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Abstract. We investigate some dynamical properties of nonlocal interaction equa-
tions. We consider sets of particles interacting pairwise via a potential W , as well as
continuum descriptions of such systems. The typical potentials we consider are repul-
sive at short distances, but attractive at long distances. The main question we consider
is whether an initially localized configuration remains localized for all times, regardless
of the number of particles or their arrangement. In particular we find sufficient con-
ditions on the potential W for the above “confinement” property to hold. We use the
framework of weak measure solutions developed in [8] to provide unified treatment of
both particle and continuum systems.
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1. Introduction

We consider a mass distribution of particles, represented by a measure µ ≥ 0, under the
effect of an even interaction potential, W . The case of finitely many particles corresponds
to purely atomic measures: µ =

∑N
i=1miδxi . A measure µ which is absolutely continuous

with respect to the Lebesgue measure represents a continuum distribution of particles.
The velocity field is given by v = −∇W ∗µ, which represents the combined contributions,
at a given particle, of the interaction with all other particles. More precisely, we consider
the continuity equation

∂µ

∂t
= div [(∇W ∗ µ)µ] x ∈ Rd , t > 0. (1.1)

The equation is typically coupled with an initial datum µ(0) = µ0.
It is known (cf. [1, 8]) that the equation (1.1) has the structure of a gradient flow of

the interaction energy functional

W[µ] :=
1
2

∫
Rd×Rd

W (x− y) dµ(x) dµ(y)

with respect to Wasserstein metric. The gradient flow structure is usually displayed via
the formula

∂µ

∂t
= div

[(
∇δW
δµ

)
µ

]
in which the symbol δW

δµ represents the formal functional derivative of W.
We shall be working with solutions for (1.1) in the sense introduced in [8] and briefly

recapped in Subsection 3.1 below. Such a concept of solution allows µ to be an atomic
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measure µ =
∑N

i=1miδxi(t), representing N particles with masses mi > 0 at location
xi(t). In this case, the PDE is equivalent to the ODE system

ẋi = −
∑
j 6=i

mj∇W (xi − xj), i = 1, . . . , N, (1.2)

on any time interval for which C1 solutions of the ODE exist. Particles collision in finite
time is not ruled out for potentials W which are attractive and ‘singular’ at the origin.
In this case the ODE system needs to be considered in a generalized sense as discussed
in Remark 2.1.

Equations of the form (1.1) arise in several physical and biological contexts, with the
choice of W depending on the phenomenon studied [2, 3, 4, 5, 6, 7, 9, 10, 16, 18, 19, 21,
25, 26, 27]. For instance, in population dynamics or collective motion of animals one is
interested in the description of the evolution of a density of individuals. Very often the
social interaction between two individuals only depends on the distance between them,
which suggests a choice of W as a radial function, i.e.

W (x) = w(|x|).

The potential W is also often chosen to be attractive in the long range (modeling the
fact that individuals want to remain in a cohesive group) and repulsive in the short range
(modeling the fact that individuals repel each other when they are too close in order to
avoid collision) [20, 21]. In the simplest situation, this means that

w′(r) ≤ 0 if r < Ra,

w′(r) ≥ 0 if r ≥ Ra,

for some threshold distance Ra. Recent numerical studies of equation (1.1) in R2 and R3

has shown that such repulsive-attractive potentials lead to the emergence of surprisingly
rich geometric structures [17, 29] in which the confinement of particles plays a role. Some
of these patterns are reminiscent from patterns observed in experiments with bacterial
colonies growing on agar plates. Many swarming systems with repulsive-attractive po-
tentials have been studied. Some of these models are discrete, some other are continuous.
Specific phase transitions, as well as, the shape of the patterns and the geometry of the
steady states have been studied [20, 19, 11, 12, 9, 17, 23, 13, 14].

When considering models where individuals both attract and repulse one another, it
is fundamental to understand whether or not the group will remain in a fixed bounded
domain for all time or if it will expand and occupy larger and larger domains. This is
the question of confinement. A potential W is said to be confining if, for any compact
domain, there exists a ball of radius R > 0 such that for all initial data supported in
the domain the solution of (1.1) remains supported in the ball of radius R for all time.
In this paper we derive sufficient condition for a potential W to be confining. Loosely
stated, our main result is the following: if there exists CW > 0 such that

w′(r) ≥ −CW for all r ≤ Ra (1.3)

and lim
r→+∞

w′(r)
√
r = +∞ (1.4)

then the potential W (x) = w(|x|) is confining. The precise result is given in Theorem
3.5. Inequality (1.3) means that the “repulsion strength” between two particles is always
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bounded above by CW . Inequality (1.4) means that the “attraction strength” between
two particles does not decay too fast as these particles get further and further apart, r−1/2

being the critical decay rate in our proof. This specific balance between the “attraction
strength” in the long range and the “repulsion strength” in the short range allows us to
prove confinement.

Note that (1.4) does not prevent the “attraction strength” to go to zero at infinity. In
this case we say that the potential is weakly attractive at infinity. On the other hand,
if the attraction strength w′(r) is greater than 4CW for r large enough we say that the
potential is strongly attractive at infinity. For potential which are strongly attractive at
infinity we are able to derive a better a priori bound on the final size of the support of the
solution than the one obtain with potentials that are only weakly attractive at infinity.
The precise result is given in Theorem 3.3.

In [8], we developed a theory of well-posedness for measure solutions to (1.1). This
theory allows to treat particle and continuum solutions at the same level. Moreover, the
explicit bounds on the continuous dependence with respect to the initial data allow to
approximate continuum solutions by particle or atomic measure solutions. Therefore, the
strategy that we follow in this work is the following: in Section 2 we derive confinement
results for the particle system (1.2) independent of the number of particles, and then, in
Section 3, we use the existence and stability theory of [8] to pass to the continuum limit
these confinement results.

Let us emphasize that (1.3)-(1.4) are the key hypotheses to obtain confinement. On
the other hand, to obtain well-posedness of measure solutions, the exact set of hypotheses
used in [8] is the following:

W (x) = W (−x) for all x ∈ Rd with W ∈ C1(Rd \ {0}) , (1.5)

W is λ–convex for some λ ≤ 0 , i.e. W (x)− λ

2
|x|2 is convex , (1.6)

There exists a constant C > 0 such that W (z) ≤ C(1 + |z|2), for all z ∈ Rd . (1.7)

Note that (1.6) implies that the potential is Lipschitz at the origin, which has to be a
local minimum if the potential W is not C1.

2. Confinement for particles

In this section we derive sufficient conditions on the potential W so that the particle
system (1.2) remains confined for all times. One should keep in mind that additional
conditions, (1.5)-(1.7), on W will be needed in next section to extrapolate these confine-
ment results to the continuum model. Consider the system of particles x1, . . . , xN ∈ Rd

the dynamics of which are described by

ẋi = −
N∑
j=1

mj ∂
0W (xi − xj) i = 1, . . . , N (2.1)

with mi’s positive and satisfying
∑N

i=1mi = 1. The notation ∂0W stands for

∂0W (x) :=

{
∇W (x) if x 6= 0
0 if x = 0.
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We will assume in this section that the potential W is radially symmetric and continuously
differentiable away from the origin:

W (x) = w(|x|) and w ∈ C1(0,∞). (2.2)

We also assume that there exists a ball of finite radius such that W is attractive outside
of this ball. Inside this ball W can be both repulsive and attractive, but its repulsive
“strength” is bounded. To be more precise we assume that there exists constants Ra > 0
and CW > 0 such that

w′(r) > 0 for all r > Ra, (2.3)

w′(r) > −CW for all 0 < r < Ra. (2.4)

Finally, since the center of mass
∑N

i=1mixi(t) is preserved by (2.1), we assume without
loss of generality that

N∑
i=1

mixi(t) = 0 for all t ≥ 0

and we define r(t) to be the radius of the cloud of particles:

r(t) = max{|x1(t)| , . . . , |xN (t)|}.

Remark 2.1. Under assumptions (2.2), (2.3), (2.4) on W , solutions of (2.1) can be
constructed as follows: as long as particles do not collide, the velocity field is continuous
and so solutions exist by Peano Theorem (even if they may not be unique). Then, even
if it is possible for particles to collide in finite time, since there is a finite number of
particles there can only be a finite number of collision times. Hence the system of ODE
has a solution in the time intervals between these collision times, while if two particles
collide at time t∗ then we assume that they stick together for t ≥ t∗ (this may not be
the only possibility for extending the solution without some assumption on W near the
origin). Then Proposition 2.2 stated below guarantees that, for any solution to the ODE
as described above, the radius r(t) of the cloud of particles grows at most linearly with
respect to time. In particular particles cannot reach infinity in finite time, which gives
global existence in time. Let us also observe that, whenever condition (1.6) is enforced, the
velocity field is one-sided Lipschitz [15], and so the solution of (2.1) is unique forward in
time (but not backward in time). We refer to [15] for a classical reference of discontinuous
dynamical systems and [22] for an application to transport equations. We note that this
remark also corrects [8, Remark 2.10], where the regularity assumptions on the velocity
fields were stated incorrectly. More precisely, [8, Remark 2.10] is true for potentials as in
(2.2) with w ∈ C2(0,∞) satisfying (2.3) and (2.4).

We now state the main results of this section, postponing all the proofs to the end of
the section.

Proposition 2.2. Suppose W satisfies (2.2), (2.3) and (2.4). For r > 2Ra define

σ(r) := inf
2r≥s≥r/2

w′(s) > 0. (2.5)

Then
d+

dt
r(t) := lim sup

h→0+

r(t+ h)− r(t)
h

≤ −σ(r(t))
6

+
2
3
CW

whenever r(t) > 2Ra.
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As a corollary we get an explicit bound for the radius of a cloud of particles evolving
under the influence of a strongly attractive potential at infinity (i.e. its attractive strength
at infinity is at least four times larger than its maximum repulsive strength).

Corollary 2.3. Suppose W satisfies (2.2), (2.3) and (2.4). If there exists R̄ such that

w′(r) ≥ 4CW for all r ≥ R̄, (2.6)

then there exists R∗ > 0 depending only r(0), R̄, Ra, and W such that r(t) ≤ R∗ for all
t ≥ 0.

The next result states that potentials which are weakly attractive at infinity (i.e. their
attractive strength goes to zero as r → +∞) can also be confining, as long as the rate
of decay at infinity of the attractive strength is not too rapid. Here w′(r) ∼ r−1/2 is the
threshold decay rate at infinity. In our proof, which is based on energetic arguments, it
is essential for the potential W to be bounded on compact sets.

Proposition 2.4. Suppose that, in addition to (2.2), (2.3) and (2.4), W satisfies

lim inf
r→0

w(r) > −∞ and lim
r→∞

w′(r)
√
r = +∞ , (2.7)

then there exists R > 0 depending only r(0) and W such that r(t) ≤ R for all t ≥ 0.

Remark 2.5. In Corollary 2.3 an explicit bound for the radius of the support of the
cloud of particles is provided. In the proof of Proposition 2.4 we also derive an explicit
bound for the radius of the support. However, for strongly attractive potential at infinity
which also satisfies lim infr→0w(r) > −∞, the bound provided by Corollary 2.3 is better
than the one provided in the proof of Proposition 2.4.

Remark 2.6. Conditions (2.2), (2.3) and (2.4) alone are not enough for confinement, and
counterexamples follow from the work by Theil [24]. On the other hand we do believe that
the conclusion of the Proposition 2.4 holds under significantly weaker assumptions on the
growth of w. In particular we conjecture that (in addition to lim infr→0w(r) > −∞) it
is enough to assume that w is increasing on [R,∞) for some R and

lim
r→+∞

w(r) = +∞.

The rest of the section is devoted to the proofs of all the above results.

Proof of Proposition 2.2 and Corollary 2.3. Since for any t ≥ 0 (even a collision time)
there exists ∆t such that on [t, t + ∆t) the ODE system has a C1 solution, it suffices
to provide the proof at t = 0, under the assumption that r0 := r(0) > 2Ra. From the
definition of r(t) we easily get

d+

dt
r2(0) = max

{i:|xi|=r0}
−2
∑
j 6=i

mj
(xi − xj) · xi
|xi − xj |

w′(|xi − xj |) . (2.8)

We can assume that the maximum is achieved for i = 1 and that x1 = |x1| e1 = r0e1. To
find a good upper bound on the right-hand side of (2.8) we compare the repulsive effects
of the nearby particles and the attractive effects of appropriately selected far-enough
particles.
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π
3 Ra

r0

r0
2

Figure 1. Sketch of the geometrical distribution of the location of particles.

Let JR be the set of indices of particles that are within the radius Ra of x1, and thus
may be pushing x1 away. Let JA = {j : xj · e1 <

r0
2 } be the indices of particles that are

“strongly attracting” x1. Let Jrest = {1, . . . , N}\(JR ∪ JA)}.
We now show that the mass of “strongly attractive” particles is greater that 1/3, which

implies in particular that the mass of repulsive particles is less than 2/3. Indeed, since
the center of mass is 0, we have that

∑N
j=1mjxj · e1 = 0, and we deduce that

r0

∑
j∈JA

mj ≥ −
∑
j∈JA

mjxj · e1 =
∑

j∈JR∪Jrest

mjxj · e1 ≥
r0

2

∑
j∈JR∪Jrest

mj .

Let mA =
∑

j∈JA
mj and mR =

∑
j∈JR

mj . It follows that

mA ≥
1
2

∑
j∈JR∪Jrest

mj =
1
2

(1−mA) . (2.9)

Hence mA ≥ 1
3 , and so mR ≤ 2

3 .
We now conclude: since x1 is the particle the furthest away from the origin, it follows

that (x1 − xj) · x1 ≥ 0, and combined with (2.8), (2.4), (2.3) and (2.5) we obtain that at
t = 0

1
2
d+

dt
r2(0) ≤ −

∑
j∈JR∪JA

mj
(x1 − xj) · x1

|x1 − xj |
w′(|x1 − xj |)

≤
∑
j∈JR

mjr0CW −
∑
j∈JA

mj cos
(π

3

)
r0σ(r0)

≤ 2
3
r0CW −

1
6
r0σ(r0) ,

where in the last two steps we have used that the maximum angle between x1 − xj for
j ∈ JA and x1 is π/3 as depicted in Figure 1. Dividing by r0 establishes the claim of
Proposition 2.2 at t = 0, which, as we remarked before, implies the claim for arbitrary
t ≥ 0.
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Now, let us show Corollary 2.3. Let r̄ be a solution of{
dr̄

dt
= −σ(r̄)

6
+

2
3
CW

r̄(0) = r0.

Since σ is a continuous function a solution exists. If the solution is nonunique, we choose
the maximal solution.

Consequently for all t ≥ 0, r(t) ≤ max{r̄(t), 2Ra}. Now, since by assumption σ(r) ≥
4CW for r ≥ R̄, we get dr̄

dt ≤ 0 whenever r̄ ≥ R̄. This implies r̄(t) ≤ max{r̄(0), R̄}, so
r(t) ≤ max{r(0), R̄ 2Ra} for t ≥ 0, as desired. �

We now turn to the proof of Proposition 2.4. Compared to the previous proof, here we
will make use of the fact that the system of ODE (2.1) is a gradient flow of the interaction
energy

W[x1, . . . , xN ] =
1
2

N∑
j=1

N∑
k=1

mjmkW (xj − xk). (2.10)

The assumption that W (x) remain bounded from below as x → 0 guarantees that the
interaction energy is finite for all time, even if collisions take place. The idea of the proof
is as follow: Note that there are no direct energetic obstacles to prevent the support of
the solution from becoming large. That is the boundedness of the interaction energy
does not prevent a particle from traveling far from the origin, as long as its mass is small.
However it turns out that for even a small particle to go far from the center of mass,
there must exist significant mass nearby. That is for the small particle to go far, there
must be particles of relatively large total mass which are “pushing” it out. However the
existence of a “large” mass far from the center of mass does violate the fact that the
energy is bounded.

Proof of Proposition 2.4. Since w(r) is increasing for r large enough, and since it
does not diverge as r → 0, it is bounded from below and we can assume without loss of
generality that w(r) ≥ 0 for all r > 0 by adding a suitable constant to w. Let

θ(r) := inf
s≥r

w′(s)
√
s.

Let r0 := r(0). We now introduce R, which we show to be an upper bound on the radius
of the support of the solution. Let R be any number such that

R ≥ 6Ra, R ≥ r0, and θ

(
R

6

)
> 65/4

√
CW ‖W‖L∞(B(0,2r0)). (2.11)

Note that it is possible to choose such an R because of (2.7). With such a choice for R
we will be able to show that if r(t) were to reach R, this would lead to the energy at time
t being larger that at time 0, violating the fact that the energy is non-increasing. The
choice of the constants involved in (2.11) will become clearer in the course of the proof.

Let us first observe that for any r > 2Ra

w(r) ≥
√
r

2
θ
(r

2

)
. (2.12)
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This follows by noting that w′(s) ≥ θ(r/2)/
√
s ≥ θ(r/2)/

√
r for all s ∈ (r/2, r) (here we

have used the fact that since r > 2Ra, θ(r/2) ≥ 0). Then integrating from r/2 to r, and
using that w(r/2) ≥ 0 leads to (2.12).

Assume that the statement of the proposition does not hold. Let t1 be the first time
at which a particle reaches the distance R from the origin. Consider the ODE system
(2.1) in which this particle is identified as x1(t1) and assume without loss of generality
that x1(t1) = |x1(t1)|e1.

We can also assume without loss of generality that there are no collisions at time t1,
that is that the ODE system has C1 solutions on the time interval (t1 −∆t, t1 + ∆t), for
∆t small enough. Indeed if there is a collision at time t1, we can always replace R by
R + ∆R. Since we have assumed that the claim of the lemma does not hold the radius
of the support will eventually reach R+ ∆R, and since there are finitely many collisions
(if any) one can choose ∆R so that there are no collisions at the first time the support
reaches R̄+ ∆R. By the choice of t1, we have that |x1(t1)| = R̄ and

1
2
d+

dt
r2(t1) = ẋ1(t1) · x1(t1) ≥ 0.

Therefore, we deduce

−
∑
j≥2

mj∇W (x1(t1)− xj(t1)) · x1(t1) ≥ 0. (2.13)

Let JR, JA, and Jrest be as in the proof of Proposition 2.2: JR = {j : xj(t1) ∈
B(x1(t1), Ra)}, JA = {j : xj(t1) · e1 < R̄

2 }, and Jrest = {1, . . . , N}\(JR ∪ JA)} with
the geometrical interpretation of Figure 1. Arguing as for (2.9) one obtains mA ≥ 1

3 .
We are now going to derive a lower bound for mR: on one hand because of (2.4) we
clearly have ∑

j∈JR

−mj∇W (x1 − xj) · e1 ≤ mRCW . (2.14)

On the other hand, since
∑

j∈Jrest
−mj∇W (x1 − xj) · e1 ≤ 0 as can be seen on Figure 1,

we have from (2.13) that∑
j∈JA

mj∇W (x1(t1)− xj(t1)) · e1 ≤
∑
j∈JR

−mj∇W (x1(t1)− xj(t1)) · e1. (2.15)

Thus combining (2.14) and (2.15), and using again the fact that the maximum angle
between x1 − xj for j ∈ JA and x1 is π/3, we obtain:

mRCW ≥
∑
j∈JA

mj∇W (x1 − xj) · e1 ≥
1
2

∑
j∈JA

mjw
′(|x1 − xj |) ≥

1

6
√

2R̄
θ

(
R̄

2

)
. (2.16)

To obtain the last inequality we have used the fact that for all R/2 ≤ s ≤ 2R, w′(s) ≥
θ(R/2)/

√
s ≥ θ(R/2)/

√
2R. The above computation gives a lower bound on the mass mR

of particles repulsing the particle the furthest away. It shows that, in order for the particle
the furthest away to be pushed even further, there must be significant mass nearby.

We now turn toward energetic arguments. Note that at time 0 the interaction energy
(2.10) satisfies

‖W‖L∞(B(0,2r0)) ≥ 2W[x1, . . . , xN ].
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On the other hand at time t1, using the positivity of W together with the fact that
R > 6Ra, we get that

2W[x1, . . . , xN ] ≥
∑
j∈JR

∑
k∈JA

mjmkW (xj − xk) ≥
mR

3
inf

r≥R/3
w(r) =

mR

3
w(R/3)

where we have used the fact that if R > 6Ra, then particles in JA are at least at a distance
R/3 from particles in JR. Since the interaction energy is a decreasing function of time,
we conclude that

‖W‖L∞(B(0,2r0)) ≥
mR

3
w(R/3) .

We now use the lower bound on mR from (2.16), and the lower bound on w(R/3) from
(2.12) (where we used r = R/3, which is possible due to the assumption that R ≥ 6Ra):

‖W‖L∞(B(0,2r0)) ≥
1
3

[
1

6
√

2RCW
θ

(
R

2

)]
√
R/3

2
θ

(
R

6

) ≥ 1
65/2CW

θ

(
R

6

)2

,

where for the last inequality we used that θ(r) is increasing. This contradicts (2.11) and
concludes the proof. �

3. Confinement for general measure solutions

In this section we use the theory developed in [8] in order to pass to the limit the
confinement results derived in the previous section for particles. We start with a short
summary of the results of [8].

3.1. Weak measure solutions. We shall briefly resume here the weak measure solution
theory for the equation (1.1) developed in [1, 8]. We shall work in the space P(Rd) of
probability measures on Rd, thus normalizing the total mass to 1. This is not restrictive
in view of the following invariance property: if µ(t) is a solution, so is Mµ(Mt) for all
M > 0. We additionally require our measure solution to belong to the metric space

P2(Rd) :=
{
µ ∈ P(Rd) :

∫
Rd

|x|2 dµ(x) < +∞
}

of probability measures with finite second moment, endowed with the 2–Wasserstein
distance dW (see [1, 28] for further details).

Definition 3.1 (Weak measure solutions). A locally absolutely continuous curve

µ : [0,+∞) 3 t 7→ P2(Rd)

is a weak measure solution to (1.1) with initial datum µ0 ∈ P2(Rd) if and only if ∂0W ∗µ
belongs to L1

loc([0,+∞);L2(µ(t))) and∫ +∞

0

∫
Rd

∂ϕ

∂t
(x, t) dµ(t)(x) dt+

∫
Rd

ϕ(x, 0) dµ0(x) =∫ +∞

0

∫
Rd×Rd

∇ϕ(x, t) · ∂0W (x− y) dµ(t)(x) dµ(t)(y) dt, (3.1)

for all test functions ϕ ∈ C∞c ([0,+∞)× Rd).
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The case of a measure µ(t) given by a finite combination of Dirac deltas centered at
xi(t), i = 1, . . . , N solving (2.1) is included in the notion of solution provided in Definition
3.1 (see [8, Remark 2.10]).

We remark that the assumption that the velocity is in L1
loc([0,+∞), L2(µ(t)) is needed

for the theory of gradient flows in spaces of probability measures to apply. In particular
under this assumption the solutions are curves of locally finite length and the right-hand
side of (3.1) is well-defined by Hölder’s inequality.

The following result is a combination of [8, Theorems 2.12 and 2.13]:

Theorem 3.2 (Existence and dW -Stability). Let W satisfy the assumptions (1.5), (1.6)
and (1.7). Then, there exists a unique weak measure solution to (1.1) in the sense of
Definition 3.1. Moreover, given two weak measure solutions µ1(t) and µ2(t), we have

dW (µ1(t), µ2(t)) ≤ e−λt dW (µ1
0, µ

2
0) (3.2)

for all t ≥ 0.

3.2. Confinement. We are now ready to state and prove the two main theorems of this
paper. As in the proof of Corollary 2.3, let us consider r̄(t) to be the maximal solution of{

dr̄

dt
= −σ(r̄)

6
+

2
3
CW

r̄(0) = r0

,

with the considerations done there.

Theorem 3.3. Assume W satisfies (1.5)–(1.7) as well as (2.2)–(2.4). Let µ0 be a com-
pactly supported probability measure with radius of support r0 > 0. Let µ(t) be the solution
to (1.1) and r(t) its radius of support, then r(t) ≤ max{r̄(t), 2Ra}. Moreover, if W also
satisfies (2.6), then r(t) ≤ R∗ for all t ≥ 0.

Remark 3.4. Of course (2.2) implies (1.5). Also, (1.6) and (2.3) imply (2.4). We choose
to write it like this in order to separate the hypotheses necessary for well-posedness of
measure solutions from the ones necessary for confinement.

Proof. We can assume without the loss of generality that µ0 has center of mass 0. Since
W is translation invariant, µ(t) remains centered at 0 for all t > 0. Let us remark that
the claims of the Theorem hold in the case of an initial data formed by a finite number
of atoms due to Proposition 2.2 and Corollary 2.3.

To show the first claim for general initial data, let us consider a sequence of particle
approximations µn(0) of µ(0) satisfying

µn(0) =
n∑
i=1

mn,i δxn,i(0), mn,i > 0,
n∑
i=1

mn,i = 1 (3.3)

|xn,i(0)| < r0 for all n and i with
n∑
i=1

mn,ixn,i = 0 (3.4)

lim
n→∞

dw(µn(0), µ(0)) = 0 (3.5)

Then, by stability of solutions given in Theorem 3.2, given any t > 0 we have

lim
n→∞

dw(µn(t), µ(t)) = 0. (3.6)
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Reasoning as in the proof of corollary 2.3 we deduce that the support of µn(t) is contained
in B̄(0,max{r̄(t), 2Ra}) for all t ≥ 0. Because of (3.6) this implies that the support of
µ(t) must also be contained in B̄(0,max{r̄(t), 2Ra}) for all t ≥ 0. The second claim
follows analogously using Corollary 2.3. �

Theorem 3.5. Assume W satisfies (1.5)–(1.7) as well as (2.2)–(2.4) together with (2.7).
Then, given a compactly supported probability measure µ0 with center of mass at x0 such
that suppµ0 ⊂ B(x0, r0), there exists R ≥ r0, depending only on r0 and W , such that the
solution µ(t) to (1.1) satisfies

suppµ(t) ⊂ B(x0, R) for all t ≥ 0.

Proof. As before we can assume that µ0 has center of mass 0, which implies that for
all times µ(t) has center of mass 0 as well. As in the proof of Theorem 3.3 we consider
a sequence of particle approximations µn(0) of µ(0) satisfying (3.3)–(3.5). Because of
Proposition 2.4 the claim of the theorem holds for each particle approximation. Therefore,
due to (3.6), it also holds for the limit µ(t). �
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