded open neighborhood W of the set

{@w.50) | te 0,7} cR xR,
a bounded open neighborhood W of the set
{(f(t),ﬁ(t)) Ite [o,ﬂ} CR" x R"1,

and a function ¢ : W — R of class C* such that

{ V(z,p) EW: H(z,p) =0 = p1 = ¢(z,p); (3.14)
Via.g) €W (x,(p(r,0).0) €W and (. (p(x.0).)) = 0. |
Define the C* function ¢ : W — R™ by

¢($aQ) = ((P(Q?,Q),Q)- (315)
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Then, any solution (z(t),q(t)) € R™ x R*~! of
z(t) = VHth w(x Lq(t ))
3.16
i - %, H(w( ) (a(t),a(1))) = u(t). (310
induces a unique solution (x(t),v (z(t),q(t))) € R x R"™ of (3.13), as proved in the following
lemma:
Lemma 3.2. Let (z(),q(-)) : [0,T] — — W be a solution of (3.16) on [0,T] starting at (z°,q°)
and associated with a control u : [0,T] — R"™1 of class C*°. Then, the extended tmjectory
(z(-),p(")) : [0,T) = W defined by
p(t) = v (a(t),q(t))  Vte[0,T] (3.17)

is the unique solution of the Hamiltonian system (3.13) starting at (a:o,po = (@(mo,qo),qo))
and associated with the control v = (vy,u) : [0,T] — R™ of class C*¥~1 defined by

w(t) =~ (G (0,06 050) ) () Vo 00 0.50)) . (19
In particular, (v(t),4(t)) =0 for all t € [0,T).
Proof of Lemma 8.2. 1t is sufficient to show that p;(t) is given by

1(0) = = ot (20 00 (0, (1)) — ),

with vy as in (3.18). Differentiating (3.17) with respect to ¢ we get
p1(t) = (Vop(@(t), (1)), &(t)) + (Vap(x(t), a(t)), 4(¢))

for all ¢ € [0, T]. Moreover, differentiating the equality H(z, (¢(z,q),q)) = 0 (given by (3.14))
with respect to both x and ¢ gives

«H (z,9(x,q)),

Vaop(z,q) = — (ﬂ( U (x, Q)))
1 ﬁ(w ¥(z,q)).

Vyp(z,q) = — (

<l<l

We conclude easily. O

Restricting V° if necessary, we can assume that there is i > 0 such that, for any starting
point

(2° = (0,3%),¢°) € W i= {(2.9) | (&, ¥(z,0)) €V}, (3.19)

any time T' € (T — [, T
the solution

fi), and any control u : [0,7] — R"~! of class C> with |lu|c1 < f,

4
( (20.0) (1) Qa0 g0 ( )) :0,7] — R x R !

of (3.16) starting at (2°,¢°) satisfies

(Xt g (1), Qo (1) €W Ve 0,7]. (3.20)
Define the mapping
BEOT o ([0, TR — R™ x R"~1 @21)
u — (X&O_’qo) (T), Qo g0y (T)) , :
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Given 6,7, ¢ > 0 small enough (the smallness to be chosen later) and points (20 = (0,2°), ¢°), (z/ =
(f,i:f),qf) satisfying

12°|, |q° = p°| <6, (3.22)

and

{ |(7,87) — X (r(2°, (2, ¢%)); (0, 9(a®, q|0>)! <re, (3.23)

a7 = P(r(a% 9 (2%, ¢")); (2°, 9 (2°,¢°))) | < Core,

for some universal constant C', depending only on ¢, we want to find T/ € (7 — [, 7 + i) and
a control u : [0, 7] — R"~! of class C* such that

a1’ (u) = (xf, ¢’), with a bound on the C''-norm of u.

We will apply the controllability results which are given in Appendix B.

Consider the following nonlinear control system in R™ x R?~1:

n—1
§=Fo(&) + > wF(9), (3.24)
i=1
where the C*~1 vector fields Fyy, F; : R” x R*™!1 — R™ x R*~! are defined by
@ = ( SgRENGI ) o= ), (3.25)
foreveryi=1,...,n—1,& = (z,q) € W. (Recall that ef, . .. ,e’,j denotes the canonical basis of

R¥, see Appendix A.) Set p” := P(7;(z° p°)) = p(7), and define the map

®: RxRrIxRt — R x R*~!
—

(t.2.q) (X (6 ((r,2), 0((7.87), @), Q(t ((7.2), v((7,37), ) ),
(3.26)
where @ = P denotes the last n — 1 components of P. The function ® is of class C?, and its
differential at (0,7, p7) is invertible. Denote by ¥ = (¥, \il) € R x (R*! x R*1) the local
C" inverse of ® in an open neighborhood W7 of (z7,p7) (¥ is a map which transforms the
Hamiltonian trajectories (X, Q) into straight lines), and define the C' mapping

G: WICR'xR! — R"! x R
(z,q) — U(z,q).

Set ¢7 :=p". By construction G is a submersion at (Z7,q"), and the fact that Z(7) = e} gives
that the kernel of dG at (i'%, (f) is the one dimensional vector space Re%"il. In order to apply
Theorem B.5, let us compute the Lie brackets [Fp, F;] at &= (z",q ) foreveryi=1,...,n—1.
The first n components of [Fy, F;] at £ are given by

PH o O

21 o ) 2 )

Moreover, since ¢ (z, q) = (¢(z,9),q), H(z,¥(x,q)) = 0for any z, ¢, and Z(7) = Vpﬁ(j?lpﬂ -
e, one has g—:ﬁ(ff) = e} ;. Therefore, the first n components of the bracket [Fy, Fj] at £ cor-

respond to the (i 4 1)-th column of the Hessian of H in the p variable at (z7,p”). Since the
Hessian of H in the p variable is positive definite,

Span{F;({")|i=1,...,n—1} ={0,} x R"', and Ker (dG({")) = Rej" ",
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we easily deduce that assumption (B.14) is satisfied with N = 2n — 1.

Set £V := (29,4°), recall that ™ = (z7,77), and for every £&° = (2°,¢°) € WO (with WO
defined in (3.19)) and T € (7 —[i, 7+ ]i), consider the End-Point mapping E¢ -7 associated with
€Y in time T (see (3.21)). From Theorem B.5, there are § € (0, i) with B**~1(£°,8) c W9,
constants Ky, A,v > 0, and k := 2n—2 smooth controls u!, ..., u* : [0, +00) — R" ! satisfying

Supp(u') C [6,7 — 4] Vi=1,...,k, (3.27)
such that the following holds: set @ = 0. Then, for every €2 € R” x R*~! and T > 0 satisfying
|§0 7EO|,|T77—_| < 57 (328)

there exists a C! function

v T = (U, U B (GBS T (@) v) — BEO,A),
with Lipschitz constant bounded by Ky, such that US T (G(EfO’T(ﬁ))) =0 and

(Go Ego’T) (i Ufo’T(z)ui> =2z Vze B (G(Ego’T(ﬁ)),u).

i=1

Moreover, there exist 7, € € (0,1) such that, for any r € (0,7),€ € (0,€), and any vectors

€= (2"=1(0,2,¢°), ¢ =" =F27)4) (3.29)

satisfying (3.22) and (3.23), it holds
|7, q)) = G(ET (@) | < v.

where T := 7(2%, (20, ¢%)) and

GE"T@) = o(X(T60w )))762( @0, 02, ¢%)))
- G( ").Q ( 2,60, ¢)))
- (KT ),w, ,q0>>>)

Take r € (0,7) with 3r < § (with § as above, given by Theorem B.5), € € (0,€), and fix £°,¢
as in (3.29) and satisfying (3.22) and (3.23). From the above discussion, there exists a smooth
control u : [0, 7] — R"~! given by

k
=S U@ gy (3.30)
=1

such that .
(GoES T (u) = (&7, ¢").

By the definition of G, this gives

E€ T (w) = ((7,27),47), (3.31)
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where T is defined as
5 =T — 0, (BT (u)). (3.32)

Since the function U7 is Ky-Lipschitz and us’sT (G (EfO’T(ﬂ))) =0, we have

luller < KoNo|@af) = (X(T: (0, 0(a®,67), Q(T: (2, (2, 0) |
< KyNyy/1+C2re, (3.33)

where

NU = max{H’u,iHcl | 7 = 1, .. ,k‘} (334)

Note that, up to choosing v smaller, we can assume that Ky Ny, /1 + Cf,u < [, so that any
trajectory (Xg(-), Q¢ (+)) associated with €% = (2°,¢°) € B>~ 1(£°,8) and u given by (3.30)
is contained in W (thanks to (3.20)). Note also that

v, (BT (1)) = ¥, ((if((’f; (2%, ¥(2°,¢")), Q(T; ($°,¢(x07q0))) =0.

Hence, if we denote by K; the Lipschitz constant of the function %!t in W7 and by Kg a uniform
(as €% and T vary) local Lipschitz constant for the functions F¢ 7, thanks to (3.33) we get

T =T = | (BT ) - v (BT (@)

IN

K

BT (0) — BET (a)] (3.35)

KiKglluller < KtKEKUNUMre.

IN

Denote respectively by (z(-) = (1(),£().p() = (m1().5()) : 0.T1] = W and v =
(vl, u) :[0,T7] — R” the trajectory and the control given by Lemma 3.2. Then by (A3), (3.18)
and (3.33), we have (note that z(-), p(-) and ¢(-) are of class C*)

||11||C1 §KKUNU,/1+C£TG, (3.36)

where K is a positive constant which depends on the C?-norm of the restriction of H to W.
Moreover, our construction gives also

(v(t),2(t)y =0  Vtel[0,T7] (3.37)

(see Lemma 3.2). Now, starting from the control v, we construct the potential V' given in the
statement of Proposition 3.1. We state a general lemma which will be useful again in the proof
of Proposition 4.1, and whose proof is postponed to Appendix E.1. Let us point out that, for
the purpose of this paper, in assertion (ii) of the lemma below it would suffice to write ||71 |00
in place of ||Vi|loc. However, this slightly stronger version will be useful in the proof of [27,
Lemma 4.1] (see [27, Lemma A.1]).

Lemma 3.3. Let 7,6,r € (0,2) with 3r < 8 < 7, and let © = (1,...,7,) : [0,7] = R™ be a
function of class C*~1 with k > 2 satisfying

o(t) =0, Vte[0,0]U[T —0,7] (3.38)
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and

/ " Bu(t)dt = 0, (3.39)
0

Set Vi(t) := fot 01(8)ds fort € [0,7]. Then, there exist a universal constant K depending only
on the dimension, and a function W : R™ — R of class C*, such that the following properties
hold:

(i) Supp(W) C [6/2,7 — 6/2] x B"1(0p—1,2r/3) C R x R"7!;
(ii) |Wlce < K (%1l + Htlloo + 3] )
(iti) VW (t,0,-1) = 0(t) for every t € [0,7].
Define the function I' : [0,7] x R"~! — R" by

T(t, ) =a (T) +(0,2)  V(t,2) €[0,7] x R"L, (3.40)

where (+) is the trajectory associated to the control v constructed above. Since H is of class
C* and v of class C*~1, the curve t — z(t) is of class C¥, thus I is of class C*, too. Moreover,
since 71(0) = 0 and x1(T7) = 7, we can easily check that I' is a C* diffeomorphism from
[0,7] x R*~! into [0, 7] x R"~! which sends the cylinder [0,7] x B"~! into the “cylinder”

¢ = {o() + (0.9t € 0.77].3] < 2r/3}
and which satisfies
T2, [T Hle2 < K7, (3.41)

for some positive constant K’ depending on the C%-norm of the restriction of H to W and on
the C%-norm of v (since #(t) can be written in terms of z(t), p(t), 2(t) and p(t)). Define the
function o = (171, . ,ﬁn) : [0,7] = R™ by

T

(t) := (dU(t,0n-1))" (v (@)) vt e [0,7], (3.42)

where (dI')* denotes the adjoint of dI'. The function ¢ is C*~1; in addition, thanks to (3.37)
and (3.40), for every t € [0, 7] we have

f
171(15):0 and f)l(t):vz (ﬁ> V’L:27,TL

7

Hence ¢ satisfies both (3.38) and (3.39), so that applying Lemma 3.3 yields a function W :
R™ — R of class C* satisfying assertions (i)-(iii) of Lemma 3.3, with

C
Wil < 7H6||cl (3.43)

(as 91 = 0). Define the potential V : R® — R of class C* by

_f wW(T T (x) ifzel
Viw) = { 0 otherwise.
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Thanks to Lemma 3.3(i) we have Supp(V) C C’. Furthermore, since the mapping
WO x C1([0,7 + a],R™) x [0,7+ 7] — R"
(€% u,t) — X5 (1)
is locally Lipschitz, there exists K > 0 such that
[a(t) ~ X (56()| = |X8(0) - XE(O)] < Kluller V€ [0,77). (3.44)

(By abuse of notation, we write ¢(£°) := (2°,4(¢%)) for £ = (2°,p°).) Thanks to (3.33), this
implies that, for € sufficiently small, C’ is contained in the “cylinder” defined in (3.11):

Supp(V)cC' cC (w(fo); (2%, p°); r) ) (3.45)
Now, the gradient of V' at a point z is given by
YV (@) = (d0~ (@) VW (0 @),
so that by Lemma 3.3(iii) and (3.42) we get
VV (z(t)) = v(t) vt e [0,T7]. (3.46)
Moreover,
[Hess Voo < [FW]|_JJd20~2]_ + tess Wl [l (3.47)

Thanks to (3.31), (3.35), (3.36), (3.41), (3.42), (3.43), (3.45), (3.46), (3.47), we conclude easily
that there are 0,7, € € (0,1) small enough and K > 0 such that assertions (i)-(iv) of Proposition
3.1 hold.

It remains to show that, up to choosing K larger, assertion (v) holds. Let us compute the
differences of the actions between the two trajectories

() [0,77] 5 R™ and X°():=X(;(%p°) :[0,7] = R™

Set PO(t) := P(t; (z°,p")) for every t € [0, T]. Observe that, by (3.37) and (3.46), V = 0 along
the new trajectory z(-). Moreover, due to (3.36) and a simple Gronwall argument, we have

’x(t)—XO(t)|+|j:(t)—X0(t)’ < Kre Ytel0,T/],

for some constant K depending only on H. Hence, thanks to this estimate there exists a
constant K such that

|Ay ((2°,p°); T7) — A((2°,0°); T) — A((2%p"); 7(2°, %); 27 ) |

s T
_ /0 Ly (x(t), &(t)) dt — /0 E(X“(t),X%))dt—<P°<T>7x<Tf>—X°(T>>‘

Tf T
— /0 E(x(t),x'(t))dt—/o L(Xo(t),Xo(t))dt—<PO(T),x(Tf)—XO(T)>’

T _ — .
= L(z(t),#(t)) — L(X°(t), X°(1)) ) dt
| (Be0.a0) - (e, X))

T/
+/ L(x(t),:'c(t))dt<PO(7'),:£(Tf)X0(7')>’
T

IN

(T, L(X°(T), X°(T)),2(T) = X°(T))
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where we use Taylor’s formula at second order for L, together with an integration by part and
the fact that the Euler-Lagrange equations
d

= {VUE(XO(t),XO(t))} = V,L(XO(t), X°(t))

are satisfied for any ¢ € [0, 7]. Using now that

PYUT) = V,L(X(T), X°(T)) and L(z(t),2(t)) = (p(t),&(t))  Vte[0,T]
(since H(z°,p%) =0, and (VV(x(t)),&(t)) = 0 by (3.37) and (3.46)), we obtain

|Av ((2°,0°); T7) = A((@°,p°); T) — A((«°, p%); 7(°, p%); ) |

< [PUT),z(T) — X°T)) + /T (p(t),2(t))ydt — (P°(T),x(TT) — X°(T))| + Kr?e*
T
< [PUT),z(T) —x(Th)) + /T (PT),a(t)) dt| + /T {(p(t) — P°(T),i(t)) dt| + Kre
‘ T . T ' oy

= <PO(T),x(T) — $(Tf)> + <PO(T)7 /T z(t) dt> + /7_ <p(t) — PY(T), x(t)> dt| + Kr4e
= /T‘ (p(t) — P°(T),a(t)) dt| + Kr?e?

T
< / Ip(t) — PO(T)||é ()] dt + Rre?.

-

Now, note that by our assumptions on (z/,p’ := (a7, ¢f)) we have ’p(Tf) — PO(’T)| =
Ipf — P°(T)| < re. Moreover, (3.35) holds. Hence, since the function ¢ — p(t) is Lipschitz and
t — |&(t)] is bounded (both with bounds depending only on H), we can find K > 0 such that
(v) holds.

Remark 3.4. Let us point out that the above bound on the action can be slightly refined: indeed
(3.33) shows that

luller < KuNu|@f, ") = (XT3 (2%5°), QT (2°,5"))

)

so it is easily seen that the above proof actually gives
|Av ((2°,p°); T7) = A((2°,0°); T) — A((2°,p°); 7(2°,p%); 27) |

< K'|(@1,q") — (X(T; (2% %), Q(T; (2%, %)) ’2

for some uniform constant K’, which of course implies (v). Moreover, the above estimates hold
also with different final times: for any 7 € [0,7], t € [0,7(2!,p')] and ¢y € [0,T/] such that
z(ty), X (t; (2°,p°)) € I" := {z = (7, &) € R"}, it holds:

v —t] < K'| (#(tv), a(tv)) — (X (& (°,9°), Q(t: (°,9”))

, (3.48)

|Av (2%, p%);tv) — A((2%0%);t) = A((2°,0°); 6 2(tv))|
N 2
< K'|(@(tv), altv) = (X(t2,0°), Q(ts (2°,0%) | (3.49)
Although these two refined bounds will never be used in this paper, they will be crucial for

future applications (see [27, Propositions 2.1 and 2.2]).

22



4 Controlling the action by potentials

4.1 Statement of the result
Fix n > 2,7 € (0,1), and consider a Hamiltonian H : R™ x R” — R of class C*, with k > 2,
satisfying (H1)-(H3). Let

(z(-),p(-)) : [0,7] — R" xR
be a trajectory satisfying (A1)-(A3). We keep the same notation as the ones in Subsection 3.1.
Recall that the Poincaré mapping 7 = 7(z,p), with respect to the section II7, is defined on
an open neighborhood V° of (io,ﬁo). Our aim is to show that, given (xo = (O,QA:O),pO) with
H(2°,p°) = 0 sufficiently close to (570,150), and o € R sufficiently small, there exist a time 7'/
close to 7(2%,p%) and a potential V' : R® — R of class C*¥ whose support and C2-norm are
controlled, such that the solution

(XV(),PY()) : [0,7] — R™ x R"
of the Hamiltonian system

{i(t) = VpHy(x(t),p(t)) = VpH(x(t), p(
p(t) = =V Hy(z(t),p(t) =

starting at (XY (0), PV (0)) = (29, p¥) satisfies

(XV(T), PY(T)) = 40 o) (2°,1°)

(4.1)

and
Ay ((«°,0°); T7) = A((@°,p%); 7(2%,0°)) + 0,
where Ay is defined in (3.6) and A = Ag. We now state our result.
We recall that C((xo,po);T(zO,pO);r) denotes the “cylinder” defined in (3.11), and we
’H

define the two matrices

0°H 7T 5T) — 9 =T =T
) (g ), @)
[ 0*H _

ZT,p ) = zT,p € M,(R),
op* ( ) (apiapj( ))i,j_l n

goony

where 7 = Z(7) and p” = p(7).
Proposition 4.1. Let H : R® x R — R be a Hamiltonian of class C* with k > 2 satisfying
(H1)-(H3), and let (z(-),p(-)) : [0,7] = R™ x R" be a solution of (3.1) with H(z° p°) =0 and
satisfying (A1)-(A83). Set pj = ]3(?)1, and assume that the following property is satisfied:

O’H (=7 =7 5T O’H (=7 =7

Then there are 6,7 € (0,1) with BQ"((fo,ﬁO),S) C V0, and K > 0, such that the following
property holds: For every r € (O,f),e € (O7 1), and every ¥ = (0,2°),p° € R", o € R satisfying

2, [p° - p°| <9, (4.2)
o] < 2r?%, (4.3)
H(wo,po) =0, (4.4)

there exist a time T > 0 and a potential V : R™ — R of class C* such that:
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(i) Supp(V) C C((mo,po);r(xo,po);r) R

(i) ||V]lc2 < B2l < 2Ke;

r2

(#ii) ’Tf - T(xo,po)‘ < K|o| < 2Kr%;
(“)) QS]I:{J‘"/ (’1,’07])0) = ¢f<x07p0)($0,p0),'
(v) Ay ((2%,p°); TT) = A((2°,p°); 7(2,p")) + 0.

4.2 Proof of Proposition 4.1

Given (z° = (0,2"),p°) and o such that (4.2)-(4.4) are satisfied, we are going to look for a
function v : [0, 7] — R™ of class C*~* such that the solution to the system

{a'c(t) = VpH(x(t),p(t)
pt) = =V H(x(t),p(t)) - v(b),

starting at (20, p) satisfies
, T
(0, pT) = 6 (o0 amd [ (o0, 30)) = A1) 76 87) 5
0
In that way, if we find a function V : R® — R of class C* such that VV (x(t)) = v(t) for all
t € [0,77], then the solution (X", PV) of the Hamiltonian system (4.1) starting at (z°,p%)

satisfies (XV(Tf),PV(Tf)) = gbf(wo’p(])(ixo,po). Moreover, since HY is preserved along the
trajectory ¢t — (XY (t), PV (t)), we have Hy (XY (t), PV (t)) = 0 and we get

Ay ((2°p°);T7) = /T Ly (XY (t), XV (t)) dt
0

/T (PY(t),XV(t)) — Hy (XV(t),PY(t)) dt

- /T (PV(t), X" (t))dt
0
= A((°p");7(2°,p") + 0.

Thus assertions (iv) and (v) will be satisfied. It will remain to control the support and the
C?-norm of V. In particular, since v has to be the gradient of a function V supported in

C((xo,po);T(xomo)J), it must satisfy

| w.swya=o

For that reason, we study the control system

o(t) = VpH(x(t),p(t))
p(t) = -V, (’I(_),p(t)) - ’U(t) (4 5)
() = év(t% VpH (2(t), p(t))) '
o(t) = (p(t),VpH (x(t),p(t))).

For every (z°,p%) € VO, set
5'(550,])0) = *A(($O7p0);7'(l’07p0)). (46)



For each (22, p") € V0 and every smooth function v : [0, +00) — R™, there is a unique trajectory
(X(Umo)p())('),P&mp())('), QFIO7PO)(')7 Ez)mo7p0)(')) : [O,T(mo,po)} — R"xR" xR xR

starting at (ajo,po, 0, 5(1‘07;00)) which satisfies (4.5) for every t € [0, T(mo,po)]. For every T' > 0,
define the mapping E@ 2T COO([O,T];R") - R" xR"” x R xR by

IU 0 v v v v
BT () (X(xgvpo)(T), P oy (T), 00 o) (T), z(womo)(T)) . (4.7)

Given (2°,p°) and o € R, our aim is to find 77 > 0, together with a function v : [0, T7] — R™
of class C*°, such that

JolSa N (v) = (¢f<xo7p0)(x0,p0),0,a) , with a control on ||v||c:.
We observe that the control system (4.5) is over-determined: indeed, along any trajectory
(X 220,50y Pl gy Ol o) St oy ) Of (4:5) there holds
H (X<w0 p0) () Pl 0y (¢ )> + 0o 0y () = H(2,p") =0 Vt € [0,+00).
This means that we have at most 2n + 1 degrees of freedom in the choice of the final state

(X( oy (T PL o (TF), 000 00 (TF), S8, )(Tf)>. By (A3) and the Implicit Function

Theorem there are a bounded open nelghborhood W of the set
{@.5(0),0) | te 0.7} c R2H,
a bounded open neighborhood W of the set
{(@).5(6),0) | te .7} c R*",

and a function ¢ : W — R of class C* such that

{V(x,p,h)ew H(z,p)+9=0= p1 = ¢(z,p,9); (4.8)
V(x,q,ﬂ)EW (z,(p(x,q,2),9),9) €W and H(z,(¢(z,q,9),q)) +3 =0. '
Define the C* function ¢ : W — R™ by
U(@,q,9) = (¢(z,q,9),q).

Then, any solution of

#(t) = VpH (w(t), v(x(t),q(t),9(t))

q(t) = _vch (E(_f;)ﬂﬂ((ﬂ(t), q(t)719(t)) - @(t) (4 9)

O(t) = (u(t), VpH (x(t), ¥(x(t), q(t),9(1)))

o(t) = (P(z(t),q(t),0(1)), Vo H (2(t), ¥ (x(t),q(t),9(1)) )
generates a unique solution of (4.5), where 9(t) = (va(t),...,vn(t)):

Lemma 4.2. Let (2(-),q(-),9(-),0()) : [0,T] — W x R be a solution of (4.9) starting at
( 0 9%0,0 ) and associated with a smooth control v : [0,T] — R™. Then, the extended trajec-
tory ( (- ),p(~)719(-),a(-)) :[0,7] = W x R defined by

pi(t) = o(z(t),q(t),9(t)) Vit el0,T], (4.10)

p(t) =q(t)  Vte[0,T],
is the solution of (4.5) starting at (a:o,po, 0,0’0) and associated with the control v.
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Proof of Lemma 4.2. Tt is sufficient to show that, for every ¢t € [0,T], p1(t) is given by

oH

pl(t) = _(971‘1

Differentiating (4.10) with respect to t we get

Br(t) = (Vap(a(t), q(t), 9(1)), (1)) + (Vap(x(t), a(t), 9(1)), d(8)) + (Vor(z(t), a(t), 9(t)), O(¢))

for all t € [0,T]. Moreover, differentiating the equality H (z, (¢(z,q,7),q)) + 9 = 0 (given by
(4.8)) with respect to x, ¢ and ¥ yields

:—UQAJ‘%I
®

Veplw,q.0) = — (2w, 0(e,0,))) Vol (2, (x,0,9)),
v v,

Voplw,,9) = = (52 (0, 0(2.0,9) ) Vol (2, 0(2,0,9), (4.11)
_ -1
v19<p(x7Q77‘9) = (%(fﬂﬂl)(%% 79))) :
We conclude easily. O

As in the proof of Proposition 3.1, we apply the controllability results given in Appendix B.

Consider the following nonlinear control system in R™ x R*~! x R x R:

§.=F0(§)+zn;vin‘(§)’ (4.12)
where the C*~! vector fields Fy, F; are defined by
VpH (z,1(x,q,9)) 07?_1
Fo(6) i= v@H(x,Ow(x,q, 9)) . ()= o (x;zi(; wo) |41
(U(@,q,9), Vo H (2,%(x,q,9))) 0

for every i = 1,...,n, £ = (v,¢,9,0) € R" x R"! x R x R (with the convention egfl = 0).
Recall that ¢7 denotes the Hamiltonian flow associated with H on R™ x R™. Set

fr(xap) = (Z,ﬁ) V(I’,p) € R™ x an

and define the C' map R xR I xR*" ! xRxR = R* xR*" ! xRxR

O(t,,q,9,0) = (7 (6 (7,8), 0((7,2),0.9)) ) . 0.0+ A (7. 2),0((7, ), 4,9))3t) ) -

(Observe that the first 2n — 1 components of the map ® above coincides, up to the presence of
a dependence on o, with the map & defined in the previous section, see (3.26).) The function
® is of class C! and its differential at (0,50?,]3%, 0, 0) is invertible. Denote by ¥ = (\Ift, \i/) the
local C! inverse of ® in an open neighborhood WT of (.i"?,ﬁ%, 0, 0) (as in the previous section,
the map V¥ straightens the Hamiltonian trajectories), and define the C' mapping

G: W CR'xR" I xRxR — R"IxR*"1IxRxR
(x7q37*970') — \I]($,q,19,0).

By construction G is a submersion at £ := (z7,q" := p",0,0), and the fact that Z(7) = ef
gives that the kernel of dG at £ is the vector line Re%”“. As in the proof of Proposition 3.1,
we check that the following result holds (the proof of Lemma 4.3 is postponed to Appendix
E.2):
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Lemma 4.3. Assumption (B.14) is satisfied.

Now, restricting V° if necessary, we can assume that there is i > 0 such that, for any
starting point

(xo _ (0’500)7(]0) c WO .— {(x,q) | (gg,q/)(x,q,())) € Vo},

any time T' € (7 — i, 7 + fi), and any control v : [0,7] — R"™ of class C*° with [|v||c: < fi, we
have R
(e().q() €W Vie[0.T]

for every solution (z(t),q(t),9(t),o(t)) of (4.9) starting at £° := (2%,¢°,0,5(z% p")), where
p0 = ¢($0,q0, O) and (2, p") was defined in (4.6).
Recall that &7 = (z7,77,0,0), and for every

(¢ =(0,2"),¢°) €W, Te(7—p7+p),
denote by BT = pG@"P").T the End-Point mapping associated with £° = (xo, q, 0, 5(x0,p0))
in time T (see (4.7)). From Theorem B.5, there are § € (0, i) such that B**~1(£%,§) c VO,
constants Ky, A,v > 0, and k := 2n smooth controls v',... v* : [0, 400) — R™ such that
Supp(v') C [0,7 — 4]  Vi=1,...,k, (4.14)

and the following property is satisfied: For every €9 € R® x R"~! and T > 0 satisfying

€% —¢&°

T —7) <6 (4.15)
there is a C! function of class

Ut = (U, UET Bk (G(EvaT(@))),u) — B*(0,0),
whose Lipschitz constant is bounded by Ky, such that Us’T (G (E£O7T(77))> = 0 (we are setting
7 =0) and
0 k 0 . 0
(G o BT (Z U ’T(z)vl) =z VzeBY(G(EST®),v).
i=1

Hence, there exists 7 € (0,0/3) such that, for any r € (0,7) and any vectors
& = (= (0,),% 0,5(", 1)), € = (7650, ((0.2°),5°)),0,0) (4.16)
satisfying |o| < 2r2, it holds
~ & 0 —
’ (ﬂ' (d)ﬁxo’po) (JZO,pO)> y 07 O') — G((E§ ’T(’U))‘ = |0'| <V,
where 7(z,p) = (2,p), T := 7(2°,p"), and

GUET@) = G (Xfn o) (T, By (7,601 0y (T): S o (T))

x0,pY)

G
= G (’77', X(Omoyp0)(7—)7 15(0104)0)(7'), O7 5’(.%‘0,]90))

= (#(6fuo,m @.8")).00)
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Let 7 € (0,7),e € (0,1), and £°,¢ as in (4.16) with |o| < 2r2e. By the discussion above,
there exists a smooth control v : [0, 7] — R™ given by

k
Z ve T (i (4.17)

such that

By the definition of ®, this gives
BT () = (ﬁ(ﬂmoy,ﬁ)(xo, po)),o,a) , (4.18)

where T7 is defined by
T/ =T =0, (BT (v)).

Since the function U7 is Ky-Lipschitz and U7 (G(EfO’T(ﬁ))) = 0, arguing as in (3.33)
we have

[v][cr < KuNulel, (4.19)

where
Ny = InaX{HviHC1 | i:l,...,kj}. (4.20)

Furthermore, since ¥, (EEO’T(TL)) = 0, if K; denotes a Lipschitz constant for ¥, in VAVf, and Kg

is a uniform (as £€° and 7 vary) local Lipschitz constant for the functions EST | as in (3.35)
we get

T/ — T| < K;KpKyNy|o|. (4.21)
Denote respectively by
(z(1),p(),9(),0()) : [0,T/] — W xR and v:[0,T7/] —R"
the trajectory and the control given by Lemma 4.2. Then, there exists positive constant K,

depending only on the C2-norm of H in a neighborhood of (Z(-), (")) : [0,7] — R™ x R™, such
that

(u(t), ()| + ]% {<v(t),i(t)>}‘ < K|v|er < KKuNplo|  vie[0,T],  (4.22)

and

/0 (v(t), &(t)) dt = 0. (4.23)

Let us now show how to construct the potential V' given in the statement of Proposition 4.1
from v. We proceed as in the proof of Proposition 3.1.
Define the function I' : [0, 7] x R"~! — R" of class C* by

tTf) +(0,32) Y (t,2) €[0,7] x R"!

7

D(t,3) =z (
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and the C*~* control ¢ : [0,7] — R", with coordinates (01, ...,7,), by

7

(t) := (dU(t,0,-1))" <v (m‘)) Vte[0,7]. (4.24)

By construction ¥ (+) is given by

171(t):T7f<v (T)x(tTTf» Yt e 0,7,

so that (4.14) and (4.23) allow to apply Lemma 3.3. Set V := W o'}, with W given by
Lemma 3.3. Arguing as in the proof of Proposition 3.1, thanks to (4.18), (4.19), (4.21), (4.22),
(4.24), we conclude easily that there are 6,7, € (0,1) small, and K > 0, such that assertions
(i)-(v) of Proposition 4.1 hold.

4.3 Remarks

Let us observe that (A4), together with the assumption Z(7) = ey, is intrinsic. (Although we
will never use this fact, we think it is interesting to point this out.) Indeed, let H : R® xR™ — R
be a Hamiltonian of class C* with k > 2 and let (Z(-),(-)) : [0, 7] = R" x R™ be a solution of
(3.1) which satisfies

: 0’H , _ _ 0’H , .

#(f)=e; and det ( o (mT,pT)> + p7 det (apz(xT,pT)) £0. (4.25)

Consider a smooth diffeomorphism ® : R" — R", and let H : R® x R* — R denote the
Hamiltonian obtained from H by ®:

H(X,P):=H(® 1(X),(dg-1(x)®) (P))  V(X,P)€R" xR". (4.26)

Any Hamiltonian trajectory of H is sent via ® onto a trajectory of H, and it can be easily
checked that if

(X(), P()) = (®(z()), (do@)® ") B()) : [0,7] = R" x R" (4.27)
satisfies X(T’) = e, then

det (” (X<T),P<T))> + Py(7) det (gpg (% <T),p(f>>) #0. (4.28)

Indeed, the condition )_((?) = Z(T) = e yields that the matrix R := dz+® € M, (R) has the
form

R= ( 0 1 1]1%, ) with w € R"™' and R € M, _;(R).
n—1
Therefore, P (7) = p] and
0*H 0*H

I
7N
o
7o
—_

R E
N———
—
* %
9
*@l\;ml
—
8 %
u*\\
]l

Rl
SN—"
~_—
7N
ISE
X o
*
~~_




This shows that

det ?j;’? (X(f),ﬁ(%))) — det(R) clet(a 7"

det (2 (X(7), P(7)) ) = det(R)* det (54 (2 T,pf))
det(R') = det(R)

P1(7_—) = ﬁ‘{—a

which together with (4.25) implies (4.28).

5 Proof of Theorem 2.1

5.1 Introduction

Let H : T*M — R be a Tonelli Hamiltonian of class C* with k > 2, and let € € (0,1) be fixed.
Without loss of generality, up to adding a constant to H which does not change the dynamics,
we can assume that ¢[H]| = 0. Let L denote the Lagrangian associated to H. Our goal is to find
a potential V : M — R of class C* with |V| ¢z < ¢, together with a C* function v : M — R
and a curve v : [0,T] — M with v(0) = v(T), such that the following properties are satisfied:

(P1) Hy(z,dv(z)) <0 VzeM.

(P2) [, Lv(4(8),4(t)) dt = 0.

Indeed, if we are able to do this, then (P1) implies that c¢[Hy] < 0 (see Subsection 1.2),
while (P2) together with (1.1) yields ¢[Ly] = ¢[Hy| > 0. Therefore, by (1.2) the closed curve
I := ~([0,T)) is contained in the projected Aubry set of Hy. Now, if W : M — R is any
smooth function such that W = 0 on I', W > 0 outside T, and |W||c2 < € — ||V]|c2, then
the function v is a critical subsolution of Hy_yw = H + V — W which is strict outside I', and
we have fOT Ly_w(y(t),5(t)) dt = 0. By the description of the projected Aubry set given in
Subsection 1.2, this implies that A(Hy_y ) coincides with the periodic curve ¢ — ~y(¢), which
concludes the proof.

From now on, we assume that the Aubry set fl(H ) does not contain an equilibrium point or
a periodic orbit (otherwise, by the discussion above, the proof is trivial), and we fix € A(H)
as in the statement of the theorem. By assumption, we know that there is a critical subsolution
u: M — R and an open neighborhood V of O (Z) such that u satisfies assertions (i)-(iii) in
the statement of Theorem 2.1. We set p := du(z), and define the curve ¥ : R — M by

i) = (of (2.5))  VieR

The idea is to find a time £ > 0 such that, up to a change of coordinates, all assumptions
(A1)-(A4) hold at g := J(t) (here, (A1)-(A3) are the assumptions introduced in Subsection 3.1,
while (A4) was introduced in Proposition 4.1), so that we can apply Propositions 3.1 and 4.1 to
connect Hamiltonian trajectories by controlling the action. As we will see in Subsection 5.3, in
order to close the trajectory 4(t) using a potential small in C? topology we will need to apply
Mai Lemma D.1. Finally, in Subsection 5.5 we will show that this closed trajectory belongs to
a projected Aubry set by adding another small potential and constructing a critical viscosity
subsolution.

5.2 Preliminary steps

First of all, we claim that there is a time ¢ > 0 such that
d . - oy =
A= (¢f (2.9))) }|t:f = (du(5(),7(8)) = 0. (5.1)
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Indeed, argue by contradiction and assume that

%{“(ﬂ* (08 (2.9))) } = (au(3().50) <0 vt>o,

so that
WD) ~ (@) = u(5(T) ~u(5(0)) = [ (du(E0) 50}t < e <0 VT 21

for some positive constant co. As T is recurrent we have limy_, o fgk (du(3(1)),5(t))dt =0, a
contradiction.

Set § := 7(t), and fix 7 € (0,1) small. Then, there exist an open neighborhood Uy C V of
in M (where V is as in the statement of the theorem) with Z ¢ Uy, and a smooth diffeomorphism

95 Zuy — Bn(0,2),
such that
05(9) = (7,0n-1) and (db5(7),7(%)) = €.
Denote by IIY the hyperplane passing through the origin which is orthogonal to the vector e;
in R", let II” := 7e; 4 II°, II37 := 37e; + 119, and set
0 :=1°NB"(0,r), ] :=1"NB"(fer,r), II¥7 :=1I" N B"(37ey,r) Vr > 0.

The Hamiltonian H : T*M — R is sent, via the smooth diffeomorphism 65, onto a Hamiltonian
H of class C* on B"(0,2) x R™. Moreover, since U C V, the critical subsolution u : M — R is
sent via 65 onto the C'! function @ : B"(0,2) — R,

a(z) == u(t‘);l(z)) Vz e B"(0,2)

which solves the Hamilton-Jacobi equation®
H(z,Vu(z)) =0  Vze B"(0,2). (5.2)

Actually, the Hamiltonian H can be seen as the restriction of a Hamiltonian H defined on R™ x
R" satisfying (H1)-(H3). Moreover, assuming 7 > 0 sufficiently small (so that (df;(¥(t)),¥(t))
is sufficiently close to e} for ¢t € [t — 7,t]), we can modify 05 in such a way that the integral
trajectory of H

(z(t),p(t)) == (eg (vt =t +7)), (do, (-7 05 ") "du(F(t —E+ %))) (5.3)

satisfies (A1)-(A3) over the interval [0,7/2] (i.e., replacing 7 by 7/2, with obvious notation),
and satisfies (A1)-(A4) on [7/2,7] (i.e., replacing 0 by 7/2)°. Moreover, by choosing 7 even
smaller, we can assume that the Hamiltonian trajectory (Z(-),p(-)) is defined from [0,37] to
B™(0,2) x R", satisfies Z(37) = (37,0,,—1), and moreover the following hold'®:

Lemma 5.1. The following properties are satisfied:

8 As in Sections 3 and 4, we identify 7*(R™) with R™ x R™.

90bserve that, thanks to the uniform convexity of H in the p variable, (5.1) implies that condition (A4) holds
with a strict inequality at (7,0,—1), and then by continuity it also holds in some uniform neighborhood.

10Properties (i)-(iv) in Lemma 5.1 are immediate to check. (v) follows observing that, if 7 is small enough,
then the Poincaré map Py from I19 /o tO Py (119 /2) C (M%+tey) is bi-Lipschitz for any ¢ € [0, 37], with bi-Lipschitz
constant bounded by 2.
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(i) the Poincaré time mapping T> : H?/2 — R satisfying T>(Z(0)) = 7 and
O o) (20, Va(z") eI} V20 €N,
is well-defined, Lipschitz, and valued in (7"/2, 37_'/2);
(ii) the Poincaré mapping P defined by

P, — I
ZO — 'P(ZO) =" ((b%(z()) (207 Vﬂ(zo)))

is 2-Lipschitz;
(iii) The Poincaré time mapping Tsr : H(l)/2 — R satisfying T3 (i(S?)) =37 and
¢17q—3?(2), (z,Vi(z)) € 137 Vzc H?/Q,
is well-defined, Lipschitz, and valued in (57/2,77/2);
(iv) V20 = (0,2°) € H?M,Vr € (0,1/8), the inclusion

c((zo,w(zo));ﬁ(zo);r) C [0,7] x B""(0n_1,1/2)

holds (here the “cylinder” C((zo, Vﬂ(zo));ﬁ(zo);r) is defined analogously to (3.11));

(0) V20 = (0,5%) €119, ¥z = (0,2) € TI9, ¥t € (0, T3 (), V7 € (0,1/8):
w* (¢f? (Z,Vﬂ(z))) IS C((ZO,V’U(ZO));'F),;—(ZO);T) = z¢c B" (z0,47°/3).

Denote by K; the Ct!-norm of 4 on B"(0,2), and recall that 4 is solution of (5.2). Thanks
to the above discussion and combining Propositions 3.1 and 4.1, we can easily show that the
following holds:

Proposition 5.2. With the same notation as above, there are ,7,€ € (0,1/4) and K > 0 such
that the following property holds: For any r € (0,7),é € (0,€), 20 € 19,2 € 11, and 0 € R
satisfying
ER) (5.4)
and
|zf —P(")| < re, lo| < 12, (5.5)
there exist a time T > 0 and a potential V : R™ — R of class C* such that:
(i) Supp(V) € €( (0, Va(="); To ()i )
(ii) [Vlie= < (KvVI+K3) &
(iii) T/ = 7(a°,p%)| < (K\/1+ KZ) ré;

(iv) ¢HY (20, Va(2")) = (21, Va(z!));

32



C((0,va) ; 7_(0;r )

Figure 2: By using first Proposition 3.1 on [0, 7/2] we can add a first potential to connect the trajec-
tories, and then, by Proposition 4.1 on [7/2, 7], we can add a second potential to fit the action without
changing the starting and final point of the trajectory.

(v) AV((ZO, Vﬂ(zo));Tf) = A((zo, Via(2Y)); (29, Vﬂ(zo))) + <V11(P(zo)),zf — P(zo)> +o0.

Proof. Let us observe that, given z/ satisfying (5.5), the vectors pf := Va(z/) and p° :=
Vi(P(20)) satisfy B

|pf —po‘ < Kyré,
so that

‘(zf,pf) - (P(zo),po)‘ <\/1+4+ K2re. (5.6)

Now, if @;/2 : HT/Q — HT/Q denotes the Poincaré map going “backward” from II7 to II7/2, we

can observe that if 7 is sufficiently small (the smallness being independent of r and €) then

072 (=4, p) — 872 (P(:"),1°)| < 2y/1 + K2re.

Hence, since the trajectory given by (5.3) satisfy (A1)-(A3) over the interval [0,7/2], we can
apply Proposition 3.1 on [0,7/2] to connect (zg, Vii(2g)) to P7/? (z/,p’) in a time T/ ~7/2
with a “default” of action bounded by Kr2é2. Then, assuming € sufficiently small, since the
trajectory given by (5.3) satisfy (A1l)-(A4) over the interval [7/2,7] we apply Proposition 4.1
on [7/2,7] to “compensate” the default of action so that (v) above holds. Moreover it is easily
seen that also all the other properties are satisfied. We leave the details to the reader. O

The proposition above will be the key tool to “close” a piece of trajectory of the Aubry set
and to control the action so that (P2) is satisfied. But once this construction will be performed
(see Subsections 5.3 and 5.4 below), we will still need to modify the potential and our critical
solution in order to obtain (P1). This will be done in Subsection 5.5 below. However, in order to
be able to perform the construction of this new subsolution, we need a few preliminary results
on solutions to Hamilton-Jacobi equations which we discuss below.
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First of all, let us observe that in the construction of Gg,?,H made above we assumed
that the Hamiltonian trajectory (z(-),(+)) is defined from [0, 37] to B"(0,2) x R™ and satisfies

z(37) = (3?, 0n_1). By taking 7 > 0 sufficiently small, we can further assume that the following
holds (see [19]):

Lemma 5.3. Set Hg 37 := {z = (21,2) € R" | 21 € [0,37]}. For every potential W : R™ — R
of class C? with ||W|| ., < 1 and Supp(W) C B™(0,1), there exists a unique solution w :
B"(0,1)NHjo3: — R of the Dirichlet problem

{ H(z, Vw(z))+W(z) =0 in B"(0,1) NHjo,37, (5.7)

w=u onll.

Moreover this solution can be constructed by the method of characteristics, and is of class C'+!
on Bn<0, 1) n H[O,S‘T‘]-

To be more precise, given 2" € 119, let (z(),q()) :10,t2,) = B™(0,1) N Hjg,37) X R™ be the
(maximal) solution of the Hamiltonian system

{z(s) = VQHW(Z(S),q(s)) v H( ), q s)
q\s

i5) = VL (2(0).a8)) = VA (3(5).a(s)) — VW (<(5) (5.8)

starting at (20, Vii(2°)). (Here t., > 0 is the first time such that z(s) touches the boundary of
B"™(0,1)NHg,37).) Then we assume that the solution w : B"(0,1)N#H[g 37 — R to the Dirichlet
problem (5.7) is of class C! and is given by the method of characteristics, i.e., it satisfies

w(z( / <q ds = /0 E(z(s),é(s)) — W(z(s)) ds, Vw(z(t) = q(t).

(We refer the reader to [11, 19] for more details on the method of characteristics.) Let us recall
that the linearized Hamiltonian system along the trajectory (z(-),q(-)) is given by

{Mﬂ—a%<mwmw%@wmmmw
oq(t) = —%H(2(t),q(t))d2(t) — ganZ (2(t),q(t))dq(t) — Hess W (2(t)).

Q,

\ o

(5.9)

Moreover, @ is twice differentiable at a point 2° = 2(0) € II9 if and only if it is twice differentiable
at z(t) for some t > 0. From this fact and the Lipschitz regularity of the flow, it is not difficult
to deduce that @ is twice differentiable a.e. (with respect to the (n — 1)-dimensional Lebesgue
measure) on I19.

For every 20 = 2(0) such that @ is two times differentiable at 2° and any ¢ > 0, let R(t) :=
(Ri(t), Ra2(t)) : R™ — R™ x R™ denote the linear mapping such that R(t)(6z(0)) is the unique
solution of (5.9) starting at (§z(0), Hess @(2(0)) 62(0)). Then it can be easily checked that w
is two times differentiable along z(¢) and that its Hessian at z(t) is given by

Hess w(z(t)) = Ro(t)Ri(t)™" VYVt € [0,t,0). (5.10)
Since H is at least C? and R;(0) = I,,, we can assume without loss of generality that the matrix

R (t) is invertible and satisfies (@ is two times differentiable almost everywhere with an upper
bound on its Hessians):

1
IR~ L <5 Vi€t (5.11)

As we observed above, this preliminary discussion will be useful in Subsection 5.5.
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In the next subsections we are going to show that there is a continuous nondecreasing
function @ : [0,+00) — [0,+00), with @(0) = 0, such that the following property holds:
For every ¢ > 0 there exists a potential V : R® — R of class CF, with ||V|¢: < @(e) and
Supp(V) € B™(0,2), such that the C* potential V : M — R defined by

V(z) = { V(0y(x)) ifzeld, (5.12)

satisfies ¢[Hy| = 0, and A(Hy ) is a periodic orbit.

5.3 Closing the Aubry set
Define the function ¥ : [0, +00) x M — M by

U(t,z) = 7" (of (2, du(z))) Vze M.

By assumption, ¥ is well-defined, Lipschitz on V (here, V is as in the statement of the theorem),
and C! at the point (¢,Z) for any ¢ > 0L

Let Uz C V be a small neighborhood of z such that Uz N\Uy; = O (here Uy is the neighborhood
of § = 4(t), t > 0, defined in the previous subsection). We can suppose that there exists a
smooth diffeomorphism

0z : Uz — B"(0,1)
such that
0(Z) =0, and dbz(z)(7(t)) = ef.

Let § > 0 be as in Proposition 5.2, and set
Soi= 0 (15,) . Sy= 05" (113),),
and let 7 be the countable discrete set defined by
T = {EZ- |i21}:{t>0|ﬁ/(t):lll(t,£)€Sg}. (5.13)
(Observe that § = W(, ) is recurrent, since so is Z.) For every integer ¢ > 1, there ar

e
(0,6/2) and a Lipschitz Poincaré time mapping 7;, : Hgi — (0, +00) such that Tz, (0,,—1)
and

0; €

(T, (w), 05 (w)) € S Vwelll. (5.14)

We observe that, since u is C? at any point of OF(Z) (as observed after the statement of
Theorem 2.1), the maps 73, are C' at the point 0,,_1. Then the Poincaré mappings

w0 (U(T;, (w), 07 (w)))

are well-defined, Lipschitz, and C* at the point 0,_;. Moreover, for every i > 1 the map ®; is

1 The definition of being “C' at one point” is analogous to the definition of “C? at one point” given right
before Theorem 2.1. More precisely, let Dom(DW) C V be the set of points where ¥ is differentiable (which is
of full measure). Then its generalized differential at a point (¢,z) € [0,4+00) X V is defined as

DY(t,x) := conv ( klim DU (ts, zk) | (tk, zx) = (¢, ), (tr,xk) € Dom(D‘ll)}) ,

— 00

and we say that “¥ is C! at a point (t,z)” if DU(t,x) is a singleton. We note that the assumption of u being
C? at 7 (and so at any point of O (Z), as observe after the statement of Theorem 2.1) implies that ¥ is C! at
(t,z) for any ¢t > 0.
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Figure 3: The point g; corresponds to the ith-intersection of the curve ¥(t) = ¥(¢, Z), t > 0, with the
hypersurface Sy. Observe also that § does not belong to Sy, since by definition 5(g) = (7, 0,—1), while
05(Sg) = 113,

a bi-Lipschitz homeomorphism from II§ C R™~! onto an open neighborhood (in R™~') of
W; 1= (937 (gz)> Yi = \11(7;’1 (On_l),i‘) = \I/(fl,i‘) (515)
Set P; := D®;(0,,_1) the generalized differential of ®; at w = 0,,_1, and define'?

E; = {w e R*! | |Pi(w)| < HP1||}

The following lemma is a simple consequence of the C! regularity of ®; at 0,,_1:

Lemma 5.4. For every integer ¢ > 1 there exists r; € (0,0;) such that, for any w,w’ €
B"1(0,,_1,7;), we have

Vu>0: w €w+pE; = &;(w') € B* 1 (®;(w),2u),

Vv>0: o ¢w+2vE; = &;(w') ¢ B" ' (&;(w),v).
Proof of Lemma 5.4. Since ®; is C' at 0,,_1, it is simple to check that then any element of
D, (w) has to converge to P; as w — 0,,_1. In particular, we can find r; € (0,6;) such that

IL— B < ||Pl_1| Vw € BN (04 1,7, L € DBi(w).

Fix w,w’ in B"1(0,,_1,7;) and p > 0 such that v’ € w + uE;. By the Mean Value Inequality
applied to the function [0,1] 3 s — ®;(w + s(w’ — w)) we infer that

&;(w') — ®; < Ll —
|@5(w) — ®i(w)| < vetwn B Ly i Il —

1 _
| P [|w” — w] + m’Pz Yo Pi(w' — w)]

IN

< 2pu.

Taking r; smaller if necessary, we leave the reader to show that the second property is satisfied
as well. O

I2Note that, since Z € A(H), the curve 4 minimizes the action with fixed endpoints on any time interval. In
particular there are no conjugate points along O1 (Z), and P; is always invertible.

36



Now, given € € (0,1) fixed, set

- 2K+\/1+ K2
N = \‘MJ +1,
€

(5.16)

and let p > 3 and 1 > 0 be the numbers provided by Mai Lemma D.1 applied to the family

of ellipsoids {F;} defined above. Hence, thanks to Lemma 5.4 and the fact that the points

Wy, ..., W, € Hg/z are all distinct (since the curve ¥ is not periodic), we deduce that if 0 < 7 <

min{ry,...,7,}/p is sufficiently small, then the following properties hold (recall that V denotes
the open neighborhood of O (%) where u satisfies assertions (i) and (ii) in the statement of the
theorem):

(pl) For any w € Hgf and t € [0,T;, (w)], ¥ (t.07 " (w)) € V.
(p2) For any w,w’ € Hgf, any i € {1,...,n},

Vu>0: w €w+pE = ®;(w') € B* 1 (®;(w),2u),

Vv>0: w ¢w+2vE; = &;(w') ¢ B" ' (®;(w),v).
(p3) The sets C; defined by

Ci = U C((=°, Va(=")); Tor (2°); p7) (5.17)
20€®;(B"~1(0y,—1,pT))
are disjoint for i =1,...,n— 1.

(p4) For every i € {1,...,n}, ®; (B"~1(0,p7)) C B"~*(0,6).

Let 7 > 0 small enough to be chosen later. Since Z is recurrent and df;(z)(7(f)) = e, there
exist a time Ty > 0 such that

0, (V(T},2)) € 112,
Let us consider the set of nonnegative times
T = {te 0. T]170) € S:

that is,
T’:{O<t’1<t’2<...<tf,:T,—.}

for some integer J > 1 (actually, for 7 small, J > 7). Set
W= {wo = 0:(%), wy == 0;(Y(t))), ..., wy =05 ('_y(tf]))} ch®~Rr" 1 (5.18)

Then, by Mai Lemma D.1 applied to the ordered set W, there exist n points wy,...,w, € I°,
and radii 71,...,7, > 0, such that the following properties are satisfied:

(p5) There exist j,1 € {0,...,J} with j > [ such that @; = w; and W, = w;.
(p6) Vi€ {1,...,n— 1}, B;(i;,7;) C 119,

(p7) Vi€ {1,...,n—1}, E;(wi,7:) 0 (W {wj,wi}) = 0.

(

p8) Vi€ {1,...,n— 1}, wit1 € E;(wy,7:/N).
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Figure 4: An illustration of Mai Lemma: there exist two points w;, w;, which can be connected using
a sequence of 7 — 1 small ellipsoids E; (uii, 7:1/]\7), so that none of the points wi (k # j,1) belongs to
E; (u?i, fz) fori=1,...,m—1 (in the figure above, we just drew two of the ellipsoids E; (1212-7 ﬁ))

Fix i € {1,...,n — 1}, and observe that by (p6) |w;|,|@;+1| < p7. Thus, thanks to (p4) and
recalling the definition of P in Lemma 5.1(ii), we can set

20 = (1), 2 = P(22), 20 = Oy (Wig1), Z = P(2Y)

(see Figure 5 below). Moreover, we also set 29 := @, (i,). By Lemma 5.1(ii) and properties
(p2), (p4) and (p8) above, we have |2!| < § and

sz <20 ) < o () (), (5.19)
N 8 ) \K\1+K2

Therefore, thanks to Proposition 5.2'3, for every o; € R (to be chosen later) such that

Ti

o< (&) (i)

there exist a time Tif > 0, together with a potential V; : R® — R of class C*, such that

(5.20)

(p9) Supp(Vi) € C( (=0, Va(=0)); To(20)::/8 ).
(p10) [|Villc= < e.

(p11) [T/ — T(20)] < #:¢/8.

(p12) ¢ifi (20, Va(20)) = (5. V(%)

(p13) Ay, (20, Va()): T) = A0, Va(e?)): T (20)) + (Va(z), 5 — z) + 0.

€

K\/1+K2

13Without loss of generality, we can assume that < €, with € given by Proposition 5.2.
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Figure 5: The point 2 (resp. 27) is obtained by considering the i-th intersection of the curve t

O(t, ;) (resp. t +— ®(t,iy1)) with the hypersurface Sy. Then, we use Proposition 5.2 to connect 2
to Z;, see also Figure 2 in Subsection 5.2.

Let us now define the C* potential V : R” — R as follows: notice that, for every i =1,...,1n—1,
the open set C((z?, Vﬂ(z?));ﬂ(z?);fi/S) is contained in the set C; defined in (5.17). Hence,
thanks to (p3), all the supports Supp(V;) are disjoints. Define V : R™ — R by

V() = Vi(z) if z € Supp(V;) for some i € {1,...,n— 1},
70 otherwise,

and define V. : M — R as in (5.12). Let ¥V (t,y;) denote the projection onto M of the
Hamiltonian trajectory of Hy starting at

(5, du(y;)) = (951(wj)’du(951(wj))) = (3(t)), du(3(t}))),

- WY () = 7 (6 (9, dulyy))-

By construction, there is a sequence of positive times
O<ti<b+T{ <b<b+Tf <. <fy1<t+T]_, <i, (5.21)
such that the corresponding states
(05 (97 (&), Va (0 (2Y (¢ 3))))
in B™(0,2) x R™ are respectively given by

(21, Va(z1)), (21, Va(z1)), (23, Va(z)), (22, Va(z)),



Recalling the definition of the times ¢;, see (5.13), note that

22 = (bn(wn) = (I)n(wl) =9 (0 (:Y( ))) Oy ( (tl +1, ))

Claim 1: ¢; +t, < t;-.
Indeed, if not, since #; < t; (see (p5)) there would exist h € (0,%,) such that ¢ + ¢, =t + h,
so that

z =05 ((t; + h)) = 05(¥(h,w;)).

Let us observe that w; = 5(t}) € T2 C TI§, for all i = 1,...,7. Hence, since h € (0,%,), by
the definition of the Poincaré time mappings Tz, (see (5.14)) there exists ¢ € {1,...,n} such

that h = T;,(w;). But since z) = ®,(w;), this implies that z) belongs to the intersection

®;(I;7) N @, (I 57), which contradicts (p3).

Claim 2: The curve
t € [t]+ by, th] — (1)

never intersects the support of the potential V.
Indeed, if not, by (p9) there would exist ¢t € [tl +ty, J] and i € {1,...,7 — 1} such that

03(3(1)) € Supp(Vi) € C((=f, Va(=): To(2):74/8) € (20, Valef))s Tar (9):7/4)

By Lemma 5.1(v), this implies that there is ¢ € [t] + £,,t}] such that 6;(5(')) belongs to
B (20,7;/2) = B"(®;(w;), ;/2), which together with (p2) gives

w = ;7" (0;(7(t))) € E;(wy, 7:) NW. (5.23)

On the other hand, by the definition of W (see (5.18)) there exists j € {1,...,J} such
that w = 0z(¥ (t’)). This means that ¢’ = % + t;. Now, since t; < t,, we deduce that
U +t, <t = t; +t;, so that j # [. On the other hand, since ¢; > 0 we have t% <t <t s0
that j # j. Hence w = 6; (W(t;—)) for some j ¢ {j, 1}, which together with (5.23) contradicts (p7).

Thanks to Claims 1 and 2 above, we obtain that the Hamiltonian trajectory
[0, +00) 3t = (1), p(1)) = 67" (y;, du(y;))

goes from (y;, du(y;)) = ((t}), du(3(t}))) to (3(t; + ty), du(5(t; + t,))) on [0,1,], and then it
goes back to (yj, du(yj)) on [fn, tn +1; =1 —fn} . Hence it is closed. The aim of the next section
is to show that we can add a small potential to Hy so that this closed trajectory actually
belongs to the projected Aubry set.

5.4 Control of the action

In the previous section, given 7 > 0 small enough, we constructed a C* potential V : M — R
and a C* curve 7 : [O,tf} = M, ty=t,+t; -t — t,, made of two curves

Y1 : [0, 8] — M and 7y [ty T, + 1] —ty)) — M
given by
y(t) == (gﬁf{" (yj,du(yj))> fort € [0,4,], Yo(t) ==~ (t+t;+ 1, —1,) fort € [t ty],
and satisfying

71(0) =y5, () =72t =0, (20) =3t + 1), 12(ts) = y;.
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Our aim is to show that, if 7 > 0 is small enough, then the real numbers o; in (p13) can be
chosen in such a way that (5.20) holds and

Av (3 [0,t5]) = /0 "Le(n® ) dt+ [ Ly (). 52(0)) de = 0. (5.24)

iy

Since 79 is contained in the projected Aubry set A(H) and does not intersect the support of V'
(see Claim 2 above), we have
Av (y2: [ty t7]) = A(yzi [t t4]) = u(r2(ty)) —u(re(y) = uly;) —u(07 (). (5.25)

(Here we are using that w is a critical viscosity subsolution.) Let us now evaluate the quantity

A= /0 "Ly (0,31 (1) dt — (u(6;7 (=) — ulyy)) = Av (3 [0,£/)- (5.26)

Recalling (5.21) and (5.22) we have (recall that & = u o 9;1)

A= /Otl Ly (n (0,31 (1) dt — (u(05 (1)) ~ “(%‘))]

+?§ [ifi—s-T;f Ly (71 (t), 7 (t)) dt — (ﬂ(iz) _ u(z?))]
" nz_:l /tt:Tl Ly (n(®), 1 (®) dt - (ﬂ(Z?H) - ﬂ(zi))

By construction, the curve [0,7;] 3 ¢ — v,(t) € M does not intersect the support of V. This
shows that the first term appearing in the right hand side of the above formula equals

Bos= [ L0040 e = (uu@) —u(n(0)).

Since ¢ € [0,¢1] = (v1(¢), du(71(t)) belongs to the Aubry set A(H) and u is a critical subsolu-
tion, we deduce that Ay = 0. On the other hand, for each i € {1,...,n— 1}, the piece of curve

71|[t} +77 Eip] does not intersect the support of V. This shows that the last terms of the above

formula equal

av= [ Len@r o) - (a0 - 120),

i+T1‘,f
and since u is a critical solution along 74 C A(H) we deduce that A; = 0 as well. Finally,
thanks to (pl3), for every ¢ =1,...,n7 — 1 we have

o= L a0 ) - (a2 — D)
= A (0 VaGn)T) - (a(z) - a(:)))
= A VA T () + (Valz:), 2 - z2) + o5 — (alZ) - a())
= AP VaE)): T (0) = (a(z) — a(=)) | + [(Va(z), 2 - ) - (a(z) - a(=)) ]| + o

= 0+ [(Va(n), 2 — z) — (a(z) - ()] + 0,
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where for the last equality we used (pl) and the fact that @ is a critical solution on B™(0,2).
By (5.19) we deduce that ¢; = a; + oy, with

2
- 72 €

(Recall that K; denotes the C1''-norm of @ on B"(0,2).) Define the o;’s by
0= —q; Vi=1,...,n—1. (5.28)

(This is an admissible choice for e sufficiently small, see (5.20).) Then

6, =0 Vi=1,....,n—1, (5.29)
and we conclude that .
n—
A=Ng+ ) (6i+A:) =
i=1

as desired.

5.5 Construction of a critical subsolution

The constructions performed in Subsections 5.3 and 5.4 show that, given € € (0,1), for every
7 > 0 sufficiently small, there exist a potential V : R* — R of class C* with

V]| <& Supp(V)C u;’;fc((z?,Va(z;)));ﬁ(z?);m/s), Py y1 T,

and a periodic curve v : [0,¢] — M, such that property (P2) is satisfied (see Subsection 5.1),
where V : M — R is the C* potential given by (5.12). Moreover, by (p6) and the Lipschitz
regularity of the functions ®4,...,®, 1, we have (recall that w; = ®;(0,,—1), see (5.15))

|2) —w;| < KF Vi=1,....n—1, (5.30)

for some constant K > 0 independent of 7.

Now, it remains to construct a function v : M — R for which (P1) is satisfied. In fact,
we have still to slightly modify the potential V. Given ¢ € (0,1), we are going to show
how to build V : B*(0,2) — R of class C* with ||I~/HC2 controlled by € and Supp(V) C

U?;IC(( ,Va(z0); Tor (20); 7%/4), and a function @ : B"(0,2) — R of class C™!, so that the
following properties are satisfied:

(P1) Hy/(z,dv'(z)) <0 VzeM.

) Jy Ly (1(0),4(8)) dt = 0.
Here v/, V' : M — R are the functions defined by

/ (SL‘) ifCE§§UQ
V(@) = { a(0y(x)) if = € Uy,

and

oo [0 if o ¢ U
Vi@) = { Vi) +V(05(z)) ifzely.

This will conclude the proof of Theorem 2.1.
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In order to construct the function u, we will use the results described in Subsection 5.2: let
€€ (0,1) and i € {1,...,n — 1} be fixed. We denote by Z?(-) : [0, T37(z))] — B™(0,2) (resp.

Z?) the projection of the solution of the Hamiltonian system

Vqﬁgz(t),q(t))
VL (=(1), (1)), (5:31)

associated with H and starting at (z{, Va(2?)) (resp. (¥, Va(z?)). Let us recall that, by the
proof of Claim 2 in Subsection 5.3, the cylinder

pp—N—
K. N
N
~+ ‘o
NN
[

¢ i= C( (0, Va(e0)): Tor ()i 7i/4) = {200 + (0.2) [ € [0, Tar (1)), 2] < 7i/4].

never intersects the curve [¢] + t,, t;] St y(t).
Denote by @; : C; — R the unique solution to the Dirichlet problem

{ Hy, (2, Vai(2)) =0 inCj, (5.32)

@ =u onC/NIIO,

with V; the potential constructed in Subsection 5.3 (see Lemma 5.3). The function 4; is of
class C™! on C[. In addition, since @ is a C1! critical solution of (5.2) and V; vanishes outside

C((z?,Vﬁ(z?));%;(z?),ﬁ/S) by property (p9) in Subsection 5.3, using Lemma 5.1(v) it is
easily seen that @; coincides with @ in the annulus

A, =C \c((z?,qu(z?));m(zg);m/a).

By the discussion after Lemma 5.3, any solution (z(-),q(-)) : [0,+00) — R™ x R™ of the
Hamiltonian system

{ #(t) = VgHy, (2(t),q(t)) oH(2(1),q(t)) ) (5.33)

starting at (2%, Va(2?)) with 2% € 19, satisfies

u; (2 —a(z") = t s),z(s))yds = tizs z(s)) — Vi(z(s)) ds .
w(2(0) ~ 1) = [ {a(s). 20 ds = [ L), 2(6)) - Vile(o)) (5.3

and
Vaz(z(t)) = q(t) (5.35)

for all t > 0 such that z(t) € B"(0,1)NH[g 37]. Now, denote by Z?(-) : [0,7F] — C/ the solution
(of class C*) of the Hamiltonian system (5.33) starting at (29, Va(2?)), where T¢ € (57/2,77/2)
is the “exit time” for Z?(-) with respect to Ci, i.e., Z2(T¢) € OC; N 1137 (see Lemma 5.1(iii)).

Rl
Note that, thanks to (5.34), (5.35), properties (p9) and (p12) in Subsection 5.3, and (5.29), the
following hold:
(rl) @;(z) = u(z) for every z € A;.
(m2) Z2(t) = ZO (7} (z9) + (t - Tzf)) for every t € [Tif,Tf].
(m3) u;(Z22(t)) = u(Z2(t)) and Vi, (Z2(t)) = Vu(Z2(t)) for every t € [Tif,Tﬂ.

Furthermore, given € > 0, we can choose 7 sufficiently small so that the following holds:
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Lemma 5.5. There exists a continuous nondecreasing function wy : [0, +00) — [0, +00), satis-
fying wo(0) = 0 and independent of 1 € {1,...,m— 1} and € > 0, such that

Hai - aHCl,l(C;) < WO(E)' (536)

Proof of Lemma 5.5. For any 2° € IIY N B"~!(2?,7;/4), denote by (2(-,2°),q(-,z%) (resp.
(zi(+,2°),@(+,2%)) the solution of (5.31) (resp. (5.33)) starting at (2, Va(z?)). Since both
@ and u; are given by characteristics inside B"(0,1) NH[ 37 and |V‘71(z)| < e for every z € C/,
Gronwall’s Lemma yields a uniform constant K; > 0 such that

|(2(t,2°), Va(z(t, 2°))) — (z:(t, 2°), Va(zi(t, 2°)))|
= }(Z(t,zo),q(t,zo)) — (z(t, zo),tji(t,zo))’ < Kie, (5.37)

for every 20 € 119 N B"~1(2Y,#;/4) and t > 0 such that z(¢,2°) and z;(t, 2°) both belong to
B"™(0,1) N Hjo,37). Recalling that Ky denotes the CY!norm of @, we deduce that

|Va(z(t,2°) — Vi (z:(t,2°) ] < |[Va(zi(t, 2°) — Va(z(t, 2°))|
+|Va(z(t, 2°) — Vg (z(t,2°))|
< (Ka+1)Kqe

Since every point z € C! can be written as z;(t, 2") for some 20 € IIY N B~ 1(2Y,#;/4) and t > 0,
the above bound on V(i — @;) together with (71) implies

@ = illcrery < Kae

for some uniform constant K5 > 0. It remains to estimate the difference between Hess u and
Hess @; at any point C] where they both exist. To this aim, we recall that the Hessians of @
and %; can be recovered from the linearized Hamiltonian systems associated with H and FI\’/i
(see (5.10)).

Fix 2% € II{ N B"~1(29,#;/4) such that @ is twice differentiable at z° (this is a set of full
measure on 11}, as observed after (5.9)). Given h € R"™ with |h| = 1, and let

((52( 2% h),8q(-,2°, h)) (resp. (551'( 20 R, 6q( -, 20, h)))

denote a solution of the linearized system (5.9) along the trajectory (2( 2%, q(-, zo)) (resp.
(z:(+,2%),4(-,2"))) with W = 0 (resp. with W = V;), and starting at (h, Hess 4(2°) h). Since
HVchﬁ < e and H is of class at least C2, the linearized systems associated with W = 0 and
W =V are close to each other: by Gronwall’s Lemma there exists a nondecreasing continuous
function wy : [0,4+00) — [0, +00), with w1(0) = 0 and independent of ¢ € {1,...,7 — 1} and
e > 0, such that'4

‘(62(t,z0,h)7(5(j(t,zo,h)) — (62i(t,zo,h)76(ji(t,z0,h))| < wi(e),

as long as both z(t, 2°) and z;(t, 2°) belong to B"(0,1) N Hio,37)-

Denoting by (Ri(-,z%), Ra(-,2%)) and ((R;)1(-,2°), (Ri)2(-,2%)) the matrices associated
with the two linearized systems under consideration (see the discussion after Lemma 5.3) and
recalling (5.11), we deduce that there is a nondecreasing continuous function ws : [0, +00) —
[0, 4+00), with w2(0) = 0 and independent of ¢ € {1,...,7 — 1} and € > 0, such that

HHess u(z(t,2°)) — Hess u;(%(t, 2%)) H
= || Ra(t, 2) Ru(t,2°) 71 — (Ra)2(t, 2°)(Ri)1 (8, 2°) 71| < wale),

25 52 2 7
14 The function w1 depends on € and on a uniform modulus of continuity for %, %, and 24 on B"(0,2) x

(va(B"(0,2)}. o
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as long as both z(t, 2°) and z;(t, 2°) belong to B™(0,1) N Hig 37. We now recall that u is C?
along O (), which implies that Hess u exists and is continuous along ¢t — z(t,w;) (see (5.15)).
Hence, if K3 denotes a uniform Lipschitz constant for the flow (¢,20) — 2(t, 2°), by (5.30) we
deduce that for any z € C; there exists a time ¢, such that

|z — 2(t., w;)| < 2K, K7 (5.38)

(recall that #; < 7). In particular, since for any 20 € I{NB"~1(2?, #; /4) both curves ¢ — z(t, 2°)
and t — Z;(t, 2°) remain inside C/ (at least as long as they belong to B"™(0,1) N Hg 37]), by the
triangle inequality we deduce that
HHess (z(t, 2°)) — Hess u(z(t, 2%)) H
< 2wh(2K2 K7) + ||Hess @(Z(tz, (1,201, w;) — Hess @(Z(tz (20, 0;)|

. (5.39)

where wi is a nondecreasing modulus of continuity for Hess @ along ¢ — z(t,w;) (at least as
long as the curve remain inside B™(0,1) N Hg 37), and ¢, is as in (5.38)'°.

We now observe that, thanks to (5.37), there exists a uniform constant K5 > 0 such that
|tz (t,20) —tz(¢,20)| < K3e. Moreover, the last term in the right hand side of (5.39) can be written
in terms of the linearized system only. Hence, there exists a nondecreasing continuous function
wy : [0, +00) — [0,400), with ws(0) = 0 and independent of i € {1,...,7 — 1} and € > 0, such
that

HHeSS ﬂ(i(tii(t7Z0), wi) — Hess ﬁ(g(tg(t’zo),wi) H < wy(K3e).

Thus, by combining the above estimates together and choosing 7 sufficiently small (the smallness
may depend on €), we get
||Hess u(%(t,2°)) — Hess 4;(%(t,2°))| < ||Hess u(2(t,2%)) — Hess a(z(t,2%))||
+ |[Hess u(2(t, 2°)) — Hess u; (2;(t, 2°)) ||
2wh (2K2 KT) + wa(K3€) + woe)
2 [wa(K3€) + wa(e)].

VARVAN

Since a.e. z € C! can be written as z;(t,2°) for some t > 0 and 2° € I N B"~1(2Y, 7;/4)
belonging to a set of full measure (which is independent of t), we conclude easily. O

Thanks to (71)-(73) and the lemma above, we will see that, by adding a suitable potential
supported inside the cylinder C; N {(t7 Z)|te [7", 3?] }, we can “glue” together u; and @ so that
they coincide outside C; and the new function is a critical subsolution. Moreover the potential
that we add will vanish together with its gradient along Z?, so that the curve t — Z?(t) will
still be an extremal curve for the new Hamiltonian.

More precisely, we claim that there exist a continuous nondecreasing function w : [0, +00) —
[0, 4+00), satisfying w(0) = 0 and independent of both i € {1,...,7 — 1} and € > 0, a function
@; : C! — R of class C1!, and a potential V; : C; — R of class C*, such that the following
properties are satisfied:

(m4) Hy, (2, Vii(2)) + Vi(z) <0 for every z € C!.
(75) Supp(V;) c Cin{(t,2)|t € [7,37]}.
(76) HViHm(cg) < w(e).

(x7) @ (Z2(t)) = w; (Z2(t)) = u(Z0(t)) and Vi (Z0(t)) = Va(20(t)) = Va(Z0(t)) for all
te [T/, 17].

150bserve that wé may depend on e, since the C? regularity of u along the orbit O (Z) is a priori not uniform.
However this is not a problem since, once € has been fixed, we can choose 7 as small as desired.
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(n8) Vi(Z0(t)) = VVi(Z0(t)) = 0 for all ¢t € [T/, T¢].

3

T 2)=1u or every z = (z1, 2 " with 2z ,37/2].
(710 ) = 1;(2) f (21,2) € C} with z; € [0,37/2]

’L

) Vil

(19) @i(2) = @;(2) = a(z) for every z € A;.
) i
) i

_ / . _ _
- = (7, % i 1 ’ .
(w11 z) = u(z) for every z = (z;, 2) € C] with z; € [57/2, 37]

To construct such a potential, let us consider © : B™(0,2) — [0, 1] a smooth function such
that
O(z) =0O(z1) =1 if 2z € [0,37/2],
O(z) =0(z1) =0 if z; € [57/2,37|,

U;(2) :== O(2)u(2) + (1 — O(2))u(z) VzeC,.

Figure 6: The function @; is obtained by interpolating (using a cut-off function) between @
(the viscosity solution for H) and @; (the viscosity solution for Hy,) inside the “cylinder” C; :=
C ((z?,Vﬂ(z?)) ; Tar (z?),fl/él) Then, by adding a new potential V;, small in C? topology and sup-
ported inside C; N {z = (21, 2) | 21 € [7,37]}, we can ensure that Hy, . (2, Vii(2)) < 0 on the whole
ball B"(0,2). Since the cylinders C; are disjoint, we can repeat this construction for i =1,...,7—1 to
find @ : B"(0,2) — R and V : B"(0,2) — R so that (P1’) and (P2') hold.

By construction, @; is of class C1'! on the cylinder C!. Moreover, for every z € C! we have
Vi, (z) = (a;(2) — u(2))VO(2) + O(2)Vu(2) + (1 — O(2))Vu(z)  Vzel.

By (1), (m3) and the definition of ©, assertions (n7) and (79)-(w11) are satisfied. Moreover,
since

Supp(V;) C Ci N {zz (21,2) |21 € [0777']}’

both 1, @; are solutions of the Hamilton-Jacobi equation associated with H on the cylinder

cl:=cCn {z = (21,2) |z1 € [f,?ﬁ']},

46



SO
H(z V() <0 onCin{z=(21,8) | € [7,37/2] U [57/2,37]}.

Moreover, by the convexity of H in the p variable,
H (2,0(2)Vu;(z) + (1 - O(2))Va(z)) <0 Vz ey,
which gives
A(z, Vii(2)) < K' |u;(2) —u(z)]  on €N {z = (21,%) | 21 € [37/2,57/2] }
oH

for some uniform constant K’ > 0 depending only on 7~ and VO. Recalling (73) and (5.36),
we deduce the existence of a uniform constant K > 0 such that

|t (2) — u(2)] < K" wole) dist(z,Fi)2 on C; N {z = (21,2) | 21 € [37/2,57/2] },

where T'; := {Z?(t) |t e [Tif,Tf]} and dist(-,T;) denotes the distance function to the curve
I';. Again by (5.36) and (71), there is a uniform constant K"’ > 0 such that

|@:(2) — a(z)| < K" wole) dist(z, 8aiCl),
where 91,:C!" denotes the “lateral boundary” of C/, i.e.,
Ot Cll = {Zi(t) +(0,2) |t € [7,37], 2] = m/4}.
All in all, we have proved

_ ) 0 onC/N{z € [r,37/2] U [57/2,37]},
H(Z’vui(Z» < wo(e) min{K”dist(z,Fi)Q,K”’dist(zﬁlatcg’)Q} on C; N {21 € [37"/2,57"/2}.

Thanks to this estimate and recalling that Z? is of class C*, we easily deduce the existence of
a nondecreasing function w : [0, 4+00) — [0, +00) with w(0) = 0, and a potential V; : C; — R of
class CF, satisfying (74)-(6) and (78).

Repeating this construction for ¢ = 1,...,n — 1, since the sets C} are disjoint we obtain a
function @ : R — R of class C1!, together with a potential V : R” — R of class C* with
|V|lc2 < @(e) and Supp(V) C uy;fcg (so that Supp(V) never interstects v, see Claim 2 in
Subsection 5.3), such that both properties (P1’) and (P2’) are satisfied. This concludes the
proof of Theorem 2.1.

6 Proof of Theorem 2.4

We use the same notation as in the proof of Theorem 2.1.

6.1 Preliminary step

Recall that dim M = 2, H : T*M — R is a Tonelli Lagrangian of class C* with k > 2,
L :TM — R is its associated Lagrangian, and ¢ > 0 is fixed. As is the proof of Theorem 2.1,
we can assume that ¢[H] = 0 and that A(H) does not contain an equilibrium point or a periodic
orbit. Fix T as in the statement of the theorem. By assumption, there is a critical subsolution
u: M — R and an open neighborhood V of O (z) such that u is at least C**! on V. Define
Vo:V —=Rby

Vo(z) == —H (z, du(z)) Yz el.
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By the assumptions on u, the potential Vj is of class C*, nonnegative, and u is a critical solution
of

H(z,du(z)) + Vo(z) =0 Vee). (6.1)

Hence, by the proof of Theorem 2.1 (applied to the Hamiltonian H + Vj inside V), given 7,¢ > 0
small enough, there exist an open set U := Uy C V (here Uy is as in Subsection 5.2), a potential
V. : M — R of class C*, a function v : M — R of class C11, and a closed curve 7 : [0,¢;] — M
such that the following properties are satisfied:

(71) ||Ve|l e < €/2.

(72) Supp (Ve) CU.
(73) H(z,dv(z)) + Vo(z) = 0 for every z € M \ U.
(74) H(z,dv(z)) 4+ Vo(z) + Ve(z) < 0 for every U.

t
(@) fo" L(v(1),5(1) = Vo(v(t)) — Ve(v(t)) dt = 0.

Moreover, recalling the construction of the curve 7, it is easily seen that there is some constant
K > 0 such that the closed curve v is made of two curves

M [O,fn] — M and s: [fn,tf] — M
(see Subsection 5.4) which satisfy!'6
(76) For every t € [t,,ts], v(t) = 12(t) € A(H);
(77) dist(y1(¢),T1) < K7 for all ¢ € [0,1,,].

Here I'y := 4 ([0,%,]), where , denotes the positive time such that ¥(f,) = g, see (5.15).
Furthermore, we notice that the number 7 > 0, appearing in assertion (77) above, can be
chosen as small as we wish.

6.2 Modification of the potential and conclusion

In the previous subsection we found a potential W := Vy + V. of class C* associated with a
closed curve v : [0,tf] — M which corresponds to the Aubry set for the Hamiltonian H + W
inside V. Now, the strategy is to construct a new potential V; : M — R of class C* such that
the following properties are satisfied:

(78) ||V < €/2.

) [Villc
(79) Vi(x) < Vp(z) for every = € V.
0) v,

(71
(711) Vi(v(t)) = Vo(y(t)) for every t € [0, 7).

1(x) =0 for every x € M \ V.

16The existence of the constant K > 0 is a consequence of the following facts:
- the function (t,z) — U(t,x) = n* (¢ (z, du(z))) is well-defined and of class C! in a neighborhood of
[0, +00) x {z};
- the curve 71 is contained in the image by ¥ of a bounded interval (since, once ¢ > 0 is fixed, the number
7 is fixed and given by Mai Lemma) times a small ball (see (p6) in Subsection 5.3).

However, let us remark that, for our purposes, instead of (vii) it would suffice to know that dist (’yl (), fl) —0
as 7 — 0, which is clearly true.
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Assuming that we are able to perform such a construction, we will define the potential V' :
M — R by
V = V1 + V;

Observe that V is C*, and by (71) and (#8) it satisfies ||V||¢2 < e. Moreover, by (72)-(74) and
(79) we have

H(z,dv(z)) + V(z) < H(z,dv(z)) + Vo(z) + Ve(z) <0 Yz eV,
while the nonnegativity of V; together with (72), (#3) and (710) yields
H(z,dv(z)) + V(z) = H(z,dv(z)) = —Vy(z) <0 Voee M\V.

Finally, by (75) and (711),

| 26050) = vem) @ = [ L60.40) = ob) - V) de=o.

This shows that 7 : [0,¢;] — M is contained in the Aubry set for the new Hamiltonian Hy , and
we conclude the proof of Theorem 2.4 by adding a smooth potential W, small in C%-topology,
which vanishes on v and is strictly positive outside (see Subsection 5.1). Hence we are left with
the construction of Vi, that we perform in the next subsection.

6.3 Construction of the potential

Let us recall that the function Vy : V — R is of class C* with k& > 2, is nonnegative, and
vanishes on A(H). Hence we immediately deduce that

Vo=dVp=0 on A(H).

Since Z = 7(0) is a recurrent point of A(H) and M is two-dimensional, it is easy to show the
existence of a continuous nondecreasing function w : [0, +00) — [0, +00), with w(0) = 0, such
that

Hszo(x)Hm < w (dist(z,I')) Ve eV (6.2)

(see also Remark 6.2 below), where 'y C A(H) has been defined after (77). Then, the existence
of a potential V; : M — R of class C*, satisfying properties (78)-(711) above, follows from (77)
and from the following general lemma (whose proof is postponed to Appendix E.3) applied to
N=M,C=T1,0=V,g=Vyand A=~

[van]'

Lemma 6.1. Let N be a smooth compact Riemannian manifold without boundary of dimension
n>2, 0 C N be open, and C C O compact. Let g : O — R be a nonnegative function of class
C* with k > 2 satisfying

g=dg=0 onC, HdQQ(x)HT <w(dist(z,C)) VzeO (6.3)

for some continuous nondecreasing function w : [0,4+00) — [0, +00) with w(0) = 0. Then, for
every € > 0 there is 7 > 0 such that the following holds: Let A be a closed set satisfying

dist(z,C) <r Ve A. (6.4)
Then there exists a function h : N — R of class C* such that:
(a) 0 < h(x) < g(x) for every z € O.
(b) Supp (h) C O.
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(c) ||h||c2 <€.
(d) h(z) = g(x) for every x € A.

Remark 6.2. Let us point out that the whole argument given above, together with Lemma
6.1, holds true in arbitrary dimension, with the exception of (6.2). Indeed, the fact that z
is recurrent implies that, for every ¢ € [0,1,], there are points of A(H) which are arbitrarily
close to J(t) and “transversal” to §. In two dimension this implies that d2V, = 0 on I';, from
which (6.2) follows by continuity. On the hand, in higher dimension we can only deduce that
d?Vj is small in the “directions tangent to A(H)”. This fact creates much more difficulties,
since in order to establish the analogue of Lemma 6.1 we will need to know that the connecting
trajectories can be chosen to belong to “the tangent space to A(H)”. This delicate construction
is performed in [27].

7 Final comments

In [12], Contreras and Iturriaga proved the following: let H : T*M — R be a Hamiltonian of
class C*, k > 3, whose Aubry set is an equilibrium point (resp. a periodic orbit). Then, there
is a smooth potential V : M — R, with ||V||c+ as small as desired, such that the Aubry set of
Hy is a hyperbolic equilibrium (resp. a hyperbolic periodic orbit). In view of our results we
obtain:

Theorem 7.1. Let H : T*M — R be a Tonelli Hamiltonian of class C* with k > 3, and
fix e > 0. Assume that there are a recurrent point & € A(H), a critical viscosity subsolution
u: M — R, and an open neighborhood V of OF (E) such that one of the following properties is
satisfied:

(i) u is of class at least C* on V, Hessu(Z) is a singleton, and H (x,du(z)) = c[H] for all
z € V.

(i) dim M = 2 and u is of class C**1 on V.

Then, there exists a potential V : M — R of class C*, with ||V | c2 < €, such that c[Hy] = c[H]
and the Aubry set of Hy is either a hyperbolic equilibrium or a hyperbolic periodic orbit.

In [6] Bernard proved that if the Aubry set of a Tonelli Hamiltonian H : T*M — R of class
C*, with k > 2, is a finite union of hyperbolic periodic orbits or equilibria, then at least one
critical viscosity solution is of class C*¥ in a neighborhood of A(H). Furthermore, Contreras
and Tturriaga showed in [12] that if V is a potential of class C? such that A(Hy) is a hyperbolic
equilibrium or a hyperbolic periodic orbit, then there exists ¢ > 0 such that the same property
holds for every W : M — R with ||[W||c2 < e. Thus, thanks to Theorem 2.1, we can more or
less consider that the Mané Conjecture in C? topology for Hamiltonians of class at least C? is
equivalent to the:

Mané regularity Conjecture for viscosity solutions. For every Tonelli Hamiltonian
H : T*M — R of class C*, with k > 3, there is a set D C C*(M) which is dense in C?(M)
(with respect to the C? topology) such that the following holds: For every V € D, there are a
recurrent point & € A(H), a critical viscosity subsolution v : M — R, and an open neighbor-
hood V of O (Z) such that u is of class C? on V and satisfies H (z, du(xz)) = ¢[H] for all z € V.

By the extension to arbitrary dimension of Theorem 7.1(ii) performed in [27], the Mané
Conjecture in C? topology is also equivalent to an analogous version of the “Mané regularity
Conjecture” above, replacing smooth critical solution by smooth critical subsolution (see [27,
Section 1]).
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Let us note that, by a recent result of Fathi [22], the existence of a critical viscosity subso-
lution of class C* in a neighborhood of the projected Aubry set is equivalent to the existence of
a global critical subsolution of class C* on M. We stress that the main assumption in Theorem
2.4 is only concerned with the regularity of a critical viscosity subsolution in a neighborhood of
a positive orbit (which is not a closed set), which is a much weaker hypothesis than the existence
of a critical viscosity subsolution which is of class C* in a neighborhood of the projected Aubry
set. For instance, on a 2-torus, such an assumption is not in contradiction with Denjoy-type
obstructions for the existence of regular critical subsolutions [20, Theorem 8.1].

A

Conventions and standing notation

M is a smooth compact manifold without boundary of dimension n > 2.

We denote by T'M the tangent bundle and by 7 : TM — M the canonical projection. A
point in TM is denoted by (x,v), with € M and v € T, M = 7~ !(z). In the same way,
a point of the cotangent bundle 7*M is denoted by (x,p), with z € M and p € TXM a
linear form on the vector space T,M. The canonical projection on T*M is denoted by
7 : T*M — M. For every p € T M, (p,v) denotes the evaluation of p at v € T, M.

We suppose that g is a fixed smooth Riemannian metric on M. For v € T,, M, the norm
: 1/2 . *
x x b . x .
|v]|z is gz (v,v) We also denote by || - || the dual norm on T*M

For every integer k > 1, we denote by - or (-, ) the Euclidean scalar product, and by | - |
the Euclidean norm on R¥. We denote by B* the open unit ball and by B* the closed
unit ball in R¥. For every z € R¥ and r > 0, we set B¥(z,r) := {2/ € R* | |2/ — 2| < r}
and S¥(z,r) := {2’ € R* | |2/ — 2| = r}. Sometimes, for sake of simplicity, we denote the
ball B¥(x,r) (resp. the sphere S*(x,r)) by B(x,r) (resp. S(x,r)), or simply B, (resp.
S,) when z = 0. Given a linear mapping P : R¥ — R*  we denote by ||P|| its norm with
respect to | - |, that is || P|| := max{|P(z)| | x € B¥}.

For every k,l > 1, M ;(R) denotes the vector space of real matrices with k rows and !
columns. If k = [, we simply set My(R) = M}, ;(R). Furthermore, 0y; denotes the zero
matrix in My ;(R), 05 the zero vector in R¥, and e¥, ..., ek the canonical basis in R¥. If
there is no possible confusion, we denote the latter by ey, ..., er. For every M € My, ;(R),
M* denotes the transpose matrix in M ,(R).

For every k > 0, we denote by C¥(M) the space of functions of class C* from M to
R. Given a function F' € C*(M), we denote by d'F its derivative of order i for every
i=1,...,k, and we denote by ||F||c+ its C*-norm (computed with respect to the metric

9)-
Most of the time we work in local charts. If F':  — R! is of class C'! on the open set
Q C R*, dF(y) or %(y) denotes its Jacobian matrix (which belongs to M; ,(R)) at y € Q.

If F is real valued (i.e., I = 1), we denote by VF(y) = dF(y) € R* its gradient and by
Hess F(y) = d?F(y) its Hessian at y. If a C* function F' depends on several variables
(Y1, -y Ym)s g—j(yl, . ,ym) denotes the partial derivative of F' with respect to the y;

variable evaluated at the point (y1,...,ym)-

Given a Hamiltonian H : T*M — R of class C* (with k > 2) satisfying (H1) and (H2)
(see Subsection 1.2), we denote by ¢ the Hamiltonian flow on T* M. We recall that the
Lagrangian L : TM — R associated with H is defined by

L) = max {(p.v) — H(z.p)}.
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Therefore the Fenchel inequality is always satisfied (p,v) < L(z,v) + H(x,p). Moreover,
we have equality in the Fenchel inequality if and only if

(xap) = L(LIJ,’U)7
where £ : TM — T*M denotes the Legendre transform defined as
L
L(z,v) = (m, g(x,v)> Y (x,v) € TM.
v

Under our assumption £ is a diffeomorphism of class at least C¥~1. We denote by ¢ the
Euler-Lagrange flow of L on T'M, it is of class C¥~! and conjugated with the Hamiltonian
flow ¢H.

e Given a topological space X, we denote by C.(X) the vector space of compactly sup-
ported continuous function on X. The set P(X) denotes the space of measures on X. It
corresponds to the dual space C.(X)* . The weak-* topology over P(X) is the topology
of simple convergence, that is

pe = = /deuk—>/xfdu, v feC¥(X).

We recall that the support of a measure p is defined as the (closed) set of points x € X
such that the p-measure of every neighborhood of z is positive.

B Controllability of nonlinear control systems

B.1 Preliminaries

Given N, m > 1, let us a consider a nonlinear control system in RY of the form
E=Fop()+ ) wFi(§)  forae. t, (B.1)
i=1

where the state £(t) belongs to RY, ¢t + £(¢) is an absolutely continuous curve, the control
u(t) = (ur(t), ..., um(t)) belongs to R™, and the functions Fy, Fi,..., Fy, : Q C RY — RN are
C'-vector fields defined on an open set €. Given £ € Q and @ € L! ([0, +00); Rm), the Cauchy
problem

{ () = FulE(t) + X, w(OF (W) for ace. ¢, B2
§(0) =¢,
possesses a unique maximal solution &g ;(-) C €2 defined on a maximal interval of the form
[0,T¢ z), with Tg ; € [0,+0c]. Given { € Q and T' > 0, we denote by Ug  the set of controls
u € L'([0,400); R™) such that T' < Tg,. The set Ug 7 is an open (possibly empty) subset of
L'([0, +o00); R™).

Fix G : Q — R* a function of class C', and % a smooth control in Uz 7. Our aim is to give
sufficient conditions on Fy, F1, ..., Fy,, and G, for partial controllability of the control system

(B.1) with respect to G. ‘Roughly speaking, this amounts to showing that, for any neighborhood
Y C Mg,f of u in Ll([O,T],Rm)’ the set

{Gleeu(D) lue v}

is a neighborhood of G (fg)a(T)). Most of the results presented below cannot be found in
classical references of control theory. However, we encourage the reader to have a look at the
book [14] (see also the forthcoming book [45]) for more details about the material discussed in
the next subsections.
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B.2 Singular controls

Assume that the set is Ug 1 is nonempty. The End-Point mapping associated with € in time T
is defined as

E‘g UE,T — Q
u — £E7U(T).
Since Fy, Fi,...,F,, are of class C'!, the map EST is C1 on its domain, and its differential at

U € Ug  is given by the linear operator

dEST(a) . L'([0,T|;R™) — RN

v — (D),

where ((+) is the unique solution to the Cauchy problem

C(t) = A()C(t) + B(t)u(t) for a.e. t € [0,T),
{ {(0) =0, (B.3)

and the matrices A(t) € My (R) and B(t) € My, (R) are defined by

A(t) == dFy (£(t)) + Z a; (t)dF; (£(t)), (B.4)

B(t) :== (F1(£1)),-.., Fm(£®))) , (B.5)

with £(t) := £e,a(t). In other terms, the differential of E&T at @ corresponds to the End-Point
mapping associated with the system obtained by linearizing (B.1) along (f_, ﬁ) with initial
condition 0 at time ¢ = 0. We can also represent dE*7 () as

(dEST (a),v) == S(T) /OT SH)'B(t)v(t)dt  Yove LY0,T;R™), (B.6)

where S(-) is the solution to the Cauchy problem

S(t) = A(t)S(t),
{ S(0) = I,. (B.7)

A control © € Ug 1 is said to be singular with respect to E&T if dEE’T(ﬂ) is not surjective.

Otherwise, @ is said to be nonsingular or regular (with respect to EE’T). The concept of
singular control plays a crucial role for regularity issues (see for example [10]). Let us define
the pre-Hamiltonian Hy : RY x RY x R™ — R by

m

i=1

Adopting Hamiltonian formalism, we have the following well-known characterization of singular
controls:

Proposition B.1. A control u € Ug 1 is singular with respect to EST if and only if there exists
an absolutely continuous arc p : [0,T] — RN \ {0} such that
{ §(t) = VpHo(E(t),p(t), u(t)) (B.8)

*VgHo(f( ), p(t), u(t)

)

-
—~
o~
~

|
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for a.e. t €10,T), and
VuHo (E(t),p(t),u(t)) =0  Vtel[0,T]. (B.9)

In fact, of u € Ug  1s singular with respect to EE’T, then for every p € (Im(dEE’T»l \ {0} C
R™ \ {0}, there is an absolutely continuous arc p : [0,T] — RN \ {0}, with p(T) = p, which
satisfies (B.8) and (B.9).
Proof. 1f dEST (1) is not surjective, then there exists p € RN \ {0} such that, for any v €
Ll([O,T];Rm),

(dBST (w),v) - p = 0.
By (B.6), this can be written as

/Tﬁ*S(T)S(t)lB(t)v(t) dt=0 VovelL([0,T];R™).
0

Taking v(t) := (p*S(T)S(t)"*B(t))" (v(t) is continuous on [0, T}, so it belongs to L* ([0, T];R™)),
we deduce that

/OT ((p*S(T)S(t)—lB(t))* St = 0,
which implies
p*S(T)S(t) ™ *B(t)=0  Vte[0,T]. (B.10)
Set, for each ¢ € [0, 7],
p(t) == (S(H))" S(D)p. (B11)

By construction the arc p : [0,7] — R¥ is absolutely continuous, and by (B.10) it satisfies
(B.9). Moreover, since p # 0 and S(t) is invertible for all ¢ € [0, T], p(t) never vanishes. Finally,
noticing that 4 (S(t)=1)" = —A(t)* (S(t)~!)" for ae. t € [0,7] (see (B.7)), recalling the
definition of A(t) we conclude that p satisfies (B.8).

Conversely, let us assume that there exists some absolutely continuous arc p : [0,7] —

RN\ {0} which satisfies (B.8) and (B.9). By the discussion above this means
p(t) = —A(t)*p(t) for a.e. t € (0,77,
and _
p(t)*B(t)=0  Vte[0,T].

Setting p := p(T) # 0, for any t € [0,7] we have

p(t) = (S()7)" S(T)"p,
so that -

p*S(T)S(t)"*B(t) = 0.
This implies o -

(dEST(w),v)-p=0  Vove L'([0,T];R™)

and concludes the proof.

Let us remark that, given a control u € Ug 1 and the associated trajectory £= $ea [0, 1] —
RY, we have

VpHo(E(t),p(t), a(t) = Fo(&(t)) + B(t)u(t),
for any t € [0, T] and any continuous curve t +— p(t) € RYV. Consequently, a control 4 € Ueg 7 is
singular if and only if there exists an absolutely continuous arc p : [0, 7] — RY \ {0} such that
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e (B.8) is satisfied a.e. on [0,7],

e p(t) is orthogonal to each vector Fy (£(t)), ..., Fm(&(t)) on [0,T].

B.3 Application to partial controllability I

The characterization of singular controls given by Proposition B.1 allows to give sufficient
conditions for partial controllability of nonlinear systems. First, given G :  — R* a function
of class C', we provide a result which gives a sufficient condition for the map G o E&T to be
a submersion at . Then, in the next section we explain how it implies partial controllability.
Although all the following results hold for controls which are only L', in order to avoid technical
issues which would come from the fact that some identities hold only almost everywhere, we
will assume that the controls are continuous. This is enough for the applications we have in
mind.

We recall that, given X,Y two smooth vector fields on RY, their Lie bracket [X,Y] at a
point & € RY is defined as

[X,Y](6) = dY (§)(X(¢)) — dX (&) (Y (9)).
Moreover, we recall that S(t) is given by (B.7).

Theorem B.2. Let i € Uz zNC([0,T); R™), assume that G is a submersion at £(T) = E&T (w),
and that there exists t € [0, T] such that

Span{ [F, 71 [i ] §O) [i=1,...m}
+Span{ (ED) 1i=1,..om) |+ SOST) ' Ker (AGETD) =RV (B12)

Then the differential of the mapping G o EST cUsr — RF at @ is onto.

Proof of Theorem B.2. Since by assumption G is a submersion at £(T) = 53 (%), it suffices to
show that, if (B.12) is satisfied, then

Im(dEST (@) + Ker (dG (E(T))) = RY. (B.13)
We argue by contradiction. If (B.13) does not hold, there exists a vector p € RY \ {0} such

that
p L {Im(dBST (@) + Ker (dG(E(T))) }

Then, by Proposition B.1 there exists an absolutely continuous arc p : [0, T) — RN\ {0} with
p(T) = p which satisfies (B.8) and (B.9). In particular, by (B.9) we know that

<p(t),Fi(§_(t))>:0 vtel[0,T),i=1,...,m.
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Fix i € {1,...,m}. Differentiating the above equality and using (B.8) yields

d

0 = Z{(p(t)F(E®)) = (b0, (1)) + (p(0).dF (ED) E®) )

we obtain

p(t) L S@#)'S(T) 'Ker (dG(4(T))) vt e [0,T).
This contradicts (B.12) and concludes the proof. O
Notice that, assuming @ = 0 and that (B.12) is satisfied at final time, yields:

Corollary B.3. Ifu=0€ U 1, G is a submersion al &(T) = EST(w), and

span{ F;(€(T), [Fo, B (€(T)) | i =1,...,m} + Ker (dG(&(T))) = RY, (B.14)
then the differential of the mapping G o EST . Us 7 — R at @ =0 is onto.

B.4 Application to partial controllability II

Let us now explain how a simple application of the Inverse Function Theorem yields partial
controllability.

Theorem B.4. Let i € Us zNC([0,T;; R™), assume that G is a submersion at £(T) = E&T (a),
and that there exists t € [0, T] such that (B.12) is satisfied. Then there are A,v >0, k controls
ut,...,u in L'([0,T};R™), and a C* mapping

U=(U,....,U): B* (G(g(T)),y) — B*0,A)

such that .

(GoEé’T) <ﬂ+ZUi(z)ui> =2z Vze B* (G(E(T)),V).

i=1
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Proof of Theorem B.4. From Theorem B.2, we know that the mapping G := G o EST . Us p —
RF is a C' submersion at 4. Thus, there are k controls u', ..., u* in L’ ([0, TJ; Rm) such that

Span {{dG(u),u’) | i=1,...,k} = RF. (B.15)

Let A > 0 be such that, for every A\ € B*(0,A), the control Zle Aiu’ belongs to Ug 7. Define
F: B%(0,A) — Rk by

k
FO\) = g(a+ZAiui) VA= (As...,\) € BR(0,A).

The function F is well-defined, of class C* on B*(0, A), and satisfies F(0) = G(u) = G(£(T)).
Its differential at A = O is given by

k
(dF (0x),A) = > Ai(dG(u),u’)  VAeRF,

=0

hence it is invertible by (B.15). Set z := F(0n) = G(u) = G(4(T)) € R*. We apply the
the Inverse Function Theorem (see Theorem C.1 below) to deduce that there are v > 0 and a
function of class C!

U= (Ui,...,Uy) : B*(z,v) — B*(0,A)

such that
g(ﬂ—i—ZUi(z)ui) =z Vz e B¥(z,v).

This concludes the proof. O

B.5 Application to partial controllability ITI

The conclusion of Theorem B.4 holds as well for any initial state { and time 7" sufficiently close
to &,T. For sake of simplicity we only treat the case u = 0 (which, however, is enough for our
purposes).

Theorem B.5. If u =0 € Uz 7, G is a submersion at £(T) = E&T (@) and (B.14) is satisfied,
then there are 6 € (0,T/2), Ky, A,v > 0, and k controls u',... u* : [0,4+00) — R™ of class
C®°, such that

Supp(u) C [§,T — ] Vi=1,...,k, (B.16)
and the following property holds: For any ¢ € RN and T > 0 satisfying
le—¢|, |T-T| <5, (B.17)
there exists a C' mapping

vst =yt usT)  BE (G(Eg’T(ﬂ)),u) — B¥(0,A)

whose Lipschitz constant is bounded by Ky, such that UST (G(E‘ET(ﬂ))) = 0 and
k

(GoEST) (Z UfT(z)ul> =z Vze B* (G(Ef’T(a)), U).

i=1
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Proof of Theorem B.5. Since the set of controls w in L'([0,7];R™) which are smooth and
strictly supported in [0,7] is dense in Ll([O,T};Rm), thanks to Corollary B.3 and the ar-

gument used in the proof of Theorem B.4, there are § > 0 and k smooth controls ul,...,u” in
L'([0,T]; R™) satisfying (B.16) such that

span { (d(G o EST) (@), ') | i =1,....k} =R".

Extend the controls u!, ..., u* on [0, +00) by setting u’(t) = 0 for any ¢ € [T, 00). By continuity
of the mapping (¢,7T) — d(G o EE*T), up to choosing § > 0 smaller, we can assume that

span{(d(G o BST) (@), u') | i =1,..., k) =R,

for every pair &, T satisfying (B.17). Let A > 0 be a constant to be fixed later, and for any &, T
satisfying (B.17) define the C! function F&T : B¥(0,A) — R* by

k
F&T(N) = (Go BT (Z )\u) VA= (A1,..., ) € B5(0,A).

i=1

Since dF$7(0,,) is invertible and the function (&,7,)) + dFST(\) is continuous in a neigh-
borhood of (E,T,On) € RY x R x R", we can still restrict § and take A > 0 small enough so
that assumptions (i) and (ii) of Theorem C.1 below are satisfied for any F = F&T with &, T
satisfying (B.17). Then Theorem C.1 concludes the proof. O

C Quantitative Inverse Function Theorem

For sake of completeness, we state below the quantitative version of the Inverse Function The-
orem that we used in Appendix B. We refer the reader to [1, 45] for a proof.

Theorem C.1. Let A > 0 and F : B"(0,A) — R" be a function of class C* which satisfies the
following properties:

(i) dF(\) is nonsingular for any A € B™(0,A);
~1
(i) |DF(N) — DE(\)]| < (QHdF(O)*lH) for any A\, \' € B™(0,A).
Then there is a C function

F B”(F(O),5A||dF(0)*1|}’1) — B"(0,A)

such that F o F~' = Id on B" (F(O), 5A||dF(0)*1||*1) and F~Y o F = Id on B™(0,A). More-
over, F~1 is <2HdF(O)*1 H) -Lipschitz.

D The Mai Lemma

The Mai Lemma, which was introduced in [34] to give a new and simpler proof of the closing
lemma in C" topology, is one of the main tools in the proof of our results. Let us state it.

Let {E;};en be a countable family of ellipsoids in R¥, that is, a countable family of compact
sets in R¥ associated with a countable family of invertible linear mappings P; : R¥ — R* such
that

B ={veR" | |B) < P}
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For every y € R¥, » > 0 and i € N, we call E;-ellipsoid centered at y with radius 7 the set
defined by

Eily.r) = {y+rv|ve B} ={y [IPW -nl <rIP|}.

We note that such an ellipsoid contains the open ball B(y,r). The Mai Lemma can be stated
as follows:

Lemma D.1 (Mai Lemma). Let N > 2 be an integer. There exist a real number p > 3 and
an integer n > 0, which depend on the family {E;} and on N only, such that the following
holds: For every r > 0 and every finite set Y = {yi1,...,ys} C R* such that Y N B, contains
at least two points, there exist n points §y,..., 4y, in R* and 1 positive real numbers 71, . .. N
satisfying:

(i) there exist j,l € {1,...,J}, with j >, such that g1 = y; and g, = yi;
(ii) Vi€ {1,...,n—1}, Es(§:,7) C Bpr;
(i) Vie{l,...,n—1}, El(@“ﬂ) N (Y\{yj,yl}) =0
(iv) Vie{1,....,n =1}, §ip1 € Ei(9i,7:/N).

We refer the reader to [34] or the monograph [2] for a proof of the above result.

E Proofs of Lemmas 3.3, 4.3 and 6.1

E.1 Proof of Lemma 3.3

Let ¢ : [0,400) — [0, 1] be a function of class C*° satisfying the following properties:
(a) 6ls) =1 for s € [0, 1/3]
(b) 6(s) = 0 for s > 2/3;
(©) [¢/(s)],¢"(5)] < 20 for amy s € [0, +00).

Extend the function ¢ on R by 9(t) := 0 for t < 0 and ¢ > 7, and define the function W :
0,7] x R"! - R by

Wit z2)=¢ ('?) [/Otﬁl(s)ds—kg/ji Viyp1(t+s)ds

Since ¥ is C*~! and ¢ is smooth, it is easy to check that W is of class C*. (Actually, this
is obvious in view of the formulas (E.1) and (E.2) below.) Using (b), (3.38), (3.39), and the
fact that r < §/3, we check easily that assertion (i) holds. Moreover, thanks to (b) again and
recalling the definition of Vi, we have

V(t,2) € [0,7] x R"L

[Wloo < [|4lloo

n—1
VlnomZHmle] |

i=1
We now observe that the first partial derivatives of W at (t, 2) are given by
Br(tz) = <z>(‘ ') (1) + X0 ;"’éi+1<t+s>ds} ,

U1
g{gl/ (t, 2) = & | ( ) f() Ul dS + Zn 1 o 'Di—ﬁ—l(t + 5) ds:| (El)
+¢ (% Digp1(t+ 24),
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which combined with (a) yields (iii). Observe that 2% (¢, 2) can also be written as

n—1

ow , . 2z . . N -
7{% (t, Z) = (ZS <|7‘|> |:’l)1 (t) —+ ; <’L)i+1(t + Zi) — Uz'+1(t)>:| s (EQ)
and moreover
/ Vi1t +8)ds| < |2 [Vigilloo <7 [[Vigille  for [2] <.
0

These estimates, together with (E.1), (b), and (c), imply

1 -
1W< K | ol + 71|

where K is a universal constant depending on the dimension n only. Let us now compute the
second derivatives of W. For every (¢, %) we have

6;t‘gv(t’2) = ‘b(%)

(t) + Ez 1 Uerl(t + Zz) - Uz+1(t>
\

2562 = e ( o ) [” (t)+ 2, (Uz'+1(f+ Zi) — Uz‘+1(t))}
+¢ (B) |05 it + 21-)} ;
aifgij (t.2) = r?éf? " Ef«l; Jova(s)ds + 30 it +s) ds}
+(5ijr|12| - fiézl‘@) ( )[fo B(s)ds + 10 fo Bt + 9) ds}

+-L (@) [éivj—i-l(t + zj) + Zjvz‘+1(t + Zz)] + 5ij¢ (@) f/i_,_l(t + %),

T

where 0;; = 1if i = j, 6;; = 0 if i # j. Since by (a) ¢'('2) = 0 if |4 < 7/3, and by (b)
0] (%) =¢ (‘%‘) = ¢" (%) =0 if |2| > 2r/3, the validity of (ii) follows easily.

E.2 Proof of Lemma 4.3

Let us compute the Lie brackets [Fp, F;] at {7 = ( 4 =P ) for every i = 1,...,n.

Recalling that aH( ,]37) = 1 and that g—;‘z( T.q,0) gg( 7 ) = —1, we observe that the

first n components of [Fy, F1] at £ are given by

O @) G 0) = 9, (),
while its last component at £7 is given by
0
i (@ a0V @ )
= (ol@. 7 h>§H< L d ) - o (VG ),
— O ) — (a0 G (7 57) G0
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oH

Moreover, since 32 (z7,p7) = 0 for i = 2,...,n, as in the proof of Proposition 3.1 the first n

Opi Z
components of [Fy, F;] at £7 for i = 2,...,n are given by
PH - = W o o - 9 7 (=7 T
Tpg(‘r P )aqi71 <($ »q 30) = 6]71va($ , P )a
where for the last equality we used that 6?_{’1 (z7,77) = e (see (4.11)). Therefore the first

n components of the bracket [Fy, F;] at &7, for i = 2,...,n, correspond to the i-th column of
the Hessian of H in the p variable at (z7,p7). Finally, using again that g—g(ij,ﬁf) = 0 for
i=2,...,n, the last component of [Fy, F;] at £7 is given by

(7. a%vpﬁ(f, 7))

Allin all, the (2n+1) x (2n) matrix (F1 (f?), . F, (E%), [Fo, F1) (5*), oy [Fo, Fr] (E)) equals

0 o2 0’0 828
op7 Op10p2 0p10pn
0 0 9%H 9%*H 9*H
Op20p1 op3 Op20pn
0 0 8%H 8%H 9%H
T Opn—10p1 Opn—10p2 Opn—19pn
0 0 9*H 9*H 9*H
te OpnOp1 OpnOp2 op2
0 -1 0 0 * * * * * )
0o o . 0 * * * * *
: : *
0 O 0 -1 *
1 0 0 0 *

0 1+<ﬁ?78iplvpg> <pfadip2vpg> <ﬁfvap%vpg>

where all the partial derivatives of H are evaluated at (z7,p" ). Since Ker (dG(£7)) = Re?
we deduce that the assumption (B.14) is satisfied if and only if the matrix

L+ (07, 5=V H) (07, 5= VpH) oo o (7, 55V, H)
8*H 8*H 8 H
No— dp20p1 ap3 e 9p20pn
= 8% H 8% H 9%H
Opn—10p1 Opn_10p2 e Opn—10pn
8*H 8% H 8*H
apnapl apnap2 . e ap%

is invertible. But we observe that

1 0 e e 0
9*H 8212? 9*H 20
Op20 6] Op20pn _F
Opn—10p1  Opn_10p2 Opn—19pn D
9*H 9*H 9*H
OpnOp1 OpnOpz "7 "¢ op;,
0*H _ 0*H
= det ~ + D] det )
( op> ) h op>

which shows that (B.14) is satisfied if and only if assumption (A4) holds.
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E.3 Proof of Lemma 6.1

Since the construction is local, up to using a partition of unity we can assume for simplicity
that N = R".

Fix r > 0 such that {z|dist(xz,C) > 21r} is compactly supported inside O. We claim
that there exist a universal constant K, depending only on the dimension n, and a function
1 : R™ — [0, 1] of class C*° such that

1. ¢ =1 on {z|dist(z,C) < r};
2. ¢ =0 on {z|dist(z,C) > 21r};
3. IVl < 52, [[Hess l|oc < 72

Assume that the claim is proved, and set h := 1g. Obviously h satisfies (a), (b), and (d).
Moreover, thanks to (6.3) a Taylor expansion gives

0 < g(z) < 50r%w(10r), ||[Vg(z)| < 10rw(10r) on {z|dist(z,C) > 10r}.

Hence
0 < h < 50r2w(10r),

VAo < % 50r2w(107) 4 10r w(10r) < (50 Cy + 10) 7 w(107),

[[Hess hl|co < % 50r%w(10r) 4 2 % 107 w(107) + w(107) < (70 Cy + 1) w(10r),

and (c) follows by choosing r sufficiently small.

We are left with proving the claim. For every x € O, let us consider the family of balls
{B(z,7)}sco. By Vitaly’s Covering Theorem [15, Subsection 1.5.1] there exists a disjoint
subfamily {B(xz;,r)}jen such that

OcC U B(xj,51). (E.3)
jEN

We claim that {B(z;, 10r)};en has the finite overlapping property, i.e., there exists a con-
stant N(n), depending only on the dimension, such that any point y € R™ belongs to at most
N(n) balls. Indeed, assume that y € B(z;,10r). Then B(x;,r) € B(y, 11r). But since the balls
{B(z;,r)}jen are disjoint we have

Z |B(.%‘j,’l“)| < |B(y711T)|7
{j:yeB(x;,107)}

ie.,
#{j:y € B(z;,10r)} < 11"

Hence the finite overlapping property holds with N(n) := 11™.
Let now p : R — [0, 1] be a function of class C* with p(u) = 1 for u <1 and p(u) = 0 for

u > 2. For every j € N, set
|z ==yl
uj(z) == p ( 5 .

Observe that:
(i) u; =1 inside B(x;,5r);
(ii) u; = 0 outside B(z;, 10r).
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Define

oy 1= g uj, o= g uj.

{d(z;,C)<11r} JEN

By (ii) we have 0 = o, inside {z|dist(z,C) < r} and Supp (o,) C {z|dist(z,C) < 21r}.
Moreover (i) and (E.3) ensure that o > 1 inside O. Finally the finite overlapping property
implies that 0 < o, < 0 < N(n), [|[Vo, ||+ ||Vo|| < N(n)£, |Hess o, + |Hess || < N(n)%,
where K is a constant depending only on .

Thanks to these properties, the claim is proved by setting ¢ := o,./0.
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