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Abstract

In this paper we extend recent results on the existence and uniqueness of solutions of
ODEs with non-smooth vector fields to the case of martingale solutions, in the Stroock-
Varadhan sense, of SDEs with non-smooth coefficients. In the first part we develop a general
theory, which roughly speaking allows to deduce existence, uniqueness and stability of mar-
tingale solutions for Ld-almost every initial condition x whenever existence and uniqueness
is known at the PDE level in the L∞-setting (and, conversely, if existence and uniqueness
of martingale solutions is known for Ld-a.e. initial condition, then existence and uniqueness
for the PDE holds). In the second part of the paper we consider situations where, on the
one hand, no pointwise uniqueness result for the martingale problem is known and, on the
other hand, well-posedness for the Fokker-Planck equation can be proved. Thus, the theory
developed in the first part of the paper is applicable. In particular, we will study the Fokker-
Planck equation in two somehow extreme situations: in the first one, assuming uniform
ellipticity of the diffusion coefficients and Lipschitz regularity in time, we are able to prove
existence and uniqueness in the L2-setting; in the second one we consider an additive noise
and, assuming the drift b to have BV regularity and allowing the diffusion matrix a to be
degenerate (also identically 0), we prove existence and uniqueness in the L∞-setting. There-
fore, in these two situations, our theory yields existence, uniqueness and stability results for
martingale solutions.

1 Introduction and preliminary results

Recent research activity has been devoted to study transport equations with rough coefficients,
showing that a well-posedness result for the transport equation in a certain subclass of functions
allows to prove existence and uniqueness of a flow for the associated ODE. The first result in
this direction is due to DiPerna and P.-L.Lions [10], where the authors study the connection
between the transport equation and the associated ODE γ̇ = b(t, γ), showing that existence and
uniqueness for the transport equation is equivalent to a sort of well-posedness of the ODE which
says, roughly speaking, that the ODE has a unique solution for Ld-almost every initial condition
(here and in the sequel, Ld denotes the Lebesgue measure in Rd). In that paper they also show
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that the transport equation ∂tu+
∑

i bi∂iu = c is well-posed in L∞ if b = (b1, . . . , bn) is Sobolev
and satisfies suitable global conditions (including L∞-bounds on the spatial divergence), which
yields the well-posedness of the ODE.

In [1] (see also [2]), using a slightly different philosophy, Ambrosio studied the connection
between the continuity equations ∂tu+

∑
i ∂i(biu) = c and the ODE γ̇ = b(t, γ). This different

approach allows him to develop the general theory of the so-called Regular Lagrangian Flows
(see [2, Remark 31] for a detailed comparison with the DiPerna-Lions axiomatization), which
relates existence and uniqueness for the continuity equation with well-posedness of the ODE,
without assuming any regularity on the vector field b. Indeed, since the transport equation is in a
conservative form, it has a meaning in the sense of distributions even when b is only L∞

loc and u is
L1
loc. Thus, a general theory is developed in [1] under very general hypotheses, showing as in [10]

that existence and uniqueness for the continuity equation is equivalent to a sort of well-posedness
of the ODE. After having proved this, in [1] the well-posedness of the continuity equations in L∞

is proved in the case of vector fields with BV regularity whose distributional divergence belongs
to L∞ (for other similar results on the well-posedness of the transport/continuity equation, see
also [6, 7, 13, 11]).
Our aim is to develop a stochastic counterpart of this theory: in our setting the continuity
equation becomes the Fokker-Planck equation, while the ODE becomes an SDE.
Let us consider the following SDE{

dX = b(t,X) dt+ σ(t,X) dB(t)
X(0) = x,

(1)

where b : [0, T ]×Rd → Rd and σ : [0, T ]×Rd → L(Rr,Rd) are bounded (here L(Rr,Rd) denotes
the vector space of linear maps from Rr to Rd) and B is an r-dimensional Brownian motion
on a probability space (Ω,A,P). We want to study the existence and uniqueness of martingale
solutions for this equation. Let us define a(t, x) := σ(t, x)σ∗(t, x) (that is aij :=

∑
k σikσjk). We

consider the so called Fokker-Planck equation{
∂tµt +

∑
i ∂i(biµt) −

1
2

∑
ij ∂ij(aijµt) = 0 in [0, T ] × Rd,

µ0 = µ̄ in Rd.
(2)

We recall that, for a (possibly signed) measure µ = µ(t, x) = µt(x), being a solution of (2)
simply means that

d

dt

∫
Rd

ϕ(x) dµt(x) =
∫

Rd

[∑
i

bi(t, x)∂iϕ(x) +
1
2

∑
ij

aij(t, x)∂ijϕ(x)
]
dµt(x) ∀ϕ ∈ C∞

c (Rd) (3)

in the distributional sense on [0, T ], and the initial condition means that µt w∗-converges to µ̄
(i.e. converges in the duality with Cc(Rd)) as t→ 0. We observe that, since the equation (2) is
in divergence form, it makes sense without any regularity assumption on a and b, provided that∫ T

0

∫
A

(
|b(t, x)| + |a(t, x)|

)
d|µt|(x) dt < +∞ ∀A ⊂⊂ Rd
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(here and in the sequel, |µt| denotes the total variation of µt). Since b and a will always be
assumed to be bounded, in the definition of measure-valued solution of the PDE we assume that∫ T

0
|µt|(A) dt < +∞ ∀A ⊂⊂ Rd, (4)

so that (2) surely makes sense. However, if µt is singular with respect to the Lebesgue measure
Ld, then the products b(t, ·)µt and a(t, ·)µt are sensitive to modification of b(t, ·) and a(t, ·) in
Ld-negligible sets. Since in the case of singular measures the coefficients a and b will be assumed
to be continuous, while in the case of coefficients in L∞ the measures will be assumed to be
absolutely continuous, (2) will always make sense.
Recall also that it is not restrictive to consider only solutions t 7→ µt of the Fokker-Planck
equation that are w∗-continuous on [0, T ], i.e. continuous in the duality with Cc(Rd) (see Lemma
2.1). Thus, we can assume that µt is defined for all t and even at the endpoints of [0, T ].

For simplicity of notation, we define

Lt :=
∑
i

bi(t, ·)∂i +
1
2

∑
ij

aij(t, ·)∂ij .

In this way the PDE can be written as

∂tµt = L∗
tµt in [0, T ] × Rd,

where L∗
t denotes the (formal) adjoint of Lt in L2(Rd). Using Itô’s formula it is simple to check

that, if X(t, x, ω) ∈ L2(Ω, C([0, T ],Rd)) is a family of solutions of (1), measurable in (t, x, ω),
then the measure µt defined by∫

f(x) dµt(x) :=
∫

E[f(X(t, x, ω))] dµ(x) ∀f ∈ Cc(Rd)

is a solution of (2) with µ0 = µ (see also Lemma 2.4).
We define ΓT := C([0, T ],Rd), and et : ΓT → Rd, et(γ) := γ(t). Let us recall the Stroock-
Varadhan definition of martingale solutions:

Definition 1.1. A measure νx,s on ΓT is a martingale solution of (1) starting from x at time
s if:

(i) νx,s({γ | γ(s) = x}) = 1;

(ii) for any ϕ ∈ C∞
c (Rd), the stochastic process on ΓT

ϕ(γ(t)) −
∫ t

s
Luϕ(γ(u)) du

is a νx,s-martingale after time s with respect to the canonical filtration.

We will say that the martingale problem is well-posed if, for any (s, x) ∈ Rd, we have existence
and uniqueness of martingale solutions.
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In the sequel, we will deal with families {νx}x∈Rd of probability measures that are measurable
with respect to x according to the following standard definition.

Definition 1.2. We say that a family of probability measures on a probability space (Ω,A)
{νx}x∈Rd is measurable if, for any A ∈ A, the real valued map x 7→ νx(A) is measurable.

1.1 Plan of the paper

• The theory of Stochastic Lagrangian Flows
In the first part of the paper, we develop a general theory (independent of specific regularity
or ellipticity assumptions), which roughly speaking allows to deduce existence, uniqueness and
stability of martingale solutions for Ld-almost every initial condition x whenever existence and
uniqueness is known at the PDE level in the L∞-setting (and, conversely, if existence and
uniqueness of martingale solutions is known for Ld-a.e. initial condition, then existence and
uniqueness for the PDE in the L∞-setting holds).

More precisely, in Section 2 we study how uniqueness of the SDE is related to that of the
PDE. In Paragraph 2.1 we prove a representation formula for solutions of the PDE, which shows
that they can always be seen as a superposition of solutions of the SDE also when standard
existence results for martingale solutions of SDE do not apply. In particular, assuming only the
boundedness of the coefficients, we will show that, whenever we have existence of a solution of
the PDE starting from µ0, there exists at least one martingale solution of the SDE for µ0-a.e.
initial condition x.

In Section 3 we introduce the main object of our study, what we call Stochastic Lagrangian
Flow. In Paragraph 3.1 we state and prove our main result regarding the existence and unique-
ness of Stochastic Lagrangian Flows, showing that these flows exist and are unique whenever
the PDE is well-posed in the L∞-setting. We also prove a stability result, and we show that
Stochastic Lagrangian Flows satisfy the Chapman-Kolmogorov equation. Moreover, in Para-
graph 3.2 we investigate the relation between our result and its deterministic counterpart and,
applying our stability result, we deduce a vanishing viscosity theorem for Ambrosio’s Regular
Lagrangian Flows.

• The Fokker-Planck equation
In the second part of the paper we study by purely PDE methods the well-posedness of the
Fokker-Planck equation in two extreme (with respect to the regularity imposed in time, or in
space) situations: in the first one, assuming uniform ellipticity of the coefficients and Lipschitz
regularity in time, we are able to prove existence and uniqueness in the L2-settings assuming
no regularity in space, but only suitable divergence bounds (see Theorem 4.3). This result,
together with Proposition 4.4, directly implies the following theorem (here and in the sequel,
S+(Rd) denotes the set of symmetric and non-negative definite d× d matrices).

Theorem 1.3. Let us assume that a : [0, T ] × Rd → S+(Rd) and b : [0, T ] × Rd → Rd are
bounded functions such that:

(i)
∑

j ∂jaij ∈ L∞([0, T ] × Rd) for i = 1, . . . , d,
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(ii) ∂taij ∈ L∞([0, T ] × Rd) for i, j = 1, . . . , d;

(iii) (
∑

i ∂ibi −
1
2

∑
ij ∂ijaij)

− ∈ L∞([0, T ] × Rd);

(iv) 〈ξ, a(t, x)ξ〉 ≥ α|ξ|2 ∀(t, x) ∈ [0, T ] × Rd, for a certain α > 0;

(v) a
1+|x|2 ∈ L2([0, T ] × Rd), b

1+|x| ∈ L2([0, T ] × Rd).

Then there exist a unique solution of (2) in L+, where

L+ :=
{
u ∈ L∞([0, T ], L1

+(Rd)) ∩ L∞([0, T ], L∞
+ (Rd)) | u ∈ C([0, T ], w∗ − L∞(Rd))

}
,

and L1
+ and L∞

+ denote the convex subsets of L1 and L∞ consisting of non-negative functions.

In the second case, a does not depend on the space variables, but it can be degenerate and
it is allowed to depend on t even in a measurable way. Since a can also be identically 0, we need
to assume BV regularity on the vector field b, and so we can prove:

Theorem 1.4. Let us assume that a : [0, T ] → S+(Rd) and b : [0, T ] × Rd → Rd are bounded
functions such that:

(i) b ∈ L1([0, T ], BVloc(Rd,Rd)),
∑

i ∂ibi ∈ L1
loc([0, T ] × Rd);

(ii) (
∑

i ∂ibi)
− ∈ L1([0, T ], L∞(Rd)).

Then there exist a unique solution of (2) in L+.

This theorem is a direct consequence of Theorem 4.12. Other existence and uniqueness re-
sults for the Fokker-Planck equation, which are in some sense intermediate with respect the two
extreme ones stated above, have been proved in a recent paper of LeBris and P.-L.Lions [14]. As
in our case, in that paper the authors are interested in the well-posedness of the Fokker-Planck
equation as a tool to deduce existence and uniqueness results at the SDE level (see also [15]). In
particular, in [14, Section 4] the authors give a list of interesting situations in the modelization
of polymeric fluids when SDEs with irregular drift b and dispersion matrix σ arise (see also [12]
and the references therein for other existence and uniqueness results for non-smooth SDEs).

• Conclusions and appendix
In Section 5 we apply the theory developed in Paragraph 3.1 to obtain, in the cases considered
above, the generic well-posedness of the associated SDE.

Finally, in the Appendix we generalize an important uniqueness result of Stroock and Varad-
han (see Theorem 2.2 and the remarks at the end of Theorem 5.4).

Acknowledgements: I wish to thank Luigi Ambrosio and Franco Flandoli for many useful
suggestions and improvements, and for their continuous support during the preparation of this
paper. I also thank the referees of the paper for their helpful comments.
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2 SDE-PDE uniqueness

In this section we study the main relations between the SDE and the PDE. The main result is
a general representation formula for solutions of the PDE (Theorem 2.6) which allows to relate
uniqueness of the SDE to that of the PDE (Lemma 2.3).

As we already said in the introduction, here and in the sequel b and a are always assumed to
be bounded. Let us recall the following result on the time regularity of t 7→ µt (see for example
[2, Remark 3] or [4, Lemma 8.1.2]):

Lemma 2.1. Up to modification of µt in a negligible set of times, t 7→ µt is w∗-continuous on
[0, T ]. Moreover, if |µt|(Rd) ≤ C for any t ∈ [0, T ], then t 7→ µt is narrowly continuous.

We also recall the following important theorem of Stroock and Varadhan (for a proof, see
[18, Theorem 6.2.3]):

Theorem 2.2. Assume that for any (s, x) ∈ [0, T ] × Rd, for any νx,s and ν̃x,s martingale
solutions of (1) starting from x at time s, one has

(et)#νx,s = (et)#ν̃x,s ∀t ∈ [s, T ].

Then the martingale solution of (1) starting from any (s, x) ∈ [0, T ] × Rd is unique.

We start studying how the uniqueness of (1) is related to that of (2).

Lemma 2.3. Let A ⊂ Rd be a Borel set. The following two properties are equivalent:

(a) Time-marginals of martingale solutions of the SDE are unique for any x ∈ A.

(b) Finite non-negative measure-valued solutions of the PDE are unique for any non-negative
Radon measure µ0 concentrated in A.

Proof. (b) ⇒ (a): let us choose µ0 = δx, with x ∈ A. Then, if νx and ν̃x are two martingale
solutions of the SDE, we get that µt := (et)#νx and µ̃t := (et)#ν̃x are two solutions of the PDE
with µ0 = δx (see Lemma 2.4). This implies that µt = µ̃t, that is

〈µt, ϕ〉 =
∫

ΓT

ϕ(γ(t)) dνx(γ) =
∫

ΓT

ϕ(γ(t)) dν̃x(γ) = 〈µ̃t, ϕ〉 ∀ϕ ∈ C∞
c (Rd),

that is (et)#νx = (et)#ν̃x (observe in particular that, if A = Rd and we have uniqueness for the
PDE for any initial time s ≥ 0, by Theorem 2.2 we get that νx = ν̃x for any x ∈ Rd).
(a) ⇒ (b): this implication follows by Theorem 2.6, which provides, for every finite non-negative
measure-valued solutions of the PDE, the representation∫

Rd

ϕdµt =
∫

Rd×ΓT

ϕ(γ(t)) dνx(γ) dµ0(x), (5)

where, for µ0-a.e. x, νx is a martingale solution of SDE starting from x (at time 0). Therefore,
by the uniqueness of (et)#νx, we obtain that solutions of the PDE are unique. �
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We now prove that, if νx is a martingale solution of the SDE starting from x (at time 0) for
µ0-a.e. x, the right hand side of (5) always defines a non-negative solution of the PDE. We recall
that a locally finite measure is a possibly signed measure with locally finite total variation.

Lemma 2.4. Let µ0 be a locally finite measure on Rd, and let {νx}x∈Rd be a measurable family
of probability measures on ΓT such that νx is a martingale solution of the SDE starting from x
(at time 0) for |µ0|-a.e. x. Define on ΓT the measure ν :=

∫
Rd νx dµ0(x), and assume that∫ T

0

∫
Rd×ΓT

χBR
(γ(t)) dνx(γ) d|µ0|(x) dt < +∞ ∀R > 0 (6)

(this property is trivially true if, for example, |µ0|(Rd) < +∞). Then the measure µνt on Rd

defined by

〈µνt , ϕ〉 := 〈(et)#ν, ϕ〉 =
∫

Rd×ΓT

ϕ(γ(t)) dνx(γ) dµ0(x) ∀ϕ ∈ C∞
c (Rd)

is a solution of the PDE.

Proof. Let us first show that the map t 7→ 〈µνt , ϕ〉 is absolutely continuous for any ϕ ∈ C∞
c (Rd).

We recall that a real valued map t 7→ f(t) is said absolutely continuous if, for any ε > 0 there
exists δ > 0 such that, given any family of disjoint intervals (sk, tk) ⊂ [0, T ], the following
implication holds: ∑

k

|tk − sk| ≤ δ ⇒
∑
k

|f(tk) − f(sk)| ≤ ε.

Take R > 0 such that supp(ϕ) ⊂ BR, and let I = ∪nk=1(sk, tk) be a subset of [0, T ] with (sk, tk)
disjoint and such that |tk − sk| ≤ 1. For µ0-a.e. x, by the definition of martingale solution we
have∫

ΓT

ϕ(γ(tk)) dνx(γ) −
∫

ΓT

ϕ(γ(sk)) dνx(γ) =
∫ tk

sk

∫
ΓT

Ltϕ(γ(t)) dνx(γ) dt

=
∫ tk

sk

∫
ΓT

∑
i

bi(t, γ(t))∂iϕ(γ(t)) dνx(γ) dt+
1
2

∫ tk

sk

∫
ΓT

∑
ij

aij(t, γ(t))∂ijϕ(γ(t)) dνx(γ) dt

and so, integrating with respect to µ0, we obtain

|〈µνtk , ϕ〉 − 〈µνsk
, ϕ〉| ≤ ‖ϕ‖C2

[
‖b‖∞ +

1
2
‖a‖∞

] ∫ tk

sk

∫
Rd×ΓT

χBR
(γ(t)) dνx(γ) d|µ0|(x) dt.

Thus
n∑
k=1

|〈µνtk , ϕ〉 − 〈µνsk
, ϕ〉| ≤ ‖ϕ‖C2

[
‖b‖∞ +

1
2
‖a‖∞

] n∑
k=1

∫ tk

sk

∫
Rd×ΓT

χBR
(γ(t)) dνx(γ) d|µ0|(x) dt,

which shows that the map t 7→ 〈µνt , ϕ〉 is absolutely continuous thanks to (6) and the absolute
continuity property of the integral. So, in order to conclude that µνt solves the PDE, it suffices
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to compute the time derivative of t 7→ 〈µνt , ϕ〉, and, by the computation we made above, one
simply gets

d

dt
〈µνt , ϕ〉 =

∫
Rd

d

dt

(∫
ΓT

ϕ(γ(t)) dνx(γ)
)
dµ0(x)

=
∫

Rd

∫
ΓT

Ltϕ(γ(t)) dνx(γ) dµ0(x) = 〈µνt , Ltϕ〉.

�

Remark 2.5. We observe that, by the definition of µνt , the following implications hold:

(i) µ0 ≥ 0 ⇒ ∀t ≥ 0, µνt ≥ 0 and µνt (Rd) = µ0(Rd) (the total mass can also be infinite);

(ii) µ0 signed ⇒ ∀t ≥ 0, |µνt |(Rd) ≤ |µ0|(Rd) (the total variation can also be infinite).

2.1 A representation formula for solutions of the PDE

We denote by M+(Rd) the set of non-negative finite measures on Rd.

Theorem 2.6. Let µt be a solution of the PDE such that µt ∈ M+(Rd) for any t ∈ [0, T ], with
µt(Rd) ≤ C for any t ∈ [0, T ]. Then there exists a measurable family of probability measures
{νx}x∈Rd such that νx is a martingale solution of (1) starting from x (at time 0) for µ0-a.e. x,
and the following representation formula holds:∫

Rd

ϕdµt =
∫

Rd×ΓT

ϕ(γ(t)) dνx(γ) dµ0(x). (7)

By this theorem it follows that, whenever we have existence of a solution of the PDE starting
from µ0, there exists a martingale solution of the SDE for µ0-a.e. initial condition x.

Proof. Up to a renormalization of µ0, we can assume that µ0(Rd) = 1.
Step 1: smoothing. Let ρ : Rd → (0,+∞) be a convolution kernel such that |Dkρ(x)| ≤
Ck|ρ(x)| for any k ≥ 1 (ρ(x) = Ce−

√
1+|x|2 , for instance). We consider the measures µεt := µt∗ρε.

They are smooth solutions of the PDE

∂tµ
ε
t +

∑
i

∂i(bεiµ
ε
t ) −

1
2

∑
ij

∂ij(aεijµ
ε
t ) = 0, (8)

where bεt = bε(t, ·) := (b(t,·)µt)∗ρε

µε
t

, aεt = aε(t, ·) := (a(t,·)µt)∗ρε

µε
t

. Then it is immediate to see that

‖bεt‖∞ ≤ ‖bt‖∞, ‖aεt‖∞ ≤ ‖at‖∞. (9)

Since |Dkρ(x)| ≤ Ck|ρ(x)|, it is simple to check that bε and aε are smooth and bounded together
with all their spatial derivatives. By [18, Corollary 6.3.3], the martingale problem for aε and bε

is well-posed (see Definition 1.1) and the family {νεx}x∈Rd of martingale solutions (starting at
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time 0) is measurable (see Definition 1.2). By (9) we can apply Lemma 2.4, which tells us that
µ̃εt := (et)#

∫
Rd ν

ε
x dµ

ε
0(x) is a finite measure which solves the smoothed PDE (8) with initial

datum µε0. Then, since the solution of (8) is unique (Proposition 4.1), we obtain µ̃εt = µεt , that
is ∫

Rd

ϕdµεt =
∫

Rd×ΓT

ϕ(γ(t)) dνεx(γ) dµ
ε
0(x). (10)

Step 2: tightness. It is clear that the measures µε0 = µ0 ∗ ρε are tight. So, if we define
νε :=

∫
Rd ν

ε
x dµ

ε
0, we have

lim
R→∞

sup
0<ε<1

νε({|γ(0)| > R}) = 0.

For any ϕ ∈ C∞
c (Rd), let us define Aϕ := ‖ϕ‖C2

[
‖b‖∞ + 1

2‖a‖∞
]
. Since for every ϕ ∈ C∞

c (Rd)
and any 0 < ε < 1

ϕ(γ(t)) −
∫ t

0

(∑
i

bεi (u, γ(u))∂iϕ(γ(u)) +
1
2

∑
ij

aεij(u, γ(u))∂ijϕ(γ(u))
)
du

is a νε-martingale with respect to the canonical filtration, by (9) we obtain that ϕ(γ(t)) + Aϕt
is a νε-submartingale with respect to the canonical filtration. Thus [18, Theorem 1.4.6] can be
applied, and the tightness of νε follows.

Let ν be any limit point of νε, and consider the disintegration of ν with respect to µ0 =
(e0)#ν, i.e. ν =

∫
Rd νx dµ0(x). Passing to the limit in (10), we get∫

Rd

ϕdµt(x) =
∫

Rd×ΓT

ϕ(γ(t)) dνx(γ) dµ0(x).

Step 3: νx is a martingale solution of the SDE for µ0-a.e. x. Let εn → 0 be a sequence
such that ν is the weak limit of νεn . Let us fix a continuous function f : Rd → R with 0 ≤ f ≤ 1,
s ∈ [0, T ], and an Fs-measurable continuous function Φs : ΓT → R with 0 ≤ Φs ≤ 1, where
(Fs)0≤s≤T denotes the canonical filtration on ΓT . We define

Lnt :=
∑
i

bεn
i (t, ·)∂i +

1
2

∑
ij

aεn
ij (t, ·)∂ij .

Since each νεn
x is a martingale solution, we know that for any t ∈ [s, T ] and for any ϕ ∈ C∞

c (Rd)∫
Rd×ΓT

[
ϕ(γ(t)) −

∫ t

0
Lnuϕ(γ(u)) du

]
Φs(γ) dνεn

x (γ)f(x) dµεn
0 (x)

=
∫

Rd×ΓT

[
ϕ(γ(s)) −

∫ s

0
Lnuϕ(γ(u)) du

]
Φs(γ) dνεn

x (γ)f(x) dµεn
0 (x)

(see Definition 1.1), or equivalently∫
Rd×ΓT

[
ϕ(γ(t)) − ϕ(γ(s)) −

∫ t

s
Lnuϕ(γ(u)) du

]
Φs(γ) dνεn

x (γ)f(x) dµεn
0 (x) = 0.
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Let us take b̃ : [0, T ] × Rd → Rd and ã : [0, T ] × Rd → S+(Rd) bounded and continuous, and
define

L̃t :=
∑
i

b̃i(t, ·)∂i +
1
2

∑
ij

ãij(t, ·)∂ij ,

L̃nt :=
∑
i

b̃εn
i (t, ·)∂i +

1
2

∑
ij

ãεn
ij (t, ·)∂ij ,

where b̃εn
i and ãεn

ij are defined analogously to bεn
i and aεn

ij . Thus we can write

∫
Rd×ΓT

[
ϕ(γ(t)) − ϕ(γ(s)) −

∫ t

s
L̃nuϕ(γ(u)) du

]
Φs(γ) dνεn

x (γ)f(x) dµεn
0 (x)

=
∫

Rd×ΓT

[∫ t

s
(Lnu − L̃nu)ϕ(γ(u)) du

]
Φs(γ) dνεn

x (γ)f(x) dµεn
0 (x).

Then, recalling that 0 ≤ f ≤ 1 and 0 ≤ Φs ≤ 1, we get∣∣∣∣∣
∫

Rd×ΓT

[
ϕ(γ(t)) − ϕ(γ(s)) −

∫ t

s
L̃nuϕ(γ(u)) du

]
Φs(γ) dνεn

x (γ)f(x) dµεn
0 (x)

∣∣∣∣∣
≤

∫
Rd×ΓT

[∫ t

s

∣∣∣(Lnu − L̃nu)ϕ(γ(u))
∣∣∣ du]Φs(γ) dνεn

x (γ)f(x) dµεn
0 (x)

≤
∫

Rd×ΓT

[∫ t

s

∣∣∣(Lnu − L̃nu)ϕ(γ(u))
∣∣∣ du] dνεn

x (γ) dµεn
0 (x)

=
∫ t

s

∫
Rd

∣∣∣(Lnu − L̃nu)ϕ(x)
∣∣∣ dµεn

u (x) du

≤
∑
i

∫ t

s

∫
Rd

∣∣∣∣((bi(u, ·)µu) ∗ ρεn

µεn
u

− (b̃i(u, ·)µu) ∗ ρεn

µεn
u

)
∂iϕ

∣∣∣∣(x) dµεn
u (x) du

+
1
2

∑
ij

∫ t

s

∫
Rd

∣∣∣∣((aij(u, ·)µu) ∗ ρεn

µεn
u

− (ãij(u, ·)µu) ∗ ρεn

µεn
u

)
∂ijϕ

∣∣∣∣(x) dµεn
u (x) du

≤
∑
i

∫ t

s

∫
Rd

|bi(u, ·) − b̃i(u, ·)|(x)∂iϕ ∗ ρεn(x) dµu(x) du

+
1
2

∑
ij

∫ t

s

∫
Rd

|aij(u, ·) − ãij(u, ·)|(x)∂ijϕ ∗ ρεn(x) dµu(x) du.

Since ã and b̃ are continuous, ãεn and b̃εn converge to ã and b̃ locally uniformly. So we can pass
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to the limit in the above equation as n→ ∞, obtaining∣∣∣∣∣
∫

Rd×ΓT

[
ϕ(γ(t)) − ϕ(γ(s)) −

∫ t

s
L̃uϕ(γ(u)) du

]
Φs(γ) dνx(γ)f(x) dµ0(x)

∣∣∣∣∣
≤

∑
i

∫ t

s

∫
Rd

|bi(u, x) − b̃i(u, x)|∂iϕ(x) dµu(x) du

+
1
2

∑
ij

∫ t

s

∫
Rd

|aij(u, x) − ãij(u, x)|∂ijϕ(x) dµu(x) du

Choosing two sequences of continuous functions (b̃k)k∈N and (ãk)k∈N converging respectively to
b and a in L1([0, T ] × Rd, η), with η :=

∫ T
0 µt dt, we finally obtain∫

Rd×ΓT

[
ϕ(γ(t)) − ϕ(γ(s)) −

∫ t

s
Luϕ(γ(u)) du

]
Φs(γ) dνx(γ)f(x) dµ0(x) = 0,

that is∫
Rd×ΓT

[
ϕ(γ(t)) −

∫ t

0
Luϕ(γ(u)) du

]
Φs(γ) dνx(γ)f(x) dµ0(x)

=
∫

Rd×ΓT

[
ϕ(γ(s)) −

∫ s

0
Luϕ(γ(u)) du

]
Φs(γ) dνx(γ)f(x) dµ0(x).

By the arbitrariness of f we get that, for any 0 ≤ s ≤ t ≤ T , and for any Fs-measurable function
Φs, we have∫

ΓT

[
ϕ(γ(t)) −

∫ t

0
Luϕ(γ(u)) du

]
Φs(γ) dνx(γ)

=
∫

ΓT

[
ϕ(γ(s)) −

∫ s

0
Luϕ(γ(u)) du

]
Φs(γ) dνx(γ) for µ0-a.e. x.

Letting Φs vary in a dense countable subset of Fs-measurable functions, by approximations we
deduce that, for any 0 ≤ s ≤ t ≤ T , for µ0-a.e. x,∫

ΓT

[
ϕ(γ(t)) −

∫ t

0
Luϕ(γ(u)) du

]
Φs(γ) dνx(γ)

=
∫

ΓT

[
ϕ(γ(s)) −

∫ s

0
Luϕ(γ(u)) du

]
Φs(γ) dνx(γ)

for any Fs-measurable function Φs (here the µ0-a.e. depends on s and t but not on Φs). Taking
now s, t ∈ [0, T ] ∩ Q, we deduce that, for µ0-a.e. x,∫

ΓT

[
ϕ(γ(t)) −

∫ t

0
Luϕ(γ(u)) du

]
Φs(γ) dνx(γ)

=
∫

ΓT

[
ϕ(γ(s)) −

∫ s

0
Luϕ(γ(u)) du

]
Φs(γ) dνx(γ)
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for any s, t ∈ [0, T ] ∩ Q, for any Fs-measurable function Φs. By the continuity of the above
equality with respect to both s and t, and the continuity in time of the filtration Fs, we conclude
that νx is a martingale solution for µ0-a.e. x. �

Remark 2.7. We observe that by (7) it follows that

µt(Rd) ≤ C ∀t ⇒ µt(Rd) = µ0(Rd)

(this result can also be proved more directly using as test functions in (2) a suitable sequence
(ϕn)n∈N ⊂ C∞

c (Rd), with 0 ≤ ϕn ≤ 1 and ϕn ↗ 1, and, even in the case when the measures µt
are signed, under the assumption |µt|(Rd) ≤ C one obtains the constancy of the map t 7→ µt(Rd)).

3 Stochastic Lagrangian Flows

In this section we want to prove an existence and uniqueness result for martingale solutions which
satisfy certain properties, in the spirit of the Regular Lagrangian Flows (RLF) introduced in [1].

Definition 3.1. Given a measure µ0 = ρ0Ld ∈ M+(Rd), with ρ0 ∈ L∞(Rd), we say that a
measurable family of probability measures {νx}x∈Rd on ΓT is a µ0-Stochastic Lagrangian Flow
(µ0-SLF) (starting at time 0), if:

(i) for µ0-a.e. x, νx is a martingale solution of the SDE starting from x (at time 0);

(ii) for any t ∈ [0, T ]

µt := (et)#

(∫
νx dµ0(x)

)
� Ld,

and, denoting µt = ρtLd, we have ρt ∈ L∞(Rd) uniformly in t.

More generally, one can analogously define a µ0-SLF starting at time s with s ∈ (0, T )
requiring that νx is a martingale solution of the SDE starting from x at time s.

Remark 3.2. If {νx}x∈Rd is a µ0-SLF, then it is also a µ′0-SLF for any µ′0 ∈ M+(Rd) with
µ′0 ≤ Cµ0. Indeed, this easily follows by the inequality

0 ≤ (et)#

∫
Rd

ν̃x dµ
′
0(x) ≤ C(et)#

∫
Rd

ν̃x dµ0(x).

3.1 Existence, uniqueness and stability of SLF

We denote by L1
+ and L∞

+ the convex subsets of L1 and L∞ consisting of non-negative functions,
and, following [1], we define

L :=
{
u ∈ L∞([0, T ], L1(Rd)) ∩ L∞([0, T ], L∞(Rd)) | u ∈ C([0, T ], w∗ − L∞(Rd))

}
,

and

L+ :=
{
u ∈ L∞([0, T ], L1

+(Rd)) ∩ L∞([0, T ], L∞
+ (Rd)) | u ∈ C([0, T ], w∗ − L∞(Rd))

}
.
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Under an existence and uniqueness result for the PDE in the class L+, we prove existence and
uniqueness of SLF.

Theorem 3.3 (Existence of SLF starting from a fixed measure). Let us suppose that, for some
initial datum µ0 = ρ0Ld ∈ M+(Rd), with ρ0 ∈ L∞(Rd), there exists a solution of the PDE in
L+. Then there exists a µ0-SLF.

Proof. It suffices to apply Theorem 2.6 to the solution of the PDE in L+. �
Let us assume now that forward uniqueness for the PDE holds in the class L+ for any initial

time, that is, for any s ∈ [0, T ], for any ρs ∈ L1
+(Rd) ∩ L∞

+ (Rd), if we denote by ρtLd and ρ̃tLd
two solutions of the PDE in the class L+ starting from ρsLd at time s, then

ρt = ρ̃t for any t ∈ [s, T ].

Before stating and proving our main theorem, we first introduce some notation that will be
used also in the Appendix.

Let B be the Borel σ-algebra on ΓT = C([0, T ],Rd), and define the filtrations Ft := σ[es |
0 ≤ s ≤ t] and F t := σ[es | t ≤ s ≤ T ]. Set P(ΓT ) the set of probability measures on ΓT . Now,
given ν ∈ P(ΓT ), we denote by

ΓT 3 γ 7→ νγFt
∈ P(ΓT )

a regular conditional probability distribution of ν given Ft, that is a family of probability
measures on (ΓT ,B) indexed by γ such that:

- for each B ∈ B, γ 7→ νγFt
(B) is Ft-measurable;

-
ν(A ∩B) =

∫
A
νγFt

(B) dν(γ) ∀A ∈ Ft, ∀B ∈ B. (11)

Since ΓT is a Polish space and every σ-algebra Ft is finitely generated, such a function exists
and is unique, up to ν-null sets. In particular, up to changing this function in a ν-null set, the
following fact holds:

νγFt
({γ̃ | γ̃(s) = γ(s) ∀s ∈ [0, t]}) = 1 ∀γ ∈ ΓT . (12)

Finally, given 0 ≤ t1 ≤ . . . ≤ tn ≤ T , we set M t1,...,tn := σ[et1 , . . . , etn ], and one can analogously
define νγ

Mt1,...,tn . For νγ
Mt1,...,tn an analogous of (12) holds:

νγ
Mt1,...,tn ({γ̃ | γ̃(ti) = γ(ti) ∀i = 1, . . . , n}) = 1 ∀γ ∈ ΓT . (13)

If γ(ti) = xi for i = 1, . . . , n, then we will also use the notation νγ
Mt1,...,tn = νx1,...,xn

Mt1,...,tn .
By (11) one can check that

∫
ΓT
ν γ̃Ftn

dνγ
M t1,...,tn (γ̃) is a regular conditional probability distribution

of ν given M t1,...,tn , which implies by uniqueness that

νγ
Mt1,...,tn =

∫
ΓT

ν γ̃Ftn
dνγ
M t1,...,tn (γ̃) for ν-a.e. γ. (14)
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Theorem 3.4 (Uniqueness of SLF starting from a fixed measure). Let us assume that forward
uniqueness for the PDE holds in the class L+ for any initial time. Then, for any µ0 = ρ0Ld ∈
M+(Rd), with ρ0 ∈ L∞(Rd), the µ0-SLF is uniquely determined µ0-a.e. (in the sense that, if
{νx} and {ν̃x} are two µ0-SLF, then νx = ν̃x for µ0-a.e. x).

Proof. Let {νx} and {ν̃x} be two µ0-SLF. Take now a function ψ ∈ Cc(Rd), with ψ ≥ 0. By
Remark 3.2, {νx} and {ν̃x} are two ψµ0-SLF. Thus, by Lemma 2.4 and the uniqueness of the
PDE in L+, for any ϕ ∈ Cc(Rd) we have∫

Rd×ΓT

ϕ(et(γ)) dνx(γ)ψ(x) dµ0(x) =
∫

Rd×ΓT

ϕ(et(γ)) dν̃x(γ)ψ(x) dµ0(x) ∀t ∈ [0, T ]. (15)

This clearly implies that, for any t ∈ [0, T ],

(et)#νx = (et)#ν̃x for µ0-a.e. x.

We now want to use an analogous argument to deduce that, for any 0 < t1 < t2 < . . . < tn ≤ T ,

(et1 , . . . , etn)#νx = (et1 , . . . , etn)#ν̃x for µ0-a.e. x. (16)

The idea is that, given a measure µ̃s = ρ̃sLd ∈ M+(Rd), with ρ̃s ∈ L∞, once we have a µ̃s-SLF
starting at time s we can multiply µ̃s by a function ψs ∈ Cc(Rd) with ψs ≥ 0, and by Remark
3.2 our µ̃s-SLF is also a ψsµ̃s-SLF starting at time s. Using this argument n times at different
times and the time marginals uniqueness, we will obtain (16).
Fix 0 < t1 < . . . < tn ≤ T . Take ψ0 ≥ 0 with ψ0 ∈ Cc(Rd) and

∫
Rd ψ0 dµ0 = 1, and denote

by µψ0
t1

the value at time t1 of the (unique) solution in L+ of the PDE starting from ψ0µ0

(which is induced both by {νx} and {ν̃x} by uniqueness, see equation (15)). Let {νx,t1}x∈Rd and
{ν̃x,t1}x∈Rd be the families of probability measures on ΓT given by the disintegration of

νψ0 :=
∫

Rd

νxψ0(x) dµ0(x) and ν̃ψ0 :=
∫

Rd

ν̃xψ0(x) dµ0(x)

with respect to µψ0
t1

= (et1)#ν
ψ0 = (et1)#ν̃

ψ0 , that is

νψ0 =
∫

Rd

νx,t1 dµ
ψ0
t1

(x), ν̃ψ0 =
∫

Rd

ν̃x,t1 dµ
ψ0
t1

(x). (17)

It is easily seen that {νx,t1} and {ν̃x,t1} are regular conditional probability distributions, given
M t1 = σ[et1 ], of νψ0 and ν̃ψ0 respectively (that is, with the notation introduced before, νx,t1 =
(νψ0)xMt1

and ν̃x,t1 = (ν̃ψ0)xMt1
). Thus, looking at {νx,t1} and {ν̃x,t1} as their restriction to

C([t1, T ],Rd), {νx,t1} and {ν̃x,t1} are µψ0
t1

-SLF starting at time t1. Indeed, by the stability of
martingale solutions with respect to regular conditional probability (see [18, Chapter 6]), {νx,t1}
and {ν̃x,t1} are martingale solutions of the SDE starting from x at time t1 for µψ0

t1
-a.e. x (see also

the remarks at the end of the proof of Proposition 5.5), while (ii) of Definition 3.1 is trivially
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true since {νx} and {ν̃x} are ψ0µ0-SLF. As before, since {νx,t1} and {ν̃x,t1} are also ψ1µ
ψ0
t1

-SLF
for any ψ1 ∈ Cc(Rd) with ψ1 ≥ 0, using again the uniqueness of the PDE in L+ we get∫

Rd×ΓT

ϕ(et2(γ)) dνx,t1(γ)ψ1(x) dµ
ψ0
t1

(x) =
∫

Rd×ΓT

ϕ(et2(γ)) dν̃x,t1(γ)ψ1(x) dµ
ψ0
t1

(x)

for any ϕ ∈ Cc(Rd), which can also be written as∫
Rd×ΓT

ϕ(et2(γ))ψ1(et1(γ)) dνx,t1(γ) dµ
ψ0
t1

(x) =
∫

Rd×ΓT

ϕ(et2(γ))ψ1(et1(γ)) dν̃x,t1(γ) dµ
ψ0
t1

(x).

(18)
Recalling that by (17)∫

Rd

νx,t1 dµ
ψ0
t1

(x) =
∫

Rd

νxψ0(x) dµ0(x),
∫

Rd

ν̃x,t1 dµ
ψ0
t1

(x) =
∫

Rd

ν̃xψ0(x) dµ0(x),

by (18) we obtain∫
Rd×ΓT

ϕ(et2(γ))ψ1(et1(γ)) dνx(γ)ψ0(x) dµ0(x)

=
∫

Rd×ΓT

ϕ(et2(γ))ψ1(et1(γ)) dν̃x(γ)ψ0(x) dµ0(x)

for any non-negative ψ0, ψ1, ϕ ∈ Cc(Rd) (the constraint
∫

Rd ψ0 dµ0 = 1 can be easily removed
multiplying the above equality by a positive constant). Iterating this argument, we finally get∫

Rd×ΓT

ψn(etn(γ)) . . . ψ1(et1(γ)) dνx(γ)ψ0(x) dµ0(x)

=
∫

Rd×ΓT

ψn(etn(γ)) . . . ψ1(et1(γ)) dν̃x(γ)ψ0(x) dµ0(x),

for any non-negative ψ0, . . . , ψn ∈ Cc(Rd), and thus (16) follows.
Considering now only rational times, we get that there exists a subset A ⊂ Rd, with µ0(Ac) = 0,
such that, for any x ∈ A,

(et1 , . . . , etn)#νx = (et1 , . . . , etn)#ν̃x for any t1, . . . , tn ∈ [0, T ] ∩ Q.

By continuity, this implies that, for any x ∈ A, νx = ν̃x, as wanted. �

Remark 3.5. Suppose that forward uniqueness for the PDE holds in the class L+, and take
µ0 = ρ0Ld and µ̃0 = ρ̃0Ld, with ρ0, ρ̃0 ∈ L1

+(Rd) ∩ L∞
+ (Rd). If {νx} is a µ0-SLF and {ν̃x} is a

µ̃0-SLF, then
νx = ν̃x for µ0 ∧ µ̃0-a.e. x.

In fact, by Remark 3.2 {νx} and {ν̃x} are both µ0 ∧ µ̃0-SLF, and thus we conclude by the
uniqueness result proved above.
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By Theorems 3.3 and 3.4, and by the remark above, we obtain the following:

Corollary 3.6 (Existence and uniqueness of SLF). Let us assume that we have forward existence
and uniqueness for the PDE in L+. Then there exists a measurable selection of martingale
solution {νx}x∈Rd which is a µ0-SLF for any µ0 = ρ0Ld with ρ0 ∈ L1

+(Rd) ∩ L∞
+ (Rd), and if

{ν̃x}x∈Rd is a µ̃0-SLF for a fixed µ̃0 = ρ̃0Ld with ρ̃0 ∈ L1
+(Rd) ∩ L∞

+ (Rd), then νx = ν̃x for
Ld-a.e. x ∈ supp(µ̃0).

Proof. It suffices to consider a SLF starting from a Gaussian measure (which exists by Theorem
3.3), and to apply Remark 3.5. �

By now, the above selection of martingale solutions {νx}, which is uniquely determined
Ld-a.e., will be called the SLF (starting at time 0 and relative to (b, a)).

We finally prove a stability result for SLF:

Theorem 3.7 (Stability of SLF starting from a fixed measure). Let us suppose that bn, b :
[0, T ] × Rd → Rd and an, a : [0, T ] × Rd → S+(Rd) are uniformly bounded functions, and
that we have forward existence and uniqueness for the PDE in L+ with coefficients (b, a). Let
µ0 = ρ0Ld ∈ M+(Rd), with ρ0 ∈ L∞(Rd), and let {νnx}x∈Rd and {νx}x∈Rd be µ0-SLF for (bn, an)
and (b, a) respectively. Define νn :=

∫
Rd ν

n
x dµ0(x), ν :=

∫
Rd νx dµ0(x). Assume that:

(i) (bn, an) → (b, a) in L1
loc([0, T ] × Rd);

(ii) setting ρnt Ld = µnt := (et)#νn, for any t ∈ [0, T ]

‖ρnt ‖L∞(Rd) ≤ C for a certain constant C = C(T ).

Then νn ⇀∗ ν in M(ΓT ).

Proof. Since (bn, an) are uniformly bounded in L∞, as in Step 2 of the the proof of Theorem
2.6 one proves that the sequence of probability measures (νn) on Rd × ΓT is tight. In order to
conclude, we must show that any limit point of (νn) is ν.
Let ν̃ be any limit point of (νn). We claim that ν̃ is concentrated on martingale solutions of
the SDE with coefficients (b, a). Indeed, let us define µ̃t := (et)#ν̃. Since µnt → µ̃t narrowly
and ρnt are non-negative functions bounded in L∞(Rd), we get µ̃t = ρtLd for a certain non-
negative function ρt ∈ L∞(Rd). We now observe that the argument used in Step 3 of the proof
of Theorem 2.6 was using only the property that, for any ϕ ∈ C∞

c (Rd),

lim sup
n→+∞

∑
i

∫ t

s

∫
Rd

∣∣∣(bni (u, x) − b̃i(u, x)
)
∂iϕ(x)

∣∣∣ρnu(x) dx du
≤

∑
i

∫ t

s

∫
Rd

∣∣∣(bi(u, x) − b̃i(u, x)
)
∂iϕ(x)

∣∣∣ρu(x) dx du,
lim sup
n→+∞

∑
ij

∫ t

s

∫
Rd

∣∣∣(anij(u, x) − ãij(u, x)
)
∂ijϕ(x)

∣∣∣ρnu(x) dx du
≤

∑
ij

∫ t

s

∫
Rd

∣∣∣(aij(u, x) − ãij(u, x)
)
∂ijϕ(x)

∣∣∣ ρu(x) dx du
16



for any b̃ : [0, T ] × Rd → Rd and ã : [0, T ] × Rd → S+(Rd) bounded and continuous. This
property simply follows by (i) and the w∗-convergence of ρnt to ρt in L∞([0, T ] × Rd).
Since t 7→ ρtLd is w∗-continuous in the sense of measures, the w∗-continuity of t 7→ ρt in L∞(Rd)
follows. Thus, if we write ν̃ :=

∫
Rd ν̃x dµ0(x) (considering the disintegration of ν̃ with respect to

µ0 = (e0)#ν̃), we have proved that {ν̃x} is a µ0-SLF for (b, a). Therefore, by Theorem 3.4, we
conclude that ν = ν̃. �

We remark that the theory just developed could be generalized to more general situations.
Indeed the key property of the convex class L+ is the following monotonicy property:

0 ≤ µ̃t ≤ µt ∈ L+ ⇒ µ̃t ∈ L+

(see also [2, Section 3]).

3.2 SLF versus RLF

We remark that, in the special case a = 0, our SLF coincides with a sort of superposition of the
RLF introduced in [1]:

Lemma 3.8. Let us assume a = 0. Then νx,s is a martingale solution of the SDE (which, in
this case, is just an ODE) starting from x at time s if and only if it is concentrated on integral
curves of the ODE, that is, for νx,s-a.e. γ,

γ(t) − γ(s) =
∫ t

s
b(τ, γ(τ)) dτ ∀t ∈ [s, T ].

Proof. It is clear from the definition of martingale solution that, if νx,s is concentrated on inte-
gral curves on the ODE, then it is a martingale solution. Let us prove the converse implication.
By the definition of martingale solution and the fact that a = 0, it is a known fact that

Mt := γ(t) − γ(s) −
∫ t

s
b(τ, γ(τ)) dτ, t ∈ [s, T ],

is a νx,s-martingale with zero quadratic variation. This implies that also M2
t is a martingale,

and since Ms = 0 we get

0 = Eνx,s [M2
t ] =

∫
ΓT

(
γ(t) − γ(s) −

∫ t

s
b(τ, γ(τ)) dτ

)2

dνx,s(γ) ∀t ∈ [s, T ],

which gives the thesis. �
Thus, in the case a = 0, a martingale solution of the SDE starting from x is simply a measure

on ΓT concentrated on integral curves of b. By the results in [1] we know that, if we have forward
uniqueness for the PDE in L+, then any measure ν on ΓT concentrated on integral curves of b
such that its time marginals induces a solution of the PDE in L+ is concentrated on a graph,
i.e. there exists a function x 7→ X(·, x) ∈ ΓT such that

ν = X(·, x)#µ0, with µ0 := (e0)#ν
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(see for instance [3, Theorem 18]). Then, if we assume forward uniqueness for the PDE in L+,
our SLF coincides exactly with the RLF in [1]. Applying the stability result proved in the above
paragraph, we obtain that, as the noise tends to 0, our SLF converges to the RLF associated to
the ODE γ̇ = b(γ). So we have a vanishing viscosity result for RLF.

Corollary 3.9. Let us suppose that b : [0, T ] × Rd → Rd is uniformly bounded, and that we
have forward existence and uniqueness for the PDE in L+ with coefficients (b, 0). Let {νεx}x∈Rd

and {νx}x∈Rd be the SLF relative to (b, εI) and (b, 0) respectively (existence and uniqueness of
martingale solutions for the SDE with coefficients (b, εI), together with the measurability of the
family {νεx}x∈Rd, follows by [18, Theorem 7.2.1]). Let µ0 = ρ0Ld ∈ M+(Rd), with ρ0 ∈ L∞(Rd),
and define νε :=

∫
Rd ν

ε
x dµ0(x), ν :=

∫
Rd νx dµ0(x).

Set ρεtLd = µεt := (et)#νε, and assume that for any t ∈ [0, T ]

‖ρεt‖L∞(Rd) ≤ C for a certain constant C = C(T ).

Then νε ⇀∗ ν in M(ΓT ).

In [1], the uniqueness of RLF implies the semigroup law (see [1], [2] for more details). In
our case, by the uniqueness of SLF, we have as a consequence that the Chapman-Kolmogorov
equation holds:

Proposition 3.10. For any s ≥ 0, let {νx,s}x∈Rd denotes the unique SLF starting at time s.
Let us denote by νs,x(t, dy) the probability measure on Rd given by νs,x(t, ·) := (et)#νs,x. Then,
for any 0 ≤ s < t < u ≤ T ,∫

Rd

νt,y(u, ·)νs,x(t, dy) = νs,x(u, ·) for Ld − a.e. x.

Proof. Let us define

ν̃s,x :=
{
νs,x on C([s, t],Rd)∫

Rd νt,yνs,x(t, dy) on C([t, T ],Rd).

This gives a family of martingale solution starting from x at time s (see [18]), and, using that
{νx,s} and {νx,t} are SLF starting at time s and t respectively, it is simple to check that {ν̃s,x}x∈Rd

is a SLF starting at time s. Thus, by Theorem 3.4, we have the thesis. �

4 Fokker-Planck equation

We now want to study the Fokker-Planck equation

∂tµt +
∑
i

∂i(biµt) −
1
2

∑
ij

∂ij(aijµt) = 0 in [0, T ] × Rd, (19)

where a = (aij) is symmetric and non-negative definite (that is, a : [0, T ] × Rd → S+(Rd)).
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4.1 Existence and uniqueness of measure valued solutions

Proposition 4.1. Let us assume that a : [0, T ] × Rd → S+(Rd) and b : [0, T ] × Rd → Rd

are bounded functions, having two bounded continuous spatial derivatives. Then, for any finite
measure µ0 there exists a unique finite measure-valued solution of (19) starting from µ0 such
that |µt|(Rd) ≤ C for any t ∈ [0, T ].

Proof. Existence: let {νx}x∈Rd be the measurable family of martingale solutions of the SDE{
dX = b(t,X) dt+

√
a(t,X) dB(t)

X(0) = x

(which exists and is unique by [18, Corollary 6.3.3]). Then, by Lemma 2.4 and Remark 2.5, the
measure µt := (et)#

∫
Rd νx dµ0(x) solves (19) and |µt|(Rd) ≤ |µ0|(Rd).

Uniqueness: by linearity, it suffices to prove that, if µ0 = 0, then µt = 0 for all t ∈ [0, T ]. Fix
ψ ∈ C∞

c (Rd), t ∈ [0, T ], and let f(t, x) be the (unique) solution of{
∂tf +

∑
i bi∂if + 1

2

∑
ij aij∂ijf = 0 in [0, t] × Rd

f(t) = ψ on Rd

(which exists and is unique by [18, Theorem 3.2.6]). By [18, Theorems 3.1.1 and 3.2.4], we know
that f ∈ C1,2

b , i.e. it is uniformly bounded with one bounded continuous time derivative and two
bounded continuous spatial derivatives. Since µt is a finite measure by assumption, and t 7→ µt
is narrowly continuous (Lemma 2.1), we can use f(t, ·) as test functions in (3), and we get

d

dt

∫
Rd

f(t, x) dµt(x) =
∫

Rd

[
∂tf(t, x) +

∑
i

bi(t, x)∂if(t, x) +
1
2

∑
ij

aij(t, x)∂ijf(t, x)
]
dµt(x) = 0

(the above computation is admissible since f ∈ C1,2
b ). This implies in particular that

0 =
∫

Rd

f(0, x) dµ0(x) =
∫

Rd

f(t, x) dµt(x) =
∫

Rd

ψ(x) dµt(x).

By the arbitrariness of ψ and t we obtain µt = 0 for all t ∈ [0, T ]. �
We remark that, in the uniformly parabolic case, the above proof still works under weaker

regularity assumptions. Indeed, in that case, one has existence of a measurable family of mar-
tingale solutions of the SDE and of a solution f ∈ C1,2

b ([0, t] × Rd) of the adjoint equation if a
and b are just Hölder continuous (see [18, Theorem 3.2.1]). So we get:

Proposition 4.2. Let us assume that a : [0, T ] × Rd → S+(Rd) and b : [0, T ] × Rd → Rd are
bounded functions such that:

(i) 〈ξ, a(t, x)ξ〉 ≥ α|ξ|2 ∀(t, x) ∈ [0, T ] × Rd, for a certain α > 0;

(ii) |b(t, x) − b(s, y)| + ‖a(t, x) − a(s, y)‖ ≤ C
(
|x− y|δ + |t− s|δ

)
∀(t, x), (s, y) ∈ [0, T ] × Rd,

for some δ ∈ (0, 1], C ≥ 0.

Then, for any finite measure µ0 there exists a unique finite measure-valued solution of (19)
starting from µ0.
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4.2 Existence and uniqueness of absolutely continuous solutions in the uni-
formly parabolic case

We are now interested in absolutely continuous solutions of (2). Therefore, we consider the
following equation{

∂tu+
∑

i ∂i(biu) −
1
2

∑
ij ∂ij(aiju) = 0 in [0, T ] × Rd,

u(0) = u0,
(20)

which must be understood in the distributional sense on [0, T ] × Rd. We now first prove an
existence and uniqueness result in the L2-setting under a regularity assumption on the divergence
of a, which enables us to write (20) in a variational form, and thus to apply classical existence
results (the uniqueness part in L2 is much more involved). After, we will give a maximum
principle result.
Let us make the following assumptions on the coefficients:∑

j

∂jaij ∈ L∞([0, T ] × Rd) for i = 1, . . . , d, (
∑
i

∂ibi −
1
2

∑
ij

∂ijaij)− ∈ L∞([0, T ] × Rd),

〈ξ, a(t, x)ξ〉 ≥ α|ξ|2 ∀(t, x) ∈ [0, T ] × Rd, for a certain α > 0.
(21)

Theorem 4.3. Let us assume that a : [0, T ] × Rd → S+(Rd) and b : [0, T ] × Rd → Rd are
bounded functions such that (21) is fulfilled. Then, for any u0 ∈ L2(Rd), (20) has a unique
solution u ∈ Y , where

Y :=
{
u ∈ L2([0, T ],H1(Rd)) | ∂tu ∈ L2([0, T ], H−1(Rd))

}
.

If moreover ∂taij ∈ L∞([0, T ] × Rd) for i, j = 1, . . . , d, then existence and uniqueness holds in
L2([0, T ] × Rd), and so in particular any solution u ∈ L2([0, T ] × Rd) of (20) belongs to Y .

The proof the above theorem is quite standard, except for the uniqueness result in the large
space L2, which is indeed quite technical and involved. The motivation for this more general
result is that L1

+(Rd) ∩ L∞
+ (Rd) ⊂ L2(Rd), and L1

+(Rd) ∩ L∞
+ (Rd) is the space where we need

well-posedness of the PDE if we want to apply the theory on martingale solutions developed in
the last section (see Theorems 1.3 and 5.1).

We now give some properties of the family of solutions of (20):

Proposition 4.4. We assume that a : [0, T ] × Rd → S+(Rd) and b : [0, T ] × Rd → Rd are
bounded functions, and that (21) is fulfilled. Then the solution u ∈ Y provided by Theorem 4.3
satisfies:

(a) u0 ≥ 0 ⇒ u ≥ 0;

(b) u0 ∈ L∞(Rd) ⇒ u ∈ L∞([0, T ] × Rd) and we have

‖u(t)‖L∞(Rd) ≤ ‖u0‖L∞(Rd)e
t‖(

P

i ∂ibi− 1
2

P

ij ∂ijaij)
−‖∞ ;
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(c) if moreover
a

1 + |x|2
∈ L2([0, T ] × Rd),

b

1 + |x|
∈ L2([0, T ] × Rd),

then u0 ∈ L1 ⇒ ‖u(t)‖L1(Rd) ≤ ‖u0‖L1(Rd) ∀t ∈ [0, T ].

We observe that, by the above results together with Proposition 4.2, we obtain:

Corollary 4.5. Let us assume that a : [0, T ]×Rd → S(Rd) and b : [0, T ]×Rd → Rd are bounded
functions such that:

(i) 〈ξ, a(t, x)ξ〉 ≥ α|ξ|2 ∀(t, x) ∈ [0, T ] × Rd, for a certain α > 0;

(ii) |b(t, x) − b(s, y)| + ‖a(t, x) − a(s, y)‖ ≤ C (|x− y|γ + |t− s|γ) ∀(t, x), (s, y) ∈ [0, T ] × Rd,
for some γ ∈ (0, 1], C ≥ 0;

(iii)
∑

j ∂jaij ∈ L∞([0, T ]×Rd) for i = 1, . . . , d, (
∑

i ∂ibi−
1
2

∑
ij ∂ijaij)

− ∈ L∞([0, T ]×Rd);

(iv) a
1+|x|2 ∈ L2([0, T ] × Rd), b

1+|x| ∈ L2([0, T ] × Rd).

Then, for any µ0 ∈ M+(Rd) there exists a unique finite measure-valued solution µt ∈ M+(Rd)
of (2) starting from µ0. Moreover, if such that µ0 = ρ0Ld with ρ0 ∈ L2(Rd), then µt � Ld for
all t ∈ [0, T ].

Proof. Existence and uniqueness of finite measure-valued solutions follows by Proposition 4.2.
So the only thing to prove is that, if ρ0 ∈ L1(Rd) ∩ L2(Rd) is non-negative, then µt ∈ M+(Rd)
and µt � Ld for all t ∈ [0, T ]. This simply follows by the fact that the solution u ∈ Y provided
by Theorem 4.3 belongs to L1

+(Rd) by Proposition 4.4, and thus coincides with µt by uniqueness
in the set of finite measure-valued solutions. �

In order to prove the results stated before, we need the following theorem of J.-L.Lions (see
[16]):

Theorem 4.6. Let H be an Hilbert space, provided with a norm | · |, and inner product (·, ·).
Let Φ ⊂ H be a subspace endowed with a prehilbertian norm ‖ ·‖, such that the injection Φ ↪→ H
is continuous. We consider a bilinear form B : H × Φ → R such that:

- H 3 u 7→ B(u, ϕ) is continuous on H for any fixed ϕ ∈ Φ;

- there exists α > 0 such that B(ϕ,ϕ) ≥ α‖ϕ‖2 for any ϕ ∈ Φ.

Then, for any linear continuous form L on Φ there exists v ∈ H such that

B(v, ϕ) = L(ϕ) ∀ϕ ∈ Φ.

Proof of Theorem 4.3. We will first prove existence and uniqueness of a solution in the space
Y . Once this will be done, we will show that, if u is a weak solution of (20) belonging to
L2([0, T ] × Rd) and ∂taij ∈ L∞([0, T ] × Rd) for i, j = 1, . . . , d, then u belongs to Y , and so it
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coincides with the unique solution provided before.
The change of unknown

v(t, x) = e−λtu(t, x)

leads to the equation{
∂tv +

∑
i ∂i(b̃iv) −

1
2

∑
ij ∂i(aij∂jv) + λv = 0 in [0, T ] × Rd,

v0 = u0,
(22)

where b̃i := bi − 1
2

∑
j ∂jaij ∈ L∞([0, T ] × Rd). Assuming that λ satisfies λ > 1

2‖(
∑

i ∂ib̃i)
−‖∞,

we will prove existence and uniqueness for u.
Step 1: existence in Y . We want to apply Theorem 4.6.
Let us take H := L2([0, T ],H1(Rd)), Φ := {ϕ ∈ C∞([0, T ] × Rd) | suppϕ ⊂⊂ [0, T ) × Rd}. Φ is
endowed with the norm

‖ϕ‖2
Φ := ‖ϕ‖2

H +
1
2

∫
Rd

|ϕ(0, x)|2 dx.

The bilinear form B and the linear form L are defined as

B(u, ϕ) :=
∫ T

0

∫
Rd

[
u
(
−∂tϕ−

∑
i

b̃i∂iϕ+ λϕ
)

+
1
2

∑
ij

aij∂ju∂iϕ
]
dx dt,

L(ϕ) :=
∫

Rd

u0(x)ϕ(0, x) dx.

Thanks to these definitions and our assumptions, Lions’ theorem applies, and we find a distri-
butional solution v of (22). In particular,

∂tv = −
∑
i

∂i(b̃iv) +
1
2

∑
ij

∂i(aij∂jv) − λv ∈ H∗ = L2([0, T ],H−1(Rd)),

and thus v ∈ Y . In order to give a meaning to the initial condition and to show the uniqueness,
we recall that for functions in Y there exists a well-defined notion of trace at 0 in L2(Rd), and
the following Gauss-Green formula holds:∫ T

0

∫
Rd

∂tuũ+ ∂tũu dx dt =
∫

Rd

u(T, x)ũ(T, x) dx−
∫

Rd

u(0, x)ũ(0, x) dx ∀u, ũ ∈ Y (23)

(both facts follow by a standard approximation with smooth functions and by the fact that, if
u is smooth and compactly supported in [0, T ) × Rd,

∫
Rd u

2(0, x) dx ≤ 2‖∂tu‖H∗‖u‖H). Thus,
by (22) and (23), we obtain that v satisfies∫

Rd

(v(0, x) − u0(x))ϕ(0, x) dx = 0 ∀ϕ ∈ Φ,

and therefore the initial condition is satisfied in L2(Rd).
Step 2: uniqueness in Y . For the uniqueness, if v ∈ Y is a solution of (22) with u0 = 0, again
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by (23) we get

0 =
∫ T

0

∫
Rd

(
∂tv +

∑
i

∂i(b̃iv) −
1
2

∑
ij

∂i(aij∂jv) + λv
)
v dx dt

=
1
2

∫ T

0

∫
Rd

[ d
dt
v2 −

∑
i

b̃i∂i(v2) +
∑
ij

aij∂iv∂jv + 2λv2
]
dx

≥ 1
2

∫
Rd

v2(T, x) dx+
(
λ− 1

2
‖(

∑
i

∂ib̃i)−‖∞
) ∫ T

0

∫
Rd

v2 dx dt

≥
(
λ− 1

2
‖(

∑
i

∂ib̃i)−‖∞
) ∫ T

0

∫
Rd

v2 dx dt.

Since λ > 1
2‖(

∑
i ∂ib̃i)

−‖∞, we get v = 0.

Remark 4.7. We observe that the above proof still works for the PDE{
∂tu+

∑
i ∂i(biu) −

1
2

∑
ij ∂ij(aiju) = U in [0, T ] × Rd,

u(0) = u0,

with U ∈ H∗ = L2([0, T ],H−1(Rd)). Indeed, it suffices to define L as

L(ϕ) := 〈U,ϕ〉H∗,H +
∫

Rd

u0(x)ϕ(x) dx,

and all the rest of the proof works without any changes.

Thanks to this remark, we can now prove uniqueness in the larger space L2([0, T ] × Rd)
under the assumption ∂taij ∈ L∞([0, T ] × Rd) for i, j = 1, . . . , d,.
Step 3: uniqueness in L2. If u ∈ L2([0, T ] × Rd) is a (distributional) solution of (19), then

∂tu− 1
2

∑
ij

∂i(aij∂ju) = −
∑
i

∂i(b̃iu) ∈ L2([0, T ],H−1(Rd)).

By Remark 4.7, there exists ũ ∈ Y solution of the above equation, with the same initial condition.
Let us define w := u− ũ ∈ L2([0, T ] × Rd). Then w is a distributional solution of{

∂tw −A(∂x)w := ∂tw − 1
2

∑
ij ∂i(aij∂jw) = 0 in [0, T ] × Rd,

w(0) = 0.

In order to conclude the proof, it suffices to prove that w = 0.
Step 3.1: regularization. Let us consider the PDE

wε − εA(∂x)wε = w in [0, T ] × Rd (24)
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(this is an elliptic problem degenerate in the time variable). Applying Theorem 4.6, with H =
Φ := L2([0, T ],H1(Rd)),

B(u, ϕ) :=
∫ T

0

∫
Rd

(
uϕ+

ε

2

∑
ij

aij∂ju∂iϕ
)
dx dt,

L(ϕ) :=
∫ T

0

∫
Rd

wϕdx dt,

we find a unique solution wε of (24) in L2([0, T ],H1(Rd)), that is wε = (I − εA(∂x))−1w, with
(I − εA(∂x)) : L2([0, T ],H1(Rd)) → L2([0, T ],H−1(Rd)) isomorphism. Now we want to find
the equation solved by wε. We observe that, since (I − εA(∂x))−1 commutes with A(∂x) and
∂tw = A(∂x)w, the parabolic equation solved by wε formally looks

∂twε −A(∂x)wε = [∂t, (I − εA(∂x))−1]w.

Formally computing the commutator between ∂t and (I − εA(∂x))−1, one obtains

∂twε −A(∂x)wε = ε(I − εA(∂x))−1
∑
ij

∂j(∂taij∂iwε) (25)

in the distributional sense (see (27) below). Let us assume for a moment that (25) has been
rigorously justified, and let us see how we can conclude.
Step 3.2: Gronwall argument. By (25) it follows that ∂twε ∈ L2([0, T ],H−1(Rd)). Thus,
recalling that wε ∈ L2([0, T ],H1(Rd)), we can multiply (25) by wε and integrate on Rd, obtaining

1
2
d

dt

∫
Rd

|wε|2 dx+ α

∫
Rd

|∇xwε|2 dx ≤ −ε
∫

Rd

∑
ij

(∂taij)∂iwε∂j
(
(I − εA(∂x))−1wε

)
dx.

We observe that wε(t) → 0 in L2 as t ↘ 0. Indeed, since wε ∈ Y there is a well-defined notion
of trace at 0 in L2 (see (23)), and it is not difficult to see that this trace is 0 since w(0) = 0 in
the sense of distributions. Thus, integrating in time the above inequality, we get

‖wε(t)‖2
L2(Rd) + 2α‖∇xwε‖2

L2([0,T ]×Rd)

≤ 2Cε‖∇xwε‖L2([0,T ]×Rd)‖∇x

(
(I − εA(∂x))−1wε

)
‖L2([0,T ]×Rd) ∀t ∈ [0, T ]. (26)

Let us consider, for a general v ∈ L2, the function vε := (I − εA(∂x))−1v. Multiplying the
identity vε − εA(∂x)vε = v by vε and integrating on [0, T ] × Rd, we get

‖vε‖2
L2 + αε‖∇xvε‖2

L2 ≤ ‖vε‖L2‖v‖L2 ,

which implies ‖vε‖L2 ≤ ‖v‖L2 , and therefore αε‖∇xvε‖2
L2 ≤ ‖v‖2

L2 . Applying this last inequality
with v = wε, we obtain

‖∇x

(
(I − εA(∂x))−1wε

)
‖L2([0,T ]×Rd) ≤

1√
αε

‖wε‖L2([0,T ]×Rd).
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Substituting the above inequality in (26), we have

‖wε(t)‖2
L2(Rd) + 2α‖∇xwε‖2

L2([0,T ]×Rd) ≤ 2C
√
ε

α
‖∇xwε‖L2([0,T ]×Rd)‖wε‖L2([0,T ]×Rd)

≤ C

√
ε

α
‖∇xwε‖2

L2([0,T ]×Rd) + C

√
ε

α
‖wε‖2

L2([0,T ]×Rd),

which implies, for ε small enough (say ε ≤ 4 α
3

C2 ),

‖wε(t)‖2
L2(Rd) ≤ C

√
ε

α
‖wε‖2

L2([0,T ]×Rd) ∀t ∈ [0, T ].

By Gronwall inequality wε = 0, and thus by (24) w = 0.
Step 3.3: rigorous justification of (25). In order to conclude the proof of the theorem, we
only need to rigorously justify (25).
Let (anij)n∈N be a sequence of smooth functions bounded in L∞, such that 〈anξ, ξ〉 ≥ α

2 |ξ|
2,∑

j ∂ja
n
ij and ∂ta

n
ij are uniformly bounded, and anij → aij ,

∑
j ∂ja

n
ij →

∑
j ∂jaij , ∂ta

n
ij → ∂taij

a.e.
We now compute [∂t, (I − εAn(∂x))−1], where An(∂x) :=

∑
ij ∂i(a

n
ij∂j ·):

[∂t, (I − εAn(∂x))−1] = [∂t,
∑
k≥0

εkAn(∂x)k] =
∑
n≥0

εk[∂t, An(∂x)k]

= ε
∞∑
k=0

k−1∑
i=0

(
εAn(∂x)

)i[∂t, An(∂x)](εAn(∂x))k−i−1

= ε

∞∑
i=0

(
εAn(∂x)

)i[∂t, An(∂x)]∑
k>i

(
εAn(∂x)

)k−i−1

= ε(I − εAn(∂x))−1[∂t, An(∂x)](I − εAn(∂x))−1,

(27)

where at the second equality we used the algebraic identity [A,Bk] =
∑k−1

i=0 B
i[A,B]Bk−i−1.

Thus, for any ϕ,ψ ∈ C∞
c ([0, T ] × Rd), we have∫ T

0

∫
Rd

ψ∂t
(
(I − εAn(∂x))−1ϕ

)
dx dt =

∫ T

0

∫
Rd

ψ
[
(I − εAn(∂x))−1∂tϕ

]
dx dt

+ ε

∫ T

0

∫
Rd

ψ
[
(I − εAn(∂x))−1[∂t, An(∂x)](I − εAn(∂x))−1ϕ

]
dx dt. (28)

We now want to pass to the limit in the above identity as n → ∞. Since (I − εAn(∂x))−1 is
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selfadjoint in L2([0, T ] × Rd) and it commutes with An(∂x), we get∫ T

0

∫
Rd

ψ
[
(I − εAn(∂x))−1[∂t, An(∂x)](I − εAn(∂x))−1ϕ

]
dx dt

=
∫ T

0

∫
Rd

[
(I − εAn(∂x))−1ψ

] [
[∂t, An(∂x)](I − εAn(∂x))−1ϕ

]
dx dt

= −
∫ T

0

∫
Rd

[
∂t

(
(I − εAn(∂x))−1ψ

)] [
(I − εAn(∂x))−1An(∂x)ϕ

]
dx dt

−
∫ T

0

∫
Rd

[
(I − εAn(∂x))−1An(∂x)ψ

] [
∂t

(
(I − εAn(∂x)−1)ϕ

)]
dx dt.

By (27) we have

∂t
(
(I − εAn(∂x))−1ϕ

)
= (I − εAn(∂x))−1∂tϕ+ ε(I − εAn(∂x))−1[∂t, An(∂x)](I − εAn(∂x))−1ϕ,

and, observing that [∂t, An(∂x)] =
∑

ij ∂i(∂ta
n
ij∂j ·), we deduce that the right hand side is uni-

formly bounded in L2([0, T ], H1(Rd)). In the same way one obtains

∂t
(
(I − εAn(∂x))−1An(∂x)ϕ

)
= (I − εAn(∂x))−1∂t

(
An(∂x)ϕ

)
+ ε(I − εAn(∂x))−1[∂t, An(∂x)](I − εAn(∂x))−1An(∂x)ϕ

= (I − εAn(∂x))−1[∂t, An(∂x)]ϕ

+ (I − εAn(∂x))−1An(∂x)∂tϕ

+ ε(I − εAn(∂x))−1[∂t, An(∂x)](I − εAn(∂x))−1An(∂x)ϕ,

and, as above, the right hand side is uniformly bounded in L2([0, T ],H1(Rd)). Thus ∂t(I −
εAn(∂x))−1ϕ is uniformly bounded in L2([0, T ],H1(Rd)) ⊂ L2([0, T ] × Rd) (the same obviously
holds for ψ in place of ϕ), while (I−εAn(∂x))−1An(∂x)ϕ is uniformly bounded in H1([0, T ]×Rd)
(again the same fact holds for ψ in place of ϕ). Therefore, since H1

loc([0, T ]×Rd) ↪→ L2
loc([0, T ]×

Rd) compactly, all we have to check is that

∂t
(
(I − εAn(∂x))−1ϕ

)
→ ∂t

(
(I − εA(∂x))−1ϕ

)
and

(I − εAn(∂x))−1An(∂x)ϕ→ (I − εA(∂x))−1A(∂x)ϕ

in the sense of distribution (indeed, by what we have shown above, ∂t
(
(I − εAn(∂x))−1ϕ

)
will

converge weakly in L2 while (I−εAn(∂x))−1An(∂x)ϕ will converge strongly in L2
loc, and therefore

it is not difficult to see that the product converges to the product of the limits). We observe
that, since the solution of

ϕε − εA(∂x)ϕε = ϕ in [0, T ] × Rd (29)

belonging to L2([0, T ],H1(Rd)) is unique, and any limit point of (I − εAn(∂x))−1ϕ belongs to
L2([0, T ],H1(Rd)) and is a distributional solution of (29), one obtains that

(I − εAn(∂x))−1ϕ→ (I − εA(∂x))−1ϕ
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in the distributional sense, which implies the convergence of ∂t(I − εAn(∂x))−1ϕ to ∂t(I −
εA(∂x))−1ϕ. Regarding (I − εAn(∂x))−1An(∂x)ϕ, let us take χ ∈ C∞

c ([0, T ] × Rd). Then we
consider∫ T

0

∫
Rd

An(∂x)ϕ
[
(I − εAn(∂x))−1χ

]
dx dt = −

∫ T

0

∫
Rd

∑
ij

anij∂jϕ
(
∂i(I − εAn(∂x))−1χ

)
dx dt.

Recalling that (I − εAn(∂x))−1χ is uniformly bounded in L2([0, T ],H1(Rd)), we get that ∂j(I −
εAn(∂x))−1χ converges to ∂j(I − εA(∂x))−1χ weakly in L2([0, T ]×Rd) while anij → aij a.e., and
so the convergence of (I − εAn(∂x))−1An(∂x)ϕ to (I − εA(∂x))−1A(∂x)ϕ follows.
Thus we are able to pass to the limit in (28), and we get ∂t

(
(I−εA(∂x))−1ϕ

)
∈ L2([0, T ],H1(Rd))

and∫ T

0

∫
Rd

ψ∂t
(
(I − εA(∂x))−1ϕ

)
dx dt =

∫ T

0

∫
Rd

ψ
[
(I − εA(∂x))−1∂tϕ

]
dx dt

+ ε

∫ T

0

∫
Rd

ψ
[
(I − εA(∂x))−1[∂t, A(∂x)](I − εA(∂x))−1ϕ

]
dx dt.

Observing that (I − εA(∂x))−1 is selfadjoint in L2([0, T ] × Rd) (for instance, this can be easily
proved by approximation), we have that the second integral in the right hand side can be written
as ∫ T

0

∫
Rd

ψ
[
(I − εA(∂x))−1[∂t, A(∂x)](I − εA(∂x))−1ϕ

]
dx dt

=
∫ T

0

∫
Rd

[
(I − εA(∂x))−1ψ

] [
[∂t, A(∂x)]

(
(I − εA(∂x))−1ϕ

)]
dx dt.

Using now that [∂t, A(∂x)] =
∑

ij ∂i(∂taij∂j ·) in the sense of distributions, it can be easily proved
by approximation that the right hand side above coincides with

−
∫ T

0

∫
Rd

∑
ij

(∂taij)∂i
(
(I − εA(∂x))−1ψ

)
∂j

(
(I − εA(∂x))−1ϕ

)
dx dt.

Therefore we finally obtain∫ T

0

∫
Rd

ψ∂t
(
(I − εA(∂x))−1ϕ

)
dx dt =

∫ T

0

∫
Rd

ψ
[
(I − εA(∂x))−1∂tϕ

]
dx dt

− ε

∫ T

0

∫
Rd

∑
ij

(∂taij)∂i
(
(I − εA(∂x))−1ψ

)
∂j

(
(I − εA(∂x))−1ϕ

)
dx dt. (30)

By what we have proved above, it follows that

∂t
(
(I − εA(∂x))−1ϕ

)
∈ L2([0, T ],H1(Rd)),

A(∂x)
(
(I − εA(∂x))−1ϕ

)
= (I − εA(∂x))−1A(∂x)ϕ ∈ L2([0, T ],H1(Rd)).

(31)
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This implies that (30) holds also for ψ ∈ L2([0, T ] × Rd), and that (I − εA(∂x))−1ϕ is an
admissible test function in the equation ∂tw −A(∂x)w = 0. By these two facts we obtain

0 =
∫ T

0

∫
Rd

w
[
(∂t +A(∂x))(I − εA(∂x))−1ϕ

]
dx dt

=
∫ T

0

∫
Rd

w
[
(I − εA(∂x))−1(∂t +A(∂x))ϕ

]
dx dt

− ε

∫ T

0

∫
Rd

∑
ij

(∂taij)∂i
(
(I − εA(∂x))−1w

)
∂j

(
(I − εA(∂x))−1ϕ

)
dx dt

=
∫ T

0

∫
Rd

wε [(∂t +A(∂x))ϕ] dx dt− ε

∫ T

0

∫
Rd

∑
ij

(∂taij)∂iwε∂j
(
(I − εA(∂x))−1ϕ

)
dx dt,

which exactly means that

∂twε −A(∂x)wε = ε(I − εA(∂x))−1
∑
ij

∂j(∂taij∂iwε)

in the distributional sense.

Proof of Proposition 4.4. (a) Arguing as in the the first part of the proof of Theorem 4.3, with
the same notation we have

0 =
∫ T

0

∫
Rd

(
∂tv +

∑
i

∂i(b̃iv) −
1
2

∑
ij

∂i(aij∂jv) + λv
)
v− dx dt

=
1
2

∫ T

0

∫
Rd

[
− d

dt
(v−)2 −

∑
i

b̃i∂i
(
(v−)2

)
−

∑
ij

aij∂iv
−∂jv

− − 2λ(v−)2
]
dx

≤ −1
2

∫
Rd

(v−)2(T, x) dx−
(
λ− 1

2
‖(

∑
i

∂ib̃i)−‖∞
) ∫ T

0

∫
Rd

(v−)2 dx dt

≤ −
(
λ− 1

2
‖(

∑
i

∂ib̃i)−‖∞
) ∫ T

0

∫
Rd

(v−)2 dx dt,

and then v− = 0.
(b) It suffices to observe that the above argument works for every v ∈ Y such that v(0) ≥ 0 and

∂tv +
∑
i

∂i(b̃iv) −
1
2

∑
ij

∂i(aij∂jv) ≥ 0.

Applying this remark to the function v := ‖u0‖L∞(Rd) − ue−λt with λ > ‖(
∑

i ∂ib̃i)
−‖∞, and

then letting λ→ ‖(
∑

i ∂ib̃i)
−‖∞, the thesis follows.

(c) The argument we use here is reminiscent of the one that we will use in the next paragraph
for renormalized solutions. Indeed, in order to prove the thesis, we will implicitly prove that,
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if u ∈ L2([0, T ],H1(Rd)) is a solution of (20), it is also a renormalized solution (see Definition
4.9).
Let us define

βε(s) :=
(√

s2 + ε2 − ε
)
∈ C2(R).

Notice that βε is convex and

βε(s) → |s| as ε→ 0, βε(s) − sβ′ε(s) ∈ [−ε, 0].

Moreover, since β′ε, β
′′
ε ∈W 1,∞(R), it is easily seen that

u ∈ L2([0, T ],H1(Rd)) ⇒ βε(u), β′ε(u) ∈ L2([0, T ],H1(Rd)).

Fix now a non-negative cut-off function ϕ ∈ C∞
c (Rd) with supp(ϕ) ⊂ B2(0), and ϕ = 1 in B1(0),

and consider the functions ϕR(x) := ϕ( xR) for R ≥ 1.
Thus, since β′′ε ≥ 0 and aij is positive definite, recalling that b̃i = bi − 1

2

∑
j ∂jaij , for any

t ∈ [0, T ] we have

0 =
∫ t

0

∫
Rd

(
∂tu+

∑
i

∂i(b̃iu) −
1
2

∑
ij

∂i(aij∂ju)
)
β′ε(u)ϕR dx ds

=
1
2

∫ t

0

∫
Rd

(
d

dt
(ϕRβε(u)) − 2

∑
i

b̃i∂i(uβ′ε(u)ϕR) + 2
∑
i

b̃i∂i(βε(u))ϕR

+
∑
ij

aij∂iu∂juβ
′′
ε (u)ϕR +

∑
ij

aij∂i(βε(u))∂jϕR

)
dx ds

≥ 1
2

∫
Rd

ϕRβε(u(t)) dx− 1
2

∫
Rd

ϕRβε(u(0)) dx

−
∫ t

0

∫
Rd

∑
i

b̃i

(
∂i

(
(uβ′ε(u) − βε(u))ϕR

)
+ βε(u)∂iϕR

)
dx ds

− 1
2

∫ t

0

∫
Rd

∑
ij

(
(∂jaij)∂iϕR + aij∂ijϕR

)
βε(u) dx ds

≥ 1
2

∫
Rd

ϕRβε(u(t)) dx− 1
2

∫
Rd

ϕRβε(u(0)) dx−
∫ t

0

∫
Rd

(
∑
i

∂ib̃i)−(uβ′ε(u) − βε(u))ϕR dx ds

−
∫ t

0

∫
Rd

(∑
i

bi∂iϕR +
1
2

∑
ij

aij∂ijϕR

)
βε(u) dx ds.

Observing that |βε(u)| ≤ |u|, and using Hölder inequality and the inequalities

1
R
χ{R≤|x|≤2R} ≤

3
1 + |x|

χ{|x|≥R},
1
R2

χ{R≤|x|≤2R} ≤
5

1 + |x|2
χ{|x|≥R}, (32)

29



we get∫
Rd

ϕRβε(u(t)) dx ≤
∫

Rd

ϕRβε(u(0)) dx+ 2ε
∫ t

0

∫
|x|≤2R

(
∑
i

∂ib̃i)− dx ds

+ ‖ϕ‖C2

(
6
∥∥∥ b

1 + |x|

∥∥∥
L2([0,T ]×{|x|≥R})

+ 5
∥∥∥ a

1 + |x|2
∥∥∥
L2([0,T ]×{|x|≥R})

)
‖u‖L2([0,t]×Rd).

Letting first ε→ 0 and then R→ ∞, we obtain

‖u(t)‖L1(Rd) ≤ ‖u(0)‖L1(Rd) ∀t ∈ [0, T ].

4.3 Existence and uniqueness in the degenerate parabolic case

We now want to drop the uniform ellipticity assumption on a. In this case, to prove existence
and uniqueness in L+, we will need to assume a independent of the space variables.
• Uniqueness in L
The uniqueness result is a consequence of the following comparison principle in L (recall that
the comparison principle in said to hold if the inequality between two solutions at time 0 is
preserved at later times).

Theorem 4.8 (Comparison principle in L ). Let us assume that a : [0, T ] → S+(Rd) and
b : [0, T ] × Rd → Rd are such that:

(i) b ∈ L1([0, T ], BVloc(Rd,Rd)),
∑

i ∂ibi ∈ L1
loc([0, T ] × Rd);

(ii) a ∈ L∞([0, T ],S+(Rd)).

Then (19) satisfies the comparison principle in L1(Rd)∩L∞(Rd). In particular solutions of the
PDE in L , if they exist, are unique.

Since we do not assume any ellipticity of the PDE, in order to prove the above result we use
the technique of renormalized solutions, which was first introduced in the study of the Boltzmann
equation by DiPerna and P.-L.Lions [8, 9], and then applied in the context of transport equations
by many authors (see for example [10, 5, 6, 7, 1]).

Definition 4.9. Let a : [0, T ] × Rd → S+(Rd), b : [0, T ] × Rd → Rd be such that:

(i) b,
∑

i ∂ibi ∈ L1
loc([0, T ] × Rd);

(ii) a,
∑

j ∂jaij ,
∑

ij ∂ijaij ∈ L1
loc([0, T ] × Rd).

Let u ∈ L∞
loc([0, T ] × Rd) and assume that

c := ∂tu+
∑
i

bi∂iu− 1
2

∑
ij

aij∂iju ∈ L1
loc([0, T ] × Rd). (33)
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We say that u is a renormalized solution of (33) if, for any convex function β : R → R of class
C2, we have

∂tβ(u) +
∑
i

bi∂iβ(u) − 1
2

∑
ij

aij∂ijβ(u) ≤ cβ′(u).

Equivalently the definition could be given in a partially conservative form:

∂tβ(u) +
∑
i

∂i(biβ(u)) − 1
2

∑
ij

aij∂ijβ(u) ≤ cβ′(u) + (
∑
i

∂ibi)β(u).

Recalling that a is non-negative definite and β is convex, it is simple to check that, if
everything is smooth so that one can apply the standard chain rule, every solution of (33) is a
renormalized solution. Indeed, in that case, one gets

∂tβ(u) +
∑
i

bi∂iβ(u) − 1
2

∑
ij

aij∂ijβ(u) = cβ′(u) − 1
2
β′′(u)

∑
ij

aij∂iu∂ju ≤ cβ′(u).

In our case, a solution of the Fokker-Planck equation is renormalized if

∂tβ(u) +
∑
i

(bi −
∑
j

∂jaij)∂iβ(u) − 1
2

∑
ij

aij∂ijβ(u) ≤ (
1
2

∑
ij

∂ijaij −
∑
i

∂ibi)uβ′(u),

or equivalently, writing everything in the partially conservative form,

∂tβ(u) +
∑
i

∂i((bi −
∑
j

∂jaij)β(u)) − 1
2

∑
ij

aij∂ijβ(u)

≤ (
1
2

∑
ij

∂ijaij −
∑
i

∂ibi)uβ′(u) +
∑
i

∂i(bi −
∑
j

∂jaij)β(u)

= (
∑
i

∂ibi −
1
2

∑
ij

∂ijaij)(β(u) − uβ′(u)) − 1
2
(
∑
ij

∂ijaij)β(u).

Now, since∑
ij

aij∂ijβ(u) =
∑
ij

∂j(aij∂iβ(u)) −
∑
ij

∂jaij∂iβ(u)

=
∑
ij

∂ij(aijβ(u)) − 2
∑
ij

∂i((∂jaij)β(u)) + (
∑
ij

∂ijaij)β(u),

the above expression can be simplified, and we obtain that a solution of the Fokker-Planck
equation is renormalized if and only if

∂tβ(u) +
∑
i

∂i(biβ(u)) − 1
2

∑
ij

∂ij(aijβ(u)) ≤ (
∑
i

∂ibi −
1
2

∑
ij

∂ijaij)(β(u) − uβ′(u)). (34)

It is not difficult to prove the following:
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Lemma 4.10. Assume that there exist p, q ∈ [1,∞] such that

a

1 + |x|2
∈ L1([0, T ], Lp(Rd)),

b

1 + |x|
∈ L1([0, T ], Lq(Rd)),

and that
(
∑
i

∂ibi −
1
2

∑
ij

∂ijaij)− ∈ L1
loc([0, T ] × Rd).

Setting a, b = 0 for t < 0, assume moreover that any solution u ∈ L of the Fokker-Planck
equation in (−∞, T ) × Rd is renormalized. Then the comparison principle holds in L .

Proof. By the linearity of the equation, it suffices to prove that

u0 ≤ 0 ⇒ u(t) ≤ 0 ∀t ∈ [0, T ].

Fix a non-negative cut-off function ϕ ∈ C∞
c (Rd) with supp(ϕ) ⊂ B2(0), and ϕ = 1 in B1(0),

and take as renormalization function

βε(s) :=
1
2

(√
s2 + ε2 + s− ε

)
∈ C2(R).

Notice that βε is convex and

βε(s) → s+ as ε→ 0, βε(s) − sβ′ε(s) ∈ [−ε, 0].

By (34), we know that

∂tβε(u) +
∑
i

∂i(biβε(u)) −
1
2

∑
ij

∂ij(aijβε(u)) ≤ (
∑
i

∂ibi −
1
2

∑
ij

∂ijaij)(βε(u) − uβ′ε(u))

in the sense of distributions in (−∞, T ) × Rd. Using as test function ϕR(x) := ϕ( xR) for R ≥ 1,
we get

d

dt

∫
Rd

ϕRβε(u) dx ≤
∫

Rd

(∑
i

bi(t)∂iϕR +
1
2

∑
ij

aij(t)∂ijϕR
)
βε(u) dx

+
∫

Rd

ϕR

(∑
i

∂ibi(t) −
1
2

∑
ij

∂ijaij(t)
)
(βε(u) − uβ′ε(u)) dx

Observing that |βε(u)| ≤ |u|, by Hölder inequality and the inequalities (32) we can bound
the first integral in the right hand side, uniformly with respect to ε, with

‖ϕ‖C2

∫
{|x|≥R}

(
3
|b(t, x)|
1 + |x|

+
5
2

|a(t, x)|
(1 + |x|2)

)
|u(t, x)| dx

≤ ‖ϕ‖C2

(
3
∥∥∥ b(t)
1 + |x|

∥∥∥
Lp({|x|≥R})

‖u(t)‖Lp′ (Rd)

+
5
2

∥∥∥ a(t)
1 + |x|2

∥∥∥
Lq({|x|≥R})

‖u(t)‖Lq′ (Rd)

)
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(recall that u ∈ L , and thus u ∈ L∞([0, T ], Lr(Rd)) for any r ∈ [1,∞]), while the second integral
is bounded by

ε

∫
{|x|≤2R}

(
∑
i

∂ibi −
1
2

∑
ij

∂ijaij)− dx.

Letting first ε→ 0 and then R→ ∞, we get

d

dt

∫
Rd

u+ dx ≤ 0

in the sense of distribution in (−∞, T ). Since the function vanishes for negative times, we
conclude u+ = 0. �

Now Theorem 4.8 is a direct consequence of the following:

Proposition 4.11. Let us assume that a : [0, T ] → S+(Rd) and b : [0, T ] × Rd → Rd are such
that:

(i) b ∈ L1([0, T ], BVloc(Rd,Rd)),
∑

i ∂ibi ∈ L1
loc([0, T ] × Rd);

(ii) a ∈ L∞([0, T ],S+(Rd))

Then any distributional solution u ∈ L∞
loc([0, T ] × Rd) of (33) is renormalized.

Proof. We take η, a smooth convolution kernel in Rd, and we mollify the equation with respect
to the spatial variable obtaining

∂tu
ε +

∑
i

bi∂iu
ε − 1

2

∑
ij

aij∂iju
ε = c ∗ ηε − rε, (35)

where
rε :=

∑
i

(bi∂iu) ∗ ηε −
∑
i

bi∂i(u ∗ ηε), uε := u ∗ ηε.

By the smoothness of uε with respect to x, by (35) we have that ∂tuε ∈ L1
loc. Thus by the

standard chain rule in Sobolev spaces we get that uε is a renormalized solution, that is

∂tβ(uε) +
∑
i

bi∂iβ(uε) − 1
2

∑
ij

aij∂ijβ(uε) ≤ (c ∗ ηε − rε)β′(uε)

for any β ∈ C2(R) convex. Passing to the limit in the distributional sense as ε→ 0 in the above
identity, the convergence of all the terms is trivial except for rεβ′(uε).
Let ση be any weak limit point of rεβ′(uε) in the sense of measures (such a cluster point exists
since rεβ′(uε) is bounded in L1

loc). Thus we get

∂tβ(u) +
∑
i

bi∂iβ(u) − 1
2

∑
ij

aij∂ijβ(u) − cβ′(u) ≤ −ση ≤ |ση|.

Since the left hand side is independent of η, in order to conclude the proof it suffices to prove
that

∧
η |ση| = 0, where η varies in a dense countable set of convolution kernels. This fact is

implicitly proved in [2, Theorem 34], see in particular Step 3 therein. �
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• Existence in L+

We can now prove an existence and uniqueness result in the class L+.

Theorem 4.12. Let us assume that a : [0, T ] × Rd → S(Rd) and b : [0, T ] × Rd → Rd are
bounded functions such that

(
∑
i

∂ibi −
1
2

∑
ij

∂ijaij)− ∈ L1([0, T ], L∞(Rd)).

Then, for any µ0 = ρ0Ld ∈ M+(Rd), with ρ0 ∈ L1(Rd) ∩ L∞(Rd), there exists a solution of (2)
in L+. If moreover b ∈ L1([0, T ], BVloc(Rd)),

∑
i ∂ibi ∈ L1

loc([0, T ] × Rd), and a is independent
of x, then this solution turns out to be unique.

Proof. Existence: it suffices to approximate the coefficients a and b locally uniformly with
smooth uniformly bounded coefficients an and bn such that (

∑
i ∂ib

n
i − 1

2

∑
ij ∂ija

n
ij)

− is uniformly
bounded in L1([0, T ], L∞(Rd)). Indeed, if we now consider the approximate solutions µnt =
ρnt Ld ∈ M+(Rd), we know that

∂tρ
n
t +

∑
i

∂i(bni ρ
n
t ) −

1
2

∑
ij

∂ij(anijρ
n
t ) = 0,

that is

∂tρ
n
t −

1
2
anij∂ijρ

n
t +

∑
i

(bni −
∑
j

∂ja
n
ij)∂iρ

n
t + (

∑
i

∂ib
n
i −

1
2

∑
ij

∂ija
n
ij)ρ

n
t = 0.

Using the Feynman-Kac formula, we obtain the bound

‖ρnt ‖L∞(Rd) ≤ ‖ρ0‖L∞(Rd)e
R t
0 ‖(

P

i ∂ib
n
i (s)− 1

2

P

ij ∂ija
n
ij(s))

−‖
L∞(Rd)

dt
.

So we see that the approximate solutions are non-negative and uniformly bounded in L1 ∩ L∞

(the bound in L1 follows by the constancy of the map t 7→ ‖ρnt ‖L1 (observe that ρnt ≥ 0 and
recall Remark 2.7)). Therefore, any weak limit is a solution of the PDE in L+.
Uniqueness: it follows by Theorem 4.8. �

5 Conclusions

Let us now combine the results proved in Sections 2 and 4 in order to get existence and uniqueness
of SLF. The first theorem follows directly by Corollary 3.6 and Theorem 1.3, while the second
is a consequence of Corollary 3.6 and Theorem 1.4.

Theorem 5.1. Let us assume that a : [0, T ] × Rd → S+(Rd) and b : [0, T ] × Rd → Rd are
bounded functions such that:

(i)
∑

j ∂jaij ∈ L∞([0, T ] × Rd) for i = 1, . . . , d,
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(ii) ∂taij ∈ L∞([0, T ] × Rd) for i, j = 1, . . . , d;

(iii) (
∑

i ∂ibi −
1
2

∑
ij ∂ijaij)

− ∈ L∞([0, T ] × Rd);

(iv) 〈ξ, a(t, x)ξ〉 ≥ α|ξ|2 ∀(t, x) ∈ [0, T ] × Rd, for a certain α > 0;

(v) a
1+|x|2 ∈ L2([0, T ] × Rd), b

1+|x| ∈ L2([0, T ] × Rd).

Then there exists a unique SLF (in the sense of Corollary 3.6).
If moreover (bn, an) → (b, a) in L1

loc([0, T ]×Rd) and (
∑

i ∂ib
n
i − 1

2

∑
ij ∂ija

n
ij)

− are uniformly
bounded in L1([0, T ], L∞(Rd)), then the Feynman-Kac formula implies (ii) of Theorem 3.7 (see
the proof of Theorem 4.12). Thus we have stability of SLF.

Theorem 5.2. Let us assume that a : [0, T ] → S(Rd) and b : [0, T ] × Rd → Rd are bounded
functions such that:

(i) b ∈ L1([0, T ], BVloc(Rd)),
∑

i ∂ibi ∈ L1
loc([0, T ] × Rd);

(ii) (
∑

i ∂ibi)
− ∈ L1([0, T ], L∞(Rd)).

Then there exists a unique SLF (in the sense of Corollary 3.6).
If moreover (bn, an) → (b, a) in L1

loc([0, T ]×Rd) and (
∑

i ∂ib
n
i − 1

2

∑
ij ∂ija

n
ij)

− are uniformly
bounded in L1([0, T ], L∞(Rd)), then the Feynman-Kac formula implies (ii) of Theorem 3.7 (see
the proof of Theorem 4.12). Thus we have stability of SLF.

In particular, by Corollary 3.9 and the Feynman-Kac formula (see the proof of Theorem
4.12), the following vanishing viscosity result for RLF holds:

Theorem 5.3. Let us assume that b : [0, T ] × Rd → Rd is bounded and:

(i) b ∈ L1([0, T ], BVloc(Rd)),
∑

i ∂ibi ∈ L1
loc([0, T ] × Rd);

(ii) (
∑

i ∂ibi)
− ∈ L1([0, T ], L∞(Rd)).

Let {νεx}x∈Rd be the unique SLF relative to (b, εI), with ε > 0, and {νx}x∈Rd be the RLF relative
to (b, 0) (which is uniquely determined Ld-a.e. by the results in [1]). Then, as ε→ 0,∫

Rd

νεxf(x) dx ⇀∗
∫

Rd

νxf(x) dx in M(ΓT ) for any f ∈ Cc(Rd).

We finally combine an important uniqueness result of Stroock and Varadhan (see Theorem
2.2) with the well-posedness results on Fokker-Planck of the previous section. By Theorem 2.2,
Lemma 2.3 applied with A = Rd and Corollary 4.5, we have:

Theorem 5.4. Let us assume that a : [0, T ] × Rd → S+(Rd) and b : [0, T ] × Rd → Rd are
bounded functions such that:

(i) 〈ξ, a(t, x)ξ〉 ≥ α|ξ|2 ∀(t, x) ∈ [0, T ] × Rd, for a certain α > 0;
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(ii) |b(t, x) − b(s, y)| + ‖a(t, x) − a(s, y)‖ ≤ C (|x− y|γ + |t− s|γ) ∀(t, x), (s, y) ∈ [0, T ] × Rd,
for some γ ∈ (0, 1], C ≥ 0;

(iii)
∑

j ∂jaij ∈ L∞([0, T ] × Rd) for i = 1, . . . , d, (
∑

i ∂ibi −
1
2

∑
ij ∂ijaij)

− ∈ L∞([0, T ] × Rd);

(iv) a
1+|x|2 ∈ L2([0, T ] × Rd), b

1+|x| ∈ L2([0, T ] × Rd).

Then, there exists a unique martingale solution starting from x (at time 0) for any x ∈ Rd.

We remark that this result is not interesting by itself, since it can be proved that the mar-
tingale problem starting from any x ∈ Rd at any initial time s ∈ [0, T ] is well-posed also under
weaker regularity assumptions (see [18, Chapters 6 and 7]). We stated it just because we believe
that it is an interesting example of how existence and uniqueness at the PDE level can be com-
bined with a refined analysis at the level of the uniqueness of martingale solutions. It is indeed
in this spirit that we generalize Theorem 2.2 in the Appendix, hoping that it could be useful for
further analogous applications.

Appendix

A generalized uniqueness result for martingale solutions

Here we generalize Theorem 2.2, using the notation introduced in Paragraph 3.1.

Proposition 5.5. For any (s, x) ∈ [0, T ] × Rd, let Cx,s be a subset of martingale solutions of
the SDE starting from x at time s, and let us make the following assumptions: there exists a
measure µ0 ∈ M+(Rd) such that:

(i) ∀s ∈ [0, T ], Cx,s is convex for µ0-a.e. x;

(ii) ∀s ∈ [0, T ], ∀t ∈ [s, T ],

for µ0-a.e. x, (et)#ν1
x,s = (et)#ν2

x,s ∀ν1
x,s, ν

2
x,s ∈ Cx,s;

(iii) for µ0-a.e. x, for any νx ∈ Cx := Cx,0, for νx-a.e. γ,

∀t ∈ [0, T ], νi,γx,Ft
:= (νix)

γ
Ft

∈ Cγ(t),t,

where, with the above notation, we mean that the restriction of νi,γx,Ft
to ΓtT := C([t, T ],Rd)

is a martingale solution starting from γ(t) at time t;

(iv) the solution of (2) starting from µ0 given by µt := (et)#
∫

Rd ν
1
x dµ0(x) for a measurable

selections {νx}x∈Rd with νx ∈ Cx (observe that µt does not depends on the choice of
νx ∈ Cx by (ii)), satisfies µt � µ0 for any t ∈ [0, T ].

Then, given two measurable families of probability measures {ν1
x}x∈Rd and {ν2

x}x∈Rd with ν1
x, ν

2
x ∈

Cx, ν1
x = ν2

x for µ0-a.e. x. In particular, by standard measurable selection theorems (see for
instance [18, Chapter 12]), Cx is a singleton for µ0-a.e. x.
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Proof. Let {ν1
x}x∈Rd and {ν2

x}x∈Rd be two measurable families of probability measures with
ν1
x, ν

2
x ∈ Cx, and fix 0 < t1 < . . . < tn ≤ T.

Claim: for µ0-a.e. x, for νix-a.e. γ (i = 1, 2),

νi,γ̃x,Ftn
∈ Cγ̃(tn),tn for νi,γ

x,Mt1,...,tn -a.e. γ̃

where νi,γ
x,Mt1,...,tn := (νix)

γ
Mt1,...,tn .

This claim follows observing that, by assumption (iii), for µ0-a.e. x there exists a subset Γx ⊂ ΓT
such that νix(Γx) = 1 and νi,γx,Ftn

∈ Cγ(tn),tn for any γ ∈ Γx. Thus, by (11) applied with ν := νix,
A := ΓT , B := Γx, and with M t1,...,tn in place of Ftn , one obtains

0 = νix(Γ
c
x) =

∫
ΓT

νi,γ
x,Mt1,...,tn (Γcx) dν

i
x(γ),

that is,
for νix-a.e. γ, νi,γ

x,Mt1,...,tn (Γx) = 1.

This, together with assumption (iii), implies the claim.
By (13), νi,γ

x,Mt1,...,tn is concentrated on the set {γ̃ | γ̃(tn) = γ(tn)}, and so, by the claim
above, we get

νi,γ̃x,Ftn
∈ Cγ(tn),tn for νi,γ

x,M t1,...,tn -a.e. γ̃.

Let A ⊂ Rd be such that µ0(Ac) = 0 and assumption (i) is true for any x ∈ A. By assumption
(iv), we have µtn(Ac) = 0 =

∫
Rd×ΓT

1Ac(γ(tn)) dνix(γ) dµ0(x), that is

for µ0-a.e. x, γ(tn) ∈ A for νix-a.e γ. (36)

Thus, for µ0-a.e. x, Cγ(tn),tn is convex for νix-a.e γ, and so, by (14) applied with νix, we obtain
that

for µ0-a.e. x, νi,γ
x,Mt1,...,tn ∈ Cγ(tn),tn for νix-a.e. γ (37)

(where, with the above notation, we again mean that the restriction of νi,γ
x,Mt1,...,tn to ΓtnT is a

martingale solution starting from γ(tn) at time tn). We now want to prove that, for all n ≥ 1,
0 < t1 < . . . < tn ≤ T , we have that, for µ0-a.e. x,∫

ΓT

f1(et1(γ)) . . . fn(etn(γ)) dν1
x(γ) =

∫
ΓT

f1(et1(γ)) . . . fn(etn(γ)) dν2
x(γ) (38)

for any fi ∈ Cc(Rd). We observe that (38) is true for n = 1 by assumption (ii). We want to
prove it for any n by induction. Let us assume (38) true for n− 1, and let us prove it for n.
We want to show that∫

ΓT

f1(et1(γ)) . . . fn(etn(γ)) dν1
x(γ) =

∫
ΓT

f1(et1(γ)) . . . fn(etn(γ)) dν2
x(γ),

which can be written also as

Eν
1
x [f1(et1) . . . fn(etn)] = Eν

2
x [f1(et1) . . . fn(etn)] ,
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where Eν :=
∫
ΓT

dν. Now we observe that, for i = 1, 2,

Eν
i
x [f1(et1) . . . fn(etn)] = Eν

i
x

[
Eν

i
x [f1(et1) . . . fn(etn) |M t1,...,tn−1 ]

]
= Eν

i
x

[
f1(et1) . . . fn−1(etn−1)Eν

i
x [fn(etn) |M t1,...,tn−1 ]

]
= Eν

i
x
[
f1(et1) . . . fn−1(etn−1)ψ

i
x(et1 , . . . , etn−1)

]
,

where ψix(et1 , . . . , etn−1) := Eνi
x [fn(etn) |M t1,...,tn−1 ]. Let φ ∈ Cc(Rd), and let us prove that∫

Rd

Eν
1
x
[
f1(et1) . . . fn−1(etn−1)ψ

1
x(et1 , . . . , etn−1)

]
φ(x) dµ0(x)

=
∫

Rd

Eν
2
x
[
f1(et1) . . . fn−1(etn−1)ψ

2
x(et1 , . . . , etn−1)

]
φ(x) dµ0(x). (39)

Let B ⊂ Rd be such that µ0(Bc) = 0 and assumption (ii’) is true for any x ∈ B. By assumption
(iv), we also have µtn−1(B

c) = 0 =
∫

Rd×ΓT
1Bc(etn−1(γ)) dν

i
x(γ) dµ0(x), that is

for µ0-a.e. x, γ(tn−1) ∈ B for νix-a.e. γ. (40)

Let us consider νi,γ
x,Mt1,...,tn−1

. By (37),

for µ0-a.e. x, νi,γ
x,Mt1,...,tn−1

∈ Cγ(tn−1),tn−1
for νix-a.e. γ,

and, combining this with (40), we obtain

for µ0-a.e. x, νi,γ
x,Mt1,...,tn−1

∈ Cγ(tn−1),tn−1
and γ(tn−1) ∈ B for νix-a.e. γ.

By assumption (ii) applied with t = tn, this implies that

for µ0-a.e. x, (etn)#ν
1,γ

x,Mt1,...,tn−1
= (etn)#ν

2,γ

x,Mt1,...,tn−1
for νix-a.e. γ,

which give us that

for µ0-a.e. x, ψ1
x(et1 , . . . , etn−1) = ψ2

x(et1 , . . . , etn−1) for νix-a.e. γ. (41)

Thus we get∫
Rd

Eν
1
x
[
f1(et1) . . . fn−1(etn−1)ψ

1
x(et1 , . . . , etn−1)

]
φ(x) dµ0(x)

=
∫

Rd

Eν
2
x
[
f1(et1) . . . fn−1(etn−1)ψ

1
x(et1 , . . . , etn−1)

]
φ(x) dµ0(x)

(41)
=

∫
Rd

Eν
2
x
[
f1(et1) . . . fn−1(etn−1)ψ

2
x(et1 , . . . , etn−1)

]
φ(x) dµ0(x),
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where the first equality in the above equation follows by the inductive hypothesis. Now, by
(39) and the arbitrariness of φ and of fj , with j = 1, . . . , n, we obtain that, for all n ≥ 1,
0 < t1 < . . . < tn ≤ T , we have

for µ0-a.e. x, (et1 , . . . , etn)#νx = (et1 , . . . , etn)#ν̃x ∀t1, . . . , tn ∈ [0, T ].

Considering only rational times, we get that there exists a subset D ⊂ Rd, with µ0(Dc) = 0,
such that, for any x ∈ D,

(et1 , . . . , etn)#νx = (et1 , . . . , etn)#ν̃x for any t1, . . . , tn ∈ [0, T ] ∩ Q.

By continuity, this implies that, for any x ∈ D, νx = ν̃x, as wanted. �
The above result apply, for example, in the case when Cx,s denotes the set of all martingale

solutions starting from x. In particular, we remark that, by the above proof, one obtains the
well-known fact that, if νx is a martingale solution starting from x (at time 0), then, for any
0 ≤ t1 ≤ . . . ≤ tn ≤ T , νγ

x,Mt1,...,tn is a martingale solution starting from γ(tn) at time tn. More
generally, since martingale solutions are closed by convex combination, is µ is a probability
measure on Rd, the average

∫
Rd ν

γ
x,Mt1,...,tn dµ(x) is a martingale solution starting from γ(tn) at

time tn.
Observe that assumption (iv) in the above theorem was necessary only to deduce, from a µ0-a.e.
assumption, a µt-a.e. property. Thus, the above proof give us the following result:

Proposition 5.6. For any (s, x) ∈ [0, T ]×Rd, let Cx,s be a convex subset of martingale solutions
of the SDE starting from x at time s, and let us make the following assumption: there exists a
measure µ0 ∈ M+(Rd) such that:

(i) ∀t ∈ [0, T ], for µ0-a.e. x,

(et)#ν1
x = (et)#ν2

x ∀ν1
x, ν

2
x ∈ Cx := Cx,0.

If (i) holds, we can define µt := (et)#
∫

Rd νx dµ0(x) for a measurable selections {νx}x∈Rd with
νx ∈ Cx, and this definition does not depends on the choice of νx ∈ Cx. We now assume that:

(i’) ∀s ∈ [0, T ], ∀t ∈ [s, T ], for µs-a.e. x,

(et)#ν1
x,s = (et)#ν2

x,s ∀ν1
x,s, ν

2
x,s ∈ Cx,s;

(ii) ∀s ∈ [0, T ], Cx,s is convex for µs-a.e. x;

(iii) for µ0-a.e. x, for any νx ∈ Cx, for νx-a.e. γ,

∀t ∈ [0, T ], νi,γx,Ft
:= (νix)

γ
Ft

∈ Cγ(t),t,

where, with the above notation, we mean that the restriction of νi,γx,Ft
to ΓtT is a martingale

solution starting from γ(t) at time t.

Then, given two measurable families of probability measures {ν1
x}x∈Rd and {ν2

x}x∈Rd with ν1
x, ν

2
x ∈

Cx, ν1
x = ν2

x for µ0-a.e. x. In particular, by standard measurable selection theorems (see for
instance [18, Chapter 12]), Cx is a singleton for µ0-a.e. x.
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