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Abstract

In this paper we extend recent results on the existence and uniqueness of solutions of
ODEs with non-smooth vector fields to the case of martingale solutions, in the Stroock-
Varadhan sense, of SDEs with non-smooth coefficients. In the first part we develop a general
theory, which roughly speaking allows to deduce existence, uniqueness and stability of mar-
tingale solutions for £%almost every initial condition 2 whenever existence and uniqueness
is known at the PDE level in the L*-setting (and, conversely, if existence and uniqueness
of martingale solutions is known for £%a.e. initial condition, then existence and uniqueness
for the PDE holds). In the second part of the paper we consider situations where, on the
one hand, no pointwise uniqueness result for the martingale problem is known and, on the
other hand, well-posedness for the Fokker-Planck equation can be proved. Thus, the theory
developed in the first part of the paper is applicable. In particular, we will study the Fokker-
Planck equation in two somehow extreme situations: in the first one, assuming uniform
ellipticity of the diffusion coefficients and Lipschitz regularity in time, we are able to prove
existence and uniqueness in the L2-setting; in the second one we consider an additive noise
and, assuming the drift b to have BV regularity and allowing the diffusion matrix a to be
degenerate (also identically 0), we prove existence and uniqueness in the L>°-setting. There-
fore, in these two situations, our theory yields existence, uniqueness and stability results for
martingale solutions.

1 Introduction and preliminary results

Recent research activity has been devoted to study transport equations with rough coefficients,
showing that a well-posedness result for the transport equation in a certain subclass of functions
allows to prove existence and uniqueness of a flow for the associated ODE. The first result in
this direction is due to DiPerna and P.-L.Lions [10], where the authors study the connection
between the transport equation and the associated ODE < = b(t, ), showing that existence and
uniqueness for the transport equation is equivalent to a sort of well-posedness of the ODE which
says, roughly speaking, that the ODE has a unique solution for £%almost every initial condition
(here and in the sequel, £¢ denotes the Lebesgue measure in R?). In that paper they also show
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that the transport equation dyu+ ), b;0ju = c is well-posed in L> if b = (by,. .., by) is Sobolev
and satisfies suitable global conditions (including L°°-bounds on the spatial divergence), which
yields the well-posedness of the ODE.

In [1] (see also [2]), using a slightly different philosophy, Ambrosio studied the connection
between the continuity equations dyu + ), 0;(bju) = ¢ and the ODE 4 = b(t,). This different
approach allows him to develop the general theory of the so-called Regular Lagrangian Flows
(see [2, Remark 31] for a detailed comparison with the DiPerna-Lions axiomatization), which
relates existence and uniqueness for the continuity equation with well-posedness of the ODE,
without assuming any regularity on the vector field b. Indeed, since the transport equation is in a
conservative form, it has a meaning in the sense of distributions even when b is only L;° and u is
L}, .. Thus, a general theory is developed in [1] under very general hypotheses, showing as in [10]
that existence and uniqueness for the continuity equation is equivalent to a sort of well-posedness
of the ODE. After having proved this, in [1] the well-posedness of the continuity equations in L
is proved in the case of vector fields with BV regularity whose distributional divergence belongs
to L (for other similar results on the well-posedness of the transport/continuity equation, see
also [6, 7, 13, 11]).

Our aim is to develop a stochastic counterpart of this theory: in our setting the continuity
equation becomes the Fokker-Planck equation, while the ODE becomes an SDE.
Let us consider the following SDE

{ dX =0b(t,X)dt+ o(t,X)dB(t) (1)
X(0) ==,

where b : [0, T] x R — RY and o : [0,7] x R? — L(R",R%) are bounded (here £(R", R%) denotes
the vector space of linear maps from R” to R?) and B is an r-dimensional Brownian motion
on a probability space (€2, A4, P). We want to study the existence and uniqueness of martingale
solutions for this equation. Let us define a(t,x) := o(t,x)0*(t, z) (that is a;j := >, oixoji). We
consider the so called Fokker-Planck equation

Oute + 32 0ilbipue) — 5 3255 0ijaggpe) = 0 in [0, T] x RY, ()
o = [t in RY.

We recall that, for a (possibly signed) measure u = p(t,x) = p(x), being a solution of (2)
simply means that

% Ré 90(1') d,ut(ﬂf) = /]Rd [; bz(t,$)az§0($) + % %:aij(t,:v)@-j(p(g;) d,ut(l') \VQP c Cg@(Rd) (3)

in the distributional sense on [0, 7, and the initial condition means that p; w*-converges to fi
(i.e. converges in the duality with C.(R%)) as t — 0. We observe that, since the equation (2) is
in divergence form, it makes sense without any regularity assumption on a and b, provided that

/OT/A(\b(t, )| + |a(t, z)|) d|pe|(z) dt < 400 VA CC R



(here and in the sequel, |u;| denotes the total variation of ;). Since b and a will always be
assumed to be bounded, in the definition of measure-valued solution of the PDE we assume that

T
/0 || (A) dt < 400 VA CC RY, (4)

so that (2) surely makes sense. However, if i, is singular with respect to the Lebesgue measure
L% then the products b(t,-)u; and a(t,-)p; are sensitive to modification of b(¢,-) and a(t,-) in
L%negligible sets. Since in the case of singular measures the coefficients a and b will be assumed
to be continuous, while in the case of coefficients in L°° the measures will be assumed to be
absolutely continuous, (2) will always make sense.

Recall also that it is not restrictive to consider only solutions ¢ — pu; of the Fokker-Planck
equation that are w*-continuous on [0, T, i.e. continuous in the duality with C.(R?) (see Lemma
2.1). Thus, we can assume that y; is defined for all ¢ and even at the endpoints of [0, .

For simplicity of notation, we define

1
L; = Z b,’(t, )81 + 5 Z aij(t, )613

In this way the PDE can be written as
Oups = Lipg in [0,T] x RY,

where L} denotes the (formal) adjoint of L; in L?(R%). Using It6’s formula it is simple to check
that, if X(¢,z,w) € L?(Q,C([0,T],R%)) is a family of solutions of (1), measurable in (¢, z,w),
then the measure p; defined by

/f(x) dpi () = /E[f(X(tvwaw))] di(z) Vfe Co(RY)

is a solution of (2) with g =7z (see also Lemma 2.4).
We define T'r := C([0,T],R?), and e; : T'r7 — R% e,(y) := (). Let us recall the Stroock-
Varadhan definition of martingale solutions:

Definition 1.1. A measure v, s on I'r is a martingale solution of (1) starting from x at time

s if:
(i) vus({v [ v(s) =2}) = 1;

(ii) for any p € C(RY), the stochastic process on I't

() — / Lug(y(w) du

s a Vg s-martingale after time s with respect to the canonical filtration.

We will say that the martingale problem is well-posed if, for any (s,x) € RY, we have existence
and uniqueness of martingale solutions.



In the sequel, we will deal with families {v; },cga of probability measures that are measurable
with respect to x according to the following standard definition.

Definition 1.2. We say that a family of probability measures on a probability space (€2,.A)
{Va}pera is measurable if, for any A € A, the real valued map x — v,(A) is measurable.

1.1 Plan of the paper

e The theory of Stochastic Lagrangian Flows

In the first part of the paper, we develop a general theory (independent of specific regularity
or ellipticity assumptions), which roughly speaking allows to deduce existence, uniqueness and
stability of martingale solutions for £%almost every initial condition z whenever existence and
uniqueness is known at the PDE level in the L*-setting (and, conversely, if existence and
uniqueness of martingale solutions is known for £%a.e. initial condition, then existence and
uniqueness for the PDE in the L*°-setting holds).

More precisely, in Section 2 we study how uniqueness of the SDE is related to that of the
PDE. In Paragraph 2.1 we prove a representation formula for solutions of the PDE, which shows
that they can always be seen as a superposition of solutions of the SDE also when standard
existence results for martingale solutions of SDE do not apply. In particular, assuming only the
boundedness of the coefficients, we will show that, whenever we have existence of a solution of
the PDE starting from pg, there exists at least one martingale solution of the SDE for pp-a.e.
initial condition .

In Section 3 we introduce the main object of our study, what we call Stochastic Lagrangian
Flow. In Paragraph 3.1 we state and prove our main result regarding the existence and unique-
ness of Stochastic Lagrangian Flows, showing that these flows exist and are unique whenever
the PDE is well-posed in the L*°-setting. We also prove a stability result, and we show that
Stochastic Lagrangian Flows satisfy the Chapman-Kolmogorov equation. Moreover, in Para-
graph 3.2 we investigate the relation between our result and its deterministic counterpart and,
applying our stability result, we deduce a vanishing viscosity theorem for Ambrosio’s Regular
Lagrangian Flows.

e The Fokker-Planck equation

In the second part of the paper we study by purely PDE methods the well-posedness of the
Fokker-Planck equation in two extreme (with respect to the regularity imposed in time, or in
space) situations: in the first one, assuming uniform ellipticity of the coefficients and Lipschitz
regularity in time, we are able to prove existence and uniqueness in the L2-settings assuming
no regularity in space, but only suitable divergence bounds (see Theorem 4.3). This result,
together with Proposition 4.4, directly implies the following theorem (here and in the sequel,
S, (R?) denotes the set of symmetric and non-negative definite d x d matrices).

Theorem 1.3. Let us assume that a : [0,T] x R — S, (R%) and b : [0,T] x R — R are
bounded functions such that:

(i) 3, djai; € L([0,T] x RY) fori=1,....d,



(ii) Oraij € L=([0,T] x RY) fori,j=1,...,d;
(ZZZ) (Zz 0;b; — %Z” &jaij)_ S LOO([O,T] X Rd);

(i) (€, a(t,z)€) > alé? V(t,z) € [0,T] x RY, for a certain a > 0;

(v) iy € LA([0,T) x RY), by € L2((0, 7] x RY).

Then there exist a unique solution of (2) in 2y, where
4 = {u e L([0,T), L3 (RY) 0 L=(0, T], LE(RY) | w € C(0,T], w* ~ L=(RY) },

and L_lIr and LS° denote the convexr subsets of L' and L consisting of non-negative functions.

In the second case, a does not depend on the space variables, but it can be degenerate and
it is allowed to depend on ¢ even in a measurable way. Since a can also be identically 0, we need
to assume BV regularity on the vector field b, and so we can prove:

Theorem 1.4. Let us assume that a : [0,T] — S+(R?) and b : [0,T] x R — R? are bounded
functions such that:

(i) b € L'([0,T], BVioe(R%, RY)), 35, 03bi € Li,.([0,T] x RY);
(ii) (32;0ibi)~ € L'([0,T], L=(RY)).
Then there exist a unique solution of (2) in L.

This theorem is a direct consequence of Theorem 4.12. Other existence and uniqueness re-
sults for the Fokker-Planck equation, which are in some sense intermediate with respect the two
extreme ones stated above, have been proved in a recent paper of LeBris and P.-L.Lions [14]. As
in our case, in that paper the authors are interested in the well-posedness of the Fokker-Planck
equation as a tool to deduce existence and uniqueness results at the SDE level (see also [15]). In
particular, in [14, Section 4] the authors give a list of interesting situations in the modelization
of polymeric fluids when SDEs with irregular drift b and dispersion matrix o arise (see also [12]
and the references therein for other existence and uniqueness results for non-smooth SDEs).

e Conclusions and appendix
In Section 5 we apply the theory developed in Paragraph 3.1 to obtain, in the cases considered
above, the generic well-posedness of the associated SDE.

Finally, in the Appendix we generalize an important uniqueness result of Stroock and Varad-
han (see Theorem 2.2 and the remarks at the end of Theorem 5.4).
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suggestions and improvements, and for their continuous support during the preparation of this
paper. I also thank the referees of the paper for their helpful comments.



2 SDE-PDE uniqueness

In this section we study the main relations between the SDE and the PDE. The main result is
a general representation formula for solutions of the PDE (Theorem 2.6) which allows to relate
uniqueness of the SDE to that of the PDE (Lemma 2.3).

As we already said in the introduction, here and in the sequel b and a are always assumed to
be bounded. Let us recall the following result on the time regularity of ¢ — p; (see for example
[2, Remark 3] or [4, Lemma 8.1.2]):

Lemma 2.1. Up to modification of s in a negligible set of times, t — pg is w*-continuous on
[0, T]. Moreover, if || (RY) < C for any t € [0,T], then t — py is narrowly continuous.

We also recall the following important theorem of Stroock and Varadhan (for a proof, see
[18, Theorem 6.2.3]):

Theorem 2.2. Assume that for any (s,z) € [0,T] x R%, for any Vs and Uy s martingale
solutions of (1) starting from x at time s, one has

(et)4Vas = (€1)plrs YVt € [s,T].
Then the martingale solution of (1) starting from any (s,z) € [0,T] x R is unique.
We start studying how the uniqueness of (1) is related to that of (2).
Lemma 2.3. Let A C R? be a Borel set. The following two properties are equivalent:
(a) Time-marginals of martingale solutions of the SDE are unique for any x € A.

(b) Finite non-negative measure-valued solutions of the PDE are unique for any non-negative
Radon measure pg concentrated in A.

Proof. (b) = (a): let us choose pg = 0, with € A. Then, if v, and 7, are two martingale
solutions of the SDE, we get that p; := (e;)xv, and fi; := (&)U, are two solutions of the PDE
with po = 0, (see Lemma 2.4). This implies that p; = fiy, that is

(e, 0) = / () da () = / oY1) dia(y) = (i) Vi € CR(RY),

that is (e;) 4V = (e)# 7, (observe in particular that, if A = R? and we have uniqueness for the
PDE for any initial time s > 0, by Theorem 2.2 we get that v, = i, for any x € R?).

(a) = (b): this implication follows by Theorem 2.6, which provides, for every finite non-negative
measure-valued solutions of the PDE, the representation

/ djiy = / (7 (8)) dva() dpioa), (5)
R4 RdXFT

where, for pp-a.e. z, v, is a martingale solution of SDE starting from x (at time 0). Therefore,
by the uniqueness of (e;)xv,, we obtain that solutions of the PDE are unique. O



We now prove that, if v, is a martingale solution of the SDE starting from z (at time 0) for
to-a.e. x, the right hand side of (5) always defines a non-negative solution of the PDE. We recall
that a locally finite measure is a possibly signed measure with locally finite total variation.

Lemma 2.4. Let pi9 be a locally finite measure on RY, and let {v2}zera be a measurable family
of probability measures on U'r such that v, is a martingale solution of the SDE starting from x
(at time 0) for |po|-a.e. x. Define on T'p the measure v := [pq vy duo(x), and assume that

/ [ xmeal6) dvala) dipol @) dt < oo YR >0 (6)
RaxT'p

(this property is trivially true if, for evample, |uo|(R?) < +o00). Then the measure pY on R?
defined by

(g, 0) = ((er) v, p) = /Rdxr @(v(t) dve(7) dpo(z) Ve € CZ(RY)

s a solution of the PDE.

Proof. Let us first show that the map ¢ ~— (i, o) is absolutely continuous for any ¢ € C°(R9).
We recall that a real valued map t — f(¢) is said absolutely continuous if, for any £ > 0 there
exists 6 > 0 such that, given any family of disjoint intervals (sg,tx) C [0,7], the following

implication holds:
Z‘tk_3k|<5 = Z|ftk Sk‘<€

Take R > 0 such that supp(<p) C Bp, and let I = Uzzl(sk,tk) be a subset of [0, T] with (s, tx)
disjoint and such that |ty — si| < 1. For pg-a.e. x, by the definition of martingale solution we
have

[ sttnane - [ st = [* [ Letwano

:/:k /FTZbi(t,fy(t))f)i@( (t)) dvy(7y) dt + = /tk/ > aij(t, (1) 0(¥(t) dva(7) dt

TZ]

and so, integrating with respect to pg, we obtain

) = (2] < im0+ el [ [ xma(0) dvs(3) dlol o)

Thus

n , , 1 n
Sl ) — (e o) < e bl + 3lalloe] 3 / [ xmea(0) dva(a) dlol ) e
k=1 k=17sk JRIXTT

which shows that the map ¢ — (uY, ) is absolutely continuous thanks to (6) and the absolute
continuity property of the integral. So, in order to conclude that p} solves the PDE, it suffices



to compute the time derivative of t — (i, ), and, by the computation we made above, one
simply gets

%(ui@ = /Rdjt (/FT go('y(t))dyx('y)) dpio(z)

/Rd /FT Lyp(y(t)) dve(7y) dpo(z) = (1t Lio).

Remark 2.5. We observe that, by the definition of py, the following implications hold:
(i) po >0 =Vt >0, u¥ >0 and ¥ (RY) = po(R?) (the total mass can also be infinite);

(i4) po signed = ¥t >0, |u¥|(R?) < |uo|(R?) (the total variation can also be infinite).

2.1 A representation formula for solutions of the PDE
We denote by M (R?) the set of non-negative finite measures on RY.

Theorem 2.6. Let ji; be a solution of the PDE such that py € My (R?) for any t € [0,T), with
pi(RY) < C for any t € [0,T]. Then there exists a measurable family of probability measures
{ve}toera such that vy is a martingale solution of (1) starting from x (at time 0) for po-a.e. x,
and the following representation formula holds:

/ o dpi; = / () dva() dpao ). (7)
R4 RdXFT

By this theorem it follows that, whenever we have existence of a solution of the PDE starting
from pg, there exists a martingale solution of the SDE for pp-a.e. initial condition x.

Proof. Up to a renormalization of ug, we can assume that ug (Rd) =1.
Step 1: smoothing. Let p : R? — (0,+00) be a convolution kernel such that |D*p(z)| <

Cilp(x)] for any k > 1 (p(x) = CeVIH1# for instance). We consider the measures pé := p1y%ps.
They are smooth solutions of the PDE

815/% + Za b :U't Zalj zgut (8)

where b8 = b°(t,-) := M%, ai = a(t,-) = th% Then it is immediate to see that
t t

1B lloo < M1btllocs  Nlaglloo < llatlloo- (9)

Since | D¥p(z)| < Ci|p(z)], it is simple to check that b° and a® are smooth and bounded together
with all their spatial derivatives. By [18, Corollary 6.3.3], the martingale problem for a® and b*
is well-posed (see Definition 1.1) and the family {v;},cra of martingale solutions (starting at



time 0) is measurable (see Definition 1.2). By (9) we can apply Lemma 2.4, which tells us that
i = (et)# [pa V5 dug(z) is a finite measure which solves the smoothed PDE (8) with initial
datum 4. Then, since the solution of (8) is unique (Proposition 4.1), we obtain i = uf, that
is

[ o= [ o) i) dio). (10)
Rd RdxTp
Step 2: tightness. It is clear that the measures uj = po * p. are tight. So, if we define

Ve i= [pa V5 dp, we have

lim sup v*({|7(0)| > R}) =0.
R—o000<e<1

For any ¢ € C2°(R?), let us define A, := [¢| 2 [||blloc + 3]lalloc]. Since for every ¢ € C°(R?)
and any 0 <e <1

¢ 1
e0) = [ (il )ouelra) + 5 3 a1 ()i 0)) d

is a v°-martingale with respect to the canonical filtration, by (9) we obtain that p(v(t)) + Ayt
is a v°-submartingale with respect to the canonical filtration. Thus [18, Theorem 1.4.6] can be
applied, and the tightness of v* follows.

Let v be any limit point of v*, and consider the disintegration of v with respect to g =
(e0)wv, ie. v = [pa Ve duo(x). Passing to the limit in (10), we get

/ o () = / (1)) dva() dpo(@).
R4 RdXFT

Step 3: v, is a martingale solution of the SDE for pgp-a.e. z. Let £, — 0 be a sequence
such that v is the weak limit of 7. Let us fix a continuous function f : R — R with 0 < f < 1,
s € [0,T], and an Fs-measurable continuous function ®* : 'y — R with 0 < ®° < 1, where
(Fs)o<s<T denotes the canonical filtration on I'r. We define

n 1
L =) b5 (t, )0 + 3 > asn(t, )0y
i ij
Since each v5" is a martingale solution, we know that for any ¢ € [s, T and for any ¢ € C°(R?)
t
L oo - [ metw) ] ) s o) i @
RexTp 0

= [ e = [ Eetat) du] 000 dvie (o)1) i )

(see Definition 1.1), or equivalently
/ [@(v(t)) —(v(s)) - / LZSO(V(U))dU] °(7) dvz" (7)f () dpg” () = 0.
RaxTp s

9



Let us take b : [0,7] x R? — R% and a : [0,T] x R? — S, (R%) bounded and continuous, and

define .
Ly=Y bi(t,)0; + 5 > ai(t, )0y,

ij

IN/? = Zi)&n 8 + = ZNE” ) Z]7

i

where l;f” and a;7 are defined analogously to b;" and a;?. Thus we can write

Lo [ = et - [ it o ae e ase)
Lo, [/:(LZ - Li)e(v(w) du} @ (3) dv2 ()£ () dpiy (z).

Then, recalling that 0 < f <1 and 0 < ®° < 1, we get

/ [@(V(t)) —¢(v(s)) — / Liyp(y(u)) du] () dvg" (7) f(x) dpg" (x)
RexTp s

Lol
<o, [/j

- Ll
Sys
o[ /Rd

<3 [0 B i e 2 e
T3 Z// |laij(u, -) — @y (u, -)[(2)0i0 * pe, (x) dpy(z) du.

(L~ E2)o(r ()] du| 8 () vk ()F ) i 2)
(s - imwu))\ ] a2 () i (2)

>( i () du
( ) * Pep (bi(u, ) P%)ai

P | (2) dpg () du

() dyiy () du

a; u)*pn Qij(u, ) fiu) * pe,
< z] u 3 _(zg( )Enu 3 )a”(p

u

Since @ and b are continuous, a°” and ben converge to a and b locally uniformly. So we can pass

10



to the limit in the above equation as n — oo, obtaining

/ [@(’Y(O)-@D(W(S))— / Lusow(u»du] () dv () £ (&) dyao()
R xT'p s

<[ ) =B )lopla) diufa) du

+ % %:/s /Rd laij(u, ) — ai;j(u, x)|0i0(z) dpy(z) du

Choosing two sequences of continuous functions (I;k)keN and (@*)ren converging respectively to
band a in L'([0,T] x R%, n), with n := fOT ue dt, we finally obtain

/ [gow(t))—so(w(s»— / Luw(’y(U))dU] () dve (1) (&) dpio() = 0,
RdxT'p s

that is
(1)) — | Luplr(w)) du] °(3) dn () 7(x) dso(a)
foon P00~ | |
[ 206D = [ Lupla) du] 9°0) dva(0) (o) (o).

By the arbitrariness of f we get that, for any 0 < s <t < T, and for any Fs-measurable function
®%, we have

/F ] [@(v(t)) - /0 t Lup(y(u)) du] () dva(7)
= /F i [90(7(8))— /O ) Lu@(V(u))du} ®°(v) dvy(7y) for po-ae. .

Letting ®° vary in a dense countable subset of Fs-measurable functions, by approximations we
deduce that, for any 0 < s <t < T, for pp-a.e. x,

., [etoo) = [ ety ] @y ity
- /FT [QP(V(S» - /0 Lusp(v(u)) du] () dvz(7)

for any Fs-measurable function ®* (here the pp-a.e. depends on s and ¢ but not on ®*). Taking
now s,t € [0,7] N Q, we deduce that, for up-a.e. x,

/F ) {@(v(t)) - /0 t Lup(y(u)) du] () dva(7)
B /rT [SD(V(S)) - /OS Luw(v(u))dU] () dva(7)

11



for any s,t € [0,7] N Q, for any Fs-measurable function ®°. By the continuity of the above
equality with respect to both s and ¢, and the continuity in time of the filtration Fs, we conclude
that v, is a martingale solution for pg-a.e. x. O

Remark 2.7. We observe that by (7) it follows that
@R <OVt = (R = po(RY)

(this result can also be proved more directly using as test functions in (2) a suitable sequence
(©n)neny € CX(RY), with 0 < ¢, <1 and ¢, /' 1, and, even in the case when the measures ju
are signed, under the assumption |us|(R?) < C one obtains the constancy of the map t — i (R?)).

3 Stochastic Lagrangian Flows

In this section we want to prove an existence and uniqueness result for martingale solutions which
satisfy certain properties, in the spirit of the Regular Lagrangian Flows (RLF) introduced in [1].

Definition 3.1. Given a measure jg = poL? € My (RY), with pg € L>®(R?), we say that a
measurable family of probability measures {vy}, cra on 't is a po-Stochastic Lagrangian Flow
(po-SLF) (starting at time 0), if:

(i) for po-a.e. x, v, is a martingale solution of the SDE starting from x (at time 0);
(i1) for anyt € [0,T]
e = (er) 4 (/ Uy duo(:c)> < L4,
and, denoting py = p: L%, we have p; € L¥(R?) uniformly in t.

More generally, one can analogously define a uo-SLF starting at time s with s € (0,7)
requiring that v, is a martingale solution of the SDE starting from z at time s.

Remark 3.2. If {v;},cpa is a po-SLF, then it is also a u)y-SLF for any ufy € M4 (R) with
po < Cpo. Indeed, this easily follows by the inequality

0 (e [ maduife) < Clerly [ 7adralz).

3.1 Existence, uniqueness and stability of SLF

We denote by Ll+ and L% the convex subsets of L' and L™ consisting of non-negative functions,
and, following [1], we define

2= {u e L2(0.70, L ®R) (1 (0, T], LX) | w € (0, T],w" — L¥(R%) )}
and

L= {u € L>([0,T], L1 (R%) n L>=([0,T], L (RY)) | u € C([0, T], w* — LOO(Rd))}.
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Under an existence and uniqueness result for the PDE in the class .£,, we prove existence and
uniqueness of SLF.

Theorem 3.3 (Existence of SLF starting from a fixed measure). Let us suppose that, for some
initial datum po = poL? € My (RY), with py € L®(R?), there exists a solution of the PDE in
£ . Then there exists a pg-SLF.

Proof. Tt suffices to apply Theorem 2.6 to the solution of the PDE in .Z, . O

Let us assume now that forward uniqueness for the PDE holds in the class .Z; for any initial
time, that is, for any s € [0, 7], for any ps € LY (R%) N L (RY), if we denote by p;£? and 5L
two solutions of the PDE in the class .Z; starting from p,£¢ at time s, then

pt =p¢ for any t € [s,T].

Before stating and proving our main theorem, we first introduce some notation that will be
used also in the Appendix.

Let B be the Borel o-algebra on I'r = C([0,T], R?), and define the filtrations F; := oles |
0<s<t]and Ft :=o0les |t < s <T]. Set P(I'r) the set of probability measures on I'7. Now,
given v € P(I'r), we denote by

Ir 55— vy € P(T'7)

a regular conditional probability distribution of v given F;, that is a family of probability
measures on (I'p, B) indexed by 7 such that:

- for each B € B, v — v (B) is Fi-measurable;

v(ANB) = / vy (B)dv(y) VAeF, VB eB. (11)
A

Since 't is a Polish space and every o-algebra F; is finitely generated, such a function exists

and is unique, up to v-null sets. In particular, up to changing this function in a v-null set, the

following fact holds:

vr,({713(s) =7(s) ¥s € [0,1]}) =1 ¥y €T7. (12)
Finally, given 0 < t; < ... <t, <T, we set Mt :=qgley, ..., e, ], and one can analogously
define v, ..., For v}, .. an analogous of (12) holds:
Ao (B3 138) = 3(t) Vi =1, ,n}) =1 vy eDr. (13
If v(t;) = x; for t = 1,...,n, then we will also use the notation 1/]'\%1 """" o = Vﬁt’;;,{?n.

By (11) one can check that [, vy, dvy., . .. (7)Iis aregular conditional probability distribution

AAAAA

of v given Mt which implies by uniqueness that

I/X4t1 """ tn:/ y}tn dVX/ltl ,,,,, o () for v-a.e. 7. (14)
Iy



Theorem 3.4 (Uniqueness of SLF starting from a fixed measure). Let us assume that forward
uniqueness for the PDE holds in the class £, for any initial time. Then, for any po = poL? €
M (RY), with py € L¥(R?), the puy-SLF is uniquely determined pg-a.e. (in the sense that, if
{ve} and {D,} are two up-SLF, then v, = Uy for ug-a.e. x).

Proof. Let {v,} and {#,} be two uo-SLF. Take now a function 1 € C.(R?), with ¢ > 0. By
Remark 3.2, {v;} and {#,} are two ¢ uo-SLF. Thus, by Lemma 2.4 and the uniqueness of the
PDE in .%,, for any ¢ € C.(R%) we have

/Rer ple(v)) dvz ()¢ (x) dﬂO(l‘):/ plei(v)) dvz(v)y(x) dpo(z) Ve €[0,T].  (15)

RdXFT

This clearly implies that, for any ¢ € [0, T},

(er) Vs = (er) 4y for po-a.e. z.
We now want to use an analogous argument to deduce that, for any 0 < t; <ty < ... <t, <T,

(€t1s---r€t,)#Ve = (€115, €1, )#Vr for po-a.e. x. (16)

The idea is that, given a measure jis = ps£9 € M (RY), with j, € L™, once we have a fis-SLF
starting at time s we can multiply jis by a function 1, € C.(R%) with ¥5 > 0, and by Remark
3.2 our [1s-SLF is also a ¢sjis-SLF starting at time s. Using this argument n times at different
times and the time marginals uniqueness, we will obtain (16).

Fix 0 < t; < ... <t, <T. Take ¢g > 0 with ¢y € C.(R%) and Jga o dpo = 1, and denote
by ,ul’ﬁo the value at time t; of the (unique) solution in .Z; of the PDE starting from g
(which is induced both by {v,} and {7, } by uniqueness, see equation (15)). Let {v, ¢, },crae and
{Vs.t, } sera be the families of probability measures on I'z given by the disintegration of

ALIES /Rd vatho(z) dpg(z)  and  7¥° = /Rd Uptho(x) dpo ()

with respect to ufff’ = (e4,)4V"° = (er, )4 7¥°, that is

= [ i@, = [ e i) a7
Rd R4

It is easily seen that {v,4, } and {7, } are regular conditional probability distributions, given
M = gley, ], of v¥0 and 7% respectively (that is, with the notation introduced before, vy, =
(V’X’O)ﬁﬂ1 and Uy, = (D’Z’O)Ml). Thus, looking at {v; s } and {7, } as their restriction to
C([t1,T),RY), {vey,} and {74, } are uff’lo—SLF starting at time ¢;. Indeed, by the stability of
martingale solutions with respect to regular conditional probability (see [18, Chapter 6]), {vz 4 }

and {74, } are martingale solutions of the SDE starting from z at time ¢; for u;/}lo-a.e. x (see also
the remarks at the end of the proof of Proposition 5.5), while (ii) of Definition 3.1 is trivially

14



true since {v,} and {7} are Youo-SLF. As before, since {v; 4, } and {74, } are also ¥y u;"-SLF
for any 11 € C.(R%) with 11 > 0, using again the uniqueness of the PDE in %, we get

/ Pler (7)) dvegy (V)1 () dug (x) = / Plers (7)) diga (1)1 (@) dpy ()
RdXFT RdXFT
for any ¢ € C.(R%), which can also be written as

/R o ler,(N)1len, (7)) dvag, (7) dpf® (z) = / (e, (V)P1(ee, (7)) A, () dpsf ().

RdXFT
(18)
Recalling that by (17)

[ ren i@ = | vevo@ (o), [ e du2@) = [ sbole) duoo)

by (18) we obtain

/WXF olew, (V)1 (ed, (7)) dva (7)vo(z) dpo(z)
:/Rdxr ©(es, (7)1 (ed, (7)) A ()10 (2) dpo (z)

for any non-negative 1,11, ¢ € C.(R?) (the constraint Jga o dpo = 1 can be easily removed
multiplying the above equality by a positive constant). Iterating this argument, we finally get

/Rdxr (e, (7)) - 1(en (7)) dvg (7)o (x) dpo(z)
= /RdXF Ynlet, (7)) - 1(es (7)) dog (v) o (x) dpo (),

for any non-negative 1y, ..., ¥, € C.(R%), and thus (16) follows.
Considering now only rational times, we get that there exists a subset A C R?, with jo(A°) = 0,
such that, for any x € A,

(Etrs.--r€t,)4Vs = (€, €4, ) 40y forany ti,...,t, € [0,7]NQ.

By continuity, this implies that, for any x € A, v, = ,, as wanted. O

Remark 3.5. Suppose that forward uniqueness for the PDE holds in the class £y, and take
po = pol? and fig = poL?, with po, po € L}F(Rd) N Lﬁf’(Rd). If {v,} is a po-SLF and {7} is a
o-SLF, then

Vg = Uy for po A fip-a.e. x.
In fact, by Remark 3.2 {v,} and {0,} are both po A fio-SLF, and thus we conclude by the
uniqueness result proved above.
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By Theorems 3.3 and 3.4, and by the remark above, we obtain the following:

Corollary 3.6 (Existence and uniqueness of SLF). Let us assume that we have forward ezxistence
and uniqueness for the PDE in Z£y. Then there exists a measurable selection of martingale
solution {vy},cpa which is a po-SLF for any po = poL? with py € LY (R?) N LP(RY), and if
{Vs}pera s a fig-SLF for a fired fig = poL? with po € LY (RY) N LL(RY), then v, = ¥ for
L%-a.e. x € supp(fio).

Proof. Tt suffices to consider a SLF starting from a Gaussian measure (which exists by Theorem
3.3), and to apply Remark 3.5. O

By now, the above selection of martingale solutions {v,}, which is uniquely determined
L%a.e., will be called the SLF (starting at time 0 and relative to (b, a)).
We finally prove a stability result for SLF:

Theorem 3.7 (Stability of SLF starting from a fixed measure). Let us suppose that b™,b :
[0,7] x RY — RY and a™,a : [0,T] x R — S, (RY) are uniformly bounded functions, and
that we have forward existence and uniqueness for the PDE in £y with coefficients (b,a). Let
po = poL? € M4 (RY), with pg € L= (RY), and let {v7} ,cpa and {vy}yepa be po-SLF for (b",a™)
and (b, a) respectively. Define v™ := [pq v dpo(x), v = [pa Ve dpo(z). Assume that:

(i) (", a™) — (b,a) in L} ([0,T] x R%);

(ii) setting ppL? = uit := (er) 1™, for any t € [0, T

108 | Lo ey < € for a certain constant C = C(T).

Then v™ —* v in M(I'r).

Proof. Since (b",a™) are uniformly bounded in L*°, as in Step 2 of the the proof of Theorem
2.6 one proves that the sequence of probability measures (¢) on R? x I'r is tight. In order to
conclude, we must show that any limit point of (") is v.

Let 7 be any limit point of (¥™). We claim that 7 is concentrated on martingale solutions of
the SDE with coefficients (b,a). Indeed, let us define fi; := (e;)x¥. Since puy — fi narrowly
and p} are non-negative functions bounded in L>®(RY), we get ji; = p;L£¢ for a certain non-
negative function p; € L>(R?). We now observe that the argument used in Step 3 of the proof
of Theorem 2.6 was using only the property that, for any ¢ € C°(R%),

t
lim sup //
n—+o00 ; s JRA

oo () dz du

(v, 2) = BiCus,2) ) D ()
X/ ).
(et (u,2) = 35 (w,2)) Dy p(a)

<o/ L
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pu(@) dz du,

(bitn,2) = bi(w,2) ) O ()

oo () dx du

t
limsupg //
n—+oo i s R4

(azj(u, x) — agj(u, 3?))%90(90)

pu(z) dz du



for any b : [0,7] x R* — R? and a : [0,T] x R* — S, (R%) bounded and continuous. This
property simply follows by (i) and the w*-convergence of p} to p; in L>([0,T] x R%).

Since t > py £ is w*-continuous in the sense of measures, the w*-continuity of t — p; in L>°(R?)
follows. Thus, if we write 7 := [pq Uz dpuo(x) (considering the disintegration of 7 with respect to
po = (eo)#?), we have proved that {#,} is a po-SLF for (b,a). Therefore, by Theorem 3.4, we
conclude that v = 7. O

We remark that the theory just developed could be generalized to more general situations.
Indeed the key property of the convex class £, is the following monotonicy property:

O<mu<meZs = ety

(see also [2, Section 3]).

3.2 SLF versus RLF

We remark that, in the special case a = 0, our SLF coincides with a sort of superposition of the
RLF introduced in [1]:

Lemma 3.8. Let us assume a = 0. Then v, ¢ is a martingale solution of the SDE (which, in
this case, is just an ODE) starting from x at time s if and only if it is concentrated on integral
curves of the ODE, that is, for vy s-a.e. v,

y(t) —y(s) = / b(r,y(7))dr Vte [s,T].

Proof. It is clear from the definition of martingale solution that, if v, s is concentrated on inte-
gral curves on the ODE;, then it is a martingale solution. Let us prove the converse implication.
By the definition of martingale solution and the fact that a = 0, it is a known fact that

A@zv@—%@—/bh%ﬂﬂﬂtebih

is a v, s-martingale with zero quadratic variation. This implies that also M}? is a martingale,
and since Mg = 0 we get

2

0=WwWﬂ=/T@w—w@—L%wwﬂmQ as(7) V€ [s,T],

r
which gives the thesis. O

Thus, in the case a = 0, a martingale solution of the SDE starting from x is simply a measure
on 'y concentrated on integral curves of b. By the results in [1] we know that, if we have forward
uniqueness for the PDE in %, , then any measure v on I'p concentrated on integral curves of b
such that its time marginals induces a solution of the PDE in ., is concentrated on a graph,
i.e. there exists a function x — X (-, x) € I'p such that

v=X(,z)gpo, with po:= (eo)yv
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(see for instance [3, Theorem 18]). Then, if we assume forward uniqueness for the PDE in .2, ,
our SLF coincides exactly with the RLF in [1]. Applying the stability result proved in the above
paragraph, we obtain that, as the noise tends to 0, our SLF converges to the RLF associated to
the ODE 4 = b(y). So we have a vanishing viscosity result for RLF.

Corollary 3.9. Let us suppose that b : [0,T] x R? — R? is uniformly bounded, and that we
have forward existence and uniqueness for the PDE in £ with coefficients (b,0). Let {V5},cRra
and {vy},cra be the SLF relative to (b,el) and (b,0) respectively (existence and uniqueness of
martingale solutions for the SDE with coefficients (b,el), together with the measurability of the
family {VE}era, follows by [18, Theorem 7.2.1]). Let ug = poL? € M (R?), with py € L (R?),
and define v° := [pq Vi dpo(x), v = [pa Ve dpo(z).

Set p; L4 = s := (et) 4v°, and assume that for any t € 0,7

¢l Loo(ray < € for a certain constant C' = C(T).
Then v¢ —* v in M(T'7).

In [1], the uniqueness of RLF implies the semigroup law (see [1], [2] for more details). In
our case, by the uniqueness of SLF, we have as a consequence that the Chapman-Kolmogorov
equation holds:

Proposition 3.10. For any s > 0, let {vy s},cra denotes the unique SLF starting at time s.
Let us denote by vs . (t,dy) the probability measure on R? given by Vsa(t,-) = (er) Vs . Then,
forany0<s<t<u<T,

/ Vtvl/(”? ‘)I/s’x(t, dy) = Vs,m(u, ) fO?" Ed — a.e. I.
Rd
Proof. Let us define

i { 1 on C(fs, ], RY)
ST fRd Ut yVsz(t,dy) on C’([t,T],Rd).

This gives a family of martingale solution starting from x at time s (see [18]), and, using that
{vss} and {v,+} are SLF starting at time s and ¢ respectively, it is simple to check that {7 ; },cRra
is a SLF starting at time s. Thus, by Theorem 3.4, we have the thesis. O

4 Fokker-Planck equation

We now want to study the Fokker-Planck equation

1 .
8t,lLt + Z&(blut) — 5 Zaij(a,-jut) =0 in [O,T] X Rd, (19)

ij

where a = (a;;) is symmetric and non-negative definite (that is, a : [0,7] x R? — S} (R%)).
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4.1 Existence and uniqueness of measure valued solutions

Proposition 4.1. Let us assume that a : [0,T] x R* — S (R?) and b : [0,T] x R? — R?
are bounded functions, having two bounded continuous spatial derivatives. Then, for any finite

measure fy there exists a unique finite measure-valued solution of (19) starting from py such
that |p:|(R?) < C for any t € [0,T).

Proof. Existence: let {v;},cra be the measurable family of martingale solutions of the SDE
dX =0b(t, X)dt ++\/a(t,X)dB(t)
X(0)==z

(which exists and is unique by [18, Corollary 6.3.3]). Then, by Lemma 2.4 and Remark 2.5, the
measure fy := (€¢)4 [ga Vo dito(x) solves (19) and |p|(R?) < [puo| (RY).

Uniqueness: by linearity, it suffices to prove that, if ug = 0, then p, = 0 for all ¢ € [0,T]. Fix
Y € CX(RY), T € [0,T], and let f(t,z) be the (unique) solution of

Of+>, baf+ Z”a”@]f—O in [0,7] x R?
f) =4 on R4

(which exists and is unique by [18, Theorem 3.2.6]). By [18, Theorems 3.1.1 and 3.2.4], we know
that f € C; ’2, i.e. it is uniformly bounded with one bounded continuous time derivative and two
bounded continuous spatial derivatives. Since p; is a finite measure by assumption, and ¢ —
is narrowly continuous (Lemma 2.1), we can use f(t,-) as test functions in (3), and we get

d 1
T /Rd [t x) duy(z) = /Rd {@f(t, r) + ;bi(t,x)aif(taﬁf) t3 izjaij(tv x)az‘jf(tax)] dpe(z) = 0

(the above computation is admissible since f € C 1’2). This implies in particular that

0= [ 0@y dun() = [ ) digto) = [ 0@ dugla

By the arbitrariness of ¢ and ¢ we obtain p; = 0 for all ¢ € [0, T]. O

We remark that, in the uniformly parabolic case, the above proof still works under weaker
regularity assumptions. Indeed, in that case, one has existence of a measurable family of mar-
tingale solutions of the SDE and of a solution f € C; ’2([0,5] x R?) of the adjoint equation if a
and b are just Holder continuous (see [18, Theorem 3.2.1]). So we get:

Proposition 4.2. Let us assume that a : [0,T] x R — S, (R?) and b : [0,T] x R — R? are
bounded functions such that:

(i) (&, a(t,z)€) > alé|? V(t,x) € [0,T] x RE, for a certain o > 0;

(ii) [b(t,x) = b(s,y)| + lla(t,z) — a(s,y)| < C (lo —yl* + |t = sI°) V(t,2), (s,y) € [0,T] x R,
for some ¢ € (0,1], C' > 0.

Then, for any finite measure po there exists a unique finite measure-valued solution of (19)
starting from pyg.

19



4.2 Existence and uniqueness of absolutely continuous solutions in the uni-
formly parabolic case

We are now interested in absolutely continuous solutions of (2). Therefore, we consider the
following equation

{ 8tu + Zz 81(1)111,) — %ZU 8Z-j(aiju) =0 in [O,T] X Rd,

u(0) = uy, (20)

which must be understood in the distributional sense on [0, 7] x R%. We now first prove an
existence and uniqueness result in the L?-setting under a regularity assumption on the divergence
of a, which enables us to write (20) in a variational form, and thus to apply classical existence
results (the uniqueness part in L? is much more involved). After, we will give a maximum
principle result.

Let us make the following assumptions on the coefficients:

e’} . 1 — e’}
Zajaij e L>([0,T] x RY) fori=1,...,d, (Z Dib; — iz(zjaij) € L°([0,T] x RY),
J 4 ]

(€, a(t,z)€) > al¢)? V(t,z) € [0,T] x RY,  for a certain a > 0.
(21)

Theorem 4.3. Let us assume that a : [0,T] x R — S, (RY) and b : [0,T] x R — R are
bounded functions such that (21) is fulfilled. Then, for any ug € L*(R%), (20) has a unique
solution u € Y, where

Y = {u e L2([0, T, HY(RY)) | dyu € LZ([O,T],H_l(Rd))} .

If moreover Oya;; € L>®([0,T] x RY) fori,j =1,...,d, then evistence and uniqueness holds in
L%([0,T] x RY), and so in particular any solution u € L*([0,T] x R?) of (20) belongs to Y.

The proof the above theorem is quite standard, except for the uniqueness result in the large
space L2, which is indeed quite technical and involved. The motivation for this more general
result is that L1 (R?) N LL(RY) C L*(RY), and L (R?) N LL(R?) is the space where we need
well-posedness of the PDE if we want to apply the theory on martingale solutions developed in
the last section (see Theorems 1.3 and 5.1).

We now give some properties of the family of solutions of (20):

Proposition 4.4. We assume that a : [0,T] x R? — S, (RY) and b : [0,T] x R? — R are
bounded functions, and that (21) is fulfilled. Then the solution u € Y provided by Theorem 4.3
satisfies:

(a) up>0 = u>0;
(b) up € L°(RY) = we L>®([0,7] x RY) and we have

RN I
Hu(t)”LOO(Rd) S HUOHLoo(Rd)et”(Ziazbl 2Ez] azy‘lzj) Hoo;
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(¢) if moreover
a

1+ |z|?

e L2([0,T] x RY), € L*([0,T] x RY),

1+ |z
then ug € Ll = Hu(t)HLl(]Rd) < ”UOHLl(Rd) Vit € [0, T]
We observe that, by the above results together with Proposition 4.2, we obtain:

Corollary 4.5. Let us assume that a : [0,T] x R — S(RY) and b : [0, T] x RY — R are bounded
functions such that:

(i) (&, a(t,z)€) > al¢|? V(t,x) € [0,T] x RY, for a certain o > 0;

(ii) |b(t, ) = b(s,y)| + lla(t,z) — a(s,y)| < C(Jx —y|" + [t — s|7) ¥(t,2), (s,y) € [0,T] x RY,
for some v € (0,1], C > 0;

(’i’l"i) Zj 8jaz~j S LOO([O,T} X Rd) fO?" 1=1,...,d, (Zl 0;b; — % Zij 6ijaij)* S Loo([O,T] X Rd);

(iv) e € L2([0,T] x RY), i € L2([0,T] x RY).

Then, for any g € M (R?) there exists a unique finite measure-valued solution iy € M, (R?)
of (2) starting from po. Moreover, if such that po = poL? with py € L?(RY), then py < L4 for
all t €10, 7).

Proof. Existence and uniqueness of finite measure-valued solutions follows by Proposition 4.2.
So the only thing to prove is that, if pg € L*(R?) N L?(R?) is non-negative, then u; € M (R?)
and py < L% for all t € [0, T]. This simply follows by the fact that the solution u € Y provided
by Theorem 4.3 belongs to LL(Rd) by Proposition 4.4, and thus coincides with g, by uniqueness
in the set of finite measure-valued solutions. O

In order to prove the results stated before, we need the following theorem of J.-L.Lions (see
[16]):

Theorem 4.6. Let H be an Hilbert space, provided with a norm |- |, and inner product (-,-).
Let ® C H be a subspace endowed with a prehilbertian norm || -||, such that the injection ® — H
is continuous. We consider a bilinear form B : H x ® — R such that:

- H 3 uw B(u,y) is continuous on H for any fivred p € ®;
- there exists a > 0 such that B(p, ) > all¢||? for any ¢ € .

Then, for any linear continuous form L on ® there exists v € H such that
B(v,p) = L(p) Ve .

Proof of Theorem 4.3. We will first prove existence and uniqueness of a solution in the space
Y. Once this will be done, we will show that, if u is a weak solution of (20) belonging to
L?([0,T] x RY) and Orai; € L>([0,T] x RY) for 4,5 = 1,...,d, then u belongs to Y, and so it
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coincides with the unique solution provided before.
The change of unknown
o(t, ) = e Mu(t, x)

leads to the equation

{ atU + Zz az(gzv) — % Zij ai(aijﬁjv) + A =0 1in [O,T} X ]Rd, (22)

Vo = Uo,

where b; := b; — %E; dja;; € L>([0,T] x R?). Assuming that X satisfies A > £[|(3, 9ibi) " |loo,
we will prove existence and uniqueness for u.

Step 1: existence in Y. We want to apply Theorem 4.6.

Let us take H := L2([0,T], H}(R%)), ® := {¢p € C*°([0,T] x R?) | suppp CC [0,T) x R}. & is
endowed with the norm

1
lell = llellZ + 2/ |00, 2)|? d.
R4

The bilinear form B and the linear form L are defined as

T ~
B(u7 90) = /0 /]Rd [U<_8t§0 - ; bi0;p + )\(,0> + % %: aijajuﬁiw} dx dt,

L(yp) := /Rd uo(x)e(0, z) d.

Thanks to these definitions and our assumptions, Lions’ theorem applies, and we find a distri-
butional solution v of (22). In particular,

~ 1
Opv == 0i(bw) + 3 > di(aid;v) — M € H* = L*([0,T], H ' (RY),
7 i

and thus v € Y. In order to give a meaning to the initial condition and to show the uniqueness,
we recall that for functions in Y there exists a well-defined notion of trace at 0 in L?(R?), and
the following Gauss-Green formula holds:

T
/ Oputs + Opuu dx dt = / w(T, x)u(T, z) dx — / u(0,2)a(0,x)dx Yu,ue€Y  (23)
0 R4 R4 R4

(both facts follow by a standard approximation with smooth functions and by the fact that, if
u is smooth and compactly supported in [0,7) x R, [o,u?(0,2)dx < 2||8sul| g+ ||ul ). Thus,
by (22) and (23), we obtain that v satisfies

/Rd(U(O,:B) —up(z))p(0,z)de =0 Vo e P,

and therefore the initial condition is satisfied in L?(R?).
Step 2: uniqueness in Y. For the uniqueness, if v € Y is a solution of (22) with ug = 0, again
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by (23) we get
0 /OT /Rd (oh0 + Z 9, (biv) — % z]: Oilasj0y0) + v o dr di
- ;/OT /]Rd {%’UQ — ;I;ﬁi(vz) + %:aijaivajv + 2/\112} dx
;/Rd (T, x)de + (A ;|(Zi:a;z;i)—||oo) /OT/W o? das dt
(A~ ;Il(zi:@l?i)‘lloo) /OT /Rd o da dt.

Since A > 33, 9ibi) " ||se, We get v = 0.
Remark 4.7. We observe that the above proof still works for the PDE

Y

Y

8tu + Zz &(b,u) — %ZU (%-(aiju) =U 1n [O,T] X Rd,
u(0) = uy,

with U € H* = L2([0,T], H~Y(R%)). Indeed, it suffices to define L as

L) = Ui+ [ wo(e)e(o) do
and all the rest of the proof works without any changes.

Thanks to this remark, we can now prove uniqueness in the larger space L2([0,T] x R%)
under the assumption 0ya;; € L>=([0,T] x RY) for i,7 = 1,...,d,.
Step 3: uniqueness in L2. If u € L?([0, 7] x RY) is a (distributional) solution of (19), then

1 ~ —
0w — 5 %:ai(aijaju) - Zi:ai(biu) € L*([0,T], H ' (R?)).

By Remark 4.7, there exists & € Y solution of the above equation, with the same initial condition.
Let us define w := u — @ € L?([0,T] x R?). Then w is a distributional solution of

Ow — A(Op)w := Oyw — %ZU di(a;j0;w) =0 in [0,T] x RY,
w(0) = 0.

In order to conclude the proof, it suffices to prove that w = 0.
Step 3.1: regularization. Let us consider the PDE

we — eA(d)w. =w in [0,T] x R? (24)
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(this is an elliptic problem degenerate in the time variable). Applying Theorem 4.6, with H =
& == L2(0, T], H' (RY)),

T 3
) = /0 /]Rd (U(,O + B %: aijﬁjuaigo) dx dt,

/ / wep dz dt,
Rd

we find a unique solution w. of (24) in L?([0, T Hl(Rd)) that is w. = (I — eA(0,)) tw, with
(I —<A(0,)) : L*([0,T], HY(R?)) — Lz([O,T],H L(R?)) isomorphism. Now we want to find
the equation solved by w.. We observe that, since (I — cA(d,))~! commutes with A(d,) and
Oyw = A(0;)w, the parabolic equation solved by w, formally looks

Opwe — A(Dp)we = [0r, (I — cA(8,)) ™ w.
Formally computing the commutator between 9; and (I —£A(d,))~!, one obtains
Opwe — A(Dp)we = e(I — cA(0:)) 1Y 05(DpaijOyw®) (25)
ij

in the distributional sense (see (27) below). Let us assume for a moment that (25) has been
rigorously justified, and let us see how we can conclude.

Step 3.2: Gronwall argument. By (25) it follows that dyw. € L?([0,7T], H '(R?)). Thus,
recalling that w. € L2([0,T], H'(R?)), we can multiply (25) by w. and integrate on R?, obtaining

th/ |w€|2d:n—|—a/ Vow.|? dz < —5/ Z Drasy)0swe0; (I — eA(D,)) w.) de.

We observe that w.(t) — 0 in L? as t \, 0. Indeed, since w. € Y there is a well-defined notion
of trace at 0 in L? (see (23)), and it is not difficult to see that this trace is 0 since w(0) = 0 in
the sense of distributions. Thus, integrating in time the above inequality, we get

Hwe(t)||i2(Rd) + 2a||va:ws”%2([o,T]XRd)
< 2CE||Vawe| 20,11ty | Va (I = €A(02)) ™ we) [ p2(jo, 11 may Wt € 0, 7). (26)

Let us consider, for a general v € L2, the function v. := (I — ¢A(9;)) 'v. Multiplying the

identity v. — eA(9;)v- = v by v. and integrating on [0, 7] x R%, we get
[vell 72 + el VavellZz < [lvell g2 [0l 22,

which implies [|ve| 2 < ||v] 12, and therefore ael|Vove||7s < ||[v]|35. Applying this last inequality
with v = w., we obtain

_ 1
HV,,;((I — eA(0y)) 1w€)HL2([O,T]><Rd) < \/T—EHweHH([O,T]de)-
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Substituting the above inequality in (26), we have

€
st(t)Hi%Rd) + 2a||vxw€”%2([oj]xmd) < 20\/;”wa€”L2([0,T}><Rd)HU)SHL?([O,T]de)

c 9
< C\/;\Vmwalli2<[o,ﬂxw> + C\/;H%H%Q([o,ﬂxmd)’

which implies, for ¢ small enough (say € < 42%),

9
||w5(t)H%Q(Rd) S C\/;HwEH%Q([O,T]XRd) Vt S [O,T]

By Gronwall inequality w. = 0, and thus by (24) w = 0.

Step 3.3: rigorous justification of (25). In order to conclude the proof of the theorem, we
only need to rigorously justify (25).

Let (aji)nen be a sequence of smooth functions bounded in L°°, such that (a",§) > 21¢P?,

Zj 0; a - and (9ta are uniformly bounded, and a — aij, Z O aw - Z djaij, ata% — yai
a.e.
We now compute [0y, (I — eA™(0;))~ '], where A™(9,) := ZU 0i(al’;+):
[ata ( - EAn B 615, ZEkAn ] = Z 5k[8t7 AN(az)k]
oo k—1 4 e
=YD (A™(00)) 101 AN (00)) (A (D)
k=0 i=0 (27)
= > (eA™(D:)) (01, A (0:)) D (A™(D:)) T

=0 k>1i

=e(I — eA™(8:)) [0, A™(0)|(I — eA™(Dy)) " H,

where at the second equality we used the algebraic identity [A, B¥] = Zf:ol Bi[A, B|BF—i—1,
Thus, for any ¢, 1) € C2([0,T] x RY), we have

T
/0 » Yy (I — eA™(8,)) ') dudt = / /Rd I—cA™0,)) ' Oup] dudt
+s/ / — eA™(0,)) [0, AM(02)](I — e A™(0:)) ] dadt. (28)
R4

We now want to pass to the limit in the above identity as n — oo. Since (I — eA™(9,))~! is
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selfadjoint in L2([0,7] x R%) and it commutes with A"(3,), we get
/ /R — eA™(0,)) 7[00, A" (0:)](I — A" (0,)) ] du dt
- / /R (1 = eA™(92)) 7" 0] (01, A™(00)](I — eA™(82)) " o] vt
=[]0 a0 ) [ - a0 0] dea
‘/0 /R (I = eA™(0,)) " A™(@a)0] [0:(( — £A™(92)")ep)] da dt.
By (27) we have

(1 — eA™))"Hp) = (I — eA™(02)) " 0o+ e(I — eA™(0)) " 0e, A™(90)](I — £A™(02)) "1,

and, observing that [0, A"(9;)] = >_,; 9;(01a;;0;+), we deduce that the right hand side is uni-
formly bounded in L2([0,T], H'(R?)). In the same way one obtains

(1 — eA™(02)) T A (02)p) = (I — eA™(02)) ™10 (A™(82))
+e(l = eA™(02)) [0, AM(0a)](I — eA™(0,)) T A" (0:)
= (I = eA™(0)) " 10:, A™ (D)l
+ (I = eA™(0s)) T A™(02) O
+e(l = eA™(02)) [0, AM ()] — eA™(02)) "M A" (02,

and, as above, the right hand side is uniformly bounded in L2([0,7], H'(R%)). Thus 0;(I —
£A™(0,)) Ly is uniformly bounded in L2([0, T], H*(R?)) C L?([0,T] x R?) (the same obviously
holds for ¢ in place of ), while (I —eA™(d,)) "' A™(9, )¢ is uniformly bounded in H'([0, 7] x RY)

(again the same fact holds for ¢ in place of ¢). Therefore, since H} ([0, 7] x RY) — L2 ([0, T] x
R?) compactly, all we have to check is that
O ((I —eA™0:) 'p) — (I —cA(0)) )
and
(1 — eA™(02)) T A™(0)p — (I — eA(:)) " A(0:)p
in the sense of distribution (indeed, by what we have shown above, 8;((I — eA™(9;)) ') will

converge weakly in L2 while (I —£A™(0,)) L A™(d, )¢ will converge strongly in L2 . and therefore
it is not difficult to see that the product converges to the product of the limits). We observe
that, since the solution of

@ —eA(Dy)p- = ¢ in [0,T] x RY (29)
belonging to L2([0,T], H*(R?)) is unique, and any limit point of (I —eA™(d,)) ¢ belongs to
L%([0,T], HY(R%)) and is a distributional solution of (29), one obtains that

(I = eA™(a))Hp — (I —€A(8:) "o
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in the distributional sense, which implies the convergence of 9;(I — eA™(d;)) 1y to &(I —
cA(9;)) Ly, Regarding (I — cA™(9,)) LA™(9,)p, let us take x € C°([0,T] x R?). Then we

consider
T T
/ A™(0y)p [(I — EA"(ax))flx} dx dt = —/ / Za%ajgo (0:(I — sAn(ax))flx) dx dt.
0 JR4 0 JRE T
ij

Recalling that (I —eA™(,)) !y is uniformly bounded in L2([0, 7], H'(R?)), we get that 9;(I —
eA™(0;))"1x converges to 0;(I —eA(d;)) Lx weakly in L2([0,T] x R?) while ajy — ajj a.e., and
so the convergence of (I —eA™(0,)) LA™ (0:)¢ to (I —eA(0;)) LA(Dy)yp follows.

Thus we are able to pass to the limit in (28), and we get 9 (I —cA(0,))'¢) € L*([0,T], H'(R?))
and

T
— X — 1 't X
/0 Rdl/}@,g (I —cA(02)" ") dadt = / /Rd eA(0y)) ' O] da dt
—i—e/ / [~ eA02))" (01 A@)](I — cA(8,)) o] dadt.
R4

Observing that (I —eA(9,))~"! is selfadjoint in L?([0,T] x R?) (for instance, this can be easily
proved by approximation), we have that the second integral in the right hand side can be written

/ /R I —eA(0:)) ™" [0 A0 — €A(0:)) " ] da dt
/ /R I —eA(82)) "] [[0r, A(8:)] (I — eA(8:)) " )] dedt.

Using now that [0y, A(0:)] = >_,; 0i(9sa;;0;-) in the sense of distributions, it can be easily proved
by approximation that the right hand side above coincides with

T
_/0 /]Rd > (Graig)0; (I = £A(92)7'9) 05 (I — £A(92)) " p) di .
i

Therefore we finally obtain

T

/0 y (N ((I—EA((?) ) dedt = / /]Rd I —cA(0y))” 18tg0] dz dt
_ w8 (I — _ 1) du dt.
6/0 /Rd%:(at )0 (1= 2A(0,))10) 8y (I — eA(@,)) ) dudr. (30)

By what we have proved above, it follows that

O (I —A(0:)) ") € L*([0,T], H'(RY)),

A(0) (I — eA(02)) ) = (I — cA(0:)) T A(0x)p € L*([0,T], H'(R?)). (31
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This implies that (30) holds also for 1 € L2([0,7] x R?), and that (I — cA(d,)) 1y is an
admissible test function in the equation dyw — A(0;)w = 0. By these two facts we obtain

T
= w (O A _ ) .
0= [ [ wlon+ A@)) —cA@) ] doa
/ /Rd I —eA(0:) (0 + A(0r))p] dadt
_5/0 /RdZ(ataij)ai ((I—sA(am))—lw) 9; ((I—EA(ax))_lgo) d dt
ij

T . y
- /0 /Rd we [(9¢ + A(02))¢] du dt — 6/0 /Rd %:(ataij)aiwaaj (I —cA(0:) ") dadt,

which exactly means that

Orwe — A(Dp)we = e(I — cA(0:)) " 05(DvaijOhw®)
ij

in the distributional sense. O

Proof of Proposition 4.4. (a) Arguing as in the the first part of the proof of Theorem 4.3, with
the same notation we have

0= /T /Rd <6f,v + Z@i(i)w) - % Z@i(aijajv) + )\U>U— du dt
/ /Rd v Zéiai((mz) = a9 —2A\(v)? | da

ij

<_2/( )(Tx)dx_(A"HZab o / /Rd 2 g dt
(A—f||z(‘9b ”°°//Rd 2 da dt,

and then v~ = 0.
(b) It suffices to observe that the above argument works for every v € Y such that v(0) > 0 and

o+ drlbiw) — % S Oi(agoyv) > 0

Applying this remark to the function v := [Jugl| oo (ra) — ue™ ™ with X > [|(32; 9ibi) [0, and
then letting A — ||(3_; 9;bi) " ||so, the thesis follows.

(¢) The argument we use here is reminiscent of the one that we will use in the next paragraph
for renormalized solutions. Indeed, in order to prove the thesis, we will implicitly prove that,
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if uw € L2([0,7T], H'(R?)) is a solution of (20), it is also a renormalized solution (see Definition
4.9).
Let us define

Be(s) == <\/ s2+e2 — €> € C%(R).

Notice that . is convex and
Be(s) — |s| as e — 0, P:(s) — sBL(s) € [-e,0].
Moreover, since 3., 37 € W1 (R), it is easily seen that
we LX([0, T, H'(RY) = fe(u), B(u) € L*([0,T], H'(RY)).

Fix now a non-negative cut-off function ¢ € C°(R%) with supp(¢) C Bz(0), and ¢ = 1 in B;(0),
and consider the functions pgr(x) := ¢(%) for R > 1.

Thus, since 5 > 0 and a;; is positive definite, recalling that bi = b — %Z] 0ja;j;, for any
t € [0,7] we have

0—/ /R 3t“+23 biu) “Za awau) ! (u)pr dz ds

~2 /0 /Rd<dt<@Rﬁe<uD =23 bty (uBl(w)en) +2 3 bidh(Be(u))or
£ aydudyud (u) 90R+Zzaw O4(3-(u)) JsoR) i

=5 /. Z;Rﬂxu(t))da: - % /R - (u(0)) d

- /Rde = Be(w))gn) + B:(wdipr) do ds

-3 /0 /R 2; @mﬁam+az-jaz-jgoR)5€(u) dz ds

25 [onoye = [ ennwonas- [ [ (Y0 (uit(w) = Belu))gmdods
- /Ot /]R (Z bidhon + Z]: aij&‘j@R)ﬂe(U) du ds.

Observing that |G- (u)| < |u|, and using Holder inequality and the inequalities

1 3 1 )
X{R<|x|<2R} =1+ [z ‘X{\x|>R}a ﬁX{RSMgQR} < mX{msz (32)
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we get

Jopnswnde< [ onstuondr 2z [ [ (Sab) dras

b
s
+lielles (6]

Letting first ¢ — 0 and then R — oo, we obtain

HUHL2([0,t]de)-

a
5 -
L2([0,T]x{|z|>R}) T H 1+ |zf? ‘ L?([o,ﬂxﬂmzfz}))

()l @y < [u(0)][Lrrey Yt € [0,T].

4.3 Existence and uniqueness in the degenerate parabolic case

We now want to drop the uniform ellipticity assumption on a. In this case, to prove existence
and uniqueness in %y, we will need to assume a independent of the space variables.

e Uniqueness in .2

The uniqueness result is a consequence of the following comparison principle in £ (recall that
the comparison principle in said to hold if the inequality between two solutions at time 0 is
preserved at later times).

Theorem 4.8 (Comparison principle in .#). Let us assume that a : [0,T] — S+ (R%) and
b:[0,7] x RT — R? are such that:

(i) b€ L'([0,T], BVioe(R%, RY)), 37, 03bi € Li,.([0,T] x RY);

(i) a € L>=([0,T], S, (R?)).

Then (19) satisfies the comparison principle in L*(R?) N L>®(RY). In particular solutions of the
PDFE in 2, if they exist, are unique.

Since we do not assume any ellipticity of the PDE, in order to prove the above result we use
the technique of renormalized solutions, which was first introduced in the study of the Boltzmann
equation by DiPerna and P.-L.Lions [8, 9], and then applied in the context of transport equations
by many authors (see for example [10, 5, 6, 7, 1]).

Definition 4.9. Let a: [0,T] x R? — S, (RY), b:[0,T] x RY — R? be such that:
(i) b, 32; Oibi € Ly, (0, T] x RY);

(1) a,35; djaij, 35 Oijaiy € Li,.([0,T] x RY).

Let u € LS ([0,T] x RY) and assume that

loc

1
ci=0u+ Y bidiu— 3 > " aiidu € Li([0,T] x RY). (33)
7 1%
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We say that u is a renormalized solution of (33) if, for any convex function B : R — R of class
C?, we have

1
O B(u) + Zb Bifi(u) = 5 > ai;0i8(u) < cf(u).
]
Equivalently the definition could be given in a partially conservative form:
1
0,3 (u +Za b)) = 5 > ai0iB(u) < cf'(u Zab
ij

Recalling that a is non-negative definite and [ is convex, it is simple to check that, if
everything is smooth so that one can apply the standard chain rule, every solution of (33) is a
renormalized solution. Indeed, in that case, one gets

O B(u) + Z b;0;0(u) — % Z a;;0i;8(u) = ¢ (u) — %ﬂ”(u) Z aijOudju < cff(u).
ij

ij

In our case, a solution of the Fokker-Planck equation is renormalized if
OB (u Z Zaa” 0;8(u —fZa,] 00 (u Z@,]a” Zab uf (u
or equivalently, writing everything in the partially conservative form,
9 (u) + Z A (( Z djaij)B(u)) — % Z a5 (u)
Z dijaij — Z A;bi)uf (u) + Z ; (b Z djaij)B(u)
= (Z dibi — Z dijai;)(Bu) — uf (u)) — = Z dijai) 3
Now, since
ZQU 05 8(u 28 a;j0; 5 (u Z@ a;j0;5(u
_Zaw ai;B(u —228 (9jaij) Za”a”

the above expression can be simplified, and we obtain that a solution of the Fokker-Planck
equation is renormalized if and only if

0 (u +Za bif(u Zam (aijB(u Zab Zawaw u) —uf' ().  (34)

It is not difficult to prove the following:
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Lemma 4.10. Assume that there exist p,q € [1,00] such that

b
1+ |z

a

T+ P € L'([0,T], LP(R%)),

e L'([0,T], LY(R%)),

and that )
(Z Dby — 5 Zaijaij)_ € L},.([0,T] x RY).
3 iJ

Setting a,b = 0 for t < 0, assume moreover that any solution u € £ of the Fokker-Planck
equation in (—oo,T) x R? is renormalized. Then the comparison principle holds in & .

Proof. By the linearity of the equation, it suffices to prove that
up <0 = wu(t)<0 Vvtelo,T].

Fix a non-negative cut-off function ¢ € C°(R?) with supp(y) C Ba(0), and ¢ = 1 in By(0),
and take as renormalization function

Be(s) ==
Notice that 3. is convex and
Be(s) = sTase =0, B(s) —spi(s) € [—¢,0].
By (34), we know that

(\/ 242 +s5— a) € C*(R).

N | =

atﬁe(“) + Zaz(bzﬂa Zaz] azgﬁs S Za bi — Zal]alj /85 /85( ))
in the sense of distributions in (—oco,T’) x R%. Using as test function pg(z) := (%) for R > 1,
we get

£ [ st [ (005 o oe) i
" /Rd%(zaibi Zauam) (w) = ufl(w) da

Observing that |5:(u)| < |u|, by Holder inequality and the inequalities (32) we can bound
the first integral in the right hand side, uniformly with respect to e, with

bt | 5 et N
\@||C2/{|IZR} (31“%| s |))| (t,2)|d

< |!s0||c2(

L”({\x|>R}) Itz

5” 1+ |x|2‘ Lq({x|zR}>Hu(t)””'(Rd)>
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(recall that u € £, and thus u € L°°([0, T], L"(R?)) for any 7 € [1, oc]), while the second integral

is bounded by
1
9 ( szz - = 82 Qg4 “d.
/{x|<2R} ; 2 ; 14)

Letting first ¢ — 0 and then R — oo, we get

d

— Tdr <0
dt Rdu m_

in the sense of distribution in (—oo,T"). Since the function vanishes for negative times, we
conclude ut = 0. 0

Now Theorem 4.8 is a direct consequence of the following:

Proposition 4.11. Let us assume that a : [0,T] — Sy (RY) and b : [0,T] x R* — R? are such
that:

(i) b€ L'([0,T], BVioe(R%, RY)), 35, 03bi € Ly, ([0,T] x RY);
(ii) a € L=([0,T], S+ (RY))
Then any distributional solution u € L$°.([0,T] x RY) of (33) is renormalized.

loc

Proof. We take 7, a smooth convolution kernel in R?, and we mollify the equation with respect
to the spatial variable obtaining

1
Opu® + Z b;O;u’ — 5 Z aijaijua =Cc*MNe — 7“8, (35)
i ij

where

re = Z(bz@iu) * M — sz&(u kNe), U= UK.

7

By the smoothness of u® with respect to x, by (35) we have that dyu® € L} . Thus by the

loc*
standard chain rule in Sobolev spaces we get that u® is a renormalized solution, that is

2B(u°) + S bidiBu) — 3 agdhyBu) < (e xme — 1) (u)

for any 3 € C?(R) convex. Passing to the limit in the distributional sense as e — 0 in the above
identity, the convergence of all the terms is trivial except for r¢4’(u®).

Let 0, be any weak limit point of r*#'(u®) in the sense of measures (such a cluster point exists
since r¢3'(u?) is bounded in L; ). Thus we get

OB(u) + Y bidif3(u) - % > aijdii(u) = ' (u) < —oy < |oy .
i iJ

Since the left hand side is independent of 7, in order to conclude the proof it suffices to prove
that /\,7 |op| = 0, where 7 varies in a dense countable set of convolution kernels. This fact is
implicitly proved in [2, Theorem 34], see in particular Step 3 therein. O
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e Existence in .Z;
We can now prove an existence and uniqueness result in the class 2.

Theorem 4.12. Let us assume that a : [0,T] x R* — S(RY) and b : [0,T] x R* — R are
bounded functions such that

O oubi - % > 0ijai;)” € L'([0,T], L= (RY)).
i i

Then, for any po = poL? € M4 (RY), with py € L'(RY) N L>®(R?), there exists a solution of (2)
in Ly. If moreover b € L'([0,T], BVjoe(R%), -, 0:b; € Li,.([0,T) x RY), and a is independent
of x, then this solution turns out to be unique.

Proof. Existence: it suffices to approximate the coefficients a and b locally uniformly with
smooth uniformly bounded coefficients a™ and b" such that (3, ;b7 —3 3", ; 0ijaiy)” is uniformly

bounded in L([0, 7], L= (R?)). Indeed, if we now consider the approximate solutions u}! =
oL € M, (RY), we know that

atp? + Z 8Z(b? n Z al] z]pt
i
that is

orpy — §aijaijpt + E (b — E 0;ja;5)0ip; +(§ o;b; — 3 E dijai;)py = 0.

Using the Feynman-Kac formula, we obtain the bound

t 9, b7 _1 . 0;iam 1 o di
||p?”L°°(Rd) S HpOHLOO(Rd)efO ”(Z'L z (8) 2 Z’L] Jaz](s)) ”L (]Rd)

So we see that the approximate solutions are non-negative and uniformly bounded in L' N L>®
(the bound in L! follows by the constancy of the map t + ||p}| ;1 (observe that p > 0 and
recall Remark 2.7)). Therefore, any weak limit is a solution of the PDE in .Z, .

Uniqueness: it follows by Theorem 4.8. g

5 Conclusions

Let us now combine the results proved in Sections 2 and 4 in order to get existence and uniqueness
of SLF. The first theorem follows directly by Corollary 3.6 and Theorem 1.3, while the second
is a consequence of Corollary 3.6 and Theorem 1.4.

Theorem 5.1. Let us assume that a : [0,T] x R — S, (R%) and b : [0,T] x R — R are
bounded functions such that:

(i) Y;0jaij € L([0,T] x RY) fori=1,....d,

34



(ii) Oraij € L=([0,T] x RY) fori,j=1,...,d;
(ZZZ) (Zz 0;b; — %Z” &jaij)_ S LOO([O,T] X Rd);

(i) (€, a(t,z)€) > alé? V(t,z) € [0,T] x RY, for a certain a > 0;

(v) iy € LA([0,T) x RY), by € L2((0, 7] x RY).

Then there exists a unique SLF (in the sense of Corollary 3.6).
If moreover (b",a™) — (b, a) in L}, .([0,T] x R?) and (3>, 8;b" — 3 > 0ijaiy) ™ are uniformly

loc

bounded in L*([0,T], L= (R%)), then the Feynman-Kac formula implies (ii) of Theorem 3.7 (see
the proof of Theorem 4.12). Thus we have stability of SLF.

Theorem 5.2. Let us assume that a : [0,T] — S(RY) and b : [0,T] x RY — R are bounded
functions such that:

(i) b€ LY([0,T], BVioe(RY), 3. 0ib; € L ([0,T] x RY);
(ii) (32; 0:bi)~ € L([0,T], L=(R?)).

Then there exists a unique SLF (in the sense of Corollary 3.6).

If moreover (b",a™) — (b,a) in L}, .([0,T] x R?) and (3>, 0;b" — 3 > Oijaiy) ™ are uniformly
bounded in L*([0,T], L= (R%)), then the Feynman-Kac formula implies (ii) of Theorem 8.7 (see
the proof of Theorem 4.12). Thus we have stability of SLF.

In particular, by Corollary 3.9 and the Feynman-Kac formula (see the proof of Theorem
4.12), the following vanishing viscosity result for RLF holds:

Theorem 5.3. Let us assume that b: [0,T] x R* — R? is bounded and:

(i) b e LN([0,T], BVioe(RY), X2, Oibs € L, ([0,T] x RY;

(it) (3, 9ibi)~ € L*([0,T], L=(R7)).
Let {V.} cra be the unique SLF relative to (b,el), with e > 0, and {vy} cra be the RLF relative
to (b,0) (which is uniquely determined L%-a.e. by the results in [1]). Then, as e — 0,

/ vs f(z) de —* / vef(z)dz in M(D'7) for any f € Co(RY).
R4 R4

We finally combine an important uniqueness result of Stroock and Varadhan (see Theorem
2.2) with the well-posedness results on Fokker-Planck of the previous section. By Theorem 2.2,
Lemma 2.3 applied with A = R? and Corollary 4.5, we have:

Theorem 5.4. Let us assume that a : [0,T] x R — S, (RY) and b : [0,T] x R — RY are
bounded functions such that:

(i) (€, a(t,x)€) > alé]? V(t,x) € [0,T] x RY, for a certain a > 0;
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(ii) |b(t, ) = b(s,y)| + [la(t,z) — a(s,y)]| < C(Jx —y|" + [t — s|7) ¥(t,2), (s,y) € [0,T] x RY,
for some v € (0,1], C > 0;

(iii) Zj 8ja¢j S Loo([O,T} X Rd) fori=1,...,d, (Zz 0;b; — %Z” &jaij)_ S LOO([O,T] X Rd),‘

(iv) e € L2([0,T] x RY), i € L2([0,T] x RY).

Then, there exists a unique martingale solution starting from x (at time 0) for any x € R,

We remark that this result is not interesting by itself, since it can be proved that the mar-
tingale problem starting from any z € R? at any initial time s € [0, 7] is well-posed also under
weaker regularity assumptions (see [18, Chapters 6 and 7]). We stated it just because we believe
that it is an interesting example of how existence and uniqueness at the PDE level can be com-
bined with a refined analysis at the level of the uniqueness of martingale solutions. It is indeed
in this spirit that we generalize Theorem 2.2 in the Appendix, hoping that it could be useful for
further analogous applications.

Appendix

A generalized uniqueness result for martingale solutions

Here we generalize Theorem 2.2, using the notation introduced in Paragraph 3.1.

Proposition 5.5. For any (s,x) € [0,T] x R%, let Cy. s be a subset of martingale solutions of
the SDE starting from x at time s, and let us make the following assumptions: there exists a
measure g € M (RY) such that:

(1) ¥s € [0,T], Cy s is convex for jp-a.e. x;
(ii) Vs € [0,T], Vt € [s,T],

for po-a.e. x, (et)#yé,s = (et)#yg,s VV;S,I/Q%’S € Oy s;
(111) for po-a.e. x, for any v, € Cp := Cyp, for vy-a.e. 7,
vt € (0,77, V;’:}_—t = (V;)}_—t € Cy) s
where, with the above notation, we mean that the restriction of I/;’;_— to Tk, .= O([t, T],R%)
Wt

is a martingale solution starting from ~(t) at time t;

(v) the solution of (2) starting from po given by p = (er)# [ga va dpo(z) for a measurable
selections {vy},ecpa with v, € Cy (observe that p; does not depends on the choice of
vy € Cy by (1)), satisfies puy < po for any t € [0,T].

Then, given two measurable families of probability measures {v:},cpa and {v2} cpa with v, v2 €

Cy, v = V2 for po-a.e. x. In particular, by standard measurable selection theorems (see for

instance [18, Chapter 12]), Cy is a singleton for ugp-a.e. x.
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Proof. Let {vl},cpe and {12}, cpa be two measurable families of probability measures with
vii2eCy andfix0<ty <...<t, <T.

T
Claim: for po-a.e. x, for vi-a.e. v (i =1,2),

i?”? - i
Vﬂ?,]:tn € C’Y(tn),tn for V:v

where l/;’thl ,,,,, o = (V)7
This claim follows observing that, by assumption (iii), for po-a.e. = there exists a subset I'; C I'r
such that v (T;) = 1 and V;’}t € Cyt,)t, for any v € T'y. Thus, by (11) applied with v := vt

A:=Tr, B:=T,, and with M in place of F;,, one obtains
0= 1A09) = | b n (T i),
T

that is, ' A
for vl-a.e. 7, v o (Ty) =1

This, together with assumption (iii), implies the claim.
By (13), v, is concentrated on the set {¥ | (tn) = (tn)}, and so, by the claim

:E,Mtl ..... tn

above, we get
i7:y 177 ~
Vo Fo € C’Y(tn)7tn for Yy Mt oetn =82 -

Let A C R? be such that uo(A°) = 0 and assumption (i) is true for any z € A. By assumption
(iv), we have p, (A°) =0 = fRdXFT Lae(Y(tn)) dvi(y) dpo(x), that is

for pp-a.e. x, v(tn) € A for vi-a.e 7. (36)
Thus, for pp-a.e. z, Cyq,) 4, is convex for vi-a.e 7, and so, by (14) applied with %, we obtain
that ‘
for pp-a.e. , Vo vt € Cyltatn  fOr vp-aie. (37)
(where, with the above notation, we again mean that the restriction of T o to Il is a
z,Mt1--tn T

)

martingale solution starting from ~(t¢,) at time ¢,). We now want to prove that, for all n > 1,
0<t; <...<ty,<T, we have that, for up-a.e. x,

g filee () - fulee, (M) dva(n) = [ filee (1) -+ faler, (7)) dvi(7) (38)

I

for any fi € C.(R%). We observe that (38) is true for n = 1 by assumption (ii). We want to
prove it for any n by induction. Let us assume (38) true for n — 1, and let us prove it for n.
We want to show that

filee, (1) -+ falen, (M) dvz(v) = | filen (1) - faler, (1) dvZ(7),

I'r I'r

which can be written also as

E* [filen) - fuler,)] = B [filew) .- fuler,)],
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where EV := fFT dv. Now we observe that, for i = 1,2,

E* [fi(en) .- fuler,)) = B [E[filen) . faler,) | Mt
=% | filen) - Ji(en, B [fuler,) | Mt

= EV; [fl(etl) R fn—l(etn—l)q’/};(etl7 R :etn71)] )

where ¥ (es,,... e, ,) = E%[fo(ey,) | Mt-tn-1]. Let ¢ € C,(R?), and let us prove that

/R B [Alen) - Foa(en e et )] 6() duof)
= [ B ) o fua(en, 01, )] 00a) o). (39)

Let B C R? be such that uo(B¢) = 0 and assumption (ii’) is true for any z € B. By assumption
(iv), we also have py, ,(B€) =0= fRdXFT 1ge(et, , (7)) dvi(y) duo(x), that is

for po-a.e. x, Y(tn_1) € B for vi-ae. 7. (40)

Let us consider v .- By (37),

2 Mt
(20 i
for up-a.e. x, V) Mttn € Cotnr)tn, for vg-ae. 7,

and, combining this with (40), we obtain

for pp-a.e. x, v _, €0 and ~(t,_1) € B for vi-a.e. 7.

@, Mt1otn tn—1)tn—1

By assumption (ii) applied with ¢ = t,,, this implies that
for pg-a.e. x, (etn)#y;’xﬂl _____ o= (etn)#yj’x/jtl 77777 v, for vi-ae. 7,
which give us that
for po-a.e. x, Vlles, ... e, ) =0 (e, .. e, ) for vi-a.e. 7. (41)
Thus we get
1
LB TGt famsler 0bens o ver, )] 00a) dro(a)
1/2
= LB () o fua(en V0 ver, )] 6la) o)
(41) l/2 2
D[ B [fen) o faaen D en e en, )] 9(0) duofo).
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where the first equality in the above equation follows by the inductive hypothesis. Now, by
(39) and the arbitrariness of ¢ and of f;, with j = 1,...,n, we obtain that, for all n > 1,
0<ti <...<ty, <T, we have

for po-a.e. x, (€trs--sety )4l = (€ry, .. e, )gln Yii,..., t, € 0,T].

Considering only rational times, we get that there exists a subset D C R?, with uo(D¢) = 0,
such that, for any x € D,

(€trs-- ety ) Vs = (€41, .., €4, )4Vy forany ti,...,t, € [0,7]NQ.
By continuity, this implies that, for any x € D, v, = U, as wanted. O

The above result apply, for example, in the case when C, s denotes the set of all martingale
solutions starting from x. In particular, we remark that, by the above proof, one obtains the
well-known fact that, if v, is a martingale solution starting from x (at time 0), then, for any
0<t1 <...<t, <T, VZ’MH ,,,,, ., 18 a martingale solution starting from ~(¢,) at time t,. More
generally, since martingale solutions are closed by convex combination, is p is a probability
measure on RY, the average Jga I/Z ., du(zr) is a martingale solution starting from ~(t¢,) at
time t,,.

,Mtl .....
Observe that assumption (iv) in the above theorem was necessary only to deduce, from a pg-a.e.
assumption, a us-a.e. property. Thus, the above proof give us the following result:

Proposition 5.6. For any (s,x) € [0,T]xR%, let Cy 5 be a convex subset of martingale solutions
of the SDE starting from x at time s, and let us make the following assumption: there ezists a
measure py € My (R?Y) such that:

(i) Vt € [0,T], for po-a.e. z,
(et)#yi = (et)#l/g VV;,I/:% € Cy = Cyp.
If (i) holds, we can define g := (e4)# [ga Vz dpto(w) for a measurable selections {vy},cgra with
vy € Cy, and this definition does not depends on the choice of v, € C. We now assume that:

(i’) Vs € [0,T], Vt € [s,T), for us-a.e. x,

(et)#yé,s = (et)#yg,s vyal:,sv Vg,s € C$,S;

(it) Vs € [0,T], Cy s is convex for ps-a.e. x;
(iii) for pg-a.e. x, for any v, € Cy, for vy-a.e. 7,

vt € [0, T, U;’}_-t = (Vi)}t € Cy),ts

T

where, with the above notation, we mean that the restriction of I/;”}_-t to T%. is a martingale
solution starting from ~y(t) at time t.

Then, given two measurable families of probability measures {v:} cra and {v2} cpa with v, v2 €
Cy, v = V2 for po-a.e. x. In particular, by standard measurable selection theorems (see for

instance [18, Chapter 12]), Cy is a singleton for ug-a.e. x.
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