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Abstract

We study a sequence of nonlinear stochastic differential equations and show that the dis-
tributions of the solutions converge to the solution of the viscous porous medium equation
with exponent m > 1, generalizing the results of [7] and [8] which concern the case m = 2.
Furthermore we explain how to apply this result to the study of interacting particle systems.
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1 Introduction

Let V ∈ C2
c (Rd) (twice continuously differentiable with compact support) be an even positive

function with
∫
Rd V (x)dx = 1. For m > 1, we consider the following sequence of nonlinear

stochastic differential equations in Rd (which in the special case m = 2 coincides with the model
studied in [8]): 




dY ε
t = − [∇V ε ∗ (V ε ∗ uε(t))m−1

]
(Y ε

t )dt + dBt

Y ε
0 = ζ

uε(t) = Law(Y ε
t ).

(1)

Here V ε is obtained from V by the scaling

V ε(x) :=
1
εd

V (x/ε),

(Bt)t≥0 is a d-dimensional Brownian motion, and ζ is a random variable which is independent
from (Bt)t≥0 and whose distribution has a density

u0 ∈ L∞(Rd). (2)

Defining
gε(t) := V ε ∗ (V ε ∗ uε(t))m−1,

by Itô’s formula uε is a distributional solution of
{

∂tu
ε = 1

2 ∆uε + div(∇gεuε)
uε(0, ·) = u0.

(3)
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We will show that uε converges, as ε → 0, to the solution u of the viscous porous medium
equation {

∂tu = 1
2 ∆u + m−1

m ∆(um)
u(0, ·) = u0.

In the case m = 2 the proof of existence and uniqueness of a strong solution of (1) can be
found in [12, Chapter I, Theorem 1.1], and that proof can be easily generalized to arbitrary
m ≥ 2 thanks to the Lipschitz continuity of the function s 7→ sm−1. In the case 1 < m < 2 we
will prove existence of a strong solution in Section 2.2 using an approximation argument (see
Proposition 2.8).

The importance of this convergence result comes from the fact that the nonlinear stochastic
differential equation (1) arises in the study of large interacting particle systems, and by the
above convergence one can prove a propagation of chaos result, see Section 2.

1.1 Notations and statement of the main result

Let M(Rd) be the the space of probability measures on Rd, equipped with the metric

d(µ, ν) := sup
f∈BL

∣∣∣∣
∫

Rd

f(x)µ(dx)−
∫

Rd

f(x)ν(dx)
∣∣∣∣ ,

where BL is the set of all Lipschitz continuous functions on Rd which are bounded together
with their Lipschitz constant by 1. It is well known (see for example [5]) that d metrizes the
weak convergence in M(Rd) (that is, the convergence in the duality with bounded countinuous
functions).

Definition 1.1. A weak solution of the viscous porous medium equation
{

∂tu = 1
2 ∆u + m−1

m ∆(um)
u(0, ·) = u0

(4)

on the time interval [0, T ] with initial datum u0 is a measure-valued function u ∈ C([0, T ],M(Rd))
with the following properties:

1. For almost every t ∈ [0, T ] the measure u(t) has a density with respect to Lebesgue measure
(which we still denote by u(t)), and u ∈ Lm(Rd × [0, T ]).

2. For all f ∈ C2
b (Rd) and all t ∈ [0, T ]:

∫

Rd

f(x)u(t, x)dx =
∫

Rd

f(x)u0(x)dx +
1
2

∫ t

0

∫

Rd

∆f(x)u(s, x)dxds

+
m− 1

m

∫ t

0

∫

Rd

∆f(x)u(s, x)mdxds.

As we will see in the sequel, thanks to the assumption u0 ∈ L∞(Rd) all weak solutions of
the viscous porous medium equation belong to Lm+1(Rd × [0, T ]) (and not only to Lm(Rd ×
[0, T ])), and therefore are unique (see Propositions 3.9 and 3.10). One so obtains the following
convergence result (whose proof is given to Section 3):
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Theorem 1.2. The sequence (uε)ε>0 converges in C([0, T ],M(Rd)) to the unique weak solution
u∞ of the viscous porous medium equation with initial datum u0.

Remark 1.3. In the case m = 2 a similar result was proved by Oelschläger [7], but only under
the very restrictive assumption u0 ∈ C∞b (Rd). The second author [8] generalized Oelschläger’s
result to the case u0 ∈ L2(Rd), but only in the case m = 2.

2 Application to interacting particle systems

Our result is of crucial importance in the study of systems of interacting diffusions related to
the porous medium equation

∂tu =
m− 1

m
∆(um).

The classical application of this equation concerns the density of an ideal gas flowing through a
homogeneous porous medium (see [13, Chapter 1.9] or [14, Chapter 2.1]). Let u be the density
of the gas, v its velocity and p the pressure. Then we have the following physical laws:

1. Conservation of mass: ∂t(εu) + div(uv) = 0
2. Equation of state: p ∝ uγ

3. Darcy’s law: v ∝ −∇p

Here ε ∈ (0, 1) is the porosity of the medium (which is constant because we are dealing with a
homogeneous medium), and γ the polytropic exponent. Combining these equations we see that
(up to a positive constant factor that can be scaled away)

∂tu =
γ

γ + 1
∆(uγ+1),

so that the density of the gas satisfies the porous medium equation with m = γ + 1. For an
introduction to flows in porous media we refer to [13], and for the mathematical theory and
other applications of the porous medium equation to [14].

We have given a physical derivation of the porous medium equation based on the hypotheses
of continuum mechanics. But strictly speaking, a gas is not a continuum, but consists of atoms
and molecules. It is therefore desirable to find rigorous connections between this microscale and
the macroscale. Knowing that on the macroscale the behaviour of the gas is described by the
porous medium equation, our goal is to find a microscopic model which allows us, when the
number of particles tends to infinity, to derive the porous medium equation as limit equation.

In the special case m = 2 this problem was solved by the second author in [9], and the
question arose whether his approach could be adapted to treat more general values of m. As we
will see in the sequel this is indeed possible.

We will distinguish two cases: the easier case m ≥ 2 and the more complicated case 1 <
m < 2.
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2.1 The case m ≥ 2

We consider the following system of interacting diffusions in Rd (which in the special case m = 2
coincides with the model studied in [9]):





dXN,n,i,ε,δ
t = −

[∫

Rd

∇V ε(y)
{ 1

N

N∑

j=1

V ε(XN,i,ε,δ
t − y −XN,j,ε,δ

t )
}m−1

dy

]
dt

+ δdBi
t

XN,i,ε,δ
0 = ζi.

(5)

Here (Bi)i∈N is a sequence of independent standard Brownian motions, and (ζi)i∈N is a sequence
of independent and identically distributed random variables, independent of the Brownian mo-
tions and whose distributions have density u0 with respect to Lebesgue measure.

The particle system (5) depends on three parameters: N ∈ N, ε > 0 and δ > 0. N is the
number of particles, ε measures the range of interaction, and δ measures the strength of the
additional diffusion caused by the Brownian motions.

Let M be a fixed natural number, and let PN,M,ε,δ
t be the joint distribution on RMd of the ran-

dom variables XN,i,ε,δ
t , i = 1, . . . , M . Moreover let u ∈ C([0, T ],

L1(Rd))∩L∞([0, T ], L∞(Rd)) be the unique weak solution of the Cauchy problem for the porous
medium equation {

∂tu = m−1
m ∆(um)

u(0, ·) = u0

(see [4], [2], [14]) and denote by Pt the measure on Rd with density u(t, ·). Then we have the
following theorem:

Theorem 2.1 (Propagation of chaos for m ≥ 2).

lim
δ→0

lim
ε→0

lim
N→∞

PN,M,ε,δ
t = P⊗M

t , (6)

locally uniformly in t.

This result has the following consequences:

Corollary 2.2.

1. The empirical measure µN,ε,δ
t = 1

N

∑N
i=1 δ

XN,i,ε,δ
t

of the particle system converges weakly to
Pt.

2. The distribution of the position of each particle also converges to Pt.

3. Any fixed number of particles remains approximately independent in the course of time, in
spite of the interaction.

Proof. The second and the third statement follow immediately from Theorem 2.1. The first
statement follows from Theorem 2.1 and the general fact (see [12, Chapter I.2, Proposition 2.2])
that propagation of chaos is equivalent to weak convergence of the empirical measure to a
deterministic measure.
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Proof of Theorem 2.1. As intermediate objects between the particle system (5) and the porous
medium equation we introduce nonlinear processes Y i,ε,δ (i ∈ N, ε, δ > 0) defined as solutions
of the following nonlinear stochastic differential equations:





dY i,ε,δ
t = − [∇V ε ∗ (V ε ∗ uε,δ(t))m−1

]
(Y i,ε,δ

t )dt + δdBi
t,

Y i,ε,δ
0 = ζi

uε,δ(t) = Law(Y i,ε,δ
t ).

(7)

These are (up to the factor δ in front of the Brownian motions) independent copies of our
process Y ε

t defined in (1). In a first step we show that XN,i,ε,δ
t converges (for N →∞) to Y i,ε,δ

t

(the proof of the following result is postponed to the Appendix):

Proposition 2.3.

E
[

sup
0≤t≤T

∣∣∣XN,i,ε,δ
t − Y i,ε,δ

t

∣∣∣
2
]
≤ C(ε)

N
,

where the dependence of C(ε) on ε is made explicit in the proof.

By the above proposition, we easily have the convergence

lim
N→∞

PN,m,ε,δ
t = (P ε,δ

t )⊗m,

where P ε,δ
t = uε,δ is the law of Y i,ε,δ

t .
Then, Theorem 1.2 implies that the distribution of Y i,ε,δ

t converges (for ε → 0) to the solution
uδ of the viscous porous medium equation (with viscosity δ2/2)

{
∂tu

δ = δ2

2 ∆uδ + m−1
m ∆

(
(uδ)m

)
uδ(0, ·) = u0,

so that
lim
ε→0

lim
N→∞

PN,M,ε,δ
t = (P δ

t )⊗M ,

P δ
t being the measure with density uδ(t, ·). Finally, a result of Bénilan and Crandall [2] implies

that uδ converges in L∞([0, T ], L1(Rd)) to the solution u of the porous medium equation as
δ → 0, from which (6) follows.

2.2 The case 1 < m < 2

This case is more difficult since the function s 7→ sm−1 is not locally Lipschitz continuous. We
therefore replace it with a Lipschitz continuous approximation ϕn (i.e. (ϕn)n∈N is a sequence of
non-negative Lipschitz continuous functions that converges uniformly to the function s 7→ sm−1)
and study the following system:





dXN,n,i,ε,δ
t = −

[∫

Rd

∇V ε(y) ϕn

( 1
N

N∑

j=1

V ε(XN,n,i,ε,δ
t − y −XN,n,j,ε,δ

t )
)
dy

]
dt

+ δdBi
t

XN,n,i,ε,δ
0 = ζi.

(8)
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As before let M be a fixed natural number, and let PN,M,n,ε,δ
t be the joint distribution of the

random variables XN,i,n,ε,δ
t , i = 1, . . . , M . Moreover let Pt be the measure with density u(t, ·) on

Rd, where u ∈ C([0, T ], L1(Rd)) ∩ L∞([0, T ], L∞(Rd)) is the unique weak solution of the porous
medium equation {

∂tu = m−1
m ∆(um)

u(0, ·) = u0.

(see [4], [2]). Then we have the following:

Theorem 2.4 (Propagation of chaos for 1 < m < 2).

lim
δ→0

lim
ε→0

lim
n→∞

∗ lim
N→∞

PN,M,n,ε,δ
t = P⊗M

t , (9)

locally uniformly in t. Here lim∗
n→∞ denotes the limit of any converging subsequence of a pre-

compact sequence.

Remark 2.5. This theorem means the following:

1. For each ε, δ > 0 the sequence (limN→∞ PN,M,n,ε,δ
t )n∈N is tight.

2. Each accumulation point of this sequence (denoted by lim∗
n→∞ limN→∞

PN,M,n,ε,δ
t ) satisfies limδ→0 limε→0 lim∗

n→∞ limN→∞ PN,M,n,ε,δ
t = P⊗M

t .
This means that although the limit that we obtain after letting n → ∞ might be non-
unique, the whole limit is unique.

Proof of Theorem 2.4. We define nonlinear processes Y n,i,ε,δ (i ∈ N, ε, δ > 0) as solutions of the
following nonlinear stochastic differential equations:





dY n,i,ε,δ
t = − [∇V ε ∗ ϕn(V ε ∗ un,ε,δ(t))

]
(Y n,i,ε,δ

t )dt + δdBi
t,

Y n,i,ε,δ
0 = ζi

un,ε,δ(t) = Law(Y n,i,ε,δ
t ).

(10)

As in Proposition 2.3 (the proof is exactly the same, just write ϕn in place of the function
s 7→ sm−1) one can show that XN,n,i,ε,δ

t converges (for N →∞) to Y n,i,ε,δ
t :

Proposition 2.6.

E
[

sup
0≤t≤T

∣∣∣XN,n,i,ε,δ
t − Y n,i,ε,δ

t

∣∣∣
2
]
≤ C(ε, n)

N
.

As in the preceding subsection this proposition implies

lim
N→∞

PN,M,n,ε,δ
t = (Pn,ε,δ

t )⊗M ,

where Pn,ε,δ
t = un,ε,δ(t) is the law of Y n,i,ε,δ

t . We now let n → ∞. Since the processes Y n,i,ε,δ

are (for different i) independent copies of each other, we can omit the index i. Let un,ε,δ be the
law of the process Y n,ε,δ, considered as an element of M(C([0, T ],Rd)) (so that un,ε,δ(t) is its
marginal at time t).
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Lemma 2.7. The sequence (un,ε,δ)n∈N is tight.

Proof. In order to apply [11, Theorem 1.4.6] we have to show that for all non-negative f ∈
C∞0 (Rd) there is a constant Af ≥ 0 such that for all n ∈ N and all x0 ∈ Rd the process
f(Y n,ε,δ

t + x0) + Af t is a non-negative submartingale. To do so we first observe (using Itô’s
formula) that, for all f ∈ C2

b (Rd), the process

f(Y n,ε,δ
t + x0) −

∫ t

0

{
−

[
∇V ε ∗ ϕn(V ε ∗ un,ε,δ(s))

]
(Y n,i,ε,δ

s ) · ∇f(Y n,i,ε,δ
s + x0)

+
δ2

2
∆f(Y n,i,ε,δ

s + x0)
}

ds

is a martingale. Moreover, since ϕn(s) → sm−1 uniformly, we can assume ϕn(s) ≤ 1∨s for all n ∈
N. It is then clear that we can take Af :=

[‖∇V ε‖L1(Rd)(1 ∨ ‖V ε‖L∞(Rd)) + δ2/2
]‖f‖C2(Rd).

Let uε,δ be an accumulation point of the sequence (un,ε,δ)n∈N in M(C([0, T ],Rd)).

Proposition 2.8. Up to a subsequence, the sequence of processes (Y n,ε,δ)n∈N converges almost
surely to the strong solution Y ε,δ of the equation

{
dY ε,δ

t = − [∇V ε ∗ (V ε ∗ uε,δ(t))m−1
]
(Y ε,δ

t )dt + δdBt

Y ε,δ
0 = ζ,

i.e. sup0≤t≤T

∣∣∣Y n,ε,δ
t − Y ε,δ

t

∣∣∣ → 0 a.s. for n → ∞. Moreover uε,δ(t) equals the law of Y ε,δ
t , so

that Y ε,δ is in fact a strong solution of the nonlinear stochastic differential equation




dY ε,δ
t = − [∇V ε ∗ (V ε ∗ uε,δ(t))m−1

]
(Y ε,δ

t )dt + δdBt

Y ε,δ
0 = ζ

uε,δ(t) = Law(Y ε,δ
t ).

Proof. The weak convergence of un,ε,δ to uε,δ together with the uniform convergence of ϕn to the
function s 7→ sm−1 implies uniform convergence of the drift coefficient ∇V ε ∗ ϕn(V ε ∗ un,ε,δ(t))
to ∇V ε ∗ (V ε ∗ uε,δ(t))m−1, and the first statement follows immediately (use Gronwall’s lemma
and the Lipschitz continuity of x 7→ ∇V ε ∗ (V ε ∗ uε,δ(t))m−1(x)). The second statement is also
clear because uε,δ(t) is the weak limit of un,ε,δ(t) = Law(Y n,ε,δ

t ), and Y ε,δ
t is the limit of Y n,ε,δ

t

for the almost sure convergence.

Lemma 2.7 and Proposition 2.8 together imply that lim∗
n→∞ limN→∞ PN,M,n,ε,δ

t = (P ε,δ
t )⊗M ,

where P ε,δ
t = uε,δ(t) is the law of Y i,ε,δ

t . Now we conclude, as in the preceding subsection, using
Theorem 1.2 and the result of Bénilan and Crandall [2].
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3 Proof of Theorem 1.2

We introduce the following smoothed version of uε

vε(t, x) := (uε(t) ∗ V ε)(x).

Observe that, since uε(t) is a probability measure for all t ∈ [0, T ] and V ∈ C2
c (Rd), we have

vε,∇vε, D2vε ∈ L∞([0, T ], L1(Rd) ∩ C(Rd)). (11)

Moreover vε solves
{

∂tv
ε = 1

2 ∆vε + div(∇gεuε) ∗ V ε = 1
2 ∆vε + (∇gεuε) ∗ ∇V ε

vε(0, ·) = u0 ∗ V ε.
(12)

Thus, since the right hand side of (12) belongs to L∞([0, T ], L1(Rd) ∩ C(Rd)), we also have

∂tv
ε ∈ L∞([0, T ], L1(Rd) ∩ C(Rd)). (13)

We also remark that, with these notations,

gε = V ε ∗ (vε)m−1. (14)

The strategy of the proof is the following: first, in Lemma 3.1, we prove some a priori bounds
on vε and gε which allow to show the tightness of both sequences (uε)ε>0 and (vε)ε>0, and that
up to a subsequence they converge in C([0, T ],M(Rd)) to the same limit u∞ (see Proposition 3.3
and Lemma 3.4). Then we take advance of the regularizing effect of the heat kernel to prove some
stronger a priori estimates on vε (see Lemma 3.5), which give that vε converges to u∞ strongly
in Lm([0, T ]×Rd) (see Lemma 3.6). This fact allows to pass to the limit in the non-linear term of
the equation and to show that u∞ is a weak solution of the viscous porous medium equation (see
Proposition 3.8). Finally we prove uniqueness of weak solutions (see Propositions 3.9 and 3.10),
which implies that the whole sequence (uε)ε>0 converges to u∞.

Lemma 3.1. For each t ≥ 0:

‖vε(t, ·)‖m
Lm(Rd) +

m(m− 1)
2

∫ t

0

∫

Rd

|∇vε(s, x)|2vε(s, x)m−2dx ds

+ m

∫ t

0

∫

Rd

|∇gε(s, x)|2uε(s, dx) ds = ‖vε(0, ·)‖m
Lm(Rd). (15)

Remark 3.2. Since vε(0, ·) = u0 ∗ V ε, ‖V ε‖L1(Rd) = 1 and u0 ∈ L1(Rd) ∩ L∞(Rd) ⊂ Lm(Rd),
we have

‖vε(0, ·)‖Lm(Rd) ≤ ‖u0‖Lm(Rd) < ∞.

Therefore Lemma 3.1 implies that each of the three terms on the left hand side of (15) is bounded
uniformly in ε and t.
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Proof of Lemma 3.1. Multiplying (12) by (vε)m−1 and integrating this identity in space (which
is admissible by (11) and (13)) we have

1
m

d

dt

∫

Rd

vε(t, x)mdx =
1
2

∫

Rd

vε(t, x)m−1∆vε(t, x)dx

+
∫

Rd

vε(t, x)m−1[(∇gεuε) ∗ ∇V ε](t, x)dx.

Observe now that, since V ε is even, ∇V ε is odd, and thus
∫

Rd

b(x)[a ∗ ∇V ε](x)dx = −
∫

Rd

[∇V ε ∗ b](x)a(x)dx

for any a, b (provided everything is well-defined). Thus, by this fact and (14), we get

1
m

d

dt

∫

Rd

vε(t, x)mdx =
1
2

∫

Rd

vε(t, x)m−1∆vε(t, x)dx

−
∫

Rd

[∇V ε ∗ (vε)m−1](t, x)∇gε(t, x)uε(t, dx)

= −m− 1
2

∫

Rd

|∇vε(t, x)|2vε(t, x)m−2dx

−
∫

Rd

|∇gε(t, x)|2uε(t, dx).

Integrating in time, the thesis follows.

Proposition 3.3. The set (uε)ε>0 is relatively compact in C([0, T ],M(Rd)).

Proof. In order to apply the Ascoli-Arzelà theorem we have to show:

1. There is a compact set K ⊂M(Rd) with uε(t) ∈ K for all ε > 0 and all t ∈ [0, T ].

2. The set {uε | ε > 0} is equicontinuous, i.e. for each η > 0 there exists δ > 0 such that, for
all ε > 0 and all s, t ∈ [0, T ],

|s− t| ≤ δ ⇒ d(uε(s), uε(t)) ≤ η.

We start with the first statement. Since a subset K of M(Rd) is relatively compact if and only
if it is tight, we have to show that for each η > 0 there exists a compact set K ⊂ Rd with
uε(t,K) ≥ 1− η (or equivalently P [Y ε

t ∈ Kc] ≤ η) for all ε > 0 and all t ∈ [0, T ].
Let R > 0. Then we have:

P [|Y ε
t | > R] = P

[∣∣∣∣ζ −
∫ t

0
∇gε(Y ε

s , s)ds + Bt

∣∣∣∣ > R

]

≤ P
[
|ζ| > R

3

]
+ P

[∣∣∣∣
∫ t

0
∇gε(Y ε

s , s)ds

∣∣∣∣ >
R

3

]
+ P

[
|Bt| > R

3

]
.
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The first and the third term tend (for R → ∞) to 0, uniformly in ε and t ∈ [0, T ]. For the
second term we obtain, using Chebyshev’s inequality,

P
[∣∣∣∣

∫ t

0
∇gε(Y ε

s , s)ds

∣∣∣∣ >
R

3

]
≤ 9

R2
E

[∣∣∣∣
∫ t

0
∇gε(Y ε

s , s)ds

∣∣∣∣
2]

≤ 9t

R2
E

[∫ t

0
|∇gε(Y ε

s , s)|2 ds

]

=
9t

R2

∫ t

0

∫

Rd

|∇gε(x, s)|2 uε(s, dx)ds,

and due to Lemma 3.1 this also tends (for R →∞) to 0, uniformly in ε and t. This completes
the proof of the first statement.

We now prove the second statement. For s, t ∈ [0, T ] we obtain (using Lemma 3.1)

d(uε(s), uε(t)) = sup
f∈BL

∣∣∣∣
∫

Rd

f(x)uε(t, dx)−
∫

Rd

f(x)uε(s, dx)
∣∣∣∣

= sup
f∈BL

|E [f(Y ε
t )]− E [f(Y ε

s )]|

≤ E
[|Y ε

t − Y ε
s |2

]1/2

= E
[∣∣∣∣−

∫ t

s
∇gε(Y ε

r , r)dr + Bt −Bs

∣∣∣∣
2]1/2

≤ E
[∣∣∣∣−

∫ t

s
∇gε(Y ε

r , r)dr

∣∣∣∣
2]1/2

+ E
[
|Bt −Bs|2

]1/2

≤ E
[
|t− s|

∫ t

s
|∇gε(Y ε

r , r)|2dr

]1/2

+ |t− s|1/2

= |t− s|1/2

([∫ t

s

∫

Rd

|∇gε(x, r)|2uε(r, dx)dr

]1/2

+ 1
)

≤ C|t− s|1/2.

This means that (uε)ε>0 is equicontinuous, so that the lemma is proved.

We have shown that the sequence (uε)ε>0 has a convergent subsequence. We now fix such
a convergent subsequence, which we still denote by (uε)ε>0. Let u∞ ∈ C([0, T ],M(Rd)) be its
limit.

Lemma 3.4. The sequence (vε)ε>0 also converges in C([0, T ],M(Rd)) to u∞.

Proof. The result is a simple consequence of the fact that

sup
0≤t≤T

d(uε(t), vε(t)) → 0

10



as ε → 0. To prove this, observe that for any t ∈ [0, T ] and f ∈ BL we have
∣∣∣∣
∫

Rd

f(x)vε(x)dx−
∫

Rd

f(x)uε(t, dx)
∣∣∣∣

=
∣∣∣∣
∫

Rd

f(x)(uε(t) ∗ V ε)(x)dx−
∫

Rd

f(x)uε(t, dx)
∣∣∣∣

=
∣∣∣∣
∫

Rd

[(f ∗ V ε)(x)− f(x)]uε(t, dx)
∣∣∣∣

≤
∫

Rd

(∫

Rd

|f(x + y)− f(y)|V ε(x)dx

)
uε(t, dy)

≤
∫

Rd

|x|V ε(x)dx

∫

Rd

uε(t, dy)

= ε

∫

Rd

|x|V (x)dx = Cε.

Since by Lemma 3.1 the sequence (vε)ε>0 is bounded in L∞([0, T ], Lm(Rd)), up to a subse-
quence it weakly* converges in L∞([0, T ], Lm(Rd)). Therefore by the above lemma we get that
u∞ ∈ L∞([0, T ], Lm(Rd)). We now want to prove a strong convergence result.

To this aim, we introduce a fractional-type Sobolev space Xα, for 0 < α < 1:

Xα :=
{

w ∈ L1(Rd)
∣∣∣∣ sup

0<|h|≤1

‖w(·+ h)− w(·)‖L1(Rd)

|h|α < +∞
}

(this space coincides with the space Λ1,∞
α , see [10, Paragraph V.5]). It is simple to check that

this is a Banach space endowed with the norm

‖w‖Xα := ‖w‖L1(Rd) + sup
0<|h|≤1

‖w(·+ h)− w(·)‖L1(Rd)

|h|α .

By the Riesz-Fréchet-Kolmogorov Theorem (see [3, Theorem IV.25]), any bounded subset of Xα

is compact in L1(Ω) for any bounded domain Ω ⊂ Rd.
To prove our strong convergence result, we need a uniform bound on vε in L1([0, T ], Xα).

Lemma 3.5. The sequence (vε)ε>0 is uniformly bounded in L1([0, T ], Xα) for any 0 < α < 1.

Proof. Observe that by (12), (11) and (13), vε is a smooth bounded solution of the parabolic
equation {

∂tv
ε = 1

2∆vε + div fε

vε(0, ·) = u0 ∗ V ε,

with fε := (∇gεuε) ∗ V ε. Therefore it is well-known that vε is given by

vε(t) = Γ(t) ∗ vε(0) +
∫ t

0
(Γ(t− s) ∗ div fε(s))ds

= Γ(t) ∗ vε(0) +
∫ t

0
(∇Γ(t− s) ∗ fε(s))ds, (16)

11



where Γ(t, x) is the heat kernel given by

Γ(t, x) :=

{
1

(2πt)d/2 e−
|x|2
2t for t > 0,

δx for t = 0

(see for instance [6]). Moreover, the following estimates are true:

Γ,∇Γ ∈ L1([0, T ], Xα) ∀ 0 < α < 1.

Indeed, by a direct computation one has

‖Γ(t, ·)‖L1(Rd) = 1, ‖∇Γ(t, ·)‖L1(Rd) ≤
C√
t
, ‖D2Γ(t, ·)‖L1(Rd) ≤

C

t
.

These estimates immediately give Γ ∈ L1([0, T ], Xα), ∇Γ ∈ L1([0, T ]× Rd). Moreover one has

‖∇Γ(t, ·+ h)−∇Γ(t, ·)‖L1(Rd)

= ‖∇Γ(t, ·+ h)−∇Γ(t, ·)‖α
L1(Rd)‖∇Γ(t, ·+ h)−∇Γ(t, ·)‖1−α

L1(Rd)

≤ |h|α‖D2Γ(t, ·)‖α
L1(Rd)

(
2‖∇Γ(t, ·)‖L1(Rd)

)1−α

≤ C

t
1+α

2

|h|α,

so that ∇Γ ∈ L1([0, T ], Xα) for any 0 < α < 1. We now remark that, since

‖fε‖L1([0,T ]×Rd) ≤
∫ T

0

∫

Rd

|∇gε(t, x)|uε(t, dx) dt

≤
(

T

∫ T

0

∫

Rd

|∇gε(t, x)|2uε(t, dx) dt

)1/2

,

by Lemma 3.1 fε is uniformly bounded in L1([0, T ]×Rd). We therefore easily deduce from (16)
that vε is uniformly bounded in L1([0, T ], Xα), as wanted.

Lemma 3.6. We have vε → u∞ in Lm([0, T ]× Rd).

Remark 3.7. Observe that, since vε is bounded in L∞([0, T ], Lm(Rd)), the lemma implies also
that vε → u∞ in Lp([0, T ], Lm(Rd)) for all p < ∞. Indeed, if vε → u∞ in Lm([0, T ]× Rd), then
up to a subsequence ‖vε(t, ·) − u∞(t, ·)‖Lm(Rd) → 0 for almost every t ∈ [0, T ]. This fact and
Lebesgue’s dominated convergence theorem give the strong convergence in Lp([0, T ], Lm(Rd))
for all p < ∞.

Proof. We first remark that

m2

4

∫ t

0

∫

Rd

|∇vε(t, x)|2vε(t, x)m−2dx ds =
∫ t

0

∫

Rd

|∇(vε)m/2(t, x)|2dx ds,

12



so that by Lemma 3.1 the sequence (vε)m/2 is bounded in L2([0, T ],H1(Rd)).
We now claim that it suffices to prove the convergence result in L1([0, T ]×BR) for any fixed

R > 0. Indeed, by Lemma 3.4 the measures vε(t, ·) are uniformly tight in t and ε. Thus, for any
η > 0 there exists Rη such that

∫ T

0

∫

Bc
Rη

vε(t, x)dx dt ≤ η. (17)

Moreover we observe that, if w ∈ H1(Rd), then w2 ∈ W 1,1(Rd) ⊂ Ld/(d−1)(Rd), with the conven-
tion d/(d− 1) = ∞ if d = 1 (see [1]). Therefore, since (vε)m/2 is bounded in L2([0, T ],H1(Rd)),
we obtain that (vε)m is bounded in L2([0, T ], Ld/(d−1)(Rd)). Thus, if d ≥ 2, by the inclusion
L2([0, T ], Ld/(d−1)(Rd)) ⊂ Ld/(d−1)([0, T ]× Rd) we have

∫ T

0

∫

Rd

vε(t, x)
md
d−1 dx dt ≤ C (18)

for a certain C independent of ε. So by (17), (18) and Hölder’s inequality, we get

∫ T

0

∫

Bc
Rη

vε(t, x)mdx dt

≤
(∫ T

0

∫

Bc
Rη

vε(t, x)dx dt

) m
1−d+md

(∫ T

0

∫

Bc
Rη

vε(t, x)
md
d−1 dx dt

) (m−1)(d−1)
1−d+md

≤ Cη
m

1−d+md (19)

(the case d = 1 is also simpler thanks to the boundness of vε in L2([0, T ], L∞(Rd)). From (19)
and the uniform integrability of (vε)m (which is a simple consequence of the uniform bound of
(vε)m in L2([0, T ], Ld/(d−1)(Rd))), the claim easily follows.

To conclude the proof, we now show the strong convergence of vε to u∞ in L1([0, T ]×BR).
Fix 0 < α < 1, and take s > 0 big enough so that M(BR) (the space of probability measures
on BR endowed with the weak topology) continuously embeds into H−s(BR) (H−s(BR) being
the dual space of Hs(BR)). We claim that for any δ > 0 there exists a constant Cδ such that,
for any smooth function f on Rd, we have

‖f‖L1(BR) ≤ δ‖f‖Xα + Cδ‖f‖H−s(BR). (20)

Indeed, if not, there would exist a δ > 0 and a sequence of functions (fk)k∈N, such that

‖fk‖Xα = 1, ‖fk‖L1(BR) ≥ δ + k‖fk‖H−s(BR). (21)

As we remarked before, Xα compactly embeds into L1(BR), thus there exist a subsequence (still
denoted by fk) such that fk → g in L1(BR). Since

‖fk‖L1(BR) ≤ ‖fk‖Xα = 1,
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by (21) we get that fk → 0 in H−s(BR), so that g = 0. But, on the other hand,

‖g‖L1(BR) = lim
k
‖fk‖L1(BR) ≥ δ > 0,

a contradiction.
Applying (20) to vε(t, ·)− vε̃(t, ·) and integrating in time, we get

‖vε − vε̃‖L1([0,T ]×BR) ≤ δ‖vε − vε̃‖L1([0,T ],Xα)

+ Cδ‖vε − vε̃‖L1([0,T ],H−s(BR))

≤ δ
(‖vε‖L1([0,T ],Xα) + ‖vε̃‖L1([0,T ],Xα)

)

+ Cδ‖vε − vε̃‖L1([0,T ],H−s(BR))

≤ C

(
δ + Cδ

∫ T

0
d(vε(t), vε̃(t) dt

)
,

where in the last step we used that the sequence (vε)ε>0 is bounded in L1([0, T ], Xα) and that
M(BR)) ↪→ H−s(BR) continuously. Since, by Lemma 3.4, (vε)ε>0 is a Cauchy sequence in
C([0, T ],M(Rd)), we finally obtain

lim sup
ε,ε̃→0

‖vε − vε̃‖L1([0,T ]×BR) ≤ Cδ,

which implies that (vε)ε>0 is a Cauchy sequence in L1([0, T ]×BR) by the arbitrariness of δ.

Proposition 3.8. For all t ∈ [0, T ] and all f ∈ C2
b (Rd) we have:

∫

Rd

f(x)u∞(t, x)dx =
∫

Rd

f(x)u0(x)dx +
1
2

∫ t

0

∫

Rd

∆f(x)u∞(s, x)dxds

+
m− 1

m

∫ t

0

∫

Rd

∆f(x)u∞(s, x)mdxds, (22)

that is u∞ is a weak solution of the viscous porous medium equation with initial datum u0.

Proof. According to (3) we have
∫

Rd

f(x)uε(t, dx) =
∫

Rd

f(x)u0(x)dx +
1
2

∫ t

0

∫

Rd

∆f(x)uε(s, dx)ds

−
∫ t

0

∫

Rd

∇f(x) · ∇gε(s, x)uε(s, dx)ds. (23)

Since uε → u∞ in C([0, T ],M(Rd)), the convergence of all the terms in (23) is trivial except for

14



the third term in the right hand side. We have
∣∣∣∣
∫ t

0

∫

Rd

∇f(x) · ∇gε(s, x)uε(s, dx)ds +
m− 1

m

∫ t

0

∫

Rd

∆f(x)u∞(s, x)mdxds

∣∣∣∣

≤
∣∣∣∣
∫ t

0

∫

Rd

∇f(x) · ∇gε(s, x)uε(s, dx)ds

−
∫ t

0

∫

Rd

∇f(x) · ∇ (
vε(s, x)m−1

)
vε(s, x)dxds

∣∣∣∣

+
∣∣∣∣
m− 1

m

∫ t

0

∫

Rd

∆f(x)vε(s, x)mdxds− m− 1
m

∫ t

0

∫

Rd

∆f(x)u∞(s, x)mdxds

∣∣∣∣ .

By the convergence vε → u∞ in Lm([0, T ]× Rd), the second term goes to 0.
Regarding the first term, we observe that

∣∣∣∣
∫ t

0

∫

Rd

∇f(x) · ∇gε(s, x)uε(s, dx)ds−
∫ t

0

∫

Rd

∇f(x) · ∇ (
vε(s, x)m−1

)
vε(s, x)dxds

∣∣∣∣

=
∣∣∣∣
∫ t

0

∫

Rd

∫

Rd

∇f(x) · ∇ (
vε(s, y)m−1

)
V ε(x− y)uε(s, dx)dyds

−
∫ t

0

∫

Rd

∫

Rd

∇f(y) · ∇ (
vε(s, y)m−1

)
V ε(x− y)uε(s, dx)dyds

∣∣∣∣

≤
∫ t

0

∫

Rd

∫

Rd

|∇f(x)−∇f(y)| ∣∣∇ (
vε(y, s)m−1

)∣∣V ε(x− y)uε(s, dx)dyds

≤ ‖D2f‖∞
∫ t

0

∫

Rd

∫

Rd

∣∣∇ (
vε(s, y)m−1

)∣∣ |x− y|V ε(x− y)uε(s, dx)dyds.

Since diam(suppV ε) = εdiam(suppV ) (recall that V has compact support) we see that the last
term is bounded by

εdiam(suppV )‖D2f‖∞
∫ t

0

∫

Rd

∫

Rd

∣∣∇ (
vε(s, y)m−1

)∣∣ V ε(x− y)uε(s, dx)dyds

= εdiam(suppV )‖D2f‖∞(m− 1)
∫ t

0

∫

Rd

∫

Rd

|∇vε(s, y)| vε(s, y)m−1dyds.

To conclude, we observe that by Hölder inequality

‖∇vε(vε)m−1‖L1([0,T ]×Rd) ≤ ‖∇vε(vε)m/2−1‖L2[0,T ]×Rd)‖(vε)m/2‖L2[0,T ]×Rd)

= ‖(vε)m−2|∇vε|2‖1/2

L1[0,T ]×Rd)
‖vε‖m/2

Lm[0,T ]×Rd)
,

and the right hand side is uniformly bounded thanks to Lemma 3.1.

Up to now, we have proved that the sequence (uε)ε>0 is relatively compact (Proposition 3.3)
and that any limit point u∞ of a subsequence is a weak solution of the viscous porous medium
equation (Proposition 3.8).
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It remains to show uniqueness of weak solutions u of this equation. To do so, we first prove
that, thanks to the assumption u0 ∈ L∞(Rd), any weak solution of (4) belongs to Lm+1([0, T ]×
Rd) (and not only to Lm([0, T ]× Rd)), and then we conclude using Proposition 3.10.

Proposition 3.9. Let v ∈ L1([0, T ] × Rd) ∩ Lm([0, T ] × Rd) be a weak solution of the viscous
porous medium equation such that v(0, ·) ∈ L∞(Rd). Then v ∈ Lm+1([0, T ]× Rd).

Proof. Let us consider the convex function Φ : R+ → R+ given by

Φ(s) :=
1
2
s +

m− 1
m

sm.

Then v is a weak solution of
∂tv = ∆(Φ(v)).

Fix ϕ(x) a smooth convolution kernel on Rd, and define

vη(t, ·) := v(t, ·) ∗ ϕη

with ϕη(x) := 1
ηd ϕ(x/η). Then vη is smooth and integrable in x with all its derivatives. More-

over, since
∂tvη = ∆(Φ(v) ∗ ϕη),

vη is also smooth as a function of t. We can therefore multiply the above equation by
∫ T
t Φ(v) ∗

ϕη(s, ·)ds and integrate in space-time, obtaining

∫ T

0

∫

Rd

∂tvη(t, x)
(∫ T

t
Φ(v) ∗ ϕη(s, x)ds

)
dx dt

=
∫ T

0

∫

Rd

∆(Φ(v) ∗ ϕη)(t, x)
(∫ T

t
Φ(v) ∗ ϕη(s, x)ds

)
dx dt

= −
∫ T

0

∫

Rd

∇(Φ(v) ∗ ϕη)(t, x)
(∫ T

t
∇(Φ(v) ∗ ϕη)(s, x)ds

)
dx dt

= −1
2

∫

Rd

∣∣∣∣
∫ T

0
∇Φ(v) ∗ ϕη(t, x)dt

∣∣∣∣
2

dx ≤ 0.

Therefore, integrating by parts in the first line of the above equation, we get
∫ T

0

∫

Rd

vη(t, x)Φ(v) ∗ ϕη(t, x) dx dt

≤
∫

Rd

vη(0, x)
∫ T

0
Φ(v) ∗ ϕη(t, x) dx dt

≤ ‖vη(0)‖∞‖Φ(v)‖L1([0,T ]×Rd)

= ‖vη(0)‖∞
(

1
2
‖v‖L1([0,T ]×Rd) +

m− 1
m

‖v‖m
Lm([0,T ]×Rd)

)
.
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Since Φ is convex, by Jensen’s inequality we have Φ(vη)(t, x) ≤ Φ(v) ∗ ϕη(t, x), and we finally
obtain

∫ T

0

∫

Rd

1
2
vη(t, x)2 +

m− 1
m

vη(t, x)m+1 dx dt =
∫ T

0

∫

Rd

vη(t, x)Φ(vη) dx dt

≤ ‖vη(0)‖∞
(

1
2
‖v‖L1([0,T ]×Rd) +

m− 1
m

‖v‖m
Lm([0,T ]×Rd)

)
.

Taking the limit as η → 0, we conclude that v ∈ Lm+1([0, T ]× Rd).

Proposition 3.10. Let v and ṽ be two weak solutions of the viscous porous medium equation
on [0, T ] such that v, ṽ ∈ Lm+1(Rd × [0, T ]). Then v = ṽ.

Proof. Using the same notations of the proof of the above proposition, v and ṽ are weak solutions
of

∂tw = ∆(Φ(w)).

As before we regularize the solutions with a smooth convolution kernel ϕ, and we get

∂t(vη − ṽη) = ∆(Φ(v) ∗ ϕη − Φ(ṽ) ∗ ϕη).

Multiplying the equation by
∫ T
t [Φ(v) ∗ϕη(s, ·)−Φ(ṽ) ∗ϕη(s, ·)]ds and integrating in space-time,

as in the proof of the above proposition we obtain
∫ T

0

∫

Rd

∂t(vη − ṽη)(t, x)
(∫ T

t
[Φ(v) ∗ ϕη(s, x)− Φ(ṽ) ∗ ϕη(s, x)]ds

)
dx dt

= −
∫ T

0

∫

Rd

∇(Φ(v) ∗ ϕη − Φ(ṽ) ∗ ϕη)(t, x)
(∫ T

t
∇(Φ(v) ∗ ϕη − Φ(ṽ) ∗ ϕη)(s, x)ds

)
dx dt

= −1
2

∫

Rd

∣∣∣∣
∫ T

0
∇(Φ(v) ∗ ϕη − Φ(ṽ) ∗ ϕη)(t, x)dt

∣∣∣∣
2

dx ≤ 0.

Integrating by parts in the first line of the above equation and using that u and ũ coincide at
time 0, we have

∫ T

0

∫

Rd

[vη(t, x)− ṽη(t, x)][Φ(v) ∗ ϕη(t, x)− Φ(ṽ) ∗ ϕη(t, x)] dx dt ≤ 0.

Since v, ṽ ∈ Lm+1(Rd × [0, T ]), we can take the limit as η → 0, and we get

∫ T

0

∫

Rd

[v(t, x)− ṽ(t, x)][Φ(v)(t, x)− Φ(ṽ)(t, x)] dx dt ≤ 0.

As the integrand is non-negative everywhere, it follows that v = ṽ almost everywhere.
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Appendix: Proof of Proposition 2.3

Let K := ‖V ‖L∞(R), L a Lipschitz constant for V and I :=
∫
Rd |∇V (y)| dy, so that V ε is

bounded by Kε := K/εd and Lipschitz-continuous with Lipschitz constant Lε := L/εd+1, and∫
Rd |∇V ε(y)| dy = I/ε. In order to simplify the notation we omit the indices N , ε and δ. For

t ∈ [0, T ] we set

Φ(t) := E
[

sup
0≤s≤t

∣∣Xi
s − Y i

s

∣∣2
]
.

Because of the symmetry of the particle system and the system of the nonlinear processes, Φ(t)
does not depend on i. By (5) and (7) we have

∣∣Xi
t − Y i

t

∣∣2

=
∣∣∣∣
∫ t

0

∫

Rd

∇V ε(y)
[{

(V ε ∗ uε,δ
s )(Y i

s − y)
}m−1

−
{

1
N

N∑

j=1

V ε(Xi
s − y −Xj

s )
}m−1]

dyds

∣∣∣∣
2

≤ t

∫ t

0

(∫

Rd

|∇V ε(y)|
∣∣∣∣
{

(V ε ∗ uε,δ
s )(Y i

s − y)
}m−1

−
{

1
N

N∑

j=1

V ε(Xi
s − y −Xj

s )
}m−1∣∣∣∣dy

)2

ds

≤ t

∫ t

0

(∫

Rd

|∇V ε(y)| dy sup
y∈Rd

∣∣∣∣
{

(V ε ∗ uε,δ
s )(Y i

s − y)
}m−1

−
{

1
N

N∑

j=1

V ε(Xi
s − y −Xj

s )
}m−1∣∣∣∣

)2

ds

=
I2

ε2
t

∫ t

0
sup
y∈Rd

∣∣∣∣
{

(V ε ∗ uε,δ
s )(Y i

s − y)
}m−1

−
{

1
N

N∑

j=1

V ε(Xi
s − y −Xj

s )
}m−1∣∣∣∣

2

ds.

Since the right-hand side is non-decreasing in t, the same estimate also holds for sup0≤s≤t

∣∣Xi
s − Y i

s

∣∣2
in place of

∣∣Xi
t − Y i

t

∣∣2. We now estimate

∣∣∣∣
{

(V ε ∗ uε,δ
s )(Y i

s − y)
}m−1

−
{

1
N

N∑

j=1

V ε(Xi
s − y −Xj

s )
}m−1∣∣∣∣

2

.

Since m ≥ 2 the Lipschitz continuity of the function s 7→ sm−1 implies that this is bounded by

(m− 1)2K2(m−2)
ε

∣∣∣∣(V ε ∗ uε,δ
s )(Y i

s − y)− 1
N

N∑

j=1

V ε(Xi
s − y −Xj

s )
∣∣∣∣
2

.
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Using the triangle inequality we obtain

∣∣∣∣(V ε ∗ uε,δ
s )(Y i

s − y)− 1
N

N∑

j=1

V ε(Xi
s − y −Xj

s )
∣∣∣∣
2

≤ 3
∣∣∣∣(V ε ∗ uε,δ

s )(Y i
s − y)− 1

N

N∑

j=1

V ε(Y i
s − y − Y j

s )
∣∣∣∣
2

+ 3
∣∣∣∣
1
N

N∑

j=1

V ε(Y i
s − y − Y j

s )− 1
N

N∑

j=1

V ε(Xi
s − y − Y j

s )
∣∣∣∣
2

+ 3
∣∣∣∣
1
N

N∑

j=1

V ε(Xi
s − y − Y j

s )− 1
N

N∑

j=1

V ε(Xi
s − y −Xj

s )
∣∣∣∣
2

so that, combining all these estimates,

E
[

sup
0≤s≤t

∣∣Xi
s − Y i

s

∣∣2
]

≤ C ′(ε)t
{∫ t

0
sup
y∈Rd

E
[∣∣∣∣(V ε ∗ uε,δ

s )(Y i
s − y)− 1

N

N∑

j=1

V ε(Y i
s − y − Y j

s )
∣∣∣∣
2]

ds

+
∫ t

0
sup
y∈Rd

E
[∣∣∣∣

1
N

N∑

j=1

V ε(Y i
s − y − Y j

s )− 1
N

N∑

j=1

V ε(Xi
s − y − Y j

s )
∣∣∣∣
2]

ds

+
∫ t

0
sup
y∈Rd

E
[∣∣∣∣

1
N

N∑

j=1

V ε(Xi
s − y − Y j

s )− 1
N

N∑

j=1

V ε(Xi
s − y −Xj

s )
∣∣∣∣
2]

ds

}
,

where C ′(ε) := 3(m− 1)2K2(m−2)
ε I2ε−2.

Thanks to the Lipschitz continuity of V ε the second and the third term are both bounded
by

L2
ε

∫ t

0
E

[∣∣Xi
s − Y i

s

∣∣2
]
ds,

while for the first term we have

E
[∣∣∣∣(V ε ∗ uε,δ

s )(Y i
s − y)− 1

N

N∑

j=1

V ε(Y i
s − y − Y j

s )
∣∣∣∣
2]

=
1

N2

N∑

j,k=1

E
[(

(V ε ∗ uε,δ
s )(Y i

s − y)− V ε(Y i
s − y − Y j

s )
)(

(V ε ∗ uε,δ
s )(Y i

s − y)− V ε(Y i
s − y − Y k

s )
)]

.
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If j 6= k the expectation vanishes, and otherwise it is bounded by K2
ε . Therefore

Φ(t) = E
[

sup
0≤s≤t

∣∣Xi
s − Y i

s

∣∣2
]

≤ C ′(ε)t
{

K2
ε t

N
+ 2L2

ε

∫ t

0
E

[∣∣Xi
s − Y i

s

∣∣2
]
ds

}

≤ 2TC ′(ε)L2
ε

∫ t

0
Φ(s)ds + C ′(ε)

K2
ε

N
t2

= α

∫ t

0
Φ(s)ds + βt2,

where

α := 2TC ′(ε)L2
ε, β := C ′(ε)

K2
ε

N
.

Gronwall’s lemma now implies

Φ(t) ≤ 2βeαt

∫ t

0
se−αsds ≤ 2

β

α2
eαt

∫ ∞

0
se−sds = 2

β

α2
eαt,

that is

Φ(t) ≤ 1
N

K2
ε

2T 2C ′(ε)L4
ε

e2TC′(ε)L2
εt ∼ 1

N
ε6+2d(m−1)et/ε4+2d(m−1)

.
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