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Abstract
Adapting some techniques and ideas of McCann [8], we extend a recent result with Fathi

[6] to yield existence and uniqueness of a unique transport map in very general situations,
without any integrability assumption on the cost function.
In particular this result applies for the optimal transportation problem on a n-dimensional
non-compact manifold M with a cost function induced by a C2-Lagrangian, provided that
the source measure vanishes on sets with σ-�nite (n − 1)-dimensional Hausdor� measure.
Moreover we prove that, in the case c(x, y) = d2(x, y), the transport map is approximatively
di�erentiable a.e. with respect to the volume measure, and we extend some results of [4]
about concavity estimates and displacement convexity.

1 Introduction and main result
Let M be a n-dimensional manifold (Hausdor� and with a countable basis), N a Polish space,
c : M ×N → R a cost function, µ and ν two probability measures on M and N respectively.
In a recent work with Fathi [6], we proved, under general assumption on the cost function,
existence and uniqueness of optimal transport maps for the Monge-Kantorovich problem. More
precisely, the result is:

Theorem 1.1. Assume that c : M ×N → R is lower semicontinuous, bounded from below, and
such that ∫

M×N
c(x, y) dµ(x) dν(y) < +∞.

If

(i) x 7→ c(x, y) = cy(x) is locally semi-concave in x locally uniformly in y,

(ii) ∂c
∂x(x, ·) is injective on its domain of de�nition,

(iii) the measure µ gives zero mass to sets with σ-�nite (n−1)-dimensional Hausdor� measure,
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then there exists a measurable map T : M → N such that any plan γ optimal for the cost c is
concentrated on the graph of T .
More precisely, there exists a sequence of Borel subsets Bn ⊂ M , with Bn ⊂ Bn+1, µ(Bn) ↗ 1,
and a sequence locally semi-concave functions ϕn : M → R, with ϕn is di�erentiable on Bn, such
that, thanks to assumption (ii), the map T : M → N is uniquely de�ned on Bn by

∂c

∂x
(x, T (x)) = dxϕn. (1)

This implies both existence of an optimal transport map and uniqueness for the Monge problem.

Now we want to generalize this existence and uniqueness result for optimal transport maps
without any integrability assumption on the cost function, adapting the ideas of [8]. We observe
that, without the hypothesis

∫

M×N
c(x, y) dµ(x) dν(y) < +∞,

denoting with Π(µ, ν) the set of probability measures on M ×N whose marginals are µ and ν,
in general the minimization problem

C(µ, ν) := inf
γ∈Π(µ,ν)

{∫

M×N
c(x, y) dγ(x, y)

}
. (2)

is ill-posed, as it may happen that C(µ, ν) = +∞. Howewer, it is known that the optimality of
a transport plan γ is equivalent to the c-cyclical monotonicity of the measure-theoretic support
of γ whenever C(µ, ν) < +∞ (see [2], [11], [13]), and so one may ask whether the fact that the
measure-theoretic support of γ is c-cyclically monotone implies that γ is supported on a graph.
Moreover one can also ask whether this graph is unique, that is it does not depends on γ, which
is the case when the cost is µ ⊗ ν integrable, as Theorem 1.1 tells us. In that case, uniqueness
follows by the fact that the functions ϕn are constructed using a pair of function (ϕ,ψ) which is
optimal for the dual problem, and so they are independent of γ (see [6] for more details). The
result we now want to prove is the following:

Theorem 1.2. Assume that c : M ×N → R is lower semicontinuous and bounded from below,
and let γ be a plan concentrated on a c-cyclically monotone set. If

(i) the family of maps x 7→ c(x, y) = cy(x) is locally semi-concave in x locally uniformly in y,

(ii) ∂c
∂x(x, ·) is injective on its domain of de�nition,

(iii) the measure µ gives zero mass to sets with σ-�nite (n−1)-dimensional Hausdor� measure,

then γ is concentrated on the graph of a measurable map T : M → N (existence). Moreover,
if γ̃ is another plan concentrated on a c-cyclically monotone set, then γ̃ is concentrated on the
same graph (uniqueness).
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Once the above result will be proven, it will follow as a simple corollary the uniqueness
of Wasserstein geodesic between absolutely continuous measures (see Section 3). Finally, in
Subsection 3.1, we will prove that, in the particular case c(x, y) = 1

2d
2(x, y), the optimal transport

map is approximatively di�erentiable a.e. with respect to the volume measure, and we will
obtain a concavity estimate on the Jacobian of the optimal transport map, that will allows us
to generalize to non-compact manifolds a displacement convexity result proven in [4].

2 Proof of Theorem 1.2
Proof. Existence. We want to prove that γ is concentrated on a graph. First we recall that,
since γ is concentrated on a c-cyclically monotone set, there exists a pair of function (ϕ,ψ), with
ϕ µ-measurable and ψ ν-measurable, such that

ϕ(x) = inf
y∈N

ψ(y) + c(x, y) ∀x ∈M,

which implies
ϕ(x)− ψ(y) ≤ c(x, y) ∀(x, y) ∈M ×N.

Moreover we have
ϕ(x)− ψ(y) = c(x, y) γ-a.e. (3)

and there exists a point x0 ∈M such that ϕ(x0) = 0 (see [13, Theorem 5.9]). In particular, this
implies

ψ(y) ≥ −c(x0, y) > −∞ ∀y ∈ N.
So, we can argue as in [6]. More precisely, taken a suitable increasing sequence of compact sets
(Kn) ⊂ N such that ν(Kn) ↗ 1 and ψ ≥ −n on Kn (it su�ces to take an increasing sequence
of compact sets Kn ⊂ {ψ ≥ −n} such that ν({ψ ≥ −n} \ Kn) ≤ 1

n), we consider the locally
semi-concave function

ϕn(x) := inf
y∈Kn

ψ(y) + c(x, y). (4)

Then, thanks to (3), it is possible to �nd an increasing sequence of Borel sets Dn ⊂ supp(µ),
with µ(Dn) ↗ 1, such that ϕn is di�erentiable on Dn, ϕn ≡ ϕ on Dn, the set {ϕn = ϕ} has
µ-density 1 at all the points of Dn, and γ is concentrated on the graph of the map T uniquely
determined on Dn by

∂c

∂x
(x, T (x)) = dxϕn for x ∈ Dn.

Moreover one has
ϕ(x) = ψ(T (x)) + c(x, T (x)) ∀x ∈

⋃
n

Dn (5)

(see [6] for more details).
Uniqueness. As we observed before, the di�erence here with the case of Theorem 1.1 is that
the function ϕn depends on the pair (ϕ,ψ), which in this case depends on γ. Let so (ϕ̃, ψ̃) be a
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pair associated to γ̃ as above, and let ϕ̃n and D̃n be such that γ̃ is concentrated on the graph of
the map T̃ determined on D̃n by

∂c

∂x
(x, T̃ (x)) = dxϕ̃n for x ∈ D̃n.

We need to prove that T = T̃ µ-a.e.
Let us de�ne Cn := Dn ∩ D̃n. Then µ(Cn) ↗ 1. We want to prove that, if x is a µ-density point
of Cn for a certain n, then T (x) = T̃ (x) (we recall that, since µ(∪nCn) = 1, also the union of
the µ-density points of Cn is of full µ-measure, see for example [5, Chapter 1.7]).
Let us assume by contradiction that T (x) 6= T̃ (x), that is

dxϕn 6= dxϕ̃n.

Since x ∈ supp(µ), each ball around x must have positive measure under µ. Moreover, the fact
that the sets {ϕn = ϕ} and {ϕ̃n = ϕ̃} have µ-density 1 in x implies that the set

{ϕ = ϕ̃}

has µ-density 0 in x. In fact, as ϕn and ϕ̃n are locally semi-concave, up to adding a C1 function
they are concave in a neighborhood of x and their gradients di�er at x. So we can apply the
non-smooth version of the implicit function theorem proven in [8], which tells us that {ϕn = ϕ̃n}
is a set with �nite (n−1)-dimensional Hausdor� measure in a neighborhood of x (see [8, Theorem
17 and Corollary 19]). So we have

lim sup
r→0

µ({ϕ = ϕ̃} ∩Br(x))
µ(Br(x))

≤ lim sup
r→0

[
µ({ϕ 6= ϕn} ∩Br(x))

µ(Br(x))

+
µ({ϕn = ϕ̃n} ∩Br(x))

µ(Br(x))
+
µ({ϕ̃n 6= ϕ̃} ∩Br(x))

µ(Br(x))

]
= 0.

Now, exchanging ϕ with ϕ̃ if necessary, we may assume that

µ({ϕ < ϕ̃} ∩Br(x)) ≥ 1
4
µ(Br(x)) for r > 0 su�ciently small. (6)

Let us de�ne A := {ϕ < ϕ̃}, An := {ϕn < ϕ̃n}, En := A ∩ An ∩ Cn. Since the sets {ϕn = ϕ}
and {ϕ̃n = ϕ̃} have µ-density 1 in x, and x is a µ-density point of Cn, we have

lim
r→0

µ((A \ En) ∩Br(x))
µ(Br(x))

= 0,

and so, by (6), we get

µ(En ∩Br(x)) ≥ 1
5
µ(Br(x)) for r > 0 su�ciently small. (7)
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Now, arguing as in the proof of the Aleksandrov's lemma (see [8, Lemma 13]), we can prove that

X := T̃−1(T (A)) ⊂ A

and X ∩En lies a positive distance from x. In fact let us assume, without loss of generality, that

ϕ(x) = ϕn(x) = ϕ̃(x) = ϕ̃n(x) = 0, dxϕn 6= dxϕ̃n = 0.

To obtain the inclusion X ⊂ A, let z ∈ X and y := T̃ (z). Then y = T (m) for a certain m ∈ A.
For any w ∈M , recalling (5), we have

ϕ(w) ≤ c(w, y)− c(m, y) + ϕ(m),

ϕ̃(m) ≤ c(m, y)− c(z, y) + ϕ̃(z).

Since ϕ(m) < ϕ̃(m) we get

ϕ(w) < c(w, T̃ (z))− c(z, T̃ (z)) + ϕ̃(z) ∀w ∈M.

In particular, taking w = z, we obtain z ∈ A, that proves the inclusion X ⊂ A.
Let us suppose now, by contradiction, that there exists a sequence (zk) ⊂ X ∩ En such that
zk → x. Again there exists mk such that T̃ (zk) = T (mk). As dxϕ̃n = 0, the closure of the
superdi�erential of a semi-concave function implies that dzk

ϕ̃n → 0. We now observe that,
arguing exactly as above with ϕn and ϕ̃n instead of ϕ and ϕ̃, using (4), (5), and the fact that
ϕ = ϕn and ϕ̃ = ϕ̃n on Cn, one obtains

ϕn(w) < c(w, T̃ (zk))− c(zk, T̃ (zk)) + ϕ̃n(zk) ∀w ∈M.

Taking w su�ciently near to x, we can assume that we are in Rn × N . We now remark that,
since zk ∈ En ⊂ D̃n, T̃ (zk) vary in a compact subset of N (this follows by the construction of T̃ ).
So, by hypothesis (i) on c, we can �nd a common modulus of continuity ω in a neighborhood of
x for the family of uniformly semi-concave functions z 7→ c(z, T̃ (zk)). Then, we get

ϕn(w) <
∂c

∂x
(zk, T̃ (zk))(w − zk) + ω(|w − zk|)|w − zk|+ ϕ̃n(zk)

= dzk
ϕ̃n(w − zk) + ω(|w − zk|)|w − zk|+ ϕ̃n(zk).

Letting k →∞ and recalling that dzk
ϕ̃n → 0 and ϕ̃n(x) = ϕn(x) = 0, we obtain

ϕn(w)− ϕn(x) ≤ ω(|w − x|)|w − x| ⇒ dxϕn = 0,

which is absurd.
Thus there exists r > 0 such that Br(x) ∩ En and X ∩ En are disjoint, and (7) holds. De�ning
now Y := T (A), by (7) we obtain

ν(Y ) = µ(T−1(Y )) ≥ µ(A) = µ(En) + µ(A \En) ≥ µ(Br(x) ∩ En)

+ µ(X ∩ En) + µ(X \ En) = µ(Br(x) ∩ En) + µ(X) ≥ 1
5
µ(Br(x)) + ν(Y ),

which is absurd. ¤
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Let now consider the special case N = M , with M a complete manifold. As shown in [6],
this theorem applies in the following cases:

(i) c : M ×M → R is de�ned by

c(x, y) := inf
γ(0)=x, γ(1)=y

∫ 1

0
L(γ(t), γ̇(t)) dt,

where the in�mum is taken over all the continuous piecewise C1 curves, and the Lagrangian
L(x, v) ∈ C2(TM,R) is C2-strictly convex and uniform superlinear in v, and veri�es an
uniform boundedness in the �bers;

(ii) c(x, y) = dp(x, y) for any p ∈ (1,+∞), where d(x, y) denotes a complete Riemannian
distance on M .

Moreover, in the cases above, the following important fact holds:

Remark 2.1. For µ0-a.e. x, there exists an unique curve from x to T (x) that minimizes the
action. In fact, since ∂c

∂x(x, y) exists at y = T (x) for µ0-a.e. x, the fact that ∂c
∂x(x, ·) is injective

on its domain of de�nition tells us that its velocity at time 0 is µ0-a.e. univocally determined
(see [6]).

Let us recall the following de�nition, see [1, De�nition 5.5.1, page 129]:

De�nition 2.2 (Approximate di�erential). We say that f : M → Rm has an approximate
di�erential at x ∈ M if there exists a function h : M → Rm di�erentiable at x such that the
set {f = h} has density 1 at x with respect to the Lebesgue measure (this just means that the
density is 1 in charts). In this case, the approximate value of f at x is de�ned as f̃(x) = h(x),
and the approximate di�erential of f at x is de�ned as d̃xf = dxh. It is not di�cult to show
that this de�nition makes sense. In fact, both h(x), and dxh do not depend on the choice of h,
provided x is a density point of the set {f = h} for the Lebesgue measure.

We recall that many standard properties of the di�erential still hold for the approximate
di�erential, such as linearity and additivity. In particular, it is simple to check that the property
of being approximatively di�erentiable is stable by right composition with smooth maps (say
C1), and in this case the standard chain rule formula for the di�erentials holds. Moreover we
remark that it makes sense to speak of approximate di�erential for maps between manifolds.
In ([6]), the following formula is proven:
in the particular case c(x, y) = d2(x, y), the optimal transport map is given by

T (x) = expx[−∇̃xϕ],

where ∇̃xϕ denotes the approximate gradient of ϕ at x, which simply corresponds to the element
of TxM obtained from d̃xϕ using the isomorphism with T ∗xM induced by the Riemannian metric.
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3 The Wasserstein space W2

Let (M, g) be a smooth complete Riemannian manifold, equipped with its geodesic distance d
and its volume measure vol. We denote with P (M) the set of probability measures on M . The
space P (M) can be endowed of the so called Wasserstein distance W2:

W2(µ0, µ1)2 := min
γ∈Π(µ0,µ1)

{∫

M×M
d2(x, y) dγ(x, y)

}
.

The quantity W2 will be called the Wasserstein distance of order 2 between µ0 and µ1. It is
well-known that it de�nes a metric on P (M) (not necessarily �nite), and so one can speak about
geodesic in the metric space (P (M),W2). This space turns out, indeed, to be a length space (see
for example [12], [13]). Now, whenever W2(µ0, µ1) < +∞, we know that any optimal transport
plan is supported on a c-cyclical monotone set (see for example [2], [11], [13]). We denote with
P ac(M) the subset of P (M) that consists of the Borel probability measures on M that are
absolutely continuous with respect to vol. Thus, if µ0, µ1 ∈ P ac(M) and W2(µ0, µ1) < +∞, we
know that there exists an unique transport map between µ0 and µ1.

Proposition 3.1. P ac(M) is a geodesically convex subset of P (M). Moreover, if µ0, µ1 ∈
P ac(M) and W2(µ0, µ1) < +∞, then there is a unique Wasserstein geodesic {µt}t∈[0,1] joining
µ0 to µ1, which is given by

µt = (Tt)]µ0 := (exp[−t∇̃ϕ])]µ0,

where T (x) = expx[−∇̃xϕ] is the unique transport map from µ0 to µ1 which is optimal for the
cost 1

2d
2(x, y) (and so also optimal for the cost d2(x, y)). Moreover:

(i) Tt is the unique optimal transport map from µ0 to µt for all t ∈ [0, 1];

(ii) T−1
t the unique optimal transport map from µt to µ0 for all t ∈ [0, 1] (and, if t ∈ [0, 1), it

is locally Lipschitz);

(iii) T ◦ T−1
t the unique optimal transport map from µt to µ1 for all t ∈ [0, 1] (and, if t ∈ (0, 1],

it is locally Lipschitz).
Proof. Regarding the fact that µt ∈ P ac(M) (which corresponds to say that P ac(M) is
geodesically convex) and the Lipschitz regularity of the transport maps, they follow from the
results in [6].

Since we know that the transport is unique, the proof of the rest of the proposition is quite
standard. In fact, a basic representation theorem (see [13, Corollary 7.20]) states that any
Wasserstein geodesic curve necessarily takes the form µt = (et)#Π, where Π is a probability
measure on the set Γ of minimizing geodesics [0, 1] → M , and et : Γ → M is the evaluation at
time t: et(γ) := γ(t). Thus the thesis follows from Remark 2.1. ¤

The above result tells us that also (P ac(M),W2) is a length space.
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3.1 Regularity, concavity estimate and a displacement convexity result
We now consider the cost function c(x, y) = 1

2d
2(x, y). Let µ, ν ∈ P ac(M) with W2(µ0, µ1) <

+∞, and let us denote with f and g their respective densities with respect to vol. Let

T (x) = expx[−∇̃xϕ]

be the unique optimal transport map from µ to ν.
We recall that locally semiconcave functions with linear modulus admits vol-a.e. a second order
Taylor expansion (see [3], [4]). Let us recall the de�nition of approximate hessian:

De�nition 3.2 (Approximate hessian). We say that f : M → Rm has a approximate hessian
at x ∈ M if there exists a function h : M → R such that the set {f = h} has density 1 at x
with respect to the Lebesgue measure and h admits a second order Taylor expansion at x, that
is there exists a self-adjoint operator H : TxM → TxM such that

h(expxw) = h(x) + 〈∇xh,w〉+
1
2
〈Hw,w〉+ o(‖w‖2

x).

In this case the approximate hessian is de�ned as ∇̃2
xf := H.

Like in the case of the approximate di�erential, it is not di�cult to show that this de�nition
makes sense.
Observing that d2(x, y) is locally semi-concave with linear modulus (see [6, Appendix]), we get
that ϕn is locally semi-concave with linear modulus for each n. Thus we can de�ne µ-a.e. an
approximate hessian for ϕ (see De�nition 3.2):

∇̃2
xϕ := ∇2

xϕn for x ∈ Dn ∩ En,

where Dn was de�ned in the proof of Theorem 1.2, En denotes the full µ-measure set of points
where ϕn admits a second order Taylor expansion, and ∇2

xϕn denotes the self-adjoint operator
on TxM that appears in the Taylor expansion on ϕn at x. Let us now consider, for each set
Fn := Dn∩En, an increasing sequence of compact setsKn

m ⊂ Fn such that µ(Fn\∪mK
n
m) = 0. We

now de�ne the measures µn
m := µxKn

m and νn
m := T]µ

n
m = (exp[−∇ϕn])]µ

n
m, and we renormalize

them in order to obtain two probability measures:

µ̂n
m :=

µn
m

µn
m(M)

∈ P ac
2 (M), ν̂n

m :=
νn

m

νn
m(M)

=
νn

m

µn
m(M)

∈ P ac
2 (M).

We now observe observe that T is still optimal. In fact, if is not that case, we would have
∫

M×M
c(x, S(x)) dµ̂n

m(x) <
∫

M×M
c(x, T (x)) dµ̂n

m(x)

for a certain S transport map from µ̂n
m to ν̂n

m. This would imply that
∫

M×M
c(x, S(x)) dµn

m(x) <
∫

M×M
c(x, T (x)) dµn

m(x),
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and so the transport map
S̃(x) :=

{
S(x) if x ∈ Kn

m

T (x) if x ∈M \Kn
m

would have a cost strictly less than the cost of T , which would contradict the optimality of T .
We will now apply the results of [4] to the compactly supported measures µ̂n

m and ν̂n
m, in order to

get information on the transport problem from µ to ν. In the sequel we will denote by ∇xd
2
y and

by ∇2
xd

2
y respectively the gradient and the hessian with respect to x of d2(x, y), and by dx exp

and d(expx)v the two components of the di�erential of the map TM 3 (x, v) 7→ expx[v] ∈ M
(whenever they exist). By [4, Theorem 4.2], we get the following:

Theorem 3.3 (Jacobian identity a.e.). There exists a subset E ⊂ M such that µ(E) = 1
and, for each x ∈ E, Y (x) := d(expx)−∇̃xϕ and H(x) := 1

2∇2
xd

2
T (x) both exist and we have

f(x) = g(T (x)) det[Y (x)(H(x)− ∇̃2
xϕ)] 6= 0.

Proof. It su�ces to observe that [4, Theorem 4.2] applied to µ̂n
m and ν̂n

m gives that, for µ-a.e.
x ∈ Kn

m,
f(x)
µn

m(M)
=
g(T (x))
µn

m(M)
det[Y (x)(H(x)−∇2

xϕn)] 6= 0,

which implies

f(x) = g(T (x)) det[Y (x)(H(x)− ∇̃2
xϕ)] 6= 0 for µ-a.e. x ∈ Kn

m.

Passing to the limit as m,n→ +∞ we get the result. ¤
We can so de�ne µ-a.e. the (weak) di�erential of the transport map at x as

dxT := Y (x)
(
H(x)− ∇̃2

xϕ
)
.

Let us prove now that, indeed, T (x) is approximately di�erentiable µ-a.e., and that the above
di�erential coincides with the approximate di�erential of T . In order to prove this fact, let us �rst
make a formal computation. Observe that, since the map x 7→ expx[−1

2∇xd
2
y] = y is constant,

we have

0 = dx(expx[−1
2∇xd

2
y]) = dx exp[−1

2∇xd
2
y]− d(expx)− 1

2
∇xd2

y

(
1
2∇2

xd
2
y

)
. ∀y ∈M,

By di�erentiating (in the approximate sense) the equality T (x) = exp[−∇̃xϕ] and recalling the
equality ∇̃xϕ = 1

2∇xd
2
T (x), we obtain

d̃xT = d(expx)−∇̃xϕ

(−∇̃2
xϕ

)
+ dx exp[−∇̃xϕ]

= d(expx)−∇̃xϕ

(−∇̃2
xϕ

)
+ d(expx)− 1

2
∇xd2

T (x)

(
1
2∇2

xd
2
T (x)

)

= d(expx)−∇̃xϕ

(
H(x)− ∇̃2

xϕ
)
,

as wanted. In order to make the above proof rigorous, it su�ces to observe that for µ-a.e. x,
T (x) 6∈ cut(x), where cut(x) is de�ned as the set of points z ∈ M which cannot be linked to x
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by an extendable minimizing geodesic. Indeed we recall that the square of the distance fails to
be semiconvex at the cut locus, that is, if x ∈ cut(y), then

inf
0<‖v‖x<1

d2
y(expx[v])− 2d2

y(x) + d2
y(expx[−v])

|v|2 = −∞

(see [4, Proposition 2.5]). Fix now x ∈ Fn. Since we know that 1
2d

2(z, T (x)) ≥ ϕn(z)− ψ(T (x))
with equality for z = x, we obtain a bound from below of the Hessian of d2

T (x) at x in term of the
Hessian of ϕn at x (see the proof of [4, Proposition 4.1(a)]). Thus, since each ϕn admits vol-a.e.
a second order Taylor expansion, we obtain that, for µ-a.e. x,

x 6∈ cut(T (x)), or equivalently T (x) 6∈ cut(x).

This implies that all the computations we made above in order to prove the formula for d̃xT
are correct. Indeed the exponential map (x, v) 7→ expx[v] is smooth if expx[v] 6∈ cut(x), the
function d2

y is smooth around any x 6∈ cut(y) (see [4, Paragraph 2]), and ∇̃xϕ is approximatively
di�erentiable µ-a.e. Thus, recalling that, once we consider the right composition of an approxi-
matively di�erentiable map with a smooth map, the standard chain rule holds (see the remarks
after De�nition 2.2), we have proved the following regularity result for the transport map:

Proposition 3.4 (Approximate di�erentiability of the transport map). The transport
map is approximatively di�erentiable for µ-a.e. x and its approximate di�erential is given by the
formula

d̃xT = Y (x)
(
H(x)− ∇̃2

xϕ
)
,

where Y and H are de�ned in Theorem 3.3.

For proving our displacement convexity result, it will be useful the following change of vari-
ables formula.

Proposition 3.5 (Change of variables for optimal maps). If A : [0 +∞) → R is a Borel
function such that A(0) = 0, then

∫

M
A(g(y)) d vol(y) =

∫

E
A

(
f(x)
J(x)

)
J(x) d vol(x),

where J(x) := det[Y (x)(H(x) − ∇̃2
xϕ)] = det[d̃xT ] (either both integrals are unde�ned or both

take the same value in R).

The proof follows by the Jacobian identity proved in Theorem 3.3 exactly as in [4, Corollary
4.7].

Let us now de�ne for t ∈ [0, 1] the measure µt := (Tt)]µ, where

Tt(x) = expx[−t∇̃xϕ].

By the results in [6] and Proposition 3.1, we know that Tt coincides with the unique optimal
map pushing µ forward to µt, and that µt is absolutely continuous with respect to vol for any
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t ∈ [0, 1].
Given x, y ∈M , following [4], we de�ne for t ∈ [0, 1]

Zt(x, y) := {z ∈M | d(x, z) = td(x, y) and d(z, y) = (1− t)d(x, y)}.
If now N is a subset of M , we set

Zt(x,N) := ∪y∈NZt(x, y).

Letting Br(y) ⊂ M denote the open ball of radius r > 0 centered at y ∈ M , for t ∈ (0, 1] we
de�ne

vt(x, y) := lim
r→0

vol(Zt(x,Br(y)))
vol(Btr(y))

> 0

(the above limit always exists, thought it will be in�nite when x and y are conjugate points, see
[4]). Arguing as in the proof of Theorem 3.3, by [4, Lemma 6.1] we get the following:
Theorem 3.6 (Jacobian inequality). Let E be the set of full µ-measure given by Theorem
3.3. Then, for each x ∈ E, Yt(x) := d(expx)−t∇̃xϕ and Ht(x) := 1

2∇2
xd

2
Tt(x) both exist for all

t ∈ [0, 1] and the Jacobian determinant

Jt(x) := det[Yt(x)(Ht(x)− t∇̃2
xϕ)] (8)

satis�es
J

1
n
t (x) ≥ (1− t) [v1−t(T (x), x)]

1
n + t [vt(x, T (x))]

1
n J

1
n
1 (x).

We now consider as source measure µ0 = ρ0 d vol(x) ∈ P ac(M) and as target measure µ1 =
ρ1 d vol(x) ∈ P ac(M), and we assume as before that W2(µ0, µ1) < +∞. By Proposition 3.1 we
have

µt = (Tt)][ρ0 d vol] = ρt d vol ∈ P ac
2 (M),

for a certain ρt ∈ L1(M,d vol).
We now want to consider the behavior of the functional

U(ρ) :=
∫

M
A(ρ(x)) d vol(x)

along the path t 7→ ρt. In Euclidean spaces, this path is called displacement interpolation and
the functional U is said to be displacement convex if

[0, 1] 3 t 7→ U(ρt) is convex for every ρ0, ρ1.

A su�cient condition for the displacement convexity of U in Rn is that A : [0,+∞) → R∪{+∞}
satisfy

(0,+∞) ∈ s 7→ snA(s−n) is convex and non-increasing, with A(0) = 0 (9)
(see [7], [9]). Typical examples include the entropy A(ρ) = ρ log ρ and the Lq-norm A(ρ) = 1

q−1ρ
q

for q ≥ n−1
n .

By all the results collected above, arguing as in the proof of [4, Theorem 6.2], we can prove
that the displacement convexity of U is still true on Ricci non-negative manifolds under the
assumption (9).
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Theorem 3.7 (Displacement convexity on Ricci non-negative manifolds). If Ric ≥ 0
and A satis�es (9), then U is displacement convex.
Proof. As we remarked above, Tt is the optimal transport map from µ0 to µt. So, by Theorem
3.3 and Proposition 3.5, we get

U(ρt) =
∫

M
A(ρt(x)) d vol(x) =

∫

Et

A

(
ρ0(x)(
J

1
n
t (x)

)n

)(
J

1
n
t (x)

)n
d vol(x), (10)

where Et is the set of full µ0-measure given by Theorem 3.3 and Jt(x) 6= 0 is de�ned in (8).
Since Ric ≥ 0, we know that vt(x, y) ≥ 1 for every x, y ∈ M (see [4, Corollary 2.2]). Thus, for
�xed x ∈ E1, Theorem 3.6 yields the concavity of the map

[0, 1] 3 t 7→ J
1
n
t (x).

Composing this function with the convex non-increasing function s 7→ snA(s−n) we get the
convexity of the integrand in (10). The only problem in order to conclude the displacement
convexity of U is that the domain of integration appears to depend on t. But, since by Theorem
3.3 Et is a set of full µ0-measure for any t ∈ [0, 1], we obtain that, for �xed t, t′, s ∈ [0, 1],

U(ρ(1−s)t+st′) ≤ (1− s)U(ρt) + sU(ρt′),

simply by computing each of the three integrals above on the full measure set Et∩Et′∩E(1−s)t+st′ .
¤
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