GLOBAL STABLE SOLUTIONS TO THE FREE BOUNDARY ALLEN-CAHN AND
BERNOULLI PROBLEMS IN 3D ARE ONE-DIMENSIONAL
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ABSTRACT. A long-standing conjecture of De Giorgi asserts that every monotone solution of the Allen—Cahn equation
in R**! is one-dimensional if n < 7. A stronger version of the conjecture, also widely studied and often called “the
stable De Giorgi conjecture”, proposes that every stable solution in R™ must be one-dimensional for n < 7. To this
date, both conjectures remain open for 3 <n < 7.

An elegant variant of this problem, advocated by Caffarelli, Cérdoba, and Jerison since the 1990s, considers a
free boundary version of the Allen—Cahn equation. This variant features a step-like double-well potential, leading
to multiple free boundaries. Locally, near each free boundary, the solution satisfies the Bernoulli free boundary
problem. However, the interaction of the free boundaries causes the global behavior of the solution to resemble that
of the Allen—Cahn equation.

In this paper, we establish the validity of the stable De Giorgi conjecture in dimension 3 for the free boundary
Allen—Cahn equation and, as a corollary, we prove the corresponding De Giorgi conjecture for monotone solutions
in dimension 4. To obtain these results, a key aspect of our work is to address a classical open problem in free
boundary theory of independent interest: the classification of global stable solutions to the one-phase Bernoulli
problem in three dimensions. This result, which is the core of our paper, implies universal curvature estimates for
local stable solutions to Bernoulli, and serves as a foundation for adapting some classical ideas from minimal surface
theory—alfter significant refinements—to the free boundary Allen—Cahn equation.
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1. INTRODUCTION

The study of interfaces arising in nonlinear elliptic partial differential equations (PDEs) is a central theme in
mathematical analysis, with significant implications for geometric analysis, mathematical physics, and materials
science. Interfaces—often also referred to as free boundaries, minimal surfaces, etc.—appear in models of phase
transitions, fluid dynamics, and other phenomena where different states or phases coexist and interact.

A paradigmatic example of a PDE giving rise to interfaces is the classical Allen—Cahn equation. Originally
proposed to describe phase separation in metal alloys , this equation has achieved mathematical prominence
due to its profound connections with minimal surface theory (see, e.g., ) and its close relation to several
important phase field models—scalar, vectorial, or tensorial. Among the most closely related models are the
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Cahn—Hilliard equation, describing phase separation in binary fluids [21]; the Peierls—Nabarro equation, modeling
crystal dislocations |74}/76]; the Ginzburg—Landau theory, addressing superconductivity [46]; and the Ericksen—Leslie
model for liquid crystals [38}/62].

Interfaces also appear naturally in the study of free boundary problems such as the Bernoulli or one-phase
problem. First studied from a mathematical viewpoint by Alt and Caffarelli in 1981 [4], motivated by models in
flame propagation and jet flows [5H7L{12], it is related to shape optimization problems, capillary hypersurfaces, and
minimal surfaces (among others; see, e.g., [13,/24,59,/60,(83]). Also, it has been investigated as a one-phase problem,
a two-phase problem, and in vectorial form [29,37,/43].

During the past five decades, substantial progress has been made in understanding the structure of absolute
energy minimizers for the Allen—-Cahn equation, the Bernoulli problem, and related models. However, despite
significant efforts, the structure of stable solutions remains largely elusive, even in the physically relevant three-
dimensional space. Stable solutions are particularly important because they correspond to configurations observed
in nature, representing physically stable states. Understanding stable solutions is thus a fundamental challenging
open question in the field.

In this paper, we introduce new analytical tools for studying three-dimensional stable solutions, focusing on two
fundamental and deeply connected free boundary problems: the Allen—-Cahn equation with a “step potential” and
the Bernoulli problem.

1.1. The variational model of phase transitions. The theory of minimal surfaces and phase transitions leads
to considering energy functionals of the form

T (u: Q) :/Q{EVUQ—FiW(u)} d,

for u € HY(Q), where ¢ > 0 is a small parameter, @ C R" is a bounded open set, and W : R — R, is a given
(double well) potential. The function w is constrained (via the boundary datum) to satisfy —1 < u < 1, and the
potential is such that W(£1) =0 and W (¢) > 0 for t € (—1,1).

Prominent examples of such potentials W are given by the family of functions (Wa)o<a<2,

1 —u?)e for 0 <2
W (u) = 51 w) o hmass
(—1,1)(u) for a=0,

which give rise to the energy functionals
1
T (u; ) ::/ {5|Vu2 + €Wa(u)} dx, for a€]0,2]. (1.1)
Q

This family of functionals was investigated by Caffarelli and Cérdoba [17] in what is considered one of the founda-
tional papers in the Allen-Cahn literature. The case o = 2 corresponds to the classical Allen—-Cahn energy [3]—see,
e.g., [23] and references therein. The cases a € [0, 2) are considered, for example, in [17}/18,/35,/56}/6584}85/88] (and
also mentioned in [78-80]).

1.2. De Giorgi conjecture and its stable version. In 1978, De Giorgi stated the following celebrated conjecture
[47):

Every solution u: R"*1 — [~1,1] to the Allen—Cahn equation Au = u — u?
(equivalently, every critical point of the functional J¢ defined in (1.1)))

that satisfies Op11u > 0 must be one—dz’mensz’onaﬂ at least forn < 7.

This conjecture, often regarded as a PDE analogue of the classical Bernstein problem for minimal surfaces, has
inspired substantial research over the past decades and has been resolved in certain cases: for n = 1 by Ghoussoub
and Gui [45], and for n = 2 by Ambrosio and Cabré [§] (see also [2]). In higher dimensions, Savin 78] proved
the conjecture for n < 7 under the additional assumption that w is an energy minimizer. For n > 8, del Pino,
Kowalczyk, and Wei [33] constructed counterexamples showing that the conjecture fails in these dimensions.

It is well-known that solutions that are monotone in some direction are stable, namely, the second variation of
JZ is non-negative (see |2, Corollary 4.3]). Motivated by this fact, a stronger form of De Giorgi’s conjecture—often
called “the stable De Giorgi conjecture”—asserts the following:

Every stable solution u: R™ — [—=1,1] of the Allen—Cahn equation in R™ must be one-dimensional for n < 7.

IThat is, u(z) = ¢(e - z) for some ¢ : R — [—1,1] and e € S*—1.
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It is a known fact that the classical De Giorgi’s conjecture for monotone solutions in R"*! follows from its stable
version in R" [

The stable form of De Giorgi’s conjecture has been proven only in dimension n = 2 in [8,45]. For 3 <n < 7 it
remains an open problem, while for n > 8 counterexamples exist [64}/75]. Again, Savin established the result for
n < 7 under the additional assumption that u is an energy minimizer [78-80].

It is worth emphasizing that both the De Giorgi’s conjecture and its stable form, as well as the implication
between them, are expected to hold for general double-well potentials. In fact, the majority of positive or partial
results in the literature concerning either conjecture have been established directly in this more general setting.

Let us also mention that, in some applications (see, e.g., |28]), it suffices to classify stable solutions to Allen-Cahn
in R" satisfying the bounded energy growth condition

sup R* " J2(u, R) < +o0. (1.2)
R>0
However, even under this additional assumption—which guarantees, using [51}82], that blow-downs converge to
hyperplanes with integer multiplicity in the appropriate senseEFthe stable form of De Giorgi’s conjecture has only
been verified for n = 3 in [§].

1.3. The connection to minimal surfaces. Modica and Mortola 73] rigorously established in 1977 the profound
connection between phase transitions and minimal surfaces. They showed that, as € — 0, minimizers of the energy
J- converge (in Llloc, up to subsequences) to the characteristic functions of sets with minimal perimeter.

Motivated by this result, De Giorgi proposed his conjecture in 1978 [47] as an analog of the classical Bernstein
problem for area-minimizing graphs. Similarly, its stable version corresponds to the well-known problem of classi-
fying complete, embedded, two-sided, stable minimal hypersurfaces in R™ for n < 7, see |22}/25-27,|34}/44}70L/77].

The influence of minimal surface theory is evident in many foundational developments in the study of the
Allen—Cahn equation. Some examples are:

e The Caffarelli-Cérdoba density estimate for {7 }ne[0,2] [17] mirrors a similar property of minimal surfaces.

e The excess decay results of Savin [78] and Wang [89] for J2 draw inspiration from the cornerstone theorems
of De Giorgi and Allard in minimal surfaces.

e Modica’s monotonicity formula for the Allen-Cahn equation [71}72] is a clear analogue of Fleming’s mono-
tonicity formula for minimal surfaces.

e The half-space theorems for the Allen—Cahn equation [49] are inspired by classical results for minimal
surfaces.

It is worth emphasizing that these deep connections and analogies (of which the above points are just a few
examples) between minimal surface theory and the class of functionals J. are valid for a very general class of
double-well potentials W that includes the family {W}aejo,2)- This fact has been well known to experts for some
time (and has been confirmed in numerous works throughout the literature—see, e.g., [17}/18}35.|56|65} 7880} 34,
85,/88]). In particular, not only have techniques from minimal surface theory been adapted—often with significant
modifications—to the study of phase transitions, but there are also striking instances where methods based on
Allen—Cahn type equations have led to novel results in geometric analysis (see, for example, [28}69]).

1.4. Recent progress and challenges in stable phase transitions. In recent years, significant progress has
been made in the study of stable solutions to the Allen—Cahn equation: Wang and Wei [90,/91] and Chodosh
and Mantoulidis 28] have established key results on interface regularity and sheet separation estimates for stable
solutions.

Even more recently, substantial advances have been achieved in understanding stable minimal hypersurfaces.
The long-standing question of classifying complete minimal immersed hypersurfaces in R™ for n < 7—the analog of
the stable De Giorgi conjecture—has been resolved in dimensions n < 6; see [22,[25-271[70].

However, while the classification of complete stable minimal surfaces in R? has been established since the 1980s
[34,44/77], the stable version of De Giorgi’s conjecture in R?® remains unresolved. Put simply, despite significant

2Indeed, let u : R**1 — R be a solution of the Allen-Cahn equation satisfying d,,+1u > 0. First, since u is stable (being monotone),
one easily deduces that also the two functions ui (y) = limz,, ; —+oco u(y, Tn+1) are stable. Hence, if the conjecture for stable solutions
is true in R™, then the two limits u+ must be one-dimensional. One then checks that the one-dimensional solution is unique and
increasing, so the functions u4+ are one-dimensional and increasing. This allows one to apply [54, Theorem 1.3] and deduce that u is a
minimizer, thus [78| applies and one concludes that also u is one-dimensional.

3More precisely, Hutchinson and Tonegawa [51] showed that diffuse varifolds, constructed from the energy density and gradient
direction of solutions to the Allen—Cahn equation, converge as € — 0 to stationary integral varifolds, which generalize minimal surfaces
and allow for singularities.
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progress and the development of sophisticated tools to study stable minimal surfaces and phase transitions, some
deeper yet more rudimentary obstacles have prevented a proof of the conjecture in its stable form for decades.

Even after Savin’s breakthrough regularity results in 2009 [78], which fully settled the case of minimizers of J
for all a € [0,2], the stable counterpart has remained elusive over the entire range of « (including the endpoint
a = 2). As we shall discuss now, addressing these challenges requires the creation of new techniques.

A first deep heuristic obstacle is that while the large-scale behavior for absolute minimizers of scale-dependent
energies (which tend to the perimeter at large scales) mimics that of minimal surfaces, this correspondence does
not need to hold for stable critical points. As a concrete example, consider the functional

P.AE) = /BE(1+52|113E|2)dH2, ECR?, (1.3)

where Ilgg denotes the second fundamental form of the boundary of E. One can observe that P. behaves similarly
to the perimeter on large scales (or, equivalently, as ¢ — 0) and, in fact, it admits a Modica—Mortola-type I'-
convergence result. However, one can check that a catenoid of neck size r > 0 is a stable critical point for this
functional if and only if » < ce (where ¢ is a universal constant). Hence, although the minimizers of P. do enjoy
an e-independent regularity theory (much like Savin’s theory for J), stable critical points for P, do not possess
such uniform regularity; see [86] for further discussion.

On a more technical level, whenever one attempts to adapt classification proofs from minimal surfaces to the
Allen—Cahn setting, the following recurring difficulty arises: The elegant formulas and identities (e.g. Simons’
identity, Gauss—Bonnet, etc.) that are fundamental in minimal surface theory:

- either do not admit “perturbative” analogs for Allen—Cahn;
- or, even in situations where they do, the usefulness of the “generalized identities” is far from clear.

These obstructions underscore why the classification of stable phase transitions remains both challenging and
intriguing.

1.5. The Allen—Cahn model with a step potential. Motivated by the challenges described above, the primary
objective of this work is to overcome, for the first time, the aforementioned barriers and introduce new methods and
tools to prove a classification result for stable solutions of a free boundary version of Allen—Cahn. Specifically, we
consider stable critical points u: R® — [—1,1] of J? (i.e., with the step potential Wy). This corresponds to looking
at solutions of the free boundary problem

Au =0 in {Jul < 1}
(1.4)
[Vu| = 1 on Hf|ul < 1}
corresponding to the first variation of the functional J°) that satisfy the stability inequality
1
/ (\D2u|2 - |V|Vu||2) dr < / |Vul? |VE2dr for all € € C°(R?) (1.5)
{lul<1} {lul<1}

(see Definition and Lemma [10.2)). For simplicity, to give a proper meaning to the equations above, we will
assume that the free boundaries 9{|u| < 1} are smooth surfaces and that u is a classical solution of the PDE (namely,
u € C?({|lu] < 1})NC*({|u| <1})). However, these are mere qualitative assumptions (see also Remark (iii)
below).

On a technical level, the case & = 0 (and, more generally, when 0 < o < 2) has a substantial difference compared
to the classical Allen-Cahn case a@ = 2. Specifically, when a < 2, the solutions satisfy a free boundary problem
rather than a global semilinear PDE. A practical consequence of this distinction is that in a bounded region  C R?
where the free boundaries are nearly flat, two neighboring “layers” or “sheets” (i.e., distinct connected components
of {Ju| < 1} N Q) do not interact via the PDE and therefore remain entirely independent. In this respect, the
situation is more analogous to minimal surfaces, where different sheets do not influence one another. In contrast,
for @ = 2 (the classical Allen-Cahn equation), even nearly flat layers interact through the underlying semilinear
PDE. Analyzing these interactions requires sophisticated analytical tools, such as the Toda system, as developed
in the works of Wang-Wei [89,/90] and Chodosh-Mantoulidis [23].

That said, the primary difficulties in establishing the stable De Giorgi conjecture in R* do not arise (at least not
exclusively) from layer interactions, which are now relatively well understood [23/89,/90]. Indeed, in this context, the
P. example in is particularly revealing: despite the absence of interactions between distinct sheets, stability
remains compatible with the presence of small necks in solutions. This demonstrates that the main obstructions lie
elsewhere.



One of the main purposes of this paper is to shed light on obstructions beyond sheet interactions and develop
new techniques to tackle them. In this paper, we will focus on the case a = 0, but we believe that combining the
ideas developed here with the techniques from [23,/89,/90] will ultimately pave the way to addressing the case o = 2.

1.6. Microscopic necks: a new “enemy.” Even if the free boundary formulation avoids certain layer-interaction
issues, it gives rise to another profound difficulty: In principle, two nearly flat free boundaries corresponding to
u=+1 (or u = —1) could be joined by a microscopic neck of size r < 1. Such a tiny neck contributes only a small
amount (proportional to r) to the left-hand side of the stability inequality ; hence, having (possibly many)
such microscopic necks might still be compatible with stability.

Concretely, suppose that inside By C R3 we have {u = 1} N B; = &. Then the function 1+ u is a stable solution
of the one-phase Bernoulli problem in B; (see below). Yet it is known—see |66]—that certain global Bernoulli
solutions (when rescaled) produce free boundaries with necks of arbitrarily small radius r < 1. Existing examples
of this type tend to be unstable (albeit with finite Morse index, hence “not too unstable”), but the question remains
whether such “microscopic-neck” configurations could ever be stable.

A significant portion (circa 80%) of this paper is devoted to investigating these microscopic-neck configurations
for the Bernoulli problem and proving that they must be necessarily unstable. This is a delicate problem requiring
refined PDE estimates and geometric arguments, which we will describe more thoroughly later. In essence, the chal-
lenge is to show that any purportedly stable configuration with infinitely many small necks leads to contradictions
with certain integral inequalities or regularity properties.

1.7. The one-phase Bernoulli problem. The one-phase Bernoulli free boundary problem arises from the study
of the Alt—Caffarelli energy functional, namely,

E(u;Q):/ (VU + 1pusoy ) de,
Q

where Q C R" is a bounded open domain, and u € H*($). Here, the function u is constrained to satisfy u > 0.

First studied in 1981 by Alt and Caffarelli [4], the problem has received a lot of attention to date (see the
monographs [20}87] for a nice introduction). Serving also as a model for semilinear PDEs, the study of the
Bernoulli problem has gathered many tools and ideas from the theory of minimal surfaces, to the point where
there is a formally established connection between the Bernoulli problem in dimension 2 and minimal surfaces in
dimension 3 [83]. This interplay highlights a geometric variational structure in the problem, bridging techniques
from elliptic PDEs and geometric analysis.

In this direction, the regularity theory for free boundaries in minimizers mirrors that for minimal surfaces (with
a shift in one dimension): a monotonicity formula, paired with a blow-up argument and an improvement of flatness,
reduces the study of regular free boundaries to the classification of 1-homogeneous global solutions. The currently
known results assert that minimizers have smooth free boundaries up to dimension 4 [19}/55], while there are singular
solutions in dimension 7 [31]. In dimensions 5 and 6 it remains as a challenging open problem.

Most of the theory for the one-phase problem has been developed for minimizers, such as the study of graphical
solutions [31136], the uniqueness of blow-ups at isolated singular points [37], generic regularity [42], vectorial prob-
lems [43], etc. In recent years there has been a shift in trying to understand other solutions that do not necessarily
arise as absolute minimizers: the rectifiability of free boundaries for stationary solutions [61], the nondegeneracy
of stable solutions [57], the study of solutions in the plane [50,/52|83] and higher dimensions [66], solutions with
infinite topology [10,/53], etc. Even so, some fundamental questions remain open, with one of the most important
being:

Do global classical stable solutions of the Bernoulli problem in R™ have flat free boundaries, if n < 6%

It is well known that such a global rigidity result is equivalent to a local regularity property on curvature estimates
for the free boundary of stable solutions (see, e.g., [57] or the proof of Corollarybelow). For n = 2, the answer to
the previous question is affirmative thanks to a log cut-off argument that works for any semilinear PDE [39/|40L[57].
For n > 7, the answer is negative by the recent construction in [32]. One of the main results of the present paper
is to positively answer the previous question for n = 3. The other dimensions remain a major open problem.

1.8. Contributions of the paper. Our first main result establishes the validity of the stable De Giorgi conjecture
for the functional (]10 when n = 3:

Theorem 1.1. Let u : R® — [—1,1] be a classical stable critical point of JP (i.e., a global classical stable solution

of (1.4), see Definition . Then D?>u =0 in {|Ju|] < 1} and u is one-dimensional.

As a first corollary, we obtain the corresponding result for monotone solutions in dimension 4:
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Corollary 1.2. Let u : R* — [~1,1] be a classical solution of (1.4) (see Definition satisfying Ogu > 0 in
{lu| < 1}. Then D?>u=0 in {|u| < 1} and u is one-dimensional.

Combining Theorem with the e-robust Cll-to-C?® estimates for the level sets of solutions to (1.4)—see
[9]—we can also show the following:

Corollary 1.3. Let By C R3 and let u. : By — [—1,1] be a classical stable critical poinﬁ of J2 in By, fore >0
universally small. Assume that O{|uc| < 1} N By 9 # &. Then, the principal curvatures of the level sets of u. inside
By /2 are bounded by a universal constant.

Remark 1.4. Asin the Allen—-Cahn setting [28,/91], once uniform curvature estimates for the level sets of the solutions
ue are established, the main result in 9] implies that their mean curvature goes to zero at an algebraic rate in e.
This reflects the natural expectation that the level sets approximate minimal surfaces in the limit as ¢ — 0.

As mentioned above, one of the most delicate estimates is to show that, thanks to stability, the free boundaries
satisfy universal curvature bounds. This can be phrased as a regularity result for the Bernoulli problem, which is
of independent interest:

Theorem 1.5. Let u : R® — [0,00) be a classical stable solution to the one-phase Bernoulli problem (see Defini-
tion . Then D?u =0 in {u > 0}. In particular, the free boundary consists of either one or two hyperplanes.

As a consequence, we obtain two corollaries. The first one is a classification of monotone solutions in R*:

Corollary 1.6. Let u: R* — [0,00) be a classical solution to the one-phase Bernoulli problem (see Deﬁmtion
satisfying O4u > 0 in {u > 0}. Then D*u =0 in {u > 0} and u is one-dimensional.

The second are curvature estimates for local stable solutions to the Bernoulli problem:

Corollary 1.7. Let B; C R? and let u : By — [0,00) be a classical stable solution to the one-phase Bernoulli
problem (see Definition ﬂ) Then |D?u| < C in BijoN{u> 0}, with C universal. In particular, the principal
curvatures of the free boundary are universally bounded.

Some comments are in order:

Remark 1.8. (i) Sharpness of the result: For every n > 2, there exist classical solutions to the one-phase Bernoulli
problem with catenoid-like free boundaries that have finite Morse index. In particular, these solutions are stable
outside a compact set; see [66,[83]. Moreover, for n = 2, the Morse index has been shown to be exactly 1 [11]. In
view of these examples, the stability assumption in Theorem [I.5] is necessary.

(ii) The role of n = 3: Concerning Theorem the assumption n = 3 is used to exploit a test function introduced
by Jerison and Savin in [55] to classify minimizing homogeneous solutions in R*. In view of this connection, it
seems likely to us that if one could prove that minimizing homogeneous solutions in R**! are flat (which can be
true only for k£ < 5), then our result could be extended to R¥. Less crucially, the fact that n = 3 is also used in the
classification of blow-downs in Proposition .1}

Regarding Theorem the dimensional assumption is used both to apply Corollary and to exploit an argument
from [77] based on Gauss—Bonnet. Still, if one could extend Theorem (and thus Corollary to higher
dimensions, in view of the recent breakthroughs in the classification of stable minimal surfaces [22}[25127,70], it
seems plausible to us that one could attack Theorem in higher dimensions as well.

(iii) About the “classical solution” assumption: Since in R® local minimizers (i.e., solutions that minimize the
energy with respect to sufficiently small perturbationsED are classical stable solution, Corollaries and apply
to them. More generally, the curvature estimates from Corollaries [1.3| and as well as the classification results
from Theorems and apply to all weak solutions that arise as local limits of classical stable solutions. This
constitutes the largest class for which such results can be expected to holdﬂ

1.9. Structure of the paper. The paper is organized as follows. To better guide the reader through the main
arguments and techniques employed in the paper, in the next section we present a detailed overview of the key
ideas and structure of the proofs of our main results. Then, Sections are dedicated to proving Theorem and
Corollaries [I.6] and which form the backbone of our analysis. Building on these results, Section [10] addresses
the proofs of Theorem and Corollaries and which crucially depend on Corollary

4Notice that u. is a classical stable critical point of J2 in By if and only if u-(e-) is a classical stable critical point of J? in By e

5That is, a function u that minimizes the energy among all functions v € u + H}(B1) with |lv — ull g1 g,y < 6 for some § > 0.

SFor instance, in the Bernoulli problem, the function R? 3 (z1,z2) — |z1x2] is a stationary critical point that is stable under domain
variations. However, this is a spurious example. In particular, because of our results, it cannot be locally approximated by classical
solutions, nor can it arise as a limit of solutions to a regularized problem —Au + ¢F’(u/e) = 0, where F' is a mollified version of the
indicator function of (0, 4+00).
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2. OVERVIEW OF THE PROOFS

We now give a detailed overview of the structure of the proofs and the main ideas involved. The paper is
structured following the logical dependencies of the results, and as such, the first part (Sections [3HI)) is devoted to
showing Theorem [I.5] and Corollaries [I.6] and [I.7}

2.1. The Bernoulli problem: Sections The main goal of these sections is to prove Theorem [I.5] The key
steps and main components of the proofs, along with their corresponding locations in the paper, are outlined below.

2.1.1. The objects and their properties. In Sections we introduce the basic objects of interest and definitions,
and all the necessary properties that will be used in a contradiction argument.

1. A useful reduction. In Lemmas[3.2]and [5.1] we show that if there exists a classical stable solution @ to the Bernoulli
free boundary problem in R® with D?u # 0, then there must exist a classical stable solution u : R3 — [0, 00)
satisfying the bounds

|[Vu| <1  in R?, |D?u| <1 in {u>0}, 0€FB(u), |D?u(0)| = 1,
where FB(u) = 0{u > 0} denotes the free boundary of u (cf. [57]). Throughout the paper, we will assume that
u is as above and our goal will be to reach a contradiction.

2. Preliminary results. In Section [3| we start with some preliminary results on classical solutions to the Bernoulli

problem: e.g., some variants of e-regularity (Lemmas and [3.11]) and a density estimate (Lemma [3.F)).
Then, in Section {4] we recall and establish some facts about classical stable solutions. For example, it is

well-known that the stability inequality (see (A.1))-(A.2)) can be written in a Sternberg—Zumbrun form (as in
[81]; cf. Lemma {.3[ below). An immediate consequence is that, for all y € R® and R > 0, we have

sz |D?u|? dx < C,
Br(y)n{u>0}

3. Blow-down to vee. A first consequence of stability is that the blow-down of a non-trivial global solution must
be a vee (Proposition . More precisely, we show that there exists a universal modulus of continuity w for
which the following holds: If y € FB(u) is such that [D?u(y)| > 1/0 > 0 (¢ > 1 can be thought of as a radius of
curvature), then for all R > 1 there exists e = e(y, R) € S? such that

le =Voell oo () < @@/ RIR,
where V. is a vee, namely, a solution of the form
Vye(z) :=le-(z—y)|

4. Threshold radius, neck centers, neck radii, and ball tree. Given y € FB(u) we will define its associated threshold
radius 4 (y) as follows:

where C' > 0 is a universal constant.

T+ (y) 1= sup {r >0 : / |D?u)? do < 773’},
B, (z)N{u>0}

where 79 > 0 will be a (fixed) small universal constant.
In Subsection we establish the existence of a discrete set Z C R? (countable and locally finite), which we
refer to as neck centers, satisfying the following:

< C C
— dist (z, 2) 7+(2)
see Lemma [5.6] and Corollary The threshold radius at a neck center is called the neck radius.
The term “neck” is motivated by the following properties:
e Away from necks, the free boundary consists of two (regular, nearly flat) disconnected sheets, and the
positivity set {u > 0} consists of two disjoint connected components. (See Lemma for a precise
statement.)

| D?u(x) Ve {u> 0}, and |D?u| < in B,,(,)(z) VzeZ,
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e Within a ball centered at a neck center with a radius comparable to the neck radius, the positivity set
becomes connected through a neck-like region. (See Lemma for a precise statement.)
In addition, in Lemma we show that, when centering at any given neck center and observing at a scale much
larger than the neck radius, the solution v becomes arbitrarily close to a vee. These structural properties imply
that {u > 0} can be covered by a hierarchy of balls organized into a rooted tree structure, which we call the ball
tree. This covering consists of three types of balls:
e Branching balls: regions where the free boundary is concentrated within a thin slit, requiring further
subdivision into smaller balls.
e Neck balls: regions where the two disconnected positivity components merge, and the free boundary has a
radius of curvature comparable to the ball radius.
e Regular balls: regions where the free boundary has two regular nearly flat components.
See Figure [T] and Proposition for further details.

5. Symmetric L? excess. For z € Z and R > 0, we introduce the dimensionless quantity

1
i _ 2
E,(u,R) := ZIGHSI% \/R2 ]iR(z) [u — Vy,e|? de. (2.1)

Small excess, small neck radii: The goal of Section@ (see Proposition is to show that neck radii are controlled
by E,. More precisely, we prove that for any v € (0, %)7 z € Z,and R > 0, we have

!
sup {T*l(;) r2ezZn BBR/Q(Z)} < CyEy(u,8R)™. (22)

Note that, by choosing v > %, implies that neck radii decay superlinearly with the symmetric excess—a
crucial insight that lays the groundwork for the rest of the proof.

The proof of builds on the Jerison—Savin test function in [55]: there exists a 1-homogeneous function F
of the Hessian such that ¢ = F(D?u)'/3 is a subsolution of the linearized equation. In particular,

J(u, Br(y)) : = / cAcdx +/ c(c, + He)dH? < %/ c? dr, (2.3)
Br(y)n{u>0} Br(y)nd{u>0} R? J By n(y)n{u>0}

where H is the mean curvature of the free boundary, and all the integrands are non-negative. This motivates
the definition of yet another dimensionless quantity:

0z(u, R) == %TJ(u,BR(z))?’. (2.4)

From here, to establish , we argue as follows:

(i) first, we bound the left-hand side of by 0z(u,2R);

(ii) then, we bound g, (u,2R) by the right-hand side in (2.2).
Step (i) is done in Proposition by estimating ﬁ(u, B, () (z)) from below in a neck ball (Lemma .
Step (ii) is done in Proposition where the stability inequality is combined with a new ingredient: a local
LY estimate, with 4/ € (0,1/2), for D?u in Byg(z) N {u > 0} in terms of the excess E,(u,4R) (see Lemma.
This new delicate estimate strongly relies on the ball tree structure described in point [4| above.

2.1.2. Sketch of the global contradiction argument. Very roughly, our strategy to prove Theorem [I.5] by contradiction
in Sections [[H3 can be summarized as follows:

(i) Assuming the neck set is non-empty, we pick a sequence of carefully chosen balls B, (z;) —with z; neck
centers and Ry — oo as k — oo— for which E,, (u,8Ry) =: ¢ | 0.

(ii) By exploiting some special properties of the balls Bg, (z1) we prove the existence of new centers z) € Bg, (z)
and scales R) < Ry, (as k — 00) such that

E, (u, Ry) < e (R} /Ry)%, for some x > 0. (2.5)

(iii) Then, by using a new Monneau—Weiss-like approximate monotonicity formula with logarithmic errors, we
show that the smallness of the excess in Bp; (z).) necessarily propagates to the larger ball, up to logarithmic
erTors:

e = E,, (u, Ry) < CEZ;c (u,4Ry) < Ciog(R}g/R;C)E'z;€ (u, R;C) < ;ﬁ/Rk)X iOg(Rk/R;ﬁ) Ek- (2.6)

For k sufficiently large this provides a contradiction, since R} /Ry — 0 as k — oco.



One of the cornerstones of the strategy outlined above is establishing a geometric excess decay between Bp, (z1)
and Bp; (z},). This decay is typically obtained through a linearization procedure, akin to those developed by
De Giorgi or Allard for minimal surfaces. In this case, however—as explained further below—the situation is
considerably more intricate: for a potentially large subset of center-scale pairs, the linearization approach may not
be applicable.

Indeed, given a neck center z and a scale R > 0, suppose we aim to improve the excess from Br(z) to Br/4(z).
If the neck balls are very small (relative to R) and densely scattered throughout Br(z)—a scenario that is entirely
consistent with the estimate (2.2)—any attempt at linearization within this ball would be futile. A strategy
completely different from linearization is required at these scales: we must harness instead the density of neck balls
in a way that works to our advantage, enabling some form of improvement that can then be leveraged at smaller
scales.

To address this challenge, we develop a new dichotomy-type argument that improves the excess for fundamentally
different reasons at scales where linearization is possible and at scales where it is not. Interestingly, we are able to
establish such “dichotomic” excess decay only around certain carefully selected neck centers; however, this suffices
for our purposes.

We now describe in greater detail the main steps involved in the strategy described above.

6. Careful selection of optimal center and scale. Fix constants o € (%, 1) and v € (0, %) such that 3ay > 1. In
Subsection by suitably optimizing (with respect to z and R) the quantity

E,(u,8R)
0z (u, 2R)>’
we will show that there exist sequences Rp — oo and z; € Z such that
e = E,, (u,8R;) — 0 as k — oo (2.7)
and for which, in addition, the following crucial property holds:
E,(u,8R) < QEka:EZ:];)CO):l forallz € Z, R < Ry, (2.8)

see Lemma [7.1] It is worth emphasizing that the decay via dichotomy from the next steps crucially relies on the
property (2.8), which holds only because of the careful selection of centers z; and scales Ry.

7. Excess improvement when linearization is not possible. For ¢ € (0, i) and a given ball Br(z) C R3, we define

the following quantity:
, where A{R = {z/ € Br(z)NZ:1.(2') < CR} (2.9)

z

N (¢, Br(z)) = ((R)‘?" U Ber(@)

<
zZ’€EA; i

Essentially, N (¢, B R(z)) is the number of balls of radius ( R needed to cover all neck centers with associated neck
radius smaller than (R. In some sense, the map ¢ — N((, Bg (z)) quantifies the effective Minkowski dimension
of the neck centers inside Br(z). This is essential because—as explained above—if neck centers are too densely
scattered, any linearization attempt would be futile, and we need a different argument at that scale.

Here a key idea is that—thanks to the careful selection of B, (z)—whenever N (¢, Bg, (zx)) is “too large”
for some resolution parameter ¢ € (0, 1), which would obstruct linearization, one can always find a smaller ball
of radius (Ry, contained within Bp, (z)) that still satisfies the key property , possibly in an even stronger
form.

This observation allows us to show (see Lemma the existence of a new ball By (zx) C Bg,(zx), and
gk < €k, such that, for some S, > 0 small:

1480

N(¢, By, () < CC %
E,(u,8R) < 2(%)6%,6 forall z € Z with Bg(z) C B (z) and R >&/"Ry.

for all ¢ € (0,3), (2.10)

Thanks to (2.10), we can show that linearization can be performed within B 7, (Z1) (see point 8 below), therefore
obtaining a geometric decay of the excess.

It is interesting to emphasize that this procedure to pass from Bg, (z;) to B A (zk) involves a change in the
center. This is non-standard in excess decay schemes, but it is necessary and effective for our purposes.

8. Linearization regime: splitting of {u > 0} and decay of an asymmetric excess. As already mentioned, thanks to

(2.10), we can perform a linearization argument inside B (zx) to improve the excess, and this can be iterated
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for a number of scales comparable to |logéy|. However, for this linearization step, the symmetric excess is not
the appropriate quantity to consider, and we will need to define an asymmetric L' excess as follows.

First, exploiting the tree structure described in point [] above, in Subsection we construct two disjoint
open subsets Ux such that

U.CU:={u>0}nBg (@), =<{+ -}

The sets Uy and U_ are essentially the two components (roughly half-spaces) in which the positivity set is split
when removing all the necks (see Lemma .

Then, in Section |8 we define the asymmetric excess A, (u, R) for balls Br(z) C By (zx) as

k
1
A,(u,R) := max u(x) —a-x —b|dx. 2.11
B = s B BB S | (211)

Notice that, since we first minimize in a and b, and only later compute the maximum in *, the ‘optimal’
approximating planes that achieve the value of the asymmetric excess will have independent coefficients ‘on each
side’.

Now, for fixed x € {4, —}, it is natural to define

u(T) — ay - ¢ — by -
vie(z) = (z) — , z € U.N By, (2k).
ex Ry,

In Section [8| we prove that, thanks to (2.10)), the function v, is “approximately” a bounded weak solution of
Aw=0 in Bﬁkm(ﬁzvk) N{a. -x+b, >0} with 09, w=0 on Bﬁk/Q(Ek) N{a. -z +b, =0}
(see the proof of Proposition . For this, the main challenge will be to prove estimates of the type

§£_3/ Vo Pdz <1 for some p > 1 and / [(va) |2 dH? < 1 (2.12)
U.NBg, (Zk)/2 8U.NBx (Zk)/2

(see Proposition and Lemma . Although, from a very “low-resolution” perspective, this approach may
appear similar to the classical linearization methods of Caffarelli and De Silva [16]30], the key distinction is
that, in our case, the difference in normal derivatives between solutions is small only in an LP sense, rather than
the usual L*° bound used in the viscosity approach. This LP control is crucial because, at necks, the normal
derivative is not small, leading to a large L> norm. However, since the necks are relatively sparse and very small
compared to the scale under consideration, the LP approach remains effective.

While the previous heuristic explanation justifies the use of LP topology, the actual proof of the linearization in
this setup is much more subtle and requires utilizing all the properties of the ball B . (zx) described above—see
Section I8 for more details.

. Conclusion. Thanks to the linearization step we establish ([2.5) (see Proposition and Lemma [9.2)), and then

we can conclude as in (2.6) using the Monneau—Weiss-type monotonicity formula with a logarithmic error from
Lemma

Once Theorem is established, Corollaries and follow (see Subsection [9.3).

2.2. The free boundary Allen—Cahn: Section Having now Corollary at our disposal, we can proceed
to describe the steps of the proof of Theorem [T.I] which is done in Section [I0] We argue by contradiction and
assume that there exists a classical stable critical point of 7 in R?, denoted by u, that is not one-dimensional.

1.

We start by recalling the Sternberg—Zumbrun inequality for stable solutions (Lemma and Modica’s in-
equality (Lemma , both in the context of the free boundary Allen—Cahn. Thanks to Corollary we also
observe that we have quantitative regularity in the set {|u| < 1} (Lemma [10.5). In particular, there are no
‘microscopic necks’ in the free boundary.

. We fix o > 0 small and define the set X'(d,) in ([10.4) as those points z € {|u| < 1} for which the left-hand side

in the Sternberg—Zumbrun inequality is larger than d, in a ball Ba(z). We want to show that, even if d,
is chosen arbitrarily small, X'(d,) must be empty, which will directly yield our desired result.

To this aim, we define G(4,) as the complememﬂ of X(8,) in {|u| < 1}, see (10.5)). In particular, it corresponds
to points around which u has flat level sets (in an L? sense). As a consequence, in Lemmawe prove pointwise
curvature bounds of the solution u around points in G(d,).

7In fact, we need to further divide {|u| < 1} \ X (6o) into two sets, that we denote G(5,) and W(do), according to whether the points

are respectively close or far from the free boundary. Using stability (see Section [10.3)), an argument similar to the one described in point
3 here allows us to consider only the set G(Jo) of points not in X' (d,) that are close to the free boundary.
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3. The stability inequality in the form of Sternberg—Zumbrun also allows us to show that, for any given A > 0,
there exist zp € X (o) and Ry > 1 such that

X(éo)ﬁBRAJ'_A(ZA) C BRA(Z). (2.13)

That is, we can find arbitrarily thick annuli clean from X(d,) (even if their radius could be much larger than the
thickness). This is done in Lemma m

4. For A > 0 fixed, given z and R > 0 as in (2.13)), the curvature estimates in {|u| < 1} \ X(6,) ensure that
the level sets are smooth submanifolds in this region. This makes it conceivable to test stability using a test
function related to the intrinsic distance along the level sets {u = A} to X(d,) N Br(z)—an approach inspired
by Pogorelov’s argument |77] for stable minimal surfaces in R3.

However, before proceeding in this direction, it is necessary to enlarge the set X'(J,) by evolving it under the
vector flow generated by Vu. Such a redefinition is possible due to the validity of curvature estimates at points
on the boundary between X(d,) and G(d,). We denote the resulting enlarged set by B.

The intrinsic distance function along the level set {u = A} is then denoted by d (see (10.17)).

5. Using stability again, by means of a cut-off function with gradient supported on suitably chosen dyadic scales,
we show that for any A € (—1,1) there is some 7 € (A'/4, A/8) such that

< C  H({u=Mn{0<dy <r})

~ do|log Al r2

(see Lemmas [10.14] and [10.15)). Moreover, we also obtain in Lemma [10.15| a precise doubling property.

6. In Proposition we conclude the proof of Theorem as follows. First, we use an integrated version of
Gauss-Bonnet (see Lemma |10.16)) to obtain, roughly, that for any level set 3, = {u = u},

H>({u= A} N {0 < dy <2})

(2.14)

r s 2

HA(Z,N{1l < dfyy <7r}) <rHY (En{dy = 1})—//// Ky, dH? dr dt ds+Cr°H*(2,n{1 < db < 2}),
1J1J1 J{r<diy <t}

where Ky, is the Gauss curvature of ¥,. From here one finds that, for all » € (1,A/8),

1
HA(Z, n{0<dy <r}) < 1/ |As,
£\ X (80)

2(r—diy)t dH? + Cr*HA(S, N {0 < diy < 2}),

where [Ax, |2 is the sum of the squares of the principal curvatures.

Observe now that, due to the existence of a clean annulus (see (2.13)), (r — di)3 is an admissible test
function for the stability inequality, which can be restricted to X, (up to a small multiplicative error) in view
of the comparison across different level sets (see Lemma |10.12)). Hence, thanks to stability, the co-area formula,
and (2.14), we find the existence of a level set {u = v} and r € (A4, A/8) for which

HA(E, N{0<dg <r}) < 1+Cne HAE, N{0<dg <r}) C  H(Z,Nn{0<dy <r})

r2 -2 r2 o] log A r2 ’
where 7, = 05, (1). Choosing first 7, small and then A large, we deduce that H*(X, N {0 < d§ < r}) =0, from
which we easily get a contradiction.

Again, once Theorem is established, Corollaries and follow (see Subsection [10.7)).

(2.15)

2.3. Notation. Throughout the paper, C > 1 and ¢ € (0,1) denote generic constants chosen conveniently large
and small, respectively. Dependencies are denoted by subscripts or parentheses.

With B,.(y) we denote the ball of radius r > 0 centered at y. When y = 0, we also write B, in place of B,.(0).
By B,(A) we denote the r-fattening of a set A C R™, namely B,(A) := {z € R" : dist (x, A) < r}, which can also
be seen as the Minkowski sum B, + A.

Given three sets Aq, As, A3 C R™, we say

Ay C Ay in Az <d:ef> A1 NA3 C Ay N As.

We always assume that a modulus of continuity w satisfies
w : [0,400) — [0, +00) is increasing and concave, with w(t) > ¢ for all ¢ > 0. (2.16)
Given y € R™ and e € S"!, we denote by Vy,e a vee, namely, a function of the form
R"3 2 Vye(r) :=le- (xz—y)|
Given a ball B,.(y), a unit vector e € S?, and ¢ € (0,1), we define a slab as
Slab(B,(y),e,e) :={x € B.(y) : le- (z—y)| <er} =B (y) N{Vy,e <er} (2.17)
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Finally, #* denotes the k-dimensional Hausdorff measure.

3. THE BERNOULLI PROBLEM: PRELIMINARIES

3.1. The notions of solution. Given u : B — Ry := [0,00) (where Br C R™ denotes the ball of radius R > 0
centered at 0), we define the Alt—Caffarelli energy functional by:

E(u; Bg) :/ {|Vu|2 + Il{u>0}} dx.
Br

With this definition, critical points of £ solve the so-called one-phase Bernoulli problem.
In this paper we are interested in classical solutions of the Bernoulli problem: these are functions v : B — R4
such that

Au=0 in BN {u> 0},

3.1
[Vu|=1 on Bpno{u>0}. (3-1)

{u > 0} is locally a smooth domain in Bg and {

The set 9{u > 0} is called the free boundary and will also be denoted FB(u). In particular, a classical solution
satisfies that {u > 0} is locally the subgraph of a smooth function around each free boundary point (up to a

rotation).
Classical solutions u are stationary critical points of £, that is, they satisfy
d
T FluoWy; Bg) =0 for every Wy(z) := z + t&(x) with £ € C°(Bg;R"™). (3.2)

t=0
with F = £. Stationary critical points u are called stable if they have non-negative second (inner) variations, i.e.,
they satisfy

d2

p7Es F(uoWy; Br) >0, for every Uy(z) :=x + t&(x) with £ € C°(Bg;R"), (3.3)

t=0

for F=€.
In Sections a solution will always refer to the one-phase Bernoulli (or Alt—Caffarelli) problem. Moreover,
we will distinguish among the following notions:

Definition 3.1. Let n > 2 and Bg C R™ . In relation to the one-phase Bernoulli problem (i.e., taking F = £ in
(3-2)-(3.3), we say that u € H'(Bg) is:

e a stationary solution (or simply stationary) in Bg if if satisfies (3.2);
a classical solution or a classical critical point in Bp if it satisﬁ (in particular, it is stationary);
a stable solution in Bp if it is stationary and satisfies ;

a classical stable solution or classical stable critical point in Bpr if it satisfies and .

If a function satisfies one of the previous definitions for all R > 0, we call it global.

3.2. Basic geometric properties of the free boundary. We start by presenting some geometric properties of
the free boundary for classical solutions to the Bernoulli problem.
Before that, we recall the following well-known global boundedness of solutions (see, e.g., [57, Proposition A.5]):

Lemma 3.2. Let n > 2 and let u be a classical solution to the Bernoulli problem in R™. Then |[Vu| <1 in R™.

A first useful consequence of Lemma [3.2] above is the following dimensional estimate for the area of the free
boundary inside a ball:

Lemma 3.3. Let n > 2, and let u be a global classical solution to the Bernoulli problem in R™. Then, we have that
for any R >0 and y € {u=0} N Bg,

H" ™ (FB(u) N B,(y)) < Co" ! for all o€ (0,R/2),
for some C depending only on n.

Proof. Since Au = H”_l\FB(u), it suffices to consider a smooth non-negative cut-off function ¢, € C2°(Bs,) which
satisfies ¢, = 1 inside B, and |[Vy,| < Cp~! to obtain (recall Lemma

H™ ™ (FB(u) N B,(y)) < /cpp Au = —/Vgop Vudz < Cp || Vul| poe gy | Bap| < Cp" Y,
as desired. 0

More generally, we have:
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Lemma 3.4 (Area of level sets). Let n > 2, and let u : R™ — [0,00) be 1-Lipschitz, Au = 0 on {u > 0}, and
|[Vu| > ¢o in some Q C R™. Then, for any Br(z,) C R™ and t > 0,

coH" H (Br(zo) N{u=1t}NQ) < CR",
for some C' depending only on n.

Proof. Integrating Au by parts inside Br(xo) N {u > t} (notice that u is harmonic there), we have

o:/ Audx :/ L VudH ! —/ dpudH™ !,
Br(zo)N{u>t} OBR(zo)N{u>t} |z {u=t}NBr(zo)

where v is the normal unit vector to {u =t} towards {u >t} (so d,u = |Vul|). Therefore,

M (Baleo) N {u=t)n9) < [ oan = [
{u=t}NBr(z.) 9Br(zo)

as we wanted. O

L VudH T < C(n)R™ Y,
N{u>t} |z|

The following is a weak nondegeneracy property:

Lemma 3.5 (Clean ball property). Let n > 2. There exists e = €o(n) > 0 such that the following holds.
Let 0 > 0, y € R", and let u be a classical solution to the Bernoulli problem in Bg,(y) C R™. Suppose that there
is a connected component U of {u > 0} N Bay(y) such that

[U N Bao(y)] < €00
Then, UN B,(y) = 2.

Proof. Let a(z) = %(u]lU)(y + ox). Notice that @ is a classical solution to the Bernoulli problem in By with
FB(a)N By # & for £, small, with |Va| < C and C depending only on n (thanks to |20, Lemma 11.19]). Therefore,
for all r € (0,2), the divergence theorem applied to Va inside the domain B, N {@ > 0} gives
H 1 (9{a >0} N B,) < CH" '({a >0} NdB,). (3.4)

We can then use the argument in the classical proof of the density estimate for sets of minimal perimeter to conclude
that {@ > 0} N B; is empty, which is equivalent to U N B,(y) = 2.

More precisely, let V() = [{& > 0} N B,|. Then, by coarea, V(r) = [ H"~'({a > 0} N 9B,) ds. Combining the
isoperimetric inequality in R™ (we denote by ¢(n) the isoperimetric constant) with (3.4) this implies

c(n)V (r)m=D/" < Per({u > 0} N B,) < (C + 1)V'(r)

for all € (0,2). Moreover, by assumption, V(2) < &,. Then, a simple ODE analysis reveals that choosing &, small
enough forces V(1) = 0, that is, {u > 0} N B; = 2. O
Remark 3.6. The previous lemma is actually a nondegeneracy property of the positivity set for classical solutions.

Namely, if u is a classical solution to the Bernoulli problem and x, € {u > 0}, then by Lemma applied to the
connected component of {u > 0} containing x, we have that, for any r > 0,

H{u > 0} N B(zo)] > 27 "eor™.
3.3. Regularity estimates for classical solutions to the Bernoulli problem. In this section we present some
basic regularity results for classical solutions. Several of these results actually hold for viscosity solutions, but we

will not discuss this here.
The first result is a classical e-regularity estimate.

Lemma 3.7 (e-regularity). Let n > 2. There exists £o = €5(n) > 0 such that the following holds.
Let u be a classical solution to the Bernoulli problem in By C R™. If

Ju— In||Loo(Bm{u>0}) <€ < 6o, (3.5)
then, for any k € N, there exists C, j, > 0, depending only on n and k, such that
llu — I"||Ck(Bl/20{u>O}) < Cpie and FB(u) N Byp is a C* graph, with C*-norm bounded by C,, je.
Moreover, u is analytic in By, N {u > 0}.

Proof. The regularity of the free boundary as well as the nonlinear bounds (i.e. without the dependence on ¢) on
the C* norm of u— z,, follow from the classical improvement of flatness and higher order regularity for the Bernoulli
problem (see [30,[58]). The precise linear estimate (i.e., with the bound C, x¢) stated here follows, e.g., from the
recent results in [63] (see Proposition in Appendix . Alternatively, see [32, Proposition 5.1] combined with
Lemma [B11 O
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The next result states that a C? control follows from L'-flatness. The main part of its proof is presented in
Appendix

Lemma 3.8 (L' to C? estimate). Let n > 2. There erists ¢, = €o(n) > 0 such that the following holds.
Let u be a classical solution to the Bernoulli problem in By C R™, with

/ |lu—a-z—0bldr <e<e, for some a € S"!, beR.
Bin{u>0}

Then
[u—a-z—bllo2(s,,,n{us0}) < Cne,
for some C,, depending only on n.

Proof. Thanks to Proposition L'-flatness implies L>-flatness, so the result follows from Theorem and
Proposition [B.6} O

In the next result, we show that a bound on the Hessian implies higher regularity as well, with estimates that
are linear once the Hessian is bounded.

Lemma 3.9 (Higher regularity from the Hessian). Let n > 2, and let u be a classical solution to the Bernoulli
problem in By C R™ satisfying

2

|D uHLoo(Bm{u>o}) =< Co (36)

for some Cy > 0. Then, for any k > 2,

) <Chnk rnax{C’g_Q, 1} ||D2

HDk“HLm(Bl/zm{wo} u||L°°(Blﬁ{u>0}) )

for some Cy, ; depending only on n and k.

Proof. Let ¢ = max{Cy, 1} 'e,, where &, comes from Lemma and let z, € By N {u > 0}. We separate into
two cases:
o If dist (v,, FB(u)) < £/4, we let y, € B3y N FB(u) be the closest free boundary point to x,, and we choose
coordinates such that e, = Vu(y,). Then v, . = @ satisfies

2 _ 2
”uyo,e - xn||L°°(Blﬂ{uyo,E>O}) < ||D uyovEHL‘X’(Blﬁ{uyoya>0}) =€ HD uHLOO(BE(yO)ﬁ{u>O}) < o
Thus Lemma [3.7] applies and gives

< Cn,

2
l[tyo.e = $n||0k(31,2m{uyo,a>o}) we||D u||L°°(B1ﬂ{u>0}) :

In particular,

|Dku(xo)| < HDk ) < C’n7k{—:27k ||D2u|

1—k
u||L°°(Bs/2(yo)ﬂ{u>0}) <o g - x"||C’“(Bl/20{Uyo,s>0} |L°°(Blﬁ{u>0}) ’

o If dist (o, FB(u)) > £/4 or FB(u) = @, the harmonicity of D?u in B, s(z,) gives the result. O
As a consequence, we also obtain linear bounds with respect to the L' norm of the Hessian, once it is bounded:

Corollary 3.10 (V'VQ’1 controls WQ’OO). Let n > 2, and let u be a classical solution to the Bernoulli problem in
B; C R™ satisfying (3.6)). Then,
2 n 2

|D u||L°°(Bl/2ﬁ{u>0}) < Cnmax{Cy, 1} ||D uHLl(Bm{u>0})’

for some C,, depending only on n.
Proof. Combining the interpolation estimates from Lemma [A-2] with the regularity estimate in Lemma[3.9] we get

1Dl < C||D%ul|,

3 n
Le°(By/2n{u>0}) (B1/2n{u>0}) ||D u||L°°(Bl/2ﬂ{u>0})

<C ||D2u||L1 max {C{, 1} ||D2

n
(By /2N {u>0}) u||L°°(B1ﬂ{u>0}) :

Applying this estimate to the rescalings u, , = @ for B,.(z) C By, it follows that for any 6 € (0,1) there is
Cs > 0 such that

r HDQ”HLw(B,,,/Q(Z)n{wo}) < Cs max {Cy, 1} |‘D2uHL1(Blﬁ{u>0}) +or" |‘D2uHL°°(BT(z)ﬁ{u>O}) :

By a standard covering argument (e.g. [41, Lemma 2.27]), the result follows. O

The following lemma provides an e-regularity result for solutions that are small in W2,
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Lemma 3.11 (e-regularity for the Hessian). Let n > 2. There exists 1. = n.(n) > 0 such that, for all n < n,, the
following holds.
Let u be a classical solution to the Bernoulli problem in By C R™. Then

/Bm{u>0} Dl dz < o” = ||D2u||L°°(Bl/2ﬂ{U>0}) < G, (3.7)
for some C,, depending only on n. More generally, for r > 0 and k > 2, we have
/B S = D Uy Costt (3.8)
for some Cy, ;, depending only on n and k.
Proof. We first show (3.7). Let
xo € argmax (1 — |z|)|D?u(z)], ro :=1— |zg|, Lo := | D?u(x0)],

Bin{u>0}
and we suppose by contradiction that, for some C, to be chosen later,
roLo > Cy1). (3.9)
Consider now v(y) := Lou(zo + Ly 'y). Then v is a classical solution to the Bernoulli problem in its domain. Also,

since |zo + Lo 'y < |zo| + % =1 — %2 for |y| < Lo it follows from the definition of 2 that

(= fo + Laly|)|D21j(lx0 Loyl < L(;l@ =2, for y € Byyr,/2 N {v >0}

1—|zo+ Ly 'yl T0/2 o
This implies that the curvature of the free boundary of v is universally bounded inside B, 1, /2. Since 0 € {v > 0}
and |Vv| = 1 on d{v > 0}, there exist a point g, and a dimensional constant ¢, such that 0 € B, ,,L,(J0) C
Byyre/2 N {v > 0}. Thus 2o € Be, r,(To) C By 2(w0) N {u > 0} with Zg = 20 + Ly '%io. In particular, we can apply
Lemma [3.9| with k = 3 to the function ry 'u(z¢ + rox) to deduce that

|D?*v(y)| = Ly

L
|D3u(x)| < C’n,g—o max{1, Loro}, for x € Be,ro(To).
To
This implies that there exists a constant ¢, = ¢.(n) > 0 such that
2 Lo Ly _
|D=u(z)| > Lo — Cnygg max{1, Loro }|x — xo| > 5 for =€ Be,r(Zo) N B, min{LO—I’TO}(xO),
therefore

n" > /]; (oynB o |D2u|n dx > 2_n|Bcnro(j0) N Bc* min{L‘;l,ro}(‘roﬂLg'
cnro(Zo)N o

Noticing now that |B.,,(Zo) N B, min{Lch,ro}(xO” > cmin{Ly",r§} > cLy " min{l, C?n"} (recall (3.9)), we obtain

cx min{Lg " ro}

n™ > é¢min{1, C'n"},
for some dimensional constant ¢ = é(n) > 0. However, choosing C, large enough so that ¢C? > 2, this inequality
is impossible if 7 is small enough. Thus (3.9) does not hold, and we obtain (3.7]).
Rescaling by a factor of r, we get (3.8) with k¥ = 2. Finally, Lemma (together with a covering argument)
yields (3.8) for all k£ > 3. O

3.4. Structural results for classical solutions. Here, we present the mean convexity of the free boundary and
the regularity of solutions close to a vee.

Lemma 3.12. Letn > 2, and let u be a global classical solution to the Bernoulli problem in R™. Let v denote the
inward unit normal vector to O{u > 0} at a given point, and let

v(z) =1~ |Vu(z)|? for x € R"™. (3.10)
Then v satisfies 0 <v <1 in R™, v =0 on d{u > 0}, and
Av < 0, in  {u> 0},
dv = —20%u on  FB(u).

In particular, whenever u is not a half-space solution (z-€)4 or a vee |z -e| for some e € S"™1, then H = 38,v > 0
on FB(u), where H denotes the mean curvature of FB(u) at a given point with respect to the outer unit normal —v.
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Proof. The bound 0 < v < 1 comes from Lemma Also, since Au(z) = 0 in {u > 0}, a simple computation
ields
' Av(z) = —2div(D*u(x)Vu(z)) = —2|D*u(z)|* <0 for z € {u>0}
and
d,v(x) = Vu(z) - Vo(r) = —2Vu(z) - D*u(z)Vu(r) = —202 u(x) for x € FB(u).
In particular, since v is superharmonic, either v = 0 (in which case u is either a half space (z - €)1 or a vee
|z - e]), or dyv(z) > 0 on O{u > 0} by Hopt’s lemma. Finally, noticing that for z € FB(u) we have af(w)y(x)u =

— Z?:_ll 8fi(x)7i(x)u for some orthonormal basis {7;(z)}1<;<n—1 of the tangent plane to FB(u) at =, we deduce that

n—1
1
H(z) = Z 8Ei(m)7i(x)u(x) = iay(z)v(x) >0 for x € FB(u),
i=1

as we wanted. O

As a consequence of Lemma [3.5] and thanks to the improvement of flatness, one obtains additional properties
needed to upgrade closeness to a vee into regularity:

Lemma 3.13 (Closeness to vee and disconnectedness implies regularity). Let n > 2. There exists e = €o(n) > 0
such that the following holds.
Let u be a global classical solution to the Bernoulli problem in R™ satisfying

<eo<eop in By, (3.11)

’u - %7577,

where e, is the n-th vector in the canonical basis. Suppose, in addition, that the two points ge, and —pe, lie in
different connected components of the open set {u > 0} N Ba,.
Then

92|‘D2U||L°°({u>0}mBg) < Cep
for some C depending only on n. Moreover,
{fu>0y={z, > gD (@1,...,2p 1)} U{zn < g (21,...,20_1)} in By,
where &) : D, — R with D, being the lower dimensional ball {x3 + -+ +22_, < 0*} in R"™1, ¢\ < ¢ and

9B L= (p,) + 21D’ P ||lL~(p,) < Ceo.

for some C depending only on n.

Proof. Recalling that Vo ., (z) = |z,], it follows from (3.11)) that
{u=0}NB, C{z eR" : |z,] <ep}.

Let U and U_ be the connected components of Bs, N {u > 0} respectively containing the two points +ge,,. Then
they necessarily contain the two sets {x € B, : z,, > €p} and {z € B, : x,, < —ep} respectively. Also, by assumption
UpNU_ =2.

Let @i+ := uly, and observe that %4 and @_ are classical solutions to the Bernoulli problem in By, which satisfy

U+ F Tn |l oo (Boynias>0p) < €0

In particular, we can apply the classical epsilon-regularity theory in Lemma [3.7]to both @, and @_ and deduce the
graphicality (hence ordering) of FB(u4) and the bound

o|D?*uy| < Ce in {ayx >0}NB,.
Moreover, thanks to Lemma for €, small enough we have
{fu>0}nB, = ({uy >0}U{a_ > 0})NB,,
or, in other words, v = %4 + %— in B,. The lemma now follows by Lemma applied both to a4 and u_. O
The following is a useful auxiliary lemma (recall the notion of Slab introduced in ([2.17)):

Lemma 3.14. Let n > 2, and let u be a global classical solution to the Bernoulli problem in R™. Suppose that for
somey; ER", 11 >0, and € € S" !, we have

lu =V el (s, @) <er (3.12)
Then
{u=0}NB,, (1) C Slab(By, (1), €,6) ={z € B, (y1) : le- (x—wy1)| <er}. (3.13)

Moreover:
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(a) For all yo € {u =0} and ro > 0 such that By, (y2) C By, (y1), we have

lw = Vs ell Lo (Bry (y2)) < 2671
(b) We have
dist (z, {u = 0}) < Cpery, for all x € Slab(B,, /2(y1), €, 2€),
for some Cy, depending only on n (in particular, for n =3 one can choose C3 = 16).

Proof. Equation (3.13]) is an immediate consequence of (3.12)). We now prove (a) and (b).
(a) Tt follows from
lu = Vi el B,y @) < = Vipellne (s, @) + [1Vize = Virelloe (., 32))
observing that ||[Vy, e — Vi, ellLo(B,, (1)) < 1€ (y2 — y1)| = Vi, e(y2) < err.
(b) Given r < r1/2, we need to prove the following implication:
{u=0}NB,(y) = @ for some y € Slab(B,(v1),&,2e) = 71 < Chery. (3.14)
Indeed, y € Slab(B,, ;2(y1), €, 2¢) is equivalent to |y — y1| < 71/2 and |(y — y1) - ] < 2er;. Also, since r < r1/2
we have B,.(y) C By, (y1). Thus, from (3.12)) we obtain
u(y) < Vi e(y) +er = e (y —yi)| +er < 3ery.
On the other hand, still using (3.12)) and the triangle inequality, we get
][ u(x)dxzj[ |é-(x—y1)|da:—57“12][ \é~(x—y)|dx—3£r1:r][ |x1|dx — 3ery = ¢, — 3ery.
Br(y) Br(y) Br(y) B
Since f, = u(y) (recall that v is harmonic in B, (y)), this proves that 3ery > ¢,r — 3ery, or equivalently
r < %51"1, as wanted. (An explicit computation shows that ¢z = %) O
A variant of Lemma that we will also use in the sequel is the following:
Lemma 3.15 (Closeness to vee and bounded Hessian implies regularity). Let n > 2. Given C; > 1 there exists
€1 > 0, depending only on n and Cq, such that the following holds.

Let u be a global classical solution to the Bernoulli problem in R™. Suppose that |D?*u| < C107" in BayN{u > 0}
and

|u - V07en| <eo<erp in B, (3.15)
where ey, is the n-th vector in the canonical basis. Then, the same conclusions as in Lemma[3.13 hold true.
Proof. On the one hand, the bound on the Hessian implies that the principal curvatures of the free boundary inside

By, are bounded by CCip™ ! (recall that « = 0 and d,u = 1 on FB(u)). On the other hand, (3.15]) implies that
FB(u) N By, is contained in the slab |z, | < €10 (and it is non-empty, by Lemma b)). The result follows. O

4. BLOW-DOWN OF GLOBAL STABLE SOLUTIONS

The goal of this section is to prove that, in R?, non-flat global stable solutions to the Bernoulli problem look like
a vee at large scales. This is the content of the next:

Proposition 4.1 (Blow-down of non-flat solutions). Given & > 0, there exists R, > 0 depending only on & such
that for any R > R, the following holds.
Let u be a global classical stable solution to the Bernoulli problem in R3, and 0 € FB(u). If

HDQUHLOO(Blﬁ{u>0}) > 1, (4.1)

then there exists er € S? such that

[|lu— ‘eR'$|||L°°(BR) <eR. (4.2)
In other words, there exists a universal modulus of continuity w (of the form (2.16])) such that
Hu —ler - x|HLw(BR) <w(R™HR, forall R >0. (4.3)

To prove this result, we will need to develop a variety of tools that are of independent interest.

We first focus on results that are valid for classical stable solutions. We start by recalling the nondegeneracy
of stable solutions recently obtained in [57]. It is proved using a De Giorgi iteration with Michael-Simon—-Sobolev
inequality, where the mean curvature integral is estimated using the stability inequality with test function |Vu|.



18 HARDY CHAN, XAVIER FERNANDEZ-REAL, ALESSIO FIGALLI, AND JOAQUIM SERRA

Lemma 4.2 (Nondegeneracy of stable solutions [57]). Let n > 2, and let u be a global classical stable solution to
the Bernoulli problem in R™. Then, for all y € 9{u > 0} and r > 0,

][ wdH" ' >er  and  H" ' (0{u >0} N B.(y)) > er™ (4.4)
631'(?!)

for some ¢ > 0 depending only on n.

The following lemma is a direct consequence of a general result first obtained in the semilinear setting by
Sternberg—Zumbrun [81].

Lemma 4.3 (Sternberg—Zumbrun inequality). Let n > 2, R > 0, and let u be a classical stable solution to the
Bernoulli problem in Bogp C R™. Then,

/ |D?ul?dz < CR"™2,  and therefore ][ |D?ulP dx < CR™P for any p€]0,2],
BrNn{u>0} Brn{u>0}
for some C' depending only on n.

Proof. Recalling Lemma to prove the first inequality we apply Lemma to zzu(2R-) with n € C°(By)
non-negative and satisfying n = 1 in By /5. Then, the second one follows from Holder’s inequality. g

We now introduce an important monotone quantity: for u € H'(B,.) and 0 € FB(u), the Weiss boundary-adjusted
energy (see [92]) is given by

1 1
Wiar) = = [ (VuP 4 L) do = o [ aa = WD), (45)
rn B, 7‘"+1 0B,
where u, denotes the natural dilation of u, namely
up(x) := u(:x)’ for r > 0.

Due to the Weiss monotonicity formula (see [92, Theorem 3.1]), given u € H'(Bpg) a stationary solution to the
Bernoulli problem, then
r+— W(u,r) is non-decreasing on (0, R)
and
2 2
0rW(u,r) = ﬁ/ (u—z-Vu)2dH" ' = 7/ (up —x-Vu,)?dH" ' >0 forae 7€ (0,R) (4.6)
T Jom, T JoB,
(see also (87, Section 9]). In particular, any blow-down limit us = limy, 100 ur, satisfies W(uso, ) = W (u, 00)
(because lim;, 400 W (u, rir) = lim,+oo W (u,7)). This implies that 79, W (ueo,7) = 0, thus us is 1-homogeneous.
Let us denote
n—1 Sn—l
oy = W((zy)4,1) = 2/ dx —/ HS)
Bin{z,>0} dB1N{x,>0} 2n

Tt is clear that W (|z,|,1) = 2«,. As a consequence of the next result, any classical stable solution u to (3.1)—(3.3)
in R? with 0 € FB(u) satisfies

1
22 dH ! = =518l (4.7)

ag < W(u, 1) < 2as. (4.8)

Lemma 4.4 (Almost homogeneous solutions). For any € € (0, %), there exists § € (0, §) such that the following

2
hold.
Let u be a classical stable solution to the Bernoulli problem in R® such that 0 € FB(u) and

W (u,2) — W(u,1) <. (4.9)
Then, either
|u—e- mHLOO(Blﬁ{u>O}) <e forsomee€S? and W(u,2) < az +e, (4.10)
or
[|lu—le- 33|||LOC(Bl) <e forsomee€S? and Wi(u,1) > 2az —e. (4.11)

To prove Lemma 4.4 we will need the following compactness result for sequences of stable solutions.

Lemma 4.5 (Compactness). Let n > 2, and let v, € C’loo’cl(Bk) be a sequence of classical stable solutions to the

Bernoulli problem in By, C R™, with 0 € FB(vy) for all k € N. Then the following hold:
(1) Up to a subsequence, vy, converges to some function ve satisfying |Vuso| < 1 in R™, with strong convergence
in (HL. N CO*)R™) for all a € (0,1).

loc
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(2) The sets {vi, > 0}, {vr = 0}, and the free boundaries FB(vy), converge locally in the Hausdorff distance in
R™ to their corresponding sets for vo (up to a subsequence). Specifically,

{vk > 0} = {veo > 0}, {vp =0} = {veo =0}, and FB(vg) = FB(vs), locally.
(8) The limit function v is a stable solution in the sense of Definition .

Proof. The proof is postponed to Appendix [C] O
We can now prove Lemma [£.4]

Proof of Lemma[{.J] We divide the proof into three steps.

Step 1: We argue by contradiction, and assume that there exists €9 > 0 and a sequence of classical stable solutions
u, with 0 € FB(uy) and

W (ug, 2) — W (up, 1) < % (4.12)

but

min >eg or Wi(ug,2) > as+ e,

e€s? Huk -e $HL""(B’lﬁ{u>0})

. (4.13)
min ||wr — e x|HL<x>(Bl) >eo or  W(ug, 1) <2az —ep.
By Lemma [£.5] along a subsequence we have
Up = Uso  strongly in (HE. N O (R™),

for some global stationary and inner stable solution us, with 0 € FB(us). Taking the limit in (4.12)) (using
Lemma we obtain

W(t,2) — W, 1) =0 = 79, W(ueo,7) =0 forr e (1,2).

In particular, us is 1-homogeneous in the open annulus By \ By, and therefore in By by unique continuation. Up
to extending u., outside of By in a 1-homogenous way we can assume that it is defined in the whole R3. In the
next two steps, we will show that there exists e € S? such that

either Uoo = (- 2)+, or oo = ez, (4.14)
W(uoov ) = a3, W(uooa ) = 2043,
which is in direct contradiction with (4.13) in the limit & — oo (using again Lemma .

Step 2: We first prove the validity of (4.14]) “up to a multiplicative constant”.
Since s, is 1-homogeneous, FB(uy,) is a cone. Let y, € S? N FB(us ), and consider i, to be any blow-up of
Uso at Yo along a sequence ri | 0, namely,

Uoo(z) = lim

Then 1, is invariant in the y, direction. In particular, ., is actually a 2-dimensional, 1-homogeneous, non-negative
harmonic function. Hence, it must be of the form
floo(x) =ay(z-€)y +a_(x-e)_ forsome a;,a_ >0, ecS>

Also, up to changing e with —e, we can assume that a_ < a;. We now distinguish two cases.

-If a_ =0, since 0 is a free boundary point for %, it must be ay > 0, and since it is a stationary solution then
necessarily a4 = 1.
- On the other hand, if 0 < a_ < a4, then by stationarity we must have ay = a_ = a, and by the uniform

1-Lipschitz bound a < 1. Observe also that, by the nondegeneracy of classical stable solutions Lemma [£.2] we also
havtﬂ that a > ¢ > 0 for some universal c.
As a consequence of this discussion, we have two cases:

o If Gioo(2) = (- €y, )+ for all yo € FB(us) N'S?, then the free boundary of u is smooth everywhere outside
of the origin/’| so us is a classical stable solution outside of the origin. Then, the classification of 1-
homogeneous stable solutions in R? from [19,/55] applies to our solution and implies that u.(z) = (7 -¢€') 4
for some e’ € S2. Hence, we are in the first case of .

8We remark that any function of the form e (z) = @z - €| for @ > 0 is stationary and stable, according to Definition

9This follows from the fact that if a stable solution is close to (zn)+ then it is close to =y, inside its positivity set (see Lemma ,
so the improvement of flatness in Lemma E applies. Also, note that blow-ups of limits of classical solutions are themselves limits of
classical solutions (by a diagonal argument).
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o Alternatively, if oo () = Gy, |- €y, | for some yo € FB(uoe) NS? and ay, € (0,1], then W (uoo (- 4+ yo),0") =
2ai3. On the other hand, the Weiss energy is also upper bounded by 2ajs: indeed, any blow-down of uq
around any point is equal to s, which is 1-homogeneous, and for any 1-homogeneous solution v we have
W (v,r) = % |[{v > 0} N B,| < |Bi| = 2a3. Therefore

2053 = W (too (- +70),07) < W(too (- +0),7) < W(u(* +50),00) < 203,

which implies that the Weiss energy is constant, so u., is homogeneous around y,. This implies that
Uoo(7) = @l - e| for some a € [c, 1] and some e € S? such that e -y, = 0. So, to conclude the proof, we only
need to show that a = 1. This is the purpose of the next step.

Step 3: It remains to prove that, in the second case, a = 1.
Up to subsequences and after a rotation, we know uy — alzi| strongly in (HL.NCL )(R?) for some a € [c, 1].
Also, thanks to Lemma [4.3

/ | D?uy|* dx < C, (4.15)
Bin{ur>0}

for some C > 0 universal, independent of k.
Now, assume by contradiction that @ < 1. By harmonic estimates we have

up — alz | in  L®(B))NCL.(B;\ {1 =0}), forsome O0<c<a<]l. (4.16)
The proof now follows along the lines of that of Lemma [C.I} By Fubini’s theorem, we know

1/2
/ |D2uk|2dx2/ |D2uk|2(t,a)dtdaz/ / |D?uy|*(t, o) dt do,
Bin{u,>0} 4 [—1/2,1/2]N{u(t,0)>0} Bi/z to,k

1/2
where Bl C R? denotes the ball of radius 7 in R? and, given o € B /2 and k € N, £, is the minimal value
t. € [—1/4,1/4] (for k large enough) such that (t.,1/2) C {ux(-,o) > 0}.
Let II; : R® — R? denote the orthogonal projection in the last two variables, that is IT;((z1, 22, 3)) = (22, 23),
and define

Ay =10 (FB(ug) N ((=1/2,1/2) x B} ).

Also, let 6 > 0 be a small fixed constant. Note that |[Vug|? = 1 on FB(uy), while |Vuy (8, 0)|? < # for k> 1
large enough (due to (4.16]) and harmonic estimates), therefore

J =2 =2
1 1-
/ |81|Vu|2(t,a)‘dt >1- —;a = a4 for all o€ Ax

2

tok

(note that, if k& > 1, then t,; € (—9,0) for o € Ay). Thus, thanks to the bound ’V|Vuk|2|2 < 4|D?uy?,
Cauchy—Schwarz, and (4.15)), this implies that

1—a?

4 1/2
st [ [ v oldide < C(140)" (/ DQukf) < o(aws)”,
Ap ok Bin{ur>0}

which proves

co
1—a?’
Consider now instead o € Bj,, \ A. Then t,; = —1 < 4. Also, by we know dyug(—6d,0) < —% and
O1ug(d,0) > 5, so that

|Ag| <

(4.17)

5
/6 |07 ur(t, 0)|dt > ¢ >0, for k large and o € Bf )5 \ Ap.

Hence, by 0%, ui|? < |D?uy|?, Cauchy—Schwarz, and ([4.15]), similarly to before we obtain

5
c|Bi/2 \ Ag| < / /6|({9fluk|(t,a)dtda < C(\Bi/Q \ Akw)l/z

Bi/z\Ak

therefre ‘Bi/z \ Ag| < C4. Combining this bound with (4.17)), we get a contradiction for ¢ sufficiently small. O

As a consequence of the previous result, if we can lower bound the Hessian of a solution at one point, then the
solution cannot be energetically close to a half-space.
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Lemma 4.6 (Lower bound of Weiss energy). Let ¢, = €5(3) and C32 (i.e., n =3 and k = 2) be the constants from
Lemma and set Co := C32¢,. Let 6, € (0, %) be chosen from Lemma with € = €.
Let u be a global classical stable solution to the Bernoulli problem in R®, with 0 € FB(u). If

HD2UHL°°(Bl/2r‘|{u>O}) > 2C, (4.18)
then
W(u,2) > as + do. (4.19)
Proof. Recalling that W (u, 1) is always bounded from below by s (see (L)), if does not hold then
W (u,2) — W(u,1) < (ag + o) — g = do. (4.20)
Thus, by Lemma either or holds. The alternative can be ruled out, since Lemmaimplies
||D2u||L°°(Bl/2ﬂ{u>0}) < Co,

contradicting assumption (4.18]). Thus we are left with the case (4.11]), in which case
W(u,2) > W(u,1) > 203 — €0 > as + do,
contradicting (4.20)). O

We can finally upgrade the previous lemma to solutions close to vees and prove Proposition

Proof of Proposition[{.1 Let C, be as in Lemma and recall the notation ug(z) = fu(Rxz). Then usc, satisfies

1D uszc,

=20, ||D?u|, >2C,

2
Lo (By/2N{uzc, >0}) (BcoN{u>0}) 2 2C HD uHL""(Blﬂ{u>0}) =

therefore
W(u, 4Co> = W(UQCO,Q) > ag + 0o

by Lemma [£.6]

Now, given € > 0, let dy := d(¢) > 0 be determined by Lemma Also, given &1 := Jp, let 01 := d(e1) be
determined by applying Lemma |4.4] one second time.

Let us now apply Lemma with e1,0; to the functions ugr+1o, with &k =1,..., K (where K = K(e1) is to be
chosen). We first check that the alternative does not hold for any k. Indeed, by Lemma implies

1 Co

= — < _
u||L°°(szcoﬁ{u>0}) 2k+1C ‘ L2 (By20{ugkt10,>01) = 2k+10 <1,

1p?

{D2u2k+1co

contradicting (4.1]). Hence, either

W(u,2"2C,) = W(u,281C,) > 6,  forall k=1,...,K, (4.21)
or, by , there exist k < K such that

W (u,2"1C,) > 2a3 —¢;. (4.22)
If holds, then summing over k from 1 to K := | §*| + 1 yields
W(u72K+QCO) > W(u,4C,) + K61 > as + 6o + K81 > 2a3 > 2a3 — ;.
In either case, recalling and choosing R, = 2K+2C,, for any R > R, it holds
203 > W(u, R) > W(u, R.) > 2a3 — 7.

This implies that W (ug,2) — W(ug, 1) < e1 = 6(¢) and W (ug,2) > 2a3 — 1 > a3 + ¢, so by applying Lemma [1.4]
again we obtain

lur —ler - @l poo (g, <€

for some e € S?, as desired. O

5. NECKS: DEFINITION AND PROPERTIES

In this section we begin our study of global classical stable solutions. We will need to properly define the “neck”
regions (i.e., regions where the free boundary is not flat) and study their properties.
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5.1. Reduction. Let us begin with the following reduction lemma. From now on, whenever w is a classical solution
and z, € FB(u), we write D?u(x,) to denote the limit of D?u from the positivity set: more precisely, D?*u(z,) :=

hm{u>0}32~>zo DQU(J))
Lemma 5.1 (Reduction). Let n > 2, and suppose there exists a global classical stable solution v to the Bernoulli

problem in R™ such that |D?*v| # 0 in {v > 0}. Then, there exists a global classical stable solution u such that
0 € FB(u), |D?u| <1 in {u > 0}, and |D?u|(0) = 1.

Proof. Notice that v must have a free boundary; indeed, if not, it would be a positive harmonic function, so it
would be constant, contradicting the assumption that |D?v| 0.
Let us suppose first supy,~ gy [D*v| = co. Consider z3 € By N {v > 0} such that

= 0%l (1- 2 = o2 (1- B,

z€BN{v>0}

which satisfies hy > %%laX|D2U| — 00 as k — o0o. Let dj, := |D?v(xy)| and pp = 1 — %, and define the classical
k/2
stable solutions
ug(y) :=dg v(xk + i) for y € Bg,p,-
We have 0 € {uy, > 0} and |D?u(0)| = 1. Also, by definition of hy, for x = z), + 4 € {v > 0} with |y| < dypx we

have

|7
2 Yy 2 Tk 2 Pk
‘D v (xk—i- dk)’ <|D v(ack)ll ~ It/ <|D U(xk)|7pk vy
Therefore,
1 Y 1 . -
|D2uk(y)| = dk‘DQU (Ik + dk> < m in Bg,,, N {u, > 0}.

Since dgpr = hx — o0 as k — oo, Lemma implies that (up to a subsequence) uy converges to some global
stable solution v with 0 € {u > 0}. Moreover, thanks to the upper bound on the Hessian, the free boundaries are
uniformly smooth and |D?u| < 1 in {u > 0}.

We observe that u is a classical stable solution satisfying |D?u|(0) = 1. Indeed, given z, € FB(u) and r > 0, the
uniform bound |D?uy| < 1 implies—using the condition d,u; = 1 on FB(uy) and Lemma that the positivity
sets {ur > 0} are locally the union of at most two smooth hypographs (in opposite directions) inside B, (z,).
Moreover, these hypographs have uniform curvature estimates for their boundaries. Hence, applying the Arzela-
Ascoli theorem, these hypographs converge (up to a subsequence) to smooth hypographs as k — oo, and the
free boundaries FB(uy) converge smoothly to FB(u). Also, since |D?ux(0)] = 1 and the free boundaries converge
smoothly, the Hessian of v must be nonzero in an open set near 0.

To verify that u is classical we only need to rule out tangency situations: i.e., we must show that the boundaries
two locally connected components of {u > 0}NB,(z,) cannot touch. To show this, note that because of Lemmal[3.12]
each component of {u > 0} N B,(x,) is mean concave. Thus, the presence of a tangency point x, would force the
mean curvature to be zero at x,, and therefore (again by Lemma D?u = 0 in a neighborhood of z,. By unique
continuation, this would imply D?u = 0 in all of these two connected components of {u > 0}, which would imply
that u is a vee. However, this contradicts the fact that the Hessian of u is nonzero in an open set near 0. Thus, no
tangency point can exist, completing the argument.

Note now that, since u is a classical solution, the bound |D?uy(0)| = 1 implies in the limit that |D?*u(0)] = 1.

It remains to consider the case M := supy,qy |[D?v] € (0,00). In this case, it suffices to choose z € {v > 0}
such that |D%v(zy)] — M and define u as the limit of uy(z) := M v (2 + &). Arguing similarly to above, uy
converges locally uniformly to a classical solution u satisfying |D?*u| < 1 on {u > 0} and |D?u|(0) = 1. Again by
the strong maximum principle (|D?u|? is subharmonic) we obtain 0 € FB(u). O

5.2. Fixing global assumptions. Let us now fix some global assumptions and variables. Throughout the rest of
the paper, and until otherwise stated, we set n = 3 and u € Lip(R3) to be a fixed global classical stable solution to
the Bernoulli problem in R?, with

0€FB(u), |Vul <1, [D*u(0)]=1, and |D*u|<1in {u>0}, (5.1)
(as in Lemma[5.1)).

We also fix the global universal constant
10 = 14(3) (5.2)
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where 7,(3) the constant in Lemma for dimension n = 3.

5.3. Definition of neck centers. Given u and 79 as above, we define the set of neck centers Z as follows.
o First, for any y € FB(u), we define its threshold radius as

r+(y) := inf {7‘ >0: / |D?ul? dx > 778’}. (5.3)
B (y)n{u>0}
Observe that, since we are assuming |D?u| to be globally and universally bounded, we know that
7%(Z) > Tmin = Tmin(Mo) :=cno >0 for all = € FB(u). (5.4)
e Then, for any k € Ny, we define

Zp = {:E € FB(u) : ri(z) € [Tmek,rmmZkJrl)}. (5.5)

e Given A > 0 and Y C FB(u), we denote
BaY) = Bar.w(®) (5-6)

yeY

(not to be confused with the notation B,(A) = A+ B, in Section [2.3). Thanks to Vitali’s covering lemma,
we can consider a countable subset of centers Zy C Zy such that

B,.*(Zl)(zl) n B7-*(Z2)(22) =9 for all 21,29 € Zo, zZ1 7£ Z2,
and 3 5
2y C 81(20) C 84(20).
e Then, for k£ > 1, we recursively define
Z,/c ={z e Zk : B4T*(z)($> NZ., =2}, (5.7)

where we have denoted Z. := Ui:ol Z;. We take Zj, to be the centers of a Vitali subcovering of B1(Z},),
namely, Z;, C Z; is a countable subset such that
By, (:))(z1) N By, () (22) = @ for all 21,20 € 2k, 21 # 29,

and
2,7]/c C Bl(Z{C) C B4(Zk)

Z = Uzk.

k>0
We call the points in Z neck centers and denote the points in Z by z, zg, etc. The threshold radii of neck
centers are simply called neck radii.

e Finally, we define

The first observation is that Z exists:

Lemma 5.2. There holds r,(0) < Cng. Consequently, the set of neck centers Z is nonempty.
. . C .
Proof. Recalling (5:1)~(5-2), Lemma 3.1 gives 1 = [D?u(0)| < | D*ul|1o(B, ) anius0}) < 718> as desited. O
From now on, the set Z is fixed as above.

5.4. Basic properties of the neck centers and neck radii. Given the previous definitions, we start to discuss
some basic properties of the neck centers.

Lemma 5.3 (Covering omitted neck centers). For any k > 1, we have
Zop = U Z; C Bok+2, (Z<k> = Z.p + Bort2, -
j=0

Proof. For any j > 1 and x € Z~'j \ Z;, it follows from (5.7) that x € By, (2)(Z<;). Recalling (5.5), this implies
Z~j \ZJI C B4Tmm.2j+1(Z<j).
Thus, using (5.5) again for all j < k —1 (recall (5.6)),

k—1 k—1
Zac | (50EN2) € U (BiZ) U B 20(2<))) € Bi(Z<k) U Buy ().
§=0 j=0

The result follows. O
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Corollary 5.4. For any z € Z, we have

r+(2) HD2 <C,

“”Lw(BQT*<z><z>m{u>0}> =
for some C universal.

Proof. Let z € Z;. By Lemma [5.3| together with (5.5)—(5.7),
Z~<k71 C B2’€+1rm;n (Z<k71) C BZT‘*(Z) (Z<k) - RB \ BZn(z) (Z),

therefore
Bor)(2)NZch1 =0 = 1(y) >71.(2)/4 for all y € FB(u) N Ba,, (5)(2). (5.8)
(Here we understand that Z.,_; = @ if k — 1 < 0.) We now claim that
T (y) < 4r.(z) for all y € FB(u) N By, (z)(2). (5.9)

Indeed, if not, then (5.3 yieldﬂ

- / |D?uf* dx < / |D?uf® dx < / | Dl dar = g,
B, () (2)N{u>0} Bur, (z) (y)N{u>0} Br, () (y)N{u>0}

a contradiction. Hence, (5.9) holds.

After a rescaling (considering u(z':*ri*z()z)w) instead of u), let us assume r,(z) = 1. Then r.(z) € [§,4] for all

x € FB(u) N By. Also, by Lemma |D?u| < Cno in {u > 0} N By N {dist (-, FB(u)) < £}. Furthermore, since

u is 1-Lipschitz, harmonic estimates imply that [D?u| < C in dist (-, FB(u)) > §. This shows that [D?u| < C' in

{u > 0} N By, which is the desired result (once one rescales the solution back). O
We now observe that the threshold radius controls the distance to the set Z of neck centers:

Lemma 5.5 (7, controls distance to neck centers). Let x € FB(u) and Z be defined as above. Then

dist (x, Z) < 8r,(x).

Proof. By construction, there exists k € N such that « € Z. If dist (x, Z.;) < 4r,(z) then we are done, since
Z< C Z. Otherwise, z € Z;, and there exists T € Z; C Z such that

dist (2, 2) < |z — Z| < 47.(Z) < 4rmin2FT! = 8rpin2® < 8r,(x). O
Next, we show that the Hessian is controlled by its distance to Z:

Lemma 5.6 (Global Hessian decay). We have:

|D?u(z)| < Cmin{ forall x € {u>0},

1
—_—1
dist (z, Z)’ }’
for some C universal.

Proof. We divide the proof into two cases. Recall that ng = .(3), from Lemma

Case 1: x, € {u > 0} and dist (2o, FB(u)) < g=dist (2o, £). In this case, choose y, € FB(u) closest to x, so that,
by triangle inequality,

dist (zo, Z) < dist (yo, Z) + |20 — yo| < dist (yo, Z) + %dist (26, Z).
By Lemma this gives the chain of inequalities

24
24|z — yo| < %dist (20, Z) < dist (Yo, Z) < 874 (yo),

and therefore
o € Bja,—y,| (Yo) C Br,(yo)/2(Yo)-
Now, using (3.8) around y, and Lemma [5.5]
Cno Chno
2 2
| D u(wo)| < ||D uHLoc(BT.*(yO)/Z(yo)ﬁ{u>0}) = ro(yo) — dist (a:o,Z)'

10Here the strict inequality follows from the fact that, if | D?u| were to vanish in (Br., (v)®) \ Bar, (z)(¥)) N {u > 0}, then it would
be zero inside By, (z)(y) N {u > 0} by unique continuation.
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Case 2: z, € {u > 0} and dist (2., FB(u)) > 5=dist (xo, Z). In this case, we apply harmonic estimates to u inside

5
B1dist (z0,FB(u)) (To)- Since u(z) < dist (z,FB(u)) (recall that [Vu| < 1), this yields

C C
D?u(z,)| < < :
Do)l S G FB@)) S @it (20, 2)
This proves that |D?u(z)| < W Recalling that |[D?u| < 1 (see (5.1])), the result follows. O

The next lemma says that, around a neck center and at scales much larger than the neck radius, the solution
increasingly resembles a vee:

Lemma 5.7 (Blow-down around neck center). For any e > 0 there exists M = M () > 1 such that the following
holds.
For every z € Z and every R > Mr,(z), we have

greligrzl ||u - Vz’e||L°°(BR(Z)) < eR. (5.10)

In particular (recall )
E,(u,R) <e. (5.11)

More precisely, choosing M, := (2|Bl|)%nal > 1 and w as in (4.3)), the relation between & and M is implicitly given

by
w(M*/M) =¢

Proof. Let ug,(z) := @ with p = M,r.(z) and M, := |B|3n5 . Then 0 € FB(uy,,) and
3
1= [ D20 dz < D%l i, guson® = D%t |
I . 1B, @n{us0) P = [D*zp || 1oe (5,0 gu, 501

By Proposition for any r > 0,

. 1 . . 1

218121 Huzm - VO@HLO@(BT) <w(r~)r, or equivalently gélsgl Hu — VZ’EHLO@(BW(Z)) <w(r H)pr,
In particular, given € > 0, by choosing M so large that w(M,/M) < e we obtain that (5.10) holds for R >
Mr,(z). O

Up to now, it may not be completely clear why we introduced the notions of neck centers and neck radii. If z € Z
is a given neck radius, then the previous lemma shows that, for R > r,(z), the positivity set will be contained in
some very thin strip —see Lemma |3.14(b):

{u=0}NBr(z) C{reR® : l|e-(z—12)|=0o(R)},

for some e € S? (depending on z and R).

The next lemma actually shows that neck radii detect ‘necks’ or ‘bridges’ of the positivity set {u > 0} between
the two sides of the set {|e - (x — z)| > o(R)}. In other words, at scales R > r.(z), {u > 0} N Br(z) becomes
connected.

Lemma 5.8 (neck centers detect ‘necks’). There exists a large universal constant M > 1 such that whenever z € Z
and 0 > Mr,(z), any two points of {u > 0}NB,(z) can be joined by a continuous path contained in {u > 0}NBg,(z).

Proof. Let € > 0 be a small constant that will be fixed later and consider M = M (&) given by Lemma Then,
for any o > Mr,(z) we have
Bop(z) N{u=0} C{z : |ez s (v —2)| < Ep}.
Let U; and U_ denote the connected components of Ba,(z) N {u > 0} that contain the sets
{x € Bayp(2) : €24, - (x —2) > Ep} and {x € Bay(2) : €24, - (x —2) < —Ep},

respectively. Suppose by contradiction that Uy NU_- = @ and define %4 := uly, . By Lemma if £ is chosen
small enough, we have u = @y + @_ inside B,(z) (that is, there are no other connected components of {u > 0}).
Thus, Lemma [5.7] and Lemma [3.13] imply

o|D*u| <Ce  in {u>0}NB,n(z).
In particular

3
My < <

/ |D?ul? < / |D?ul® dx < C&3,
B, (z)(z)N{u>0} B, /2(z)N{u>0}
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which is a contradiction for £ small enough. This proves that U, = U_ are the same connected component of
Ba,(z)N{u > 0}. Since by Lemma[3.5|we have already seen that any other connected component of By, (z)N{u > 0}
lies outside of B,(z), we obtain the desired result. O

We finish this subsection with the following two related lemmas:
Lemma 5.9. For any M > 1 the following holds. Given z € Z and o = Mr,(z), for all 2’ € Z N B,(z) we have

T+ \Z 2
r(@) % and (1Dl (qusoin,@) < 1y

for some Cy; depending only on M.

Proof. For M < 2, the comparability of the neck radii and the Hessian estimate follows from (5.8)-(5.9) and
Corollary respectively. So let us assume M > 2.

Suppose for the sake of contradiction that there is z’ € Z N B,(z) with r.(z’) < T*T(z), for K sufficiently large to
be chosen later (depending on M). Then, since 3p = 3Mr,(z) > 6r.(z) > 6Kr.(z'), Corollary implies that

Hu - ‘/Z’,SHLOQ(ng(Z/)) S E(K)Q/27
for some e € S?, where £(K) | 0 as K 1 co. Therefore, thanks to Lemma a),

||u - VZ*CHL‘X’(B%*(Z)(Z)) <e(K)o=¢e(K)Mr,(z).

Thus, recalling Corollary and Lemma if we choose K large so that £(K)M is sufficiently small we get
ro(z)| D?u| < % in B, (s (z) N {u> 0},
Integrating in B, (,)(z) N {u > 0} we reach a contradiction with the definition of r,(z).
The second point is then a consequence of Corollary and Lemma [5.6 O

Lemma 5.10. There exists M, > 0 universal such that if z € Z and R > Mor.(z), then r.(z') < & for all
z € ZN BgR/4(Z),

Proof. Let e, > 0 be a small constant to be fixed, and apply Lemmato find M, > 0 such that, for R > M,r,(z),
there exists e € S? such that

[lw — ‘/Z,CHL‘X’(BR(Z)) < %&‘OR and [|uw— Vz’,eHL"O(BRM(z’)) < &R, (5.12)

where the second bound follows from Lemma a).

Now, assume by contradiction that r,(z') > £. Then Lemmaimplies that |D?u| < C/R in Bag(z')N{u > 0},
with C universal. By Lemmathis gives r,(2z)| D?u| < Ce, in B, (5)(z)N{u > 0}, which integrated over B, (,)(z)
contradicts the definition of r,(z) if &, is chosen small enough. O

5.5. Ball tree: ‘soft’ geometric description of the zero set. The goal of this section is to show Proposition|5.12)
below, which shall be very useful in the sequel. To state it, we first recall the notion of rooted tree:

Definition 5.11 (rooted tree). Let A/ be some given a (finite, for simplicity) set. The elements v € N will be
called nodes. Suppose that there exist a distinguished node vy € N (the root) and a map p : N'\ {vo} = N (the
predecessor map) for which the following property holds: for all v € N there is ¢ € N>; such that p'(v) = vg. We
then call the pair (NV,p) a rooted tree.

Notice that (A, p) becomes naturally ‘graded’ or ‘stratified” as follows: N = (J,~o N where N(© := {1} and
NG .={ve N : p’(v) = 1p}. Notice also that, by definition, p maps N to a subset of N*~1) (here £ > 1).

Given v € N we put desc(v) := p~1({r}) and call it the descendants of v. Nodes v with desc(v) = @ are called
leaves or terminal nodes. Nodes v with desc(v) # @ are called internal or branching nodes.

Intuitively, a node will be a given large ball. Then, then free boundary inside the node will be covered by the
node’s descendants in the next (smaller) scales, and such branching taking place in balls that are large with respect
to neck radii. In other words, one keeps zooming in until a neck or two regular phases are seen at the threshold
scale, while keeping track of the intermediate balls, the closedness of u to a vee as well as the tilting. See Figure [T}

We can now give the following result concerning the geometric structure of {u > 0} (recall the definition of Slab

in (217)):

Proposition 5.12. There exists a small universal constant 0, > 0 such that, for any given 0 € (0,0,), there exists
M = M(0) > 1 (large) such that the following holds true.
For any given z € Z and R > Mr.(z), there exist:
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FI1GURE 1. Ilustration of branching structure in ball tree: Proposition [5.12] and Definition [5.13]
From left to right: a neck-type terminal ball, a regular terminal ball, and a branching ball.

o A finite collection N of balls of R® with Br(z) € N.
o A predecessor map p: N'\ {Bgr(z)} = N such that (N, p) is a rooted tree with root Br(z).
o A mape: N — S? called polarity map.
The previous objects satisfy the following properties:
(1) Every ball (or node) B € N, £ >0, has radius o7 := 0'R and is centered at some point in {u = 0}NBg(z).
(2) For every node B = B,(y) € N (so that o0 = o) we have

Hu - VWHLoo(BQQ(y)) < 94&% (5.13)
where e = e(B) is the polarity of B. In particular,
{u=0}NBay(y) C{z €R® : |e-(z—y)| < 0%} (5.14)
(3) A ball B = By(y) in N is an internal or branching node whenever
there exists z € Bo,(y) N Z such that Mr,(z) < p. (5.15)

Otherwise, the ball is a terminal node.

(4) For every branching node B € N, each of its descendants in desc(B) is centered at some point in {u =
0} N Slab(B,e,94), where e = e(B) is the polarity of B. Moreover, the union of the balls in desc(B) are
a “Vitali covering” of Slab(B7 6,92) (namely, they cover Slab(B, e, 92) and the balls with the same centers
and radii scaled by a factor 1/4 are pairwise disjoint). In particular, the number of balls in desc(B) is
bounded by 28672,

(5) For any B’ € desc(B) we have |e(B) — e(B’)| < 63.

Proof. We will construct the tree (N, p) using an iterative procedure. The process begins at the root Br(z), which
will always serve as a branching node. For any given node, we will define the criteria that determine whether it is
branching or terminal, along with the procedure for constructing its descendants in the branching case.

This construction is divided into two steps:

Step 1. We present a claim that acts as a fundamental step in the construction process. It governs the selection
of the constant M and outlines the procedure for determining descendants from a branching node.

Claim. For any given 6 > 0 sufficiently small, there is M = M (#) such that the following holds.
Suppose that u(y) = 0 and B = B,(y) C R?® is some ball such that holds. Assume in
addition that e € S? is a unit vector such that holds. Then, there exists a collection of points
{yihi<j<n in {u =0} NSlab(B,(y), e, ") satisfying the following properties:
(i) The balls {Bg,/4(yj)}1<j<n are disjoint. In particular, the number of points N is bounded by
2892,
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(ii) The balls {Bg,(y;)}1<j<n cover Slab(B,(y), e, 6?)
(iii) There exists é € S? with |e — €| < 63 such that for all 1 < j < N we have
[u(@) =18 (@ = Y)|| oo By, 4,y < 0" (00) =070, (5.16)
Let us prove this claim. By assumption ([5.15), there exists z € Ba,(y) N Z such that Mr,(z) < p. Within the
setup of Lemma [5.7] choose M = M (6) such that
8w (M, /M) < 6°.
Then, Lemma guarantees the existence of € € S? such that
|lu(z) — |- (x — Z)|HLOQ(B42(Z)) <w(M./M)do < 16%.
Since changing the sign to € does not change the previous bound, we choose the sign giving e - € > 0.
Then using Lemma a) (with y; =z, yo = y, r1 = 4o, 12 = 20, € = 6°/8)
[u(@) = 1€ (@ = D] o (5, () < 005 (5.17)
therefore
{u=0}NBay(y) C{z eR® : |&-(x —y)| < ). (5.18)
Next, define the set {y;}1<j<n as a subset of {u = 0} NSlab (B, (y), €, %) such that the balls By,,4(y,) are pairwise
disjoint. Furthermore, this subset is chosen to be maximal with respect to this disjointness property. Observe also

that by (5.14]), we have
{y;hi<j<n C {u=0} N By(y) C Slab(B,(y),e,0%) .
Now, maximality implies (by a usual Vitali-type argument) that the triple balls are a cover:

{u =0} NSlab(B,(y),&,6°) C U Bsgo/a(yj)- (5.19)
1<j<N

Also, by (5.17) and Lemma b) we know
dist (x, {u = 0}) < 80% for all =z € Slab(B,(y),¢,6°%),

i.e. Slab(B,(y),¢€,0%) C {u =0} + Bggs,, upgrading (5.19) to

Slab(B,(1),&,0°) € | Buogss(y)):

1<j<N
provided 6 is small so that 36/4 + 805 < 460/5.
Also for 6 small enough (such that 2602 + 460/5 < 50/6)
Slab(By(y),€,20°) € | ) Bsogs(y;)- (5.20)
1<j<N

Since the intersections of the balls By, /4(y;) with the plane {z € R?® : é- (x —y) = 0} are disjoint disks of radius
> 0p/8, and they are all contained in Slab (B(1+9/3)Q(y), e, 0) a simple comparison of areas gives
N(0o/8)* < (1+6/3)%0%.
Therefore since §/3 < 1 we obtain N§? < 28 as claimed. We have thus established (i).
To establish (iii) we observe first that (repeating similar triangle inequality arguments as above) from (5.17) and

using |€ - (y; — y)| < 050 we obtain that (5.16) is automatically satisfied for all j provided 26 < 6°.
Similarly, combining (5.13) and (5.17) using the triangle inequality we obtain

HVy,e - Vy’éHLOC(BQQ(y)) = H |6 : ( - y)' - |é' ( - y)| HLOO(BQQ(y)) < (04 + 96)9 < 2949'

Recalling e - € > 0 this implies |e — €| < 204, which is less than the claimed 2 (6 is small).
Finally, (ii) follows from (5.20)) together with |e — | < #3. This finishes the proof of the claim.

Step 2. We now use the claim to construct the tree (N, p).

We start by defining the root N'(©) := {Bg(z)}. Since R > Mr,(z) by assumption, the conditions of the claim are
satisfied for Bgr(z), thanks to Lemma This allows us to apply the branching procedure from the claim to Br(z),
producing a finite collection of balls { Byr(y;)}1<j<n, each centered at a point in {u = 0} N Slab(Bg(z), e, 6*) and
satisfying the covering and disjointness properties of the claim in Step 1.

Next, for each branching node B, (y) € N'¥) (at level k of the tree), we apply the claim to generate its descendants,
forming the next generation of nodes N *+1)_ If a ball satisfies the branching condition , it branches into a
finite collection of descendants, where each ball in the descendant set satisfies the same geometric properties as the
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initial node. If a node fails the branching condition, it becomes a terminal node, and no further descendants are
generated.

The predecessor map p : N\ {Bgr(z)} — N is defined by setting p(B’) = B whenever B’ branches out from B.
This establishes the rooted tree structure of (N, p), where Br(z) is the root.

The polarity map e : N' — S? is defined iteratively: for the root Bg(z), we assign polarity e given by Lemma
and for each descendant By,(y;) of a branching node B,(y), we assign the polarity € from the claim, satisfying
le(B) — e(B')| < 6 for any descendant B’ of B.

Note that for the root Br(z), we may also arbitrarily assign the polarity —e. Once this sign is chosen, however,
the signs of the polarities for all descendants are uniquely determined.

The iterative process continues until all nodes in the tree are either terminal or have their descendants constructed.
The covering, disjointness, and approximation properties of the descendants are guaranteed by the claim, which
ensures that every ball in A satisfies the conditions in Proposition [5.12

Finally, the number of descendants at each branching node is bounded by 28072, and the radii of the balls
decrease geometrically by a factor of 6 at each generation. This ensures that the process terminates after a finite
number of steps (since ryi, > 0), yielding a well-defined, finite tree structure. O

The following definition and lemmas extract the relevant analytic information from the rooted tree constructed
in Proposition [5.12] to be used in the following sections:

Definition 5.13. Given 6 > 0 (sufficiently small), let M = M () be the constant provided by Proposition
Suppose z € Z and R > Mr,(z). Let (NV,p) denote the ball tree rooted at Br(z), and let e be the associated
polarity map, both as described in Proposition We partition N into two sets:

N=TUT,

where Z consists of the internal nodes (branching balls), and T consists of the terminal nodes (balls that do not
branch further). A terminal ball B = B,(y) € T is called regular if

ng(y) NZ=a.

The set of regular terminal balls will be denoted as 7'°¢. The non-regular terminal balls will be called neck balls.
We denote them by 77 so that 7 = 778 U Tneck,

We have the following:

Lemma 5.14. In the setting of Deﬁm’tion let 8 € (0,0,), where 8, > 0 is the universal constant provided by
Proposition . For every regular terminal ball B = B,(y) € T*®, the set {u > 0} N Bs,/2(y) can be written as

{u > O} N 339/2 = B(+’3/2) U B(_a'?’/z)7

where B3/ and B(—3/2) are two disjoint connected components of {u>0}NBs,/2(y), characterized by containing
the points y £ ge, where e = e(B) is the polarity of B. In addition, we have:

|Vu(z) —e| < 0° Ve BH3/2) and \Vu(z) +e| < 0° Ve B2, (5.21)

Moreover, the two free boundaries O{u > 0} N OB&E3/2) gre flat CY1 graphs. More precisely, if we choose an
Euclidean coordinate system (X1, Xo, X3) with origin at y and X3 pointing in the direction of e, we have

B2 = (X3 > g™ (X1, X2)} N Bspaly) and B2 = {X3 < g7 (X1, X2)} N Bsya(y),

where the functions g&) : D3,/0 — R, with Ds, /o being the disk {X? + X3 < (3p/2)} in R?, are ordered —that is
g < g™ — and satisfy the estimates:

19" 2 Dy, 2) + € 10?9 | L (s ) < 6.

Proof. Tt follows by combining Proposition with Lemma and Lemma Indeed, if B = B,(y) is a regular
terminal ball then, by definition, Bs,(y) N Z = @. Hence, by Lemma we obtain

C
|D?u| < j in {u >0} N Brya(y),

with C7 universal. Recalling (5.13))—which holds thanks to Proposition 2)— we can use Lemma (with a
covering argument) to conclude. O

Definition 5.15. For given B = B,(y) € N\ 7"k we define B(*), B(7). as follows:
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e If B € 7 is an internal ball and e = e(B), we define (the regular regions)
B = {z € By(y) : e-(x—y)>0%}, BT :={xcByy) : e (x—y) <60}
Similarly, for given A € [1,3/2] we define
BEN = {z € By,(y) : *e-(z—y) > 6%0}.
o If B € 7' is a regular terminal ball we define
B(H) .— g(+:3/2) NB, B .= B(+3/2) N B,
where B(+:3/2) and B(*+3/2) are as in Lemma Also, for for given A € [1,3/2] we define
BEN .= BES2 a4y (y).

Finally, given a ball tree N’ with root Br(z), we define the two subsets Q(T) = Q(+)(Bg(z)) and Q(-) = Q=) (Bg(z))
as
OF = J{B® : BeTuT™*}.

Remark 5.16 (Reversed polarity map). Notice that if (M,p) and e : N' — S? are the tree and polarity map
constructed in Proposition then replacing the map e with —e results in a new polarity map that satisfies
exactly the same properties. In other words, we can always change the sign of the polarity at one node (e.g., the
root), but this change must be propagated to all other nodes accordingly.

It is also useful to observe that for each ball B the set B(~) defined using the polarity e is the same as B(*) for
the polarity —e. Thus, the set Q(~) defined using the polarity e is the same as Q) for the polarity —e.

In the previous definition, we have a lower bound on the gradient inside Q(*):
Lemma 5.17. In the setting of Definitions and let 6 € (0,0,). For all B € ZU T8 we have:
|Vu(z) —e| < CO* Vae BH3? and Vu(z) +e| < CH? Vze B3/, (5.22)
where e = e(B) and C is universal. In particular, |Vu| > 3% in Q).

Proof. For B € T"°8, this is implied by (5.21). For B = B,(y) € T this follows from interior estimates for the
harmonic function u using that ||u — Vy cllp=(p, () < 00 and BE = {z : e (v —2) > 6%p}. O

Notice also that, thanks to the tree structure, Q) cover the whole {u > 0} N Bg(z) except 7"°°k:
Lemma 5.18. In the setting of Definitions[5.13 and[5.15, we have
{u> 0} N Bg(z) c Q) Uyl JTmek,

Proof. We reason by induction using the tree structure. Indeed, let N = (J,5, N be as in Definition and
define -

4
QU = J{B® : BeNOn(ZuT™e)}, and QSN = | Ja®kb), (5.23)
k=0

Then the result follows noticing that
Bgr(z) c Q=S u N U T.

which is established for all £ > 0 using Proposition 4) —more precisely, we use that the union of the balls in
desc(B) covers all Slab(B, e, #?)— and induction. O

6. ESTIMATING NECK RADII FROM SYMMETRIC EXCESS

The goal of this section is to estimate the size of neck radii using a test function introduced by Jerison and Savin
in [55]. More precisely, given a global classical stable solution u : R* — R to Bernoulli satisfying (5.1]), following
Jerison and Savin we define the functions w and c as

w = F(D*u) = f(\, X2, \3) = Z A2 +4 Z A2, and  c:=w'/3 in {u> 0}, (6.1)
Ai>0 i <0

where )\; are the eigenvalues of D?u at a given point. We define (see ([2.3)))

J(u,U) := / cAcdx + / c(c, + He)dH?, for any open set U C R®. (6.2)
{u>0}NU 8{u>0}NU
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We recall that H denotes the mean curvature of the free boundary at a point, and in particular, H(z) = —92 u(x) >
0 for € FB(u) (see Lemma [3.12)). Notice that, by the stability inequality ([2.3]), we have

3w, By) < € ||D?ul?

L1(Bon{u>0})

In addition, it follows from [55] that the two integrands in the definition of J are non-negative. In particular,

J(u,U") < 3(u,U) for any U’ CU. (6.3)
Finally, J enjoys the following scaling property:
J(u,U) = P57 (Uzr, 2(U = 2)), where u, ,(x) == M7 r > 0. (6.4)
T

For notational convenience, for z € Z we define (recall (2.4)
1
0z(u, R) = Eﬁ(u,BR(Z))S-

The goal of this section is to establish the following two propositions. The first one provides a control on g, by the
symmetric excess (recall (2.1))):

Proposition 6.1. For any v € (0, %) there exists C, > 0 such that
0,(u, R) < C, By (u, AR)® forall z€ Z and R > 0.
The second proposition gives a control on the neck radii by o,:

Proposition 6.2. There exists C > 1 universal such that, for any z € Z and R > r.(z),

r(z)

< Coz(u,2R)  for allz' € 2N Bspys(z). (6.5)

6.1. Hessian estimates in L"': Proof of Proposition We start by proving some estimates for positive
harmonic functions in half-balls or flat-Lipschitz domains. The next two results follow from standard arguments,
and we present their proofs in Appendix |D|for the reader’s convenience.

Lemma 6.3. Let r > 0, n > 2, and w : By, N{z, > 0} — (0,00) a positive harmonic function. Then, denoting
x = (2',7,) € R" x R, we have

/ w(z' t)de’ < Cw(re,)r™ for all t € (0,7),
{l='|<3r/2}

where C = C(n) is a dimensional constant.
Lemma 6.4. Letn > 2 and w : By, N D — (0,00) a positive harmonic function, where D = {x,, > p(z')} for some
¢: B, CR"™! - R with
ol + 7Vl < cor.
1

Let v € (0,3). Then, for co small enough depending only on n and ', we have

TQ'Y/*”/ |D*w|" da < Chy w(re,)”, (6.6)
B.ND

for some Cy, o+ depending only on n and +'.

With these two preliminary results at hand, we now focus on a series of estimates for our solution v : R* — R to
Bernoulli. First, we prove that L'-closeness to a vee implies L>-closeness from below:

Lemma 6.5. Lety € R3, e € S%, and R > 0. Then, the following implication holds for all ¢ € (0,1):
1
- (u(z) —e-(r—y))—de<e = u(x) +CeR>e-(x—y) Yo € Bsru(y),
R JizeBry) : e(@—y)>R/8}
where (t)— = max(—t,0) denotes the negative part of t € R and C is universal.
In particular:
1

— lu—Vyeldr <e = u+CeR>V,, in  Bspa(y).
R Br(y)
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Proof. Throughout the proof, we will assume without loss of generality that ¢ > 0 is sufficiently small, since
otherwise the conclusion is trivially true (for some appropriately large C'). Defining
v(z) ;= u(r) —e- (z—y),

our goal is to show that

v>-CeR  in Brrs(y), (6.7)
with C universal.

Since |Vu| < 1 we have [Vv_| < 2, so by our assumption and L'-Lip interpolatiorﬂ we have
[0_ || Lo (Br(y)) < CReY* < R/S,

provided ¢ is small enough. In particular, u > 0 in Dg, := Br(y) N{z :e- (z —y) > R/8}. Thus v is harmonic
and v_ subharmonic in Dg,. Hence, since by assumption

][ v_dx < CeR,
DR,y

the L' to L™ estimates for subharmonic functions give
v_ < CeR in Brpss(y) N{z: (x —y)-e> R/6}.
Since
Oev(x) = Deu(z) — 1 < |Vu(z)| -1 <0 in R?,
(recall that |Vu| < 1), follows. O

One of the cornerstones of this section is the following result, which strongly relies on the geometric information
about {u > 0} provided by the tree structure constructed in Proposition :

Lemma 6.6. Letn = 3. Given~' € (0, %), there exist M = M(v') > 1 and Cy» > 1 (both large constants depending
only on ~') such that the following implication holds for everyz € Z, e € S?, and R > Mr,(z):

1

R B2r(z)
Proof. Note that, by Lemma with p =7/,

RV’*‘/ |D?u)" dx < C,
Br(z)Nn{u>0}

with C universal. Hence, to prove the lemma, we may assume without loss of generality that ¢ is sufficiently small.

As mentioned above, we will rely on the geometric information about {u > 0} provided by the tree structure
constructed in Proposition r a given v’ € (0, %), we will choose an appropriately small # > 0 and consider
the ball tree from Proposition The precise choice of # in terms of 7’ will become clear later in the proof, but
we can already note that 6 — 0+ as Ay =)

For 6 > 0 small depending on 7/, we use Proposition - 5.12] to obtain a ball tree (NV,p) rooted at BR( ) and
polarity map e : N' — S2. Also, we set M (') equal to M(f), the (large) constant from Proposition

We divide the proof into three steps:
Step 1: Define the function v : Bog(z) — R as

U~ Vye|da < e S RV'*3/ |D>u" dx < Cye. (6.8)
Br(z)n{u>0}

v(z) =u(z) —e- (z — 2z).

By Lemma [6.5] we have

v>—CeR in Bsg/s(2) and {u =0} N B3g/s(z) C Slab(B3R/2(z), e, Cz’:‘) (6.9)
with C universal. Since both ¢ and 6 are small enough, we can choose the sign of the polarity e(Br(z)) so that
1
B >1—-— 6.10
e(Ba(m) 21— (6.10)

For a given ball B = B,(y) € N we define its ‘positive pole’ and ‘negative pole’ as:
PH(B) =y + ge(B) and P (B)i=y— ge(B).

1Here we use a rescaled version of the classical interpolation inequality

”sz;}(Bl) < CM)lwlpr e IVWl T ()

which holds true for all Lipschitz functions w defined in the unit ball of R™; cf. Lemma
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Define U := Bsp/2(z) N {u > 0}. We claim that, if w : U — [0, 00) is a non-negative harmonic function, then
> w(Pt(B)) < (K072 'w(P*(Br(2))), (6.11)
BeN®

where K is a universal constant; and analogously with P~ .
Indeed, for any branching ball B’ € N¥), thanks to Harnack’s inequality and Proposition (4) we have

> w(P(B) <O Y
Bedesc(B’) Bedesc(B’
where gy = 0°R, S(B’) = {00¢/16 < e(B') - (z —cent(B’)) < 200,}, and cent(B’) is the center of B’. Thus, applying
Lemma (integrated for t € 0oy/16,2600;)) using again the Harnack inequality we obtain
> w(PY(B)) < K0 2w(PH(B)).
Bedesc(B)

wdr < C(Qgg)_?’/ wdz,

)LQQZ/S(P+(B)) B3y, /2NS(B’)

This implies
Z w(P"(B)) < K672 Z w(P*(B)) forall ¢ > 1,
BeN®) BeN (1)

from which (6.11)) follows.

Step 2: We now show the existence of a constant C.,/, depending only on ', such that:

(a) For every internal or regular terminal ball B € N N (Z U T™°#), we have

’

/B<+> |D*w|" da < C (0°R)*2 w(PH(B))" . (6.12)

b) For every neck-type terminal ball B € N9 0 Tmek e have
(b) y yp

/

/ |D*w|" dx < C.,(0°R)> 2" w(PT(B))” . (6.13)
Bn{u>0}

Indeed, provided that 8 > 0 is chosen small enough, (a) follows from a direct application of Lemma to the
non-negative harmonic function w in B(+3/2).

The proof of (b) is much more involved and relies on Lemmas and together with a suitable covering
argument and a Harnack chain. We now provide the details of the proof.

Note first that, by the definition of a neck-type terminal ball, given B = B,(y) € Tk there exists z € Ba,(y)NZ
with Mr,(z) > o, M = M(). Thus, setting § := 4max{M, M}r,(z) (where M is the universal constant from
Lemma , we have

|D?u| < % in Bsz(z) N {u > 0} and B C By(z), (6.14)

where the Hessian bound follows from Lemma As a consequence of this (note that v = 0 and d,u = 1 on
0{u > 0}), we deduce the following:

For any given ¢y’ € B,(z) N 0{u > 0}, the connected component of B.,(y") N { > 0} whose boundary contains
y' satisfies the assumptions of Lemma (in an appropriate Euclidean coordinate frame), where ¢ > 0 is a small
constant depending only on M (i.e., depending only on «').

Thanks to this observation, we can argue as follows: first, we cover Baz(z) N {dist(-,0{u > 0} < ¢*p} by a finite
collection of balls {Bcg/10(¥}) }1<j<n=n(y) With y; € Ba,(z) N d{u > 0}, and for each j we let y; to be a point
such that Beg/a(y)) C Beg(y)) N {u > 0}.

Then, we cover By;(z)N{dist(-, {u = 0} > ¢?g} with finitely many balls { B.s/s(4}) }1<;j<am such that B 4(i}) C
{u > 0} and the balls {B.5/4(9})}1<j<m have bounded overlapping. This guarantees that M is bounded by
a constant depending only on ¢ (and thus only on 4’). Now, by applying Lemma inside each of the balls
{Beg/10(¥j) }1<j<n, and interior harmonic estimates inside each of the balls {B.;/4(3}) }1<j<m, since g is comparable
to R we get

LR O (D SR A DR (.15
Bn{u>0} 1<j<N 1<j<M

We now claim that, for any given point y" € B;(z) such that B.;/4(y”) C {u > 0}, we have
w(y”) < Crw(P*(B)), (6.16)
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where C; depends only on /. Combining this claim with (6.15)), (b) follows immediately. So, we only need to prove
(6.16)).
To this aim, we first apply Lemma to find continuous path I': [0,1] — Bajz) N {u > 0} such that

r0)=y", T(1)=P"(B).
Next, we show that there exists another continuous path I : [0,1] = B3z N {u > 0} such that
T(0)=y", T(1)=P"(B), and T(s)+ BuyC Bagwm N{u>0}  forallse0,1].
Indeed, we can consider the vector field F' = h(u)Vu, where h : R — [0, 00) is a smooth cut-off such that
o ={y s

and define I'(s) := & (T'(s), cg), where (Df = ®F'(x,t) is the flow of F
Finally, to establish (6.16), we cover I'([0,1]) by a number N (depending only on 7’) of balls of radius cto/2.
This gives a ‘chain of balls’ B.;/2(x;) of length N such that

Baga(wj) N Besgya(wj1) # @, 1<j<N.
Then, applying Harnack inequality along the chain of balls { B.15(x;)}, << (which have sufficient overlap between

consecutive balls), we obtain (6.16)).

Step 3: Consider the function w = v 4 CeR. As proved in Step 1, w is non-negative in Bsp/2(z). We then apply
the estimates from Step 2 to w.

More precisely, in Q) we sum over ¢ the estimate proved in (a), recalling Definition and that the number
of descendants of each node in A is bounded by 28~2 and thus |N(¥)| < (289~2)¢. In this way, by the concavity of

t— 7" and (6.11)), we obtain:
D2y da < / D2w| dx
/Q<+> | | - Z Z B+ | |

>0 BEN)N(ZUTTes)
< CV/RB_Q’)/ Z gB3—27)¢ Z w(P-i-(B))V

£>0 BeN®
: : 1 "
- - y4 14
< Cy R B2 N >|<|N(@| > w(P+(B))> (6.17)
£20 BeN®)
< C»Y/R3727/ Z 0(3727')8 ((280’2)5)1’7/(K9’2)7/ew(P+(BR(z)))7/
>0
’ ’ ’ " ¢ 4
< CyRRY (902 K 2800) (ceR)
£>0

In the last line we used that, by the Harnack inequality and , we have w(P+ (BR(Z))) < CeR, where C is
universal. Notice that, since 7/ < 1/2, we can choose 0 = 0(y') sufficiently small so that 61~27 K7'28(=7") < 1 and
the geometric series above converges to a constant depending only on ~'.

The assumptions of the lemma do not change if we replace e by —e. But, by , doing so reverses the polarity
of the tree and therefore we obtain the same bounds over Q(~).

Finally, we obtain a similar estimate for Y~ 5 rneec [3 |D2v|"" da: reasoning exactly as above but using (b) instead

of (a). Since {u > 0} N Br(z) C Q) UQ) U (T k) (by Lemmal5.18)), the proof is complete. O
We can finally prove Proposition [6.1

Proof of Proposition[6.1. On the one hand, the Hessian estimate in Lemma [6.6] implies:

R ][ |D?*u|" dz < Cy Eq(u,4R)Y,  for any 7' € (0,1/2), (6.18)
Bar(z)N{u>0}

12T hat is, ®F satisfies ®F (z,t) = F(®F (z,t)) for t > 0, with ®F (z,0) = =.
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where C,/ is a constant depending on +'. On the other hand, the Sternberg-Zumbrun stability inequality from

Lemma [£.3] gives:
RQ][ |D2u|2 dx < C.
BQR(Z)PI{’LL>O}

Noticing that % = 3(2 37 '+ (2 w ) -2, we can combine these two inequalities using Holder’s inequality to obtain
R2/3][ |D?u|?/? dz < C,E,(u,4R)",
BQR(Z)Q{U>O}

where v := 73(2“/7) — (%)7 asy — (3)
Finally, applying Jerison-Savin’s stability inequality (2.3)), and noting that ¢? = F(D?u)?/3 < C|D?u|?*/3, we get
R™'33(u, Br(z)) < CE,(u,4R)",
as desired. 0

6.2. The left-hand side of Jerison—Savin controls neck radii: Proof of Proposition The goal of this
subsection is to show the following result, which will imply Proposition

Proposition 6.7. There exists a large universal constant k > 0 such that the following holds.
Let u be a classical solution to the Bernoulli problem in By C R3 with |Vu| < 1 in By and u(0) = 0. If
| D?ul| o (Byn{us0y) < Co for some Cy > 0, then

I1D?ul|Foe (B, A us0y) < CI(u, Ba),
for some C depending only on Cy.
Before proving this result we note that, as its consequence, J is bounded from below at neck balls (see Section:
Lemma 6.8. There exists ¢ > 0 universal such that
J(u, By, (2)(2)) > cr*% (z) >0, forall ze Z.

Proof. For r = r,(z) define @(z) = M Then, by the definition of neck radius and Corollary we have
/ |D*ufPde =n3 and  |D%a|<C  in Byn{a >0},
Bin{a>0}

for some C universal. Thus, we can apply Proposition and obtain
6 = I1D*@ a5, nasop < ClID* @l (,niasoy < CI@, Ba) = Cr~33(u, Bar(2)),
where we have also used (6.4]). This is our desired result. O
Hence, we can prove Proposition [6.2}

Proof of Proposition[6.4 Suppose first that R > M,r,(z), with M, given by Lemma By the choice of M, we
know that By, (,(2z') C Bar(z) for every z' € Bsg/s(z) N 2. Thus, thanks to Lemma (6.8 and the definition of J

(2.3), we have
cri/d( ") < 3(u, Bar, (2)(2)) < I(u, B2r(z)) for all 2’ € B3p/2(z) N Z,

as desired.
Suppose now 7,(z) < R < M,r.(z). On the one hand, Lemma gives

3(u, Ban(2))® _ I(u, Bar, z)(2))°
2R - 2Mor(z)

while on the other hand, thanks to Lemma [5.10
ro(z') < IMori(z) < SMoR  for all 2z’ € B3gry2(2) N Z C Ban,r, (z),2(2) N 2.

0z(u, 2R) =

>c>0,

This gives the desired result. O

The rest of this subsection will now be dedicated to the proof of Proposition
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6.2.1. The test function revisited. Until the end of the subsection, we assume that
u is a classical solution to the Bernoulli problem in By C R? with Q = {u > 0}. (6.19)
We recall that, as a consequence of |55, Theorem 4.1], the function w = F(D?u) (as defined in (6.1])) satisfies

2
wAw—§|Vw|220 in Q={u>0},
wy, +3Hw >0 on 9Q = 0 {u > 0},

where v denotes the inward normal towards {u > 0}, and H is the mean curvature of 9. In particular, A(w®) > 0
in Q for a > %, and (w*), + Hw® > 0 on 99 for 0 < o < % We aim to keep track of the remainder in the previous
inequalities.

We start with the interior inequality. Notice that the function f(A1, A2, A3) = \/ D A>0 A2 4435 A, <0 A? is convex,
therefore (A; — A;)(fx, — fx;) > 0 (here and in the sequel, fx, = J, f). We recall that ();); denote the eigenvalues
of D%u.

Lemma 6.9 (Remainder of interior inequality). Let u be as in (6.19). At all points where A1, A2, A3 are not all
equal (to 0),

2 > Zl§i<j§3,i,j;£k<)‘i =) (= f/\j)w2
3 Yicics, i = M) (I — ) w

Proof. Following the proof of [55, Theorem 4.1], we write

nf 2 nf =3 = M) (fx, — I
ﬁZwi <1+ >

2
wAw — §|Vw|2 >

2 n
wAw > — E w? =
=0 "3 ia i = M) (Fre — ) iz = M) (fx — )

k=1

From [55, eq. (4.7)], we have that for each k =1,...,n,

k=1

nf=Y M=) =)= D =X =H) = D+ D | = = )

itk 1<i<j<n 1<i<k<n 1<k<i<n
= DY =X = Ay
1<i<j<n
i,j 2k
Rearranging gives the desired result, in particular for n = 3. O

Next, we refine the lower bound on the boundary inequality.

Lemma 6.10 (Remainder of boundary inequality). Let u as in (6.19)). Let (A1, A2, A3) be the eigenvalues of D*u
evaluated at points on O{u > 0}, and let us write (A1, A2, A3) = ((u + 1)H, —pH,—H) for some p > —1. Then,

1
wy+3Hw2min{4(ul)2,l}Hw on 0.

Proof. Recall from [55, Section 4.3] that

wy _ Donso N FAY N oA HAH YT AT
— +3=2- .
Hw Hw?

We want to find a positive lower bound of the right-hand side, which in both cases we denote by g(u).
Suppose first that 4 > 0. Then, we have

(L4 m)® = 4p® + 41+ p)* + 42 _ (p—1*Bp+5) >min{1(u—1)2 1}
: b

:2— =
9(n) (4 p)2 + 42 +4 (T4 p)2+4p® +4

Suppose now p < 0. In this case, we get
A+p)?’ =@ +4((A+p)*+p?) 570 +pp
(I+p)2+p2+4 54 2(1+ p)p

In both cases, the proof is complete. O

g(p) =2~ > 1.
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6.2.2. Mean curvature controls Hessian. Our next step consists in proving that the mean curvature of the free
boundary controls the Hessian nearby. This is the purpose of the next:

Proposition 6.11. Let u be as in (6.19) with |[Vu| <1, 0 € FB(u), and |D?*u| < Cy in By. Then

HDQuHim < Cmax{C§, 1} H| Lo (B,nFB(w),

(B1/2n{u>0})
for some C > 0 universal.

To show this result, we first prove some preliminary lemmas. The first one shows that the mean curvature
controls the L' norm of 1 — |Vu|? € [0, 1]:

Lemma 6.12 (Controlling 1 — |[Vu|?). Under the assumptions of Proposition let v be defined as in (3.10)).
Then

/ vdr < Cmax {Cg, 1} [|H|| oo (B,nFB(w))
Bq/on{u>0}
for some universal C.

Proof. For simplicity, let us denote Ho := ||H|| Lo (,nFB(u))- We divide By o N {u > 0} into slabs Sy, := {y € By :
27k=1 < d, <27k} k> 1, where d, = dist (y, FB(u)). Then:

e Since |D%u| < Cy, we have [Vu| > 1 in {d, < ﬁ} and the area of By /,N{d, = t} for t < ﬁ is comparable
to the area of B/, NFB(u) (see e.g. [91, eq. (3.4)]), hence universally bounded (see Lemma . In
particular, for 27% < ﬁ7 Sk can be covered by C22F balls of radius 27%.

e For 2% > ﬁ, Sk can be (trivially) covered by CC§ balls of radius ﬁ.

We now observe the validity of the following Hopf-type estimate: given y € Bj /o, consider the superharmonic
function v, 4,(2) = v(y + dyz) for z € By, and note that By touches d{v, 4, > 0} from the interior at some point
2. Then, combining Lemma [AT] and Lemma [3.12] we get

][ v(z)de = ][ Vy.d,(2) dz < C0yvy a,(20) < CdyHy.
Ba, /2(y) By

Applying this bound inside each of the balls Ba,, ; (yr,;) constructed above to cover the slabs Sk, since d,, , = 2~k
we get

o C2% 40, CC}

%) 4Co
[ r@as( X Sy S ) [ warsce( 3, S o, )H
1/2 dyy, ;/2\Yk.j

2k=2Cp j=1 2k=1 j=1 2k=2CY 2k=1
(e}
< Cmax {C§,1} Y22 * Hy < Cmax {C{,1} H,. O
k=1

Thanks to the previous lemma, we now show that the mean curvature controls L? norm of the Hessian.

Lemma 6.13 (Controlling D?u). Under the assumptions of Proposition we have
/ |D2u\2dx S Cmax{CS’,l} HH”LOO(BQOFB(u))v
B1/4ﬂ{u>0}

for some C universal.

Proof. Let n € C2°(By/2) be a non-negative cut-off function satisfying 7 = 1 inside B, 4, and let v be defined as in
(3.10). We compute

1
/ |D?ul? da < / |D?ul?ndx = = / —Av-ndx
By /an{u>0} By /20 {u>0} 2 Bi/20{u>0}
1 1
= 7/ opv-ndH" " — f/ v (—An)dzx
2 Bl/zﬂFB(u) 2 Bl/gﬂ{’u>0}

gc/ HdH”*wC/ vdz.
Bl/QmFB(U) Bl/2m{u>0}

Combining Lemma [3.3 and Lemma the result follows. O

We can now proceed with the proof of Proposition [6.11
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Proof of Proposition[6.11. By a scaling and covering argument, Lemma, holds replacing B;/4 with B; in the
left-hand side. Hence, thanks to Holder’s inequality, we get

2
</ | D?ul dx> < C’/ |D?ul? dz < C max {CS’, 1} | H || Lo (BynFB ()
Bin{u>0} Bin{u>0}
with C' universal. Recalling Corollary this concludes the proof. O

6.2.3. Conclusion. We can now finally prove Proposition |6.7]

Proof of Proposition[6.7 Without loss of generality we can assume that
Co < do

for some g small universal constant to be chosen.

In fact, once the result is known when Cj is sufficiently small, the general case follows by replacing u with
up(x) = fu(rz) with r = §o/Co. Indeed |D?*u,| < & inside By),, so applying the result to u, together with a
covering yields the desired estimate for u near the free boundary. Using Proposition to relate a Hessian bound
on the boundary with a Hessian bound in the interior, yields the desired result (up to redefining k).

So, from now on, we assume that ||D2u||Loc(an{u>0}) < g for some §j sufficiently small, to be fixed later. We
divide the proof into five steps.

Step 1: We first perform an expansion of u around the origin.
Since [|D?ul| o (Byn{us0}) < do, we have

0<H<Cé onBynd{u>0}. (6.20)
We select a subset on which H satisfies a doubling property as follows. Let

263 .= 3 _ H < 4
8y (2~ o) H (@) < o

be attained at zg. Then, by (6.20)), ro := % — |xo| > %5063 > 3. Fory € By, set

1 _
a(y) = T—u(mo + 7oy), H(y) = roH(xg + 1oy) for y € 0{u > 0}.

0
Note that B B
H(0) = 26°, H(y) <48* for y € Byjs. (6.21)
In addition, since |D?%i| < Cdp in By, Lemma gives
/ |D?af® de < 050/ |D?a|? de < C83,

By sn{u>0} By gn{a>0}
and therefore (recall Lemma |3.11] assuming ¢ small),

|D*u| < C6  in Byen{u>0}, for k=234 (6.22)

Since §2 < Cdy, in order to have § sufficiently small it is enough to assume &y small.
Let us use expansions of @ around 0. Up to a rotation, we also assume v(0) = V@(0) = es. Thus, in principal
coordinates, we have

3 3
1_1,(1') =3+ Z aix? + Z Aull'? + Z A”JZL%.’E] + A123£L'1.’E2(E3 + O(|.’E|4) in {’L_L > 0} (623)
i=1 i=1 1<iAj<3

where all the coefficients are bounded, and the big O notation is with universal constants.
Thanks to this expansion, it follows that

3 2
FB(a) = {mg =— Zaixf + O(|x|3)} = {xg =— Zaix? + O(|x3)} . (6.24)

Also az = —6° (since H(0) = 26%), and the harmonicity of @ inside By N {u > 0} gives

3
1 _ < a1+ as = (53
0=-Au=(a; +as—6&° +3§ A + Aiizi +O(|z]?) = ’ 6.25
2 om0 = 1<;<3 ity + Ot 3As33 + A113 + Az = 0. (6:25
Let us now obtain a relation from the fact that |Va| =1 on FB(@). Since

_ T
Vu = (20,11'1 + O(|1’|2), QG,QLCQ + O(|1’|2), 1+ 20,3%3 + A113{E% + A223x§ + A123$1£L'2 + O(l’g) + O(|(E|3)) 5
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then on FB(u) we have (recall and that az = —§%)
(Va)s = (1+26%(a123 + aza3) + A113xT + Agzx3 + Arazzixs + O(|z]?))
and therefore
1= |Val]? = 4(a32? + a3x3) + 1+ 46%(a123 + aga?) + 2411307 + 2490373 + 241937129 + O(|2[?)
for € FB(u). Looking at the coefficients of 2 and 23, we deduce that
113(0) = 24113 = —4a? — 453y, TUg23(0) = 24903 = —4a3 — 45%as. (6.26)

Step 2: By analyzing the remainder in the stability inequality, we identify two possible regimes.

More precisely, since the remainder of the boundary inequality in Lemma vanishes whenever (A1, A2, A3) =

(2H,—H,—H), we analyze two cases depending on the closeness of D%u(0) to diag(2H (0), —H (0), —H(0)).
To this aim, let us write the eigenvalues of D?% on the FB(u) as

)\1 = (u + I)H, /\2 = —/j,H, )\3 = —I{7 (627)
where p1: FB(@) — [—3, +00) is defined as

07, u(z)
max —_—.
T7€S2:7-Viu(x)=0 H(I)

Then, thanks to Lemma [6.10L w := F(D?u) satisfies

p(x) +1:=

= 1 _ 1 _
(w3), + Hws = gw_g (w,, + SHw) > T min {(x —1)*,1} Huws. (6.28)
Consider a small threshold eg € (0, 1) to be fixed later. At 0 € FB(a), we will distinguish between two cases:

(1) |p(0) = 1| > e;
(2) |p(0) = 1] <em.

Step 3: Case holds. -
We observe first that, in a neighborhood of 0, u(z) is a Lipschitz function. More precisely, since H(0) = 26% and
|D3u| < C§, we have H(x) > 63 on FB(u) N B,s2 for some ¢ > 0 small. Therefore

02 _u(x) ) 52
T <O —— + — <C§*  forall FB(@) N B.s> "es?*nVa(x)t.
Hz) _C<H(x)+H2(m)>_C orall ze€FB(a)N B2, 7,7 €S°NVau(x)

This implies that p(z) is obtained as the maximum of Lipschitz functions with gradient bounded by C'6~*, thus
|Vou(z) <C6~*  forall FB(a@)N Bes2, 7 €S?>NVa(z)h,

for some universal C. Thus, since we are in case (|1]),

-

lu(z) — 1| > %E for all = € FB(@) N Bys, (6.29)

where § is small enough depending on £, which will be fixed universal. Hence, since w > H, thanks to (6.28)—(6.29)
we get

2
J(, B1) > 3(u, Bss) > / w3 ((w%)y +Hw%) dH? > g—E/ Huw3dH? > ce%,6".
FB(a)NB,s 48 JrB(a)nB,s
Step 4: Case holds.
In this case we have that
|D?4(0) — 263diag(2, —1, —1)| < 2epd°. (6.30)
Let A(z) := 6 3D?u(6%x). Then, recalling (6.22),
|A(0) — 2diag(2, —1, —1)| < 2ep, and  |DA(z)|+ |[D*A(z)] <C in Byn{a(6*-) >0} (6.31)

In particular, if we denote by A (z) and e{(z) respectively the largest eigenvalue and the corresponding (unit)
eigenvector of A(x), then A\{!(z) is simple near the origin. Hence, because of ([6.31]),

VAL ()| 4 |D?M(2)| + |Deft(z)| < C for z e B.n{a(8%-) >0},

for some ¢ and C universal. Thus, if we denote by (A1 (z), A2(x), A3(z)) the eigenvalues of D?u(z) at z € Bss N
{u > 0}, with A;(x) being the largest one, and by e;(z) the (unit) eigenvector corresponding to A;(z), then

STV ()| + 8D A1 ()| + 62| Dey(z)| < C for @ € Begz N {w > 0}. (6.32)
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Furthermore, by (6.30) and (6.32)),

I\ (z) — 463 < 4epd®, Ao (z) +28°| < 4epd®, A3(z) +26°| < 4epd®  for x € BeypN{u>0}. (6.33)
Recalling the interior inequality from Lemma since ffx, = A1, ffa, = 4o, [, = 43, and (Ni—Aj)(fa, —fa,) =
0, we get (notice w3 Aws = %w_% (wAw — 2|Vw[?))

2 Xi — X)) (Fas — fns
J(u, B1) > J(u, Bss) > */ Z i = A)(fx = ) w,%w_% dz

(@>000Bys 1opmzic; M T AU = )+ g = M)y = fa)
{i,5,k}={1,2,3}

2 (A1 = A) (A1 —4N) o _1
=9 / (A1 = Ar) (A1 —4Ag) +4(N; — Ap)?

{a>01NBs (.k}={(2.3}

2 6—8 12 — 20 1
> 7/ ( aE)( 6E) (w% + w%)w‘% dxr > 7/ gw_%_2 dx,
{a>0}NB; {

9 {6+ 8eg)(12 + 20ex) + 2562, =9

for e small universal, where we have denoted
1
g =w(w} +wd) = w? (Vo - uf) = 7 (V@) = (e1@) - Vw?)?).
Notice that the function g is well-defined, since the eigenvector e;(x) is simple around 0. Let us show it is Lipschitz.
Indeed, since w?(z) = 4|D%u(x)|? — 3A\}(z), it follows from (6.22)) and (6.32) that
|V (w?)| + |D*(w?)| < C6* in B N{a >0},

and hence, using (6.32)) again,
|Vg| <C8? in B n{a>0}. (6.35)
We now want to evaluate wws at the origin using that, at 0, we can take ez as an eigenvector (with eigenvalue
—26%).
Recalling ([6.26) and observing that 2a; = A1(0) and 2az = A2(0), it follows that

176113(0) = —)\1(0)2 — 253/\1(0), 17,223(0) = —)\2(0)2 — 263/\2(0)
Given that we are in Case , this implies that
|ﬁ113(0) + 24(56‘ + |ﬂ223(0)| < CEE(SG.
Since w? = f? = A} +4A3 +4A3 and wws = Y-, 5 5 [ f, Wi (see [55, Section 4.1 and Eq. (4.4)]) we get
wws = Y [tz = Y (Fh = Fhg)Tis = (M — 4Xa)tis + (4hs — 4X3) s

i=1,2,3 i=1,2
[124 O(ep)])6® - [-24 + O(eg)]6° + O(eg)6® - O(ep)d® = [-288 +- O(eg)])6® < —26° at y=0,

for e small universal. In particular,

9(0) > (ww3)?(0) > 45'%.
Together with (6.35), this implies
g>6"% in BsN{u>0}.
Inserting this estimate in we obtain (notice also w < C9)
J(u, B1) > 3(t, Besio) > 1/ g™ 372 dx > 15163,
9 {a>0}NB

516

Step 5: We can now conclude the proof.
By Steps 3 and 4 we get that, in all cases,
3(a, By) > 6%. (6.36)
We finally have all the ingredients to proceed with the proof of Proposition [6.7} Indeed, using the notation from
the previous steps, we have

1

I(u, B1) > I(u, By, (x0)) = r§ 3(@, By) > 6%
where we used (6.4), (6.36]), and the fact that ro > §%. Thus, by the definition of 6 and Proposition we obtain
(after a covering argument)

CO(uw,B) > max  H(x)>C7Y[D%l]] .

x€By/3N0{u>0} By/20{u>0})’
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as desired (in particular, we may take x = 128). O

7. SELECTION OF CENTER AND SCALE

In the present section (and until the end of Section E[), we fix the following universal constants:
11 4 1 39 3 3 1

= — = = — — = — = — _ 0 1= —. 1
TEE T T m “Tmo1T1000 T (7.1)
We remark that

37
142l o
Say =1+ 1555 >

7.1. Selection of center and scale. We now set up the contradiction argument that will yield the desired result.
For z € Z and R > r,(z), recall E,(u, R) and g,(u, R) defined in (2.1) and (2.4). By Propositions and

we have ,
T*](%Z ) < Co4(u,2R) < CE,(u,8R)*" for any 2z’ € B3ga(z)NZ, R>r.(z). (7.2)
In this section, it will be convenient to introduce the following definition: for given R > 0, we define
Zr:={z€ Z:r.(z) < R}, (7.3)

which is nonempty for large R due to Lemmal[5.2]
The next lemma provides suitable centers and scales where we can start our argument:

Lemma 7.1. There exist sequences Ry > 0 and zy, € Zg,, with Ry, — 00 as k — 0o, such that

P <y (2B) 0 and ey i= By (u,8R) 50 as koo, 4
k

and
0z(u, 2R)*

E,(u,8R) <222 ="
( ) sz (uaZRk)a

ex  forall z€ Zp, R<Ry. (7.5)

Proof. Let us define the quotient
E,(u,8R)
F.(R):= sup —————.
( ) zEZR Qz(usz)u
Notice that, because of (7.2) and (5.4), Fu(R) < sup,ez, (R/r«(2))* E4(u,8R) < CR* (here we use that E,(u,-)
is always bounded, since |Vu| < 1). So F, is well-defined.
Also, thanks to ([7.2]) and Lemma (recall that 3ay > 1),

_ _ E,(u,8R) 1 M.r,(z)\' >
limsup F,(R) > limsup sup ——————— > — limsup sup w| ——= = 4o00. 7.6
R— o0 U( ) R—oo z€EZR CO‘EZ(U, 8R)30¢7 C« R—oco z€ZpR 8R ( )
Consider now the ‘nondecreasing envelope’ of F),, namely
F.(R) := sup F,(R'),
R'<R
and choose a monotone increasing sequence Ry — oo such that, for each k, there exists z;, € Zg, satisfying

~ E (u SRk) ~
L, (Ry) < 208 o (g 7.7
5 Fu( k)_sz(u;QRk)a_ (Ri) (7.7)
and let ey, := E,, (u,8Ry).

Notice that the numerator in ([7.7) is always bounded using |Vu| < 1. Thus, the only way Fy,(Ry) may diverge

is if the denominator in ([7.7) converges to zero. But then the numerator must converge to zero as well since, by

Lemma 5.7 and (7.2), E,, (u,8Ry) < w(r.(zx)/8Ry) < w(Cog, (u,2Ry)) — 0. This shows (7.4).
In addition, by the definition of F,, we have

E,(u,8R) E,, (u,8Ry) 2%

=20 < FU(Ry) < 2 = for all z € Zg, R < Ry,
ea(u2R)s = T S 2 G AR T w2 Re oo fEs A
so ([7.5)) follows. O
Given ¢ € (0,1) and a ball Bg(z) C R?, recalling (7.3)) we define
N(¢ Br(z) = (CR)®| | Be(@)|,  where A j:=ZcrN Bg(z). (7.8)
Z/E.A;R

This is roughly the number of balls of radius (R needed to cover Z;rNBg(z). More precisely, we have the following:
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Lemma 7.2. There exists flgR C A;R, with #flg)R < CN(C, BR(Z)) for some C' universal, such that
U BCR(Z/) C U BQCR(Z/).
Z’EA;R z’eA;R
Proof. Applying Besicovitch covering theorem to the family of balls {B¢r(z')}, c 4¢ , we can find a subcovering
z,R
./I;R of AiR with bounded overlapping, thus #A;R < C’N(C, BR(Z)). Also,
U BQCR(ZI): U BCR(ZI)-FB(RDA;R-FBQR: U BCR(Z/)-
ZeA; 2/ €AS Z/EAS
O
Starting from Lemma we can define new sequences z; € Z and Ry, > 0 satisfying the following:

Lemma 7.3. Let R, and zy, be the sequences given by Lemma . There exist C, € (0,1] and z, € Z N Bg, (21)
such that, setting B . .
Ry = (i Ry, and g 1= C,?ﬁ"sk,

we have ék — 00, € — 0, and the following properties hold:

0z, (u, 2Ry,) < o

B (z B 7.9
R B0) © Br(a). G SRy S (7.9)
and s
N (¢ Bg, (z)) <C¢™ 3" forall ¢ € (0,1). (7.10)
Moreover, for all k sufficiently large, we have:
~ 4 Ry e ~
ro(z) < CRyEY < 1—(’;5,16/ forall z € ZNByg ,(Zk); (7.11)
and Ca
E,(u,8R) < 2(%) gk for all z € Z with Br(z) C Bz, (zr) and R > gllc/aRk. (7.12)

Here, the constant C is universal and N is given by (7.8)

Proof. We divide the proof into two steps.

Step 1: We first construct fk, show that Ek — 00, and prove and .

Define

(p := inf {C >0 : there exists z € Z¢g, s.t. B¢r,(z) C Bg, (zx) and M < Cﬁ°} .
0z, (U, 2Ry,)
Notice that { =1 and z; = z is always an admissible choice, therefore ¢ < 1. Also, since 7,(z) > ryin > 0 for all
z € Z (recall (5.4)), we must have ¢, > ¢/Ry, > 0.

Now, by the definition of ¢z, there exists (; € [, min{2¢x, 1}] and Zj, € 25 N Br,(zx) (where Ry, = iRy, such
that holds. Also, recalling and that rmiy > 0, since gz, (u, 2]§k) < 0z, (u,2Ry) — 0 as k — oo we deduce
that Ek — 00. Furthermore g, < g5, — 0.

We now prove . Notice that by the definition of {; and the inclusion in , we must have

o (u, 2tR ~
Lf) > the for all t € (0,1), z € 2,5 , B, (2) C By, (2x).
0z, (U, 2Rk)
or equivalently, recalling (2.4)),
j(u7 BQtﬁk (Z)) %
I(u, By, (Z1))
Now, for k fixed and ¢ € (0,1), define A, := AS _ (recall (7)), so that in the definition of N((, Bg, (z1)), we
Zp, Ry k

!

for all t € (0,1), z € 2,5 , B, (2z) C By, (2x). (7.13)

k

are considering the covering {B,p (2') : 2’ € Ac}. Then, by Besicovitch covering theorem there exists a universal

(1) (Cs)
.,

constant C3 such that, for C5 distinct subfamilies A ¢ C A¢, we have

Cs
U Ba@)clU U Bug (@) (7.14)

2/ €A i=1yeal



43

and, for each j € {1,...,Cs}, the family {B .y (2') : 2" € Aéj)} consists of disjoint balls. Thus

j(U,B2R’k (Zk)> > Tl(u, U Bcﬁk (z/)> > Z J (u’BCEk (Z/)) > #Aé]) mj‘nj 5 (’LL BCRk( )) ,
zeAY) 2/ €AY €

for every j € {1,...,C5}. Also, because of (7.13)),
L 148
min J (u,Bgﬁk(z’)> > (¢/2)" 3

I(u, By, (21));

ZIGAEJ)
therefore _
#Aéj) <C for every j € {1,...,Cs},
for some universal constant C. Thus, choosing /14 = U]C:3 1 AU )7 it follows from (|7.14]) that
+Bo
U Bir (@) U Bag, () with #Ac <C¢ (7.15)
Z/EAC Z/EAC
and
1+ﬁo
U B, ()| < COCR) #A: < C(CR)* T
z E.Ag

Thus, (7.10) holds.
Step 2: We now prove and -

Note that, by the monot0n1c1ty of J (see (6.3)) and the definition of o (see (2.4)), for all R > 0 and z € Bx(z)
such that Br(z) C By(z) we have

Combined with (7.5)), this gives

E,(u,8R) < 2(%) & forall z€Zgand R< Ry, with Br(z) C By, (&). (7.16)

Then, using (7.2) and (7.16) with z =z, € Z5 and R = Ry, (7.17)) follows (recall that 3y > 1). Consequently,

noticing that

ZrO Byg, 5(#) = 20 Byp, »(#)  for all R > &/ Ry, (7.17)

(7-16) implies (7-12). 0

7.2. Definition of U, and U_. Recall the sets Q) introduced in Lemma Our first goal is showing the
following lemma—a structural property that says that the sets Q) = Q&) ¢ {u > 0} are connected, disjoint open
sets of {u > 0} (roughly, two half-spaces in Br(z), which only miss 77¢k):

Lemma 7.4. Let (N,p) be the tree provided by Proposition with root Br(z), and let Q&) = Q&) (Bg(z)) be
as in Definition [5. 15

Then there exists 07 > 0 universal such that, for all 8 € (0,6.), Q) and Q) are disjoint, open, connected, and
satisfy

{#e-(x—2)>0*R} c QP c {xe-(x—2z) > —0*R}  in Bg(z),
where e is the polarity of the root. Moreover, their union covers {u > 0} N Bgr(z) minus the union of ‘neck-type’
terminal balls:

({u>0}ynBg(z) \|J7* caP ua).
The proof of Lemma relies crucially on the following result:

Lemma 7.5. Under the same assumptions as in Lemman define I := Vu|(,~0y and denote by O = oF'(2,1)
the associated flow (with mazimal domain):

{ OF (z,t) = F(OF (1)) for t>0,
o (x,0) = =

For any given B € N'\ {Br(z)} and x € B/ there exists 7 > 0 such that ®F (z,t) € BH3/2) fort € [0,7] and
& (z,7') € p(B) Y for some 7' € (0,7) .
(Recall that p(B) is the predecessor of B.) The same statement holds with + replaced by —.

(7.18)
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Proof. We can always assume that 6 € (0, 6,), where 6, is as in Proposition Given some ball B = B,(y) € N
with polarity e and its predecessor p(B) = By (y') —thus ¢ = 6o'— with polarity e’, by Proposition we know
that

yeBy)n iz : le-(x—y) <0}, le—e| <6 (7.19)
Combining this with Lemma one can easily see that (for @ universally small) the integral curves of Vu starting
at B(H5/%) meet p(B)(*+5/4) for some universal time before leaving B(*:3/2), O

We can now show Lemma [7.4]

Proof of Lemma[7.4 We will exploit the tree structure to reason by induction. Note that the covering property
follows from Lemma [5.18
Set N = >0 N® as in Definition and let Q(=6%) as in Lemma (see (5.23)). We need to show that

the sets Q) and Q) are disjoint, connected, and open.

The openness directly follows because each set is a finite union of open sets, intersected with an open ball.

For the connectedness, will show by induction over ¢ = 0,1,2,... that the two sets Q(=61) and Q(S6-) are
connected. Since the tree is finite, these two sets will eventually coincide with Q(+) and Q(~). Since the root is always
internal (see Proposition , Q=01 and Q(=07) coincide respectively with B(t) and B(-) as in Deﬁnition
(with B being the root and e its polarity). Each of these two sets is connected (and they are disjoint). Now
assuming that Q(==1.%) are connected open sets for some ¢ > 1, the result follows by induction from the following
observation, which is a consequence of Proposition (for 6 small): for any given B € N N (Z U T78) we have

BE) A qlst-1,%) £ .

Since for any B € N'¥) we have p(B) € N~ N T, we obtain p(B)®) ¢ Q(=~1.%) 5o the connectedness follows.

To show that Q(F) and Q) are disjoint we use Lemma iteratively. Indeed, if z € Q) N Q)| repeated
iterations of Lemma for both 4+ and — (notice that the flow is always well defined, since the value of u increases
along it) imply that

®(z,T) € Bspya(z) N{e- (z —2z) > 0°R} and ®(z,T_) € Bsgya(z) N{e- (v —z) < —6>R}

for some T > 0, where e = e(Bgr(z)). In addition, ®(z,t) € Bsg/2(z) for all t < max{Ty,T_}. Assume now,
without loss of generality, that T < T_. Then, since ®(z,T,) € Bsg/a(z) N{e- (x—2) > 0?R} and Vu is very close
to e (see (5.22)), for t > Ty the flow goes outside of B3p/2(z) without crossing {e - (x —z) = 0}, a contradiction to
the fact that ®(z,T_) € Bspja(z) N {e- (x —z) < —0*R}. Hence, Q) and Q) are disjoint. O

We can now define the sets Ui and Uj.

Definition 7.6. Given 6 > 0 universal such that Lemma holds, let Ry and Z; be given by Lemma and let

Q) = Q(i)(Bﬁk (2x)) be the two open connected subdomains of {u > 0} N By (zx) constructed in Definition

Fix a subset A C A_g 5 with ¢ = %5,16/0‘ as in Lemma |7.2[ such that
ks

k
1+5o

(20 Bg, (@) + By gze C | Bpae(e),  #A<CE ™
z€A

(note that Agk,ﬁk = Z N Bg, (zx) by (7.17)), and define

(7.20)

Up := U~ Bp ae(z), Uy = (Q<+> mBék/Q(Ek)) \Tp, and U_:= (Q<—> mBﬁk/Q(Zk)) \To. (7.21)
ze A

We note that since Q) N Q(-) = & by Lemma the sets U and U- are disjoint open subsets of By (Zg)-

We also remark that the sets Q) Uy, and Uy depend on k, but we drop this dependence in our notation for the
sake of readability.
The following observations on Uy, U_ will be used several times in the sequel:

Lemma 7.7. Let Q) = Q(i)(Bﬁk (zk)) and UL be as in Deﬁnition above. Then:
(i) The (disjoint open) sets Uy and U_ satisfy
U, UU = ({u > 01N Bﬁk/Q(ak)) \To (7.22)

and
((aU+ UaU_)N Bﬁm('zvk)) \ Ty C 8{u > 0}. (7.23)
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(ii) For allz € Z and R > Ei/aék such that Br(z) C Bﬁk/Q(ik) there is e € S® such that
{ie~ (z —2) > CZ4(Ry /R)“R} CUL C {ie~ (z —2) > —C&(Ry /R)O‘R} in Bg(z), (7.24)
for some C universal.

Proof. (i) We first show that the union of all neck balls of N'= N(Bg (2y)) that intersect B s2(Z %) is contained
in Uy, namely,

U{BeT™" : BNB, @)+ 2} C U (7.25)
To prove this, let B = B,(y) € 7"k with BN Bﬁk/2 (zr) # @. On the one hand, by deﬁnitiorﬂ of neck ball, we
have y € By (z) N {u = 0}, 0 < ORy, B2y(y) N Z is nonempty, and for every z € Ba,(y) N Z it holds o < M (0)r.(z).
On the other hand, picking an arbitrary z € Ba,(y) N Z, implies that r,(z) < C’Rksk < ﬁk~1/ Thus, we
conclude that ¢ < Ekévllc/a as k — oo, and therefore B C Uy (recall (7.21])). This proves (7.25).
Recall now that, by Le Q) Q) and the neck balls cover all of {u > O} N Bﬁk (z1). Thus
7.23

implies (7.22)), from which ([7.23) is a direct consequence.
(i) Let Cy be a large universal constant to be chosen later. Notice that (7.24) becomes trivially true at scales

R < C, Rksi/a with C'= C¢, so we can assume R > C, ﬁ;{‘lm,
From and Lemma we know that, for some e € S2

{u=0}NBg(z) C Slab(BR(z), e, C1(Ry, /R)"Ek> .
with C7 > 1 universal. Hence, recalling and that R > Ekgi/a, we obtain
({u =0} UUy) N Br(z) C Slab (BR(Z), e, 201 (Ry, /R)O‘Ek) .
This will imply , provided we can show that both Uy and U_ must intersect the set
({u> 0} N Bgr(z)) \ Slab(BR(z), e, 201 (Ry, /R)a'gk)

for R > C, Ekév,lv “. To show this we recall that, by the proof of (i), the radii of the neck balls are much smaller

than 51/ O‘Rk Thus, if C, is sufficiently large (depending on the parameter 6 in the construction of the ball tree),
there ex1st balls B € N (in particular, centered at points of {u = 0}) that:

- are either regular terminal or interior;

- are fully contained in Bg(z);

- and their radius is larger than cR, for some ¢ = c(6) > 0.

Reasoning with these balls (and recalling Deﬁnition and Proposition, we deduce that both B(*) and B(-)
(and therefore both U and U_) must intersect {u > 0} N Bg(z) \ Slab( Bg(z), €, 201(}~%k/R)°‘5~k). This concludes
the proof. O

8. LINEARIZATION

In this section, we fix the sets Uy C B3 B /Q(Zk) and Uy from Definition where ]?Zk and zj are given by
Lemma n We define the asymmetric excess A (u, R) for balls Br(z) C B z,) as follows (see (2.11))):

A, (u, R) = Caw bl
(u, R) *en{ﬂfx}aey beR RIBR |/ oBR(Z) @ ot

Ek/Q

(8.1)
= max _  min u(z) —a- (v —z) — bl da.
x€{+,—} a€S?, beR R|BR( ) U*OBR(z)’ (@) ( ) ‘
In this section (and for the following ones) we also fix (in addition to the constants in (7.1))) the constant
1
= 2
X= oo (8.2)

The goal of this section is to show the following result on the decay of the excess, with a two-scale behaviour
depending on the size of the radius. More precisely, we first prove that up to some mesoscopic scale (depending
on £g) there is a C11/3 improvement in flatness, while until a second smaller mesoscopic scale there is a sort of
“preservation on average” of the L°° norm.

1356e Proposition and Definition
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Proposition 8.1. Let Ry, and Zy, be given by Lemma and let RZ = gﬁgﬁk. Then, for everyz € Bﬁk/w(ik)ﬁz,
RA\/3 B
A,(u,R) < (é) & forall Re [R;;,Rk/o} (8.3)
k

for some C > 0 universal. Moreover, there exist ai, a’ €S? and bz_, b R such that
][U i lu—a’ -z —b|de < C’g,le/BR}: for xe€{+,-}, forall re [g,iwxék,RZ], (8.4)
«NB,(z

with C' > 0 universal.
To prove this proposition, we will need several preliminary results that we now present.

8.1. Linearization: auxiliary results. We start by proving the following:

Lemma 8.2. For Br(z) C By, ,,(21) with R > ?i/aék, we have

A, (u,8R) < 0(%) ch
where C' is universal.
Proof. Fixz € Z and R > gllf/aﬁk such that Br(z) C Bék/z(zk)' Also, define n = (%) k-
On the one hand, by (7.12) and Holder’s inequality, we obtain

/ lu— V.| do < CR". (8.5)
Br(z)

On the other hand, by ,
Dy := (Us \ {£e- (z — z) > CnR}) N Br(z) C Slab(Bg(z),e,Cn). (8.6)

(We notice that in the proof of ([7.24)), the vector e is given by Lemma from which we deduce that the unit
vectors e in (8.5) and are indeed the same.)

Also, since u(z) = 0 (because z € Z), from the gradient bound |Vu| < 1 we obtain

sup |u—V,.| < CR. (8.7)
Br(z)

Combining (8.5)),(8.6), and (8.7), we get
/ |u(x) F (e-z)|de < CnR* + C|D+|R < CnR*,
Ut

thus A, (u, R) < Cn, as wanted. O

We next state an abstract lemma that will be applied in the context of Lemmal[7.3] It provides pointwise gradient
and flux bounds in a linearization regime.

Proposition 8.3 (Linearization). There exist ay € S? and by € R such that, denoting v(x) := u(z) —ay -z — by,

we have
1

T][ lv|dz < C'&,
Ry, By, (Z1)NU+

for some C universal. Moreover, for all # € Uy N Bg, 14 (z1),

Vo(@)] = [Va(@) — ay| < c(chst}éizz)) 5

In particular, for all T € OU4 N ng/4(ik) with dist (z, Z) > ﬁkgi/a, we have T € FB(u) and
ﬁk 2a
T _ () < e ~
@)l =1~ s vl <0 55 ) &

where v(T) is the inward unit normal vector to FB(u), and the constant C is universal
The same statement holds with a4 ,by, Uy replaced by a_,b_,U_.
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Proof. By Lemma we have
R\~
A,(u,R) < C(R’“> & (8.8)

as long as Bgr(z) C ng/Q(Zk) and R > ?i/af{k. In particular, choosing z = zj, and R = Ry, and using the definition
of the asymmetric excess in (8.1]), it follows that there exist a; € S? and b, € R such that
1 ~
—4/ lu(z) — ay - @ — by|de < Cgy, (8.9)
R* Ju,.nBg(z)
so the first inequality in the statement of the proposition holds.

Now, fix 7 € Uy N B, 14(zk) and define p := |2 — 2(z)| < B where z(z) € ZD Bpg, /2(2k) is such that
dist (Z, Z) = p. Since |Vu(Z) — ay| < 2, our desired estimate is trivially true if p < C*ngi/a, SO we can assume
p> C*]?ikévllﬁ/a for a universal C, > 2. Moreover, since 7,(z(Z)) < %ﬁké}i/a (by (7.11))), we have B,/»(z) NUy = 2.

Now, on the one hand, set p; := 27p with 0 < j < fax := LlogQ(g—;)J. Then (8.8) gives the existence of a; € S?
and b; € R such that

2 C E}c e
— lu(z) —aj -z —bj|de < — lu(x) —aj -z —bjlde <C|— | & (8.10)
. _ 20 _ .
Pj By, /2(@)NU4 Py Bay (2(2))NU4 Pj
for 0 < j < jmax. Hence, if we set a;__ 41 = a4 and b;_ +1 = b4, it follows from the bounds above and that
C Ri\" . o
|ajfaj—1|§*][ |(ajaj—1)'$|d$§0<k) Eks 1<J < Jmax+1
Pi JB, (aa)NU+ Pj

(note that, because of ([7.24]), at the scales of interest U is roughly a half-space).
On the other hand, since B,>(Z) N Uy = @, it follows from (7.25) that u|U+ is a (classical) solution to the

Bernoulli problem in B, /5(z). Hence, by (8.10) for j = 0, we can apply a rescaled version of Lemma to obtain
_ Rp\*. . _
|Vu(Z) —agl < C{ — | &, inUyNB,u(®).
P

Summing up,
jmax"!‘I I o o [e3
R ~ R -
Vu(@) —ar| <C Y —* EkSC(k> €k-
= Pj P
This proves the desired bound on V.

Finally, assume = € OU; N By, (z1) with dist (z, Z) > Iﬂi'ikg,lc/a. Thanks to (7.23)), since & ¢ Uy then T € FB(u).
Thus, since a4 and Vu(Z) are unit vectors, we get

B 1 s Ek 2a~2
|1—a+-Vu(a:)|:§|a+—Vu(x)| <C N €L,

as desired. O

Proposition 8.4. Let v be as in Proposition . For any given 8 € [0,1] satisfying 12af < 5 — f3,, we have
/ 0,02 dH? < C R}&}”,
(8U+U8U7)QBRIC/8(AZ(]€)
where v is the unit inward normal vector and C depends only on 3.

Remark 8.5. Recalling ([7.1]), one can choose g := % with 0, := %.

Proof. We prove it for U, the same proof works for U_. Observe that, for Z € FB(u), Proposition implies that

_ Rk 204,\)2 _ ~ . 5 ~l/a
< = . > .
19,0(z)] < c<dist G Z)) & for €Uy N By, (@)N {dlst( L2) > RE! }

In particular, since |0,v(Z)| < 2, for any S € [0, 1] we have

o 2a8 "
10,0(z)| < 2|8,0(z)|° < C(cnst](zzg) & for ¥ €U, N By ,(@)N {dist(~,Z) > ng;/a} . (8.11)
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Now, for each t € (0, Iék)7 consider the sets

Dt = U B( )Q8U+HBR /S(Zk)
z'EZﬁBﬁk(ik)

Notice that, by the definition of Uy (cf. Deﬁnition, for ¢t > Iékg,lc/ “ the set D; covers Uy N OU, . In particular,

if £ := RkNI/a then D; \ D; C FB(u) (see (7.23])). Hence, by (7.10)), Lemma , and the perimeter bound from
Lemma @ we obtain

+Bo

H2(Dy \ Dy) < Ct3(t/Ryi)~ for t>1.
In addition, again by (7.23)), H2?(D;) < H*(FB(u) N D;) + H2(8Uy). Thus, arguing as above,
H2(D;) < C(20)2(20/Ry,)~ 3% + CP(i/Ry,) 3 < CP(F/Ry)~ 5"
Hence, combining the last two estimates, we conclude that
H2(D,) < CH2(t/Ry,)~ for t> Ri&)/™. (8.12)

This allows us to obtain the desired estimate, using the following standard ‘layer cake’ formula:
If (Et)tejap) is an increasing collection of (measurable) sets with ¢ — H"(E;) continuous, f : E, — [0,00) is
integrable and satisfies 0 < f < g(¢) in B \ E; and 0 < f < g(a) in E,, where g € C'([a,b]) is nonincreasing, then

+[o

b
Fant < / HE(EL) g/ () dt + HE () g(b) + H (Ea) g(a).

Ey

~ ~ apf
Using this formula with E; = Dy, a = ngllc/a, b= Ry, f=10,v% and g(t) = min { (Rk) E:?‘f, 1} (see (8.11)),
thanks to (8.12)) we obtain

Ry,

/ 10,0 dH2 < c/~ H2(D,)
8U+0B§k/8(zk) ngi/a
~da 1480 Ek
<CRSMTTS é?f/ 2~
0

< Cﬁ Rk}Ek

~ \ 4ap
4 ((RT) =) ‘ dt+ CREEY 4 CRiz ™

B2 5
+ CRkEk

provided that 2 — % —4af — 1> —1, that is, 4a8 < 5/3 — 55/3. O

8.2. The compactness argument. We now present two abstract compactness results that will be used to show
Proposition 8.1}

Lemma 8.6. Let n > 2 and p > 1. For any n > 0 there exists 6 = §(n,n,p) > 0 such that the following holds.
Let Q5 C R™ be a Lipschitz and locally piecewise smooth domain, and let v € H*(By) satisfy

Av=0 in Q;NB and lvllwrre@sne < 1.
Suppose that

By N{x, >} C Qy, Qs N By C{x, > -6}, and / v | A <6,
0QsN By

where v is the inwards unit normal to 0Qs. Then there exists w : By — R, harmonic in By and even in x,, such

that
/ |lv —w|dx <.
QsNB1

Proof. We argue by contradiction. Suppose that the statement does not hold. Then there exists some 7, > 0 such
that, for each k € N, there is some v, and ;. with

Avgy =0 in QpN B and Hvk”wl,p(QkOBl) <1,

and
By n{x, > 1/k} C Q, O, N By CA{xy, > —1/k}, and / |(vg)p| dH™™
oQrNBy

?r\'—‘

such that

/ lvp —w|dz > 1, >0 for all w harmonic in B; and even in x,,.
QrNB;
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Notice first that, by harmonic estimates, up to subsequences we have that vy converges locally uniformly in {z, >
0} N B; to some function v, which satisfies

Ave =0 in {z, >0} N5 and lvoo Wi ({2, >03nBy) < 1.

We now want to show that 0,v00 = 0 on {x,, = 0} N B;. To this aim, let ¢ € C°(B;) and p > 0 (small) be fixed.
For k € NU {oco} with k > 1/p and Qs := {x, > 0},

/ Vo - Vedx / Vi - Ve dx
QrNBy {wn>p,}ﬂ31,“

where AF := (Qx N B1)\ ({&n > p} N Bi_,). In particular, since |A,| < Cpu, by Holder’s inequality with %4— 1% =1
we get

< + Vi - Vedx

AL

)

N R
< IVl o@un) IV ell )| ALY < ClIV@l Lo (myn? - (8.13)

/ Vo - Vedx
Af

We compute now

/ Ve - Ve dx / Vi - Vipdx
{z,>0}NB1 {zn>p}NB1_,

/ Vo - Vo dx
{zn>p}NB1_,

/ Vi - Vodx
QrNBy

where, in the last inequality, we have used (8.13)). By the assumption on vy for k € N, we know

/ Vi - Vodx / v-Vo,pdH" !
QkNB: 99,NB;

4
7

< + ClIVel Lo (myp?

=

<

)

+ OVl i) (IV0 = Vool e (a3 + 7

<

1
+ C|| Vel Lo () <||Vvk = Vool L ({en>puynBi_,) + 2#?’) ;

< ||SDHL°°(B1).
- k

Thus, we have

/ Vs - Ve dx
{z,>0}NB;

Letting k — oo, since vy — Voo smoothly in the interior of {z, > 0} N B; (by harmonic estimates) we deduce that

/ Vs - Ve dx
{z,>0}NB;

and so, by the arbitrariness of p > 0,

ol Lo (B, 1
< % + ClIVoll Lo () (vak — VsollLo ({an>pinBy_,) + 207 ) :

.
7

< OHV<10||L°°(B1)/~‘LP P

/ Voo - Vodzr =0 Ve CX(B).
{z,>0}NB;

This is the weak formulation of

Ave, = 0 in {z, >0}nNBy,
Ontos = 0 on {x, =0}NB;.

In particular, vs, extends evenly to a harmonic function v, defined in the whole B;y. Also, for any p > 0 we have
/ |vg — Vool dz — 0 as k — oo.
{zn>p}NB1—,
Hence, since ||vg||zr(;np,) < 1 for all k € NU {00}, again by Holder inequality we get
[ ton = vl do < Cllo = ooyl AEP < O
AL

Hence, choosing i small enough so that C’up, < &, we reach a contradiction for £ large enough. O

From the previous compactness result, we obtain the following global version:
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Lemma 8.7. Letn>2,p > 1, andd > 0. For any n > 0 there exists 6 = §(n,n,p,d) small such that the following
holds.
Let Q5 C R™ be a Lipschitz and locally piecewise smooth domain, and let v € Hl(Bl/(;) satisfy

1/p 1/p
Av=0 in QsN By, and f |v|? dx +p ][ |Vo|P dz <pH2 for 1<p< i
Q5ﬁBp QgﬁBP

Suppose that
{€,-x>pd} CQs C{é,-x>—pd} in B,, for 1<p<i,
1
o2 /BQ B [ | dH™ ™ < §pttt/2 for 1<p<i,
sNB,

where v is the outwards unit normal to 05, for some €, € S"~! depending on p. Then there exists a harmonic
polynomial pqg of degree at most d such that

/ |U _pd| dx < 7,
QsNB1

where pq is even in the €, direction and satisfies ||ps| p1(p,) < Bl

Proof. We argue by compactness/contradiction. Suppose that the statement is not true, so that there is a sequence
v satisfying the previous hypotheses for d; | 0 but the conclusion fails for a certain n = n, > 0.

Applying Lemma inside each ball B, with 1 < p < i and a standard diagonal argument, we obtain that

1

loc(R™) to some harmonic function v, even with respect to {€; - & = 0}. Also, v, satisfies the

vy, converges in L
growth bound

][ v dz < pt+1/2 for all p > 1.
BP

By the Liouville theorem, v, must be a harmonic polynomial of degree < d, thus reaching a contradiction for k
large enough. Finally, the bound ||ps|/z1(p,) < |Bi| comes from the growth bound with p = 1. O

In analogy with Lemmas we also have the following general estimates for monotone harmonic functions:

Lemma 8.8. Suppose that n > 2 and w : Bo N {z, > 0} — (0,00) is a harmonic function satisfying Opw < 0 in
By N {x, > 0}. Then, denoting z = (2',x,) € R"™1 x R, for every q € (1,00) we have

/ [Vwl| (2 t) da’ < Ct("_l)(l_‘”/ |\Vw|9dx  for all t e (0,1),
{lz’'[<3/2} Ban{z,>1/4}
where C' depends only on n and q.
Proof. Denote B = B, N{x, >0} C R" and B, = {2’ : |2/| < r} C R*~!. By harmonic estimates and Poincaré
inequality,
[w = ¢l (B an{en>1/3}) < Cllw = ¢l La(Bon{zn>1/4}) < ClIVW| La(Byn {20 >1/4})
where C' = C(n,q) > is a constant. Now, up to replacing w by

w—=c

1
+ )
20,4V La(Bynie,>1/4)) 2

we can assume that 0 < w < 1 inside B7/4 N{z, > 1/3}. Thus, since d,w < 0, it follows that w(e,) <1 and w > 0
in B;)r/27 and under these assumptions we need to prove that

/ |Vw|?(2',t) da’ < Cytn=DE=0),
{lo'|<3/2}

To this aim, set w, := d,w. By standard Poisson kernel bounds, since w is harmonic with w(e,) < 1 and w > 0
in B:?/Q, it follows that ||w($"0)|\L1(Bg/4) < C. Similarly, since w, is harmonic with |wy(e,)| < C and w, < 0 in

B;/2, we also get ||wn(x’,0)||L1(Bg/4) <C.
Now, let us denote respectively by @ and w,, the harmonic extensions inside {z, > 0} of w(-,0)1 B 4 and

w—w

Tn

< C. In particular,
crB2)

wy(+,0)1 B, Then, by boundary Harnack, we have ‘

0= @llon s ) + 0 = @l s,y < C: (5.14)



51

Now, the Poisson representation for the half-space {x,, > 0} C R™ reads
t
.
(|72 + t2)n/2
Thus, recalling that ||w(-, )||L1 go-1y T [[@n (-, 0)||%1(Rn,1) < C, by Young’s inequality and a direct computation we
get

W(-,t) = P(,t) % 0(+,0), Wn(-,t) = P(-,t) *p Wp(-,0), P/ t) ==

10 O sty + 1T D[ sy < CIPC o sy < Gt D00 g > 1.
In particular, thanks to (8.14]),
1)) (n—1)(1-q)
[Jw( at)HLq(BéM) + [Jwn(, )HLq(BS/4) < Gyt .
120(-,t), by Wa estimate for (—A,/)'/? imply that

190Dl gy < CallwC gy + ln (O gy ) < Cat® D00 g e (1,00).

Finally, since w,(-,t) = —(—A)

Using again (8.14]), we get the desired bound on Vw. a
As shown in Appendix [D] Lemma implies the following result in flat-Lipschitz domains:

Lemma 8.9. Let n > 2 and fir q € (1,-"5). Assume that w : Ba, N D — (0,00) is a positive harmonic function
inside D = {x, > p(2')}, where ¢ : B, C R"™! — R satisfies
ol +7[Vep| < cor

Assume, in addition, that O,w < 0 in B, N D. Then, for ¢, small enough depending only on n and q, we have

/ [Vw|?dx < C, [Vw|? dx,
B,.ND Bor.N{z3>r/4}

where Cy depends only on n and q.

To show Proposition we will need to apply Lemma to a suitable sequence. The following result will
ensure that the sequence satisfies the hypotheses of Lemma [8.7

Lemma 8.10. Letp € [1, 7] and 4 = . There exists €, depending only on p such that if 0 < &, < €, the following

i
holds for any z € BRk/s(zk) nz.

Let ay € S? and by € R be given by Proposition and assume that for some § >0 and R € (Ekal'w Rk/S)
we have

= |lu—a-z—blde <&, forsomea682with|a—a+|§§,1€/2andb€R.
R Ju nBr(z)

1 — o) e —
7f |u_a.x_b|pdx—|—][ Vu—a|pd$<c<(€k5)p+Rki‘:]l;r’y)a
Rpr U;NBg 2 (z) UiNBR2(z) R

where C' depends only on p.

Then

Proof. Up to a rotation, we can assume that a; = e3. We write v = u — 23 — b and divide the proof into two steps.
Step 1: we prove the W1? bound.

~ 1
We begin by noticing that if u(z) > R g}ljw ther. dlst (z,2) > R;f““ > Ripep aslongas 147 < 1%1 (the
chosen value 4 = i works since a = —) Thus, thanks to Proposition

l-a 5
Vu—es| <CEF* <1 in Q) NBp (@), where Q] :=U,n {u > Rkslﬂ} . (8.15)

1r:v 11—«

Note that (8.15) implies that dsu > 0 in Q+ as long as €-e3 > £,° > CEH“. Hence, noticing that {u =
1—o

R e 8U+ N Bg, /5(z) = @, we deduce that o0 N Bp, 5(2) is an g, 2 -Lipschitz graph both in the es

14‘Combining classical Calderén—Zygmund estimates for the Riesz transform with interior estimates for %—harmonic functions, one
obtains the following: If (—A)!/2u = f in By C R? with f € LP(B1) and p € (1,00), then
u(y)]
I, ) < Cap (ISl + [ 1ot

I5Recall that [Vu| < 1in R and Z C {u = 0}.
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~1/2

direction and in the a direction (recall that, by assumption, |a — es] = la —aq| < €/7). In particular, for any
Yo € 0L N Bp, /5(z) we have (using 7 < Loo)
{xs > pe)} C Q] —yo C {z3 > —pg)} in B,, for any p € (0, Ry/8). (8.16)
We divide the set Uy N Bg/2(2z) into two regions:
Uy N Brya(z) = A1 U Ay, where A; := QzﬁBR/Q(zL Ay = (U+\Qi)OBR/2(z). (8.17)

Now, we first use Lemma in A; (recall A; is a flat-Lipschitz domain in the ez direction, and notice that
O3v < |Vu| — 1 < 0) with a covering argument to obtain

/ |[VolP de < C |VolPde < C |VolP de < CR3(ER0)P,
Ay Bsr/s3(z)N{(z—2z)-e3>R/12} Byr/3(z)N{(z—2)-a>R/15}

where the last inequality follows by interior harmonic estimates and the L!-smallness assumption of v inside Uy N
Br(z) D Byry3(z) N {(z —z) -a > R/20}.

Concerning Ay, Lemma [3.4] together with the coarea formula and the fact that the gradient is lower bounded in
QF) 5 Uy (see Lemma D imply that |As] < CR2R;€§,1€+7. Hence, since |Vv| < 2,

/ |[VolP de < C’RQEk?,l;:Y.
Ao

This proves the desired bound on |Vu|P.

Step 2: We now prove the LP bound.
As before, consider the sets A; and Ay as in (8.17). Notice first that, since |Vv| < 2, by the L' bound of v in
Br(z) we deduce that |v]| < CR in Ay. Hence,

/ [P dz < CRP|As| < CRPY2R,ET.
Az

On the other hand, since A; is a Lipschitz domain, by Sobolev embedding (see, for example, [1, Theorem 3]) and
Holder inequality we get

1/p 2/3
(7[ |U|pd33) §<][ |v|3/2dm> <4 plaz+crt Vo da
Ay Aq Ay Ay

1/p
3
<C |v|dz + CR (][ |Vol? dx) whenever 1<p< —.

A1 Al 2

Thus, using Step 1 and the assumption on v, we get the desired estimate. O
8.3. Proof of Proposition We conclude by proving the main result of this section.

Proof of Proposition[8.1, We split the proof into two steps.

Step 1: We first show an algebraic decay of A from scale ﬁk to scale Rbk (with given center z). More precisely, we
start by showing

1/2

A,(u,R) < C, (If:) &, forall Re [R;,fzk/m} : (8.18)
k

for some C, universal. Note that follows directly from this bound, choosing C' = CS.

Let us denote Ry := 24}?;6, and let ¢y € N be a large constant to be fixed. Thanks to Lemma up to choosing
C, sufficiently large (depending only on ¢), we can assume that holds for R = R4, R5, Re, R7, ..., Ry,.

We now argue by induction and prove the following: if holds for R = R4, Rs, Rg, R7,..., Ry for some
¢ > {y such that 2=¢ > gy, then holds for Ry41. This will imply the desired bound.

To prove the inductive step, we will apply Lemma [8.7] to a suitable function. Recall that A, is given by the
maximum of two integrals, one inside Uy and one inside U_ (see (8.1))). Here we just prove the estimate for Uy,
since the case of U_ is completely analogous.

Fix z € Bﬁk/w(’zvk) N Z. By the inductive hypothesis, for all m = 4,5,6,...,¢ there exist a,, € S® and b,, € R
such that .

Brl Ju.nn - [om| dz < Co27™/2 R, &, where v, (1) := u() — @y - T — by (8.19)
m +NB R, (z
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Then, by the triangle inequality (similarly to Proposition using that U, N B,(z) is roughly a half-space at scales
p> Rkek/ > r.(z)) we get
Rm|am - am+1| + |bm - bm+1| < CCOQ_m/Qngk-
In particular, this implies that for any 4 < ¢; < /5 < ¢ we have
lag, — ag,| < CC.27/%,, lbe, — by, | < CC274/2 Ry . (8.20)

Furthermore, if we consider the function v(x) = u(x) — a4 - © — by provided by Proposition by the very same
reason we also have

lag, —ay| < CCo8),  forany 4 < <. (8.21)
Fix now p > 1 satisfying HA_’T*X > 1+ % (for instance, one can choose p = 1+ %)7 and recall that by assumption
2=t > gX. Then, thanks to , we can apply Lemma with § = C,27"/2 to deduce that, for any 4 < m < ¢,
R%n g o P da + ][
+NBg,, /2(2) UtNBr,, /2(2)
Using , this implies that

1 ~ ~
R—p][ |w|pdac+][ |V |P dz < (CC.27™/28;,)P Vm e {l—{y,..., 0},
m JULNBR,, /2(2) Ut+NBg,, /2(2)

|V |P de < (CC.27™/28,)P.

for some C' universal. Hence, if we define y(z) := (CCo2 /2 Ry&;) ‘vy(z + Ryx), we get

1/p 1/p
(][ |Vﬁg|pdx) < p'/?, (][ |17g|pdx) < p3?, for pe {20,222 ... 2%,
RN (Uy—2z)NB, s R; Y (Uy—2)NB, 2

(8.22)
On the other hand, Proposition [8:4] and Remark [B.5] yield

/ |a ’U|2 dHQ < CR2~2+5
dU4NBRr, ()
Also, by the triangle inequality and (8.21)),
1 ~ ~
1 —v-a? = Z|Vu —ag* < |Vu—a|* + (CCE)* =41 —v-ay|* + (CCLE)* on FB(u),

therefore
10,ve|* < 40,0 + (CCLEx)* on FB(u).

~ 5—Bo ~
Recalling that H2(9Up) < CR?E,* < CR2E% (see (B12)) and that H2(AU, N Bg,(z)) < CR? + H*(Uy N
Bék/z(zk)) < CR? (see Lemma [3.3[and - , we then obtain

/ 10,02 dH? < CREZH 4 / 10, 0e[? dH2
8U+OBR4(Z) 3U+F‘IBR4(Z)\8U0
<CR? (~2+6c + ngé) +4/ 18,0 dH? < C R2 (~2+6o + C()Ek)
6U+QBR4(Z)\8U0

By Holder’s inequality, using again H2(0U, N Bg,(z)) < Céi, this implies

/w .l < CRET L) — / oy, [T 0 < CBHE2 4 C2F,).
+NBRr, (z +—2)NByr—4
Hence, taking £ small enough depending on C, so that C2g;, < gk/ since 2¢ < (8,)7X and d,/2 — 5x/2 > 0, /4 we
get
/ 10, 00(z)| dH? < C 20282 < 05212802 < CpPRE 1 for pe[1,207Y.  (8.23)
710U —2z)NB,

To go further, we note that (7.12)) and Lemma ii) imply the existence of a vector eg = eg, € S? such that

f [ —Vaepldr < C(Rk> RE; (8.24)
Br(z) R
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(where Holder’s inequality is used) and

{eR-x>C’<%> ng}CU+—zC{eR-x>—C<if) ng} in Bpg.

(As already noted in the proof of Lemma er is the same for both estimates.) Thus, if we denote p = 24R1§;1
and €, =¢ as long as 27¢ > £X > &, we have that the domain R, ' (U, — z) satisfies

2=¢pRy,’
{eozca ™0} c RPN —2) c {5 02 —CE7™p} i B, for 1<p<2h. (8.25)
Also, by with R = Ry, we have
][ lu—|é1- (x—2)||do < Cz. "XRy
Br(z)

and in particular, because of (8.19), it follows that |a, — &1 < CC.8, *X < 0005,16/2.
Thanks to (8.22)), (8.23]), and (8.25)), we can now apply Lemma with d = 1 to ¥y. As a consequence, given
n > 0 fixed (to be chosen universally), for € small enough and ¢, large enough we have

/ |0 —a-x —bldx <,
R (Uy—2)NByy2

for some a € R? with a-¢é; =0 and b € R, with |a| + |b] < C. In terms of u, this gives

Rg_g/ U(I’) —ag-x—by — éCong*f/Qa . (l‘ — Z) — éCoRggk2*4/2b dx < éCoRegk24/277.
U+QBRZ/2(z)

Let us denote by41 := by +C‘CoRgng’Z/ZbJrC’Cogk2’z/2a~z, as well as apy1 = ay +CC.5,272¢ and Qg1 = ‘ZEE‘

Then, thanks to the fact that |ay — é;] < C’C’ogllc/2 and a - €; = 0 we deduce that |a - ap| < C’Cog]lé/2 and thus
|Got1 — apg1] < 00352/22_6/2’ Combining all together, we obtain

1 [u(2) = a1 - @ = beya| do < CCRE272 (n+ Co8%).
U+QBR[/2(z)

We now choose 1 small so that C'n < %, which in turn fixes £y, C,, and an upper bound for . Then, choosing &
small enough so that CC’OE}C/ 2 < %, we get (8.18]), as desired. This concludes the proof of (8.3).

Step 2: We now show (8.4) for x = +; the same proof holds for *+ = —. Recall that R;’C = giflﬁ?;k. Then, for
Z € Bék/s(zk) N Z fixed, we define w := u — ai -x— bi, where aﬁr € S? and bi € R are such that

][ lu—d’ -z — b |de < CAy,(u, R}) < E}jX/gRbk.
UiNBpy (2)

To prove (8.4)), we will show that, for some small universal constant 3 > 0, it holds that

forall re [5,?2)‘]%;6, R’] there exists ¢ = ¢(r) such that f |lw —¢|dx < C§i+X/3R?€ (r/R2)°.  (8.26)
UyNB,(z)
Notice that this directly yields the desired result by adding a geometric series, since by the triangle inequality,
we have |c(r1) — ¢(r2)| < C§i+X/3R',’€(T1/RZ)B for all ro € (r1/2,71) and r; € [gyzxﬁk,Rbk] (and we may take
c(Ry) = 0).
The first key observation is that, by Proposition 84} arguing as in Step 1 we get

/ 0, w>dH? < CE2T%° R} — 0, w|? dH? < CELT2X(RE)?(r/RS)%° (8.27)
8U+ﬁBﬁk/16(Z) OU4+NB,.(z)

for all r € [g}cﬁxﬁk, RZ}, provided that §, > 4y + 23(1 + 2x) (this is true, for example, choosing 5 < %)

Set ry := Z*KRZ. As in Step 1, we can assume that (8.26]) holds for r = ro,71,79,73,...,7¢ for some ¢ > £y, and
we will show its validity for r,,, as well, as long as 27¢ > 5,16+2X.

Again as in Step 1, by assumption there exist ¢, € R such that, if we define w,,(x) = w(x) — ¢, then

][ || dz < CQ‘Bmale/SR',’C, lem — ce| < 052_67”5?)(/3?{}:, for all 0 <m < L. (8.28)
U+mBT7n (Z)
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Thus, applying Lemma with R =7, and § = C2_Bm§Z/ 3RZ /Tm and using the induction hypothesis, for any
2 <m < { we get

2 \P
][ |wm, |P do + rﬁl][ |Vwp|Pde < C (5,1+X/3Rz2fﬁm) ,
U4+NB,.,, /2(2) U4+NB,.,, /2(2)

for some p > 1 and B > 0 sufficiently small (more precisely, we need Bp < p — 1 and MT*X > 1+ %). By the
triangle inequality and (8.28]), the same holds for wy. Thus, if we define
. wy(z + 1)

We (l’) = zcgi"rx/ng:Q—Bé ’

since B < 1/2 we get

1/p

1/p
][ 1 |1 |P daz +p f |V |P do <pY%  for pe{2°0,2',22 ... 2%}, (8.29)
r; (Us—2)NB, /2 r; ' (Us—2)NB, /2

Also, by (8.27) and Hélder inequality, we have
1

= / 0, ()| dH? < CE* for pe [1,2%). (8.30)
P r;l(E)UJr—z)f‘lB,)

Finally, since rp > E}t“xék > r.(z) (see (7.11))), as in Step 1 we obtain
{6, x> o0z5,(V)p} Cr; (Uy —2) C{é,- 2> —05,(1)p} in B,  for p>1, (8.31)

and |a’, — &| = o0z, (1), where oz, (1) — 0 as k — oco.

Thanks to (8.29), (8.30)), and (8.31]), we can apply Lemma with d = 0 to obtain that, for any n > 0, there
exist € small enough and ¢, large enough such that

/ |we — c|dx <,
r;l(U+—z)ﬁB1/2

for some ¢ € R. Similarly to Step 1, after rescaling we deduce that (8.28)) holds for m = £ + 1, for some suitable
co+1 € R with |epp1 —eo| < C2*M§,1€+X/3R}:. This proves (8.26)), concluding the proof. O

9. PROOFS OF THEOREM [L.5] AND ITS COROLLARIES

In this section, we prove Theorem and Corollaries and As we shall see, Theorem follows from
Proposition together with a contradiction argument.

9.1. Remainder involving symmetric excess. Recall that the Weiss energy W was introduced in (4.5). We
will need two new quantities, M and T, that we now deﬁnem
Recalling that u,(z) = r~tu(rz), given e € S"~1 we define

1
M(u,r,€) := ﬁ/ (u—|e-z|)?dH™ ',  sothat M(u,re) = M(u,,1,¢e) = / (u, —|e-z|)?dH™, (9.1)
" JoB, 2B,
and
1
T(u,r,e):= T+2/ (u—le-z|)*dr, sothat T(u,r e)=T(u,le)= / (u, — |e - z|)?* du. (9.2)
r B, By

Note that 9, (r" 2T (u,r,¢e)) = r" " M(u,r, e), therefore

T2
P2 (u, o, e) — 2T (u, 1y, €) = / "M M(u, s, €) ds for all 0 < ry < 7a. (9.3)
r1

While the quantities M and T are not necessarily monotonem we can still find nice relations between them and
W that will be crucial for our argument.

L6The letter M is motivated by the analogies of our quantity with the so-called Monneau energy, which plays a crucial role in obstacle
problems. However, contrary to that setting, now M is not a monotone quantity.

L7The fact that we can exploit non-monotone quantities is rather remarkable, since usually the lack of monotonicity formulas makes
this type of quantities useless. In this respect, our argument is very robust and we expect it to be useful in several other problems.
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Lemma 9.1. For any e € S*™!, it holds

2
OrW(u,r) > 2r (&vM(u, T, e))
Consequently, for any r >0 and n € (0,1),
M(u,r,e) < [logn| (W (u,r) = W (u,nr)) + 2M(u,nr, €)

and

| log(n)] 2 2
T < W(u,r) — W =M 2
(ury€) < =222 (Wuyr) = W(u, ) + = M(u,nrs e) 0" T (u, 1, ).

Proof. Since u, —x-Vu, = —rd,u,, we have 0, W (u,r) = 2r faBl (Opuy)? dH™ 1 (recall (4.6)). By Cauchy—Schwarz,

O-M(u,r,e) = 2/ (u, — |e - 2|)Opu, dH™ "
0By

<2 / (up — le - x|)2dHr1 / (Opu)2dHr—1 = 2\/1\/[(%7«76)&“7(“’7“)_
0B, 0B 2r

Rearranging the terms, we get the first inequality.
Now, we integrate the first inequality between nr and r, we multiply the result by f;r dpp = |lognl|, and then we
apply Holder inequality:

bgm(ww,r)_wmm>>>2</mdp)/m (9 Mup0))’ dpz2(/n:apmdp)2

p

This gives

%| logn| (W (u,r) — W (u,nr)) > (\/M(u,r, e) — \/M(u,r]r7 6))2 > %M(u, r,e) — M(u,nr, e),

which proves the second inequality.
Finally, using (9.3)) with ro = r and 7y = nr, by the second inequality we get

T(u,re) < r_"_2/ s" T M(u, s, €)ds + 7" T>T (u, nr, €)
7]7‘

r

< r_"_2/ st <log (S) (W (u,s) — W(u,nr)) + 2M(u,nr, e)) ds + 0" T (u, nr, €).
7 n

Since log ( ) < |logn| and W (u,s) < W(u,r) for s € [nr,r] (recall that W (u, -) is non-decreasing), we can bound
the term above by

r

(1108 I(W ) = W(a, ) + 2M(u ) o2 [ 5740 ot ),

nr
from which the third inequality follows easily. O
It will now be convenient to allow the center of the different quantities to vary. To this aim, we denote
WQO(U,T) ZW(U( —xo),r), Mwo(ua T, 6) = M(U( —%),7‘, 6), and Txo(Uﬂ", 6‘) :T(U’( _Io)arv 6).

We want to show the existence of a free boundary point where the Weiss energy is close to its maximum while
T and M are very small, all in terms of €. In this result, it will be crucial that we can prove a bound in £, with a
power strictly larger than 2.

Lemma 9.2. Let a3 be as in (4.7). Then, in the setting of Proposition and for k > 1, there exists § €
Bg, /32( k) NFB(u) such that

2003 — Wy (u, Rbk/16) < gi'*‘X/Q and Ty(u, Rk/4 e) + My (u, Rk/4 e) <2 ~2+x/2
for some e € S2.
Proof. Recall that R, = gzék We divide the proof into three steps.

Step 1: Given any z € B ,,.(Zx) N Z, we start by proving some controls on the vectors a’. and the constants bEt

Ry/16
from Proposition [8.1| (whose dependence on z is omitted).
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Up to a translation, we can assume that z = 0. By (8.4), if we set r,"C = E,lfzxﬁk, then
][ lu—a - x—b|de < C’~1+X/3 for any r € [}, R}, x e {+,—}. (9.4)
U.NB,

b

Since u — a), -  is 2-Lipschitz and vanishes at 0, (9.4) with r = r,ﬁ implies

0| < 2rh + Ce, PR, < CEPRE for x e {+, -} (9.5)

Furthermore, since Rbk > r,(0), Lemma implies that u is L°°-close to a vee Vj . in BR';Z' By the L'-closeness
condition (9.4), we must have |ab+ —e| < 1 (up to replacing e by —e). Consequently, u > 0 in the region
Bps N {a’. -z > R} /16}, where it is harmonic. Thus, by L'-to-L* estimates for harmonic functions, we have

lu—a’ -z —b| < C€i+X/3Rbk in Byps /4 N {a’. -z > R} /8}. This, together with a’, - V(u —a’, - — ") < 0 and
the bound on bi, gives

u(z) > ai “T+ bZ— - C§,1€+X/3R}: > az_ ST — C’g,lc+x/3Rbk in Bpgs /o
By symmetry, the same bound holds for a” , therefore
u(z) > max{d’, - v,a’ -z} — C~1+X/3 in Bpy - (9.6)

Next, we note that the closeness of u to a vee implies that |aZ_ + ab_| < 1, and we want to quantify this. To this
aim, we first note that

inf u=0 foranye L aZ_. (9.7)

B N{e-x>R; /8}

RY /2
~ 1486

Indeed, since the sum of radii of the balls forming Uy is bounded by CR;{EV}C/ “g, " < R} (recall (720)), it follows

from Lemma (7.7 that we can always find free boundary points inside By /5 N {e-x > R’ /8}.

a5r+ab,

laf +a” |

%\a'; +a” |aZ_. Since |aZ_ +a’ | < 1, e is almost unitary and almost parallel to ai +a” . Also, one can readily check

that e - azr = 0. Thus, yields

Now, assume that |’ + a” | > 0 (otherwise there is nothing to prove) and consider the vector e =
+

oy ) s

> 5 - C’EIICJFX/BR?C > c|ai +d |R, — CE}CJFX/?’RZ in Bps/pN {e x> R, /8},

for some universal constant ¢ > 0. Combining this bound with (9.7)), this proves that la’. +a’ | < C~1+X/3R}:. In
particular, recalling (9 , we conclude that

0, +a” | <Cae™® and |+ || < CaLPYOR). (9.8)

Step 2: We now show the existence of a point j € By 5, (z1,) NFB(u) whose distance from Z is comparable to R?.
Indeed, recalling that r,(z') < R}, for all z’ € Bx Ra/32 (zk), it follows from (|7.10) and Lemma that the set

_ (+Bo)x
ZN B, /64 (zr) can be covered by Cg,,  *  balls of radius iR}:. Hence, recalling Definition we also have

N
UoﬂBR /64 Zk U % z) = Sa

_ (4Bo)x
for some z; € Z, where N < C¢,. ° * . Notice now that, thanks to Lemma , (FB(u) UUo) N B, /35(2k) is
contained inside a strip W := Slab (Bﬁk/m(ik),e,gk) of width Ekgk < Rbk. In addition, again by Lemma

FB(u) U (S N W) separates {u > 0} N By, /64(Ek) into two disjoint regions. By projecting these sets onto the

_ (+4Bo)x
hyperplane {e - (v — Zj) = 0}, we see that the area contributed by S N W is of order (R})%s, ° < R , which

means in particular that one can always find a point § € dSNFB(u)N B3 i /32( k). In particular, by the construction,
it follows that

§ € FB(u) N By, ,(7) N {%RZ < dist (-, Z) < gR;:} .
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Let z € ZN Bék/w(ik) be such that dist (y, Z) = |§ — z|. After a translation, we assume z = 0 (so we are putting
ourselves in the setting of Step 1). From (9.4) we know that

f lu—d’ - x— b |de < CE,RY, (9.9)
UiﬁBR;/S(@)

where a’, and b’, satisfy . Notice also that, by assumption, there are no neck centers Z in B RY /4(;9); therefore,
0Uy C FB(u) and Uy UU_ = {u > 0} inside BRz/S(gj), and the restriction of u to Uy is a classical solution to the
Bernoulli problem inside B R /S(g). Consequently, we can apply Lemma (rescaled) to such restrictions to obtain

lu—a’ -z — 0| < C'g,lj_X/?’R',’C and |Vu —d’| < C’g,ljxm in Uj:mBRbk/16(y).
In particular, applying the first bound above with = = 4 € FB(u) it follows that |a’. - 5 + 1’| < Cf??X/?’R;:, that
combined with the bounds above implies

lu—a’ - (x—7) < C'g,le/SR}: and |Vu —a’| < C’g,chrX/g in Ugn BR;/16(5)~
Combining this estimate with 7 we conclude that

{#a’ x> CEPPRY UL — g {xd o> —CEPRY in By
1+x/3
x/ Rbk

i.e., the two free boundaries are C§,1€+X/ ®_flat at scale R /16 and are at distance C&,, from each other.

Since €5 <« 1 for k sufficiently large, combining all these estimates together we get the desired bounds on My

and Ty with e = az_.

Step 3: Let a(z) := IIT?ZU (g + If—%x) be defined in B;. By Step 2 we know that {@ > 0} has two flat connected
components Uy and that, after a rotation
¥ as| <CE X3 |VaTes <Ca,™®  in UrnB, (9.10)
and
(#2525} cOu c {awy = —c5 ™} i By, (9.11)
Let 4% denote the restrictions of @ to Uy, so that & = ™ 4+ @~ and
W (u, R, /16) = W (a,1) = W(at,1) + W(a, 1).

Now, given any solution w to the Bernoulli problem in By, let Q := {w > 0}, so that w = 0 on 99 and Vw coincides
with the inner unit normal. Then, using integration by parts, on the one hand we have

W(w,l):/ (z - Vw — w)wdH? + |2 N By,
0B

and, on the other hand (here we use that, on 92, w = 0 and Vw coincides with the inner unit normal),

/ x - Vwzs dH? — zg dH? = / Vw - Vasdr = / wzx - Vg dH? = / wrs dH2.
QNOBy 0QNB, QNB;, QNOB1 QNOB;

Combining these two identities, we deduce that
W(w,l):/ (x.waw)(w—zg)d’H2+/ 3 dH? + QN By
0B, 00N By
Notice that, applying the divergence theorem to the vector field x3es inside a Lipschitz domain A, it follows that
|[ANBy| = / div(zses) dz = / r3e3 - vdH? + / x3dH>.
ANBy OANB; Zﬁ@Bl
Applying this estimate both with A = By \ Q and A = By := By N {z3 < 0}, we obtain

/ x3dH? — By \ Q| + | By | :/ :E3(1—€3~V)d’}-[2—/ x@d%2+/ x2 dH?,
0NB,; 0N B, (B1\Q)NdB; {£3<0}NdB;

where v is the inner unit normal to €2, and therefore

1
< 7/ |$3Hl/—€3|2d7'l2+/ x5 dH2.
2 JaanB, ((Br\@)A{z3<0})n9B,

/ .I‘gdH2+|QﬁB1 —%|Bl|
oQNB1
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Applying this bound with w = @, and Q = U, recalling (9.10]) and - we get
/ z3dH2 +|QN By =L |B1\+O< 1“‘/3)),
6U+ﬂBl

thus
W(at,1) = / (z-vat —at)(at — a3) dH2 + + 4B+ 0 ( 1+x/3))
8B

Thanks again to (9.10) and (9.11)), we see that the integrand above is bounded by Cgi(HX/ %), This implies that
Wit 1) = 1B+ 0 (gi(ler/S)) — W, (u, R, /16) = W(@,1) = |B;| + O (gi(ux/s)) 7

so the desired bound follows. g

9.2. Proof of Theorem We are now ready to prove our main result.

Proof of Theorem[I.5, We assume the statement to be false. After the reduction provided by Lemma we can
assume u to have a globally bounded Hessian. Then, we can define the neck centers Z as done in Subsection b3
and this set is non-empty because of Lemma

We define the symmetric excess E,(u,R) at any z € Z and R > 0 as in . By Lemma there exist
Ry, — oo and z; € Z such that

e = Eg, (u,8R;) — 0 as k — oo.

Moreover, by Lemma there are Ry = fkRk — oo and zy € ZNBg, (zx) such that (7.12) holds, with £, = g:,?ﬁ"sk
and ¢ € (0,1].

Now, by . the monotonicity of the Weiss energy, and Lemma (using the notation there, as well), there
exists a point § € By, /32( &) N FB(u) such that

By| — & < Wy(u,r) < |By|  for all r > R/16.
Thus, combining this bound with Lemmas and we get (for e € S? as in Lemma
Ty(u, 32Ry, ¢) < |log(CRy/R2)[E /2 4 My (u, R}, /16, ¢) + Ty(u, R} /16,¢) < C|log(CpE)|E0 /2.

where we used that Rk = Eka = &g CkRk Now, recalling recalling &, = QB" €k, it follows that |10g(§;c )|5X/3 —0
as € — 0. Hence, in particular,

Ty(u,32Ri,e) <er X% for k> 1.

(Here is the only place in the paper where we are using that 8, > 0.) Since Bgg, (zr) C Baag, (¥), for k sufficiently
large we get

39\ 5 1/2
ex = By, (1,8Ry) < (Ty, (u,8Ry, €)'/ < ((8) Tg(u,32Rk,e)) < 2Pelt/12, (9.12)

a contradiction. O

Remark 9.3. The conditions to be satisfied by all the constants appearing throughout the paper are:

1— 3 5— B,
3ay>1, 1208<5-fo, 6.=2026-1)>0, 7F<-—2 S<ac 6’8, p<1+7,
(07
as well as
- ~ p-1 1+5—-p do _ DX
Ay +2(1 4+ 2x)3 < 6o, <P < Tr7P %o 52X
X +2(1+2x)8 6 , X Trp 525
One possible choice is:
1 11 39 11 21 1 1 1 1
= Bm-d— A= =, P B= o o=, = —— A= —.
Po=300 =5t ““50 "33 P P m 100 X7 5000 7T 10
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9.3. Proofs of Corollaries and Corollaries and are now rather standard consequences of Theo-
rem We sketch their proofs here for the reader’s convenience:

Proof of Corollary[1.6 Let u be a global classical solution of the Bernoulli problem in R* satisfying 0,,u > 0 in
{u > 0}. We start by noticing that u is stable. Indeed, for every smooth compactly supported function ¢, let
spt(§) C K = K’ x [-C, C] for some compact set K’ C R3. Then, whenever K N {u > 0} # & we have
inf  Osu > c(u, K) >0
Kn{u>0}

(see, for instance, [36, Lemma 4.1]), which shows that translations of the graph of u in the x4 direction locally
foliate the graph of w. It is then a standard fact that this property implies the minimality of u with respect to
sufficiently small variations and, therefore, its stability (for a detailed proof of this fact see, for instance, [2, Proof
of Theorem 4.5])@

Suppose now, by contradiction, that D?u # 0 in {u > 0}. By Lemma there exists a (classical) stable solution
(which, as an abuse of notation, we still denote u) satisfying

|D?ul <1 in {u >0} and |D?u(0)] = 1.

Also, as one can easily check, the proof Lemma provides a new function that will still satisfy monotonicity but
in the weaker form 9,,u > 0. Moreover, up to restricting « to a single connected component of {u > 0}, we can
assume without loss of generality that {u > 0} has one connected component.

We now consider the two limits

u=u(zy, T2, x3):= lim wu and u =u(r1, 2, x3) ;= lim w.
Tyg——00 x4—+00
Thanks to the bound |D?u| < 1 (which also gives uniform curvature bounds on the free boundary), u < u is either
identically zero or is a classical stable solution of Bernoulli in R? (cf. proof of Lemma . Analogously, u > u is
either identically +oco or is a classical stable solution of Bernoulli in R3.

Applying Theorem to both u and @ we obtain that, if they are not constant (respectively equal to 0 or 4+00),
then {u = 0} and {w = 0} are either a half-space or a slab (i.e., the region between two parallel hyperplanes). Since
0 < u <, in this second scenario also {u > 0} would be disconnected, contradicting our setup. Thus:

(i) u is either zero, or a 1D monotone minimizer (so, of the form (z-e —a)y), or a maximum of two minimizers
with disjoint support;

(ii) @ is either a 1D monotone minimizer or +oo.

This ensures that u and @ are, respectively, lower and upper barriers for minimizers (since minimizers cannot cross).
Thus, since the family of translated graphs {zs = u(x + tes) }+er foliates the region

{(z,25) € R* x [0, +00) : u(z) < x5 < u(z)},

a standard foliation argument (see [54, Proof of Theorem 1.3]) implies that « must be energy-minimizing in every
compact subset of R*. But then it follows from the regularity theory for minimizers for the Bernoulli problem (e.g.
using [30,55]) that D?u is identically zero in {u > 0}, contradicting |D?u(0)| = 1. O

Corollary will be obtained as a particular case of the following more technical proposition that will be useful
in the sequel as well. A direct proof of the fact that Theorem implies Corollary [I.7] is essentially contained
in [57]. However, the current proof of |57, Theorem 1.2] relies on |20, Lemma 1.21] (see the discussion before
[57, Proposition A.4]), whose proof is incomplete. We fix this gap in our Lemma

Proposition 9.4. Let u be a classical stable solution to the Bernoulli problem in By C R* satisfying Oyu > 0 in
By. Then |D*u| < C in By N {u > 0}, for some C' universal.

Proof. We proceed as in the proof of Lemma [5.1] and assume by contradiction that the statement does not hold.
Then, there exists a sequence uy, of classical stable solutions to the Bernoulli problem in B; C R*, with 0 € FB(uy,),
Oquy, > 0, and such that

3 3
hy := |D? - = D? - k :
k | D= uy (zx)] (4 |xk> meBg/?rlw%}{{upo}l ug ()| (4 |x> — 00 as — 00

18 An alternative way to obtain the stability inequality from a positive (sub-)solution of the linearized equation is as follows: if ¢ > 0
satisfies Ay =0 in {u > 0}, ¢, + Hyp = 0 on FB(u), then for ¢ € Cg’l(R4), testing against ¢2 /1) gives
. . 2 2
/ |v¢\2daz—/ H¢2dH3:/ (|v¢|2—vm) dx:/ v dz > 0.
{u>0} FB(u) {u>0} P {u>0}

PVY
(4
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Set dy := D*uy () and p = % — |zk|, and define the classical stable solution

ﬁk(l‘) = dkuk(xk + l‘/dk) for z € Bdkpk/2'
Since dgpr — 00, proceeding as in Lemma we can take the limit of @ (up to subsequences) to find a global
classical stable solution e, with 0 € FB(ta ), 4liee > 0, |D%i00(0)| = 1, and |D%tis| < 1 in {fie > 0}.

Up to restricting i to one connected component of {i > 0}, we can assume that {i. > 0} has a single
connected component. Then, by the strong minimum principle, either O4to = 0 (in which case we contradict
Theorem [1.5)) or O4lice > 0 (contradicting Corollary [1.6)). O

We can now prove our second corollary.

Proof of Corollary[1.7 It suffices to extend our function to By x R C R® x R by taking it constant in the last
variable, and then apply Proposition [0.4] O

10. THE FREE BOUNDARY ALLEN—CAHN

10.1. Preliminaries. The goal of this section is to prove Theorem To show it, we will combine the curvature
estimates obtained for the free boundary in the Bernoulli problem (see Corollary with the Sternberg—Zumbrun
stability inequality (see Lemma below). This will allow us to extend Pogorelov’s argument [77] for stable
minimal surfaces in R? to our setting.

Before beginning with the proof, let us give the definition of classical solution, in analogy with Definition [3.1
Consider the energy J; from . We call u: Bgr — [—1,1] a classical solutions of JP if

Au=0 in Bpn{Ju| <1},

10.1
[Vul| =1 on Bpno{lul <1}. (10.1)

{|u|] < 1} is locally a smooth domain in Br and {

The set d{u > 0} is called the free boundary and will also be denoted FB(u). In particular, a classical solution
satisfies that {u > 0} is locally the subgraph of a smooth function around each free boundary point (up to a
rotation).

Classical solutions u are stationary critical points of J, in the sense that they satisfy with F = J0; and
stationary critical points u are called stable if they have non-negative second (inner) variations, i.e., they satisfy
(3.3) with F = J7.

From now on, a solution will refer, unless otherwise stated, to the free boundary Allen—Cahn energy J;.
Definition 10.1. Let n > 2 and R > 0. In relation to the free boundary Allen—Cahn, i.e., choosing F = J7 in
(B-2)-[3-3), we say that u € H'(Bg) with B C R is:

e a classical solution or classical critical point in By if it satisfies (in particular, it satisfies );
e a classical stable solution or classical stable critical point in Bp if it is a classical solution and satisfies .

If a function satisfies one of the previous definitions for all R > 0, we call it global.
The Sternberg—Zumbrun stability inequality for the free boundary Allen—Cahn is the following:
Lemma 10.2 (Sternberg—Zumbrun stability inequality). Let n > 2, and let u be a classical stable critical point of
TP (see (1.1)) in R™. Then
/ LA Vul? 2 de < / VuPIVC2dr  forall ¢ e CONRM), (10.2)
R?L R’IL

where

A(u(@) + [Vrlog [Vu@)|? if ful <1 and [Vu(@)| £ 0

[A(w)]?(z) = .

0 otherwise.
Here, A(u(z)) denotes the second fundamental form of the level set {u = u(z)} at the point x (therefore, |A(u(z))|?
is the sum of the squares of the principal curvatures) and Vp denotes the tangential gradient to the level sets.
Proof. As in the case of Bernoulli case, it follows from (A.3) using the identity in [81, Lemma 2.1]. O

Remark 10.3. Notice that, by approximation and smoothly extending and cutting off inside {|u| = 1}, it suffices in
(10.2) to consider test functions with ¢ € C2! ({[u| < 1}).

As a first observation, we have Modica’s inequality (in analogy with its smooth counterpart [71]):

Lemma 10.4 (Modica’s inequality). Let n > 2, and let u be a classical solution of J in R™. Then Modica’s
inequality takes the form

|Vul|? < 1. (10.3)
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Proof. The global Lipschitz bound with a dimensional constant C' holds by the same proof as for the Bernoulli
problem, see for example [20, Lemma 11.19]. Let us now prove that this constant can be chosen to be 1.
By contradiction, assume that
sup |Vu|=1+x > 1,
RTI,

for some k € (0,C — 1]. Then, since |Vu|? is subharmonic inside {|u| < 1}, and |Vu| = 1 on the free boundary,
the maximum principle implies that there exists a sequence z; € {|u| < 1}, with |z;| — oo as i — oo, such that
[Vu(z;)| 1+ 1+ k. Let y; € 0f{|u] < 1} satisfy dist (z;,0{|u| < 1}) = |z; — ys| =: 7. Notice that, since |u| < 1,
harmonic estimates imply that |Vu| < Cdist(-, d{|u| < 1})7, so 7; is necessarily bounded (but it could go to zero).

Up to taking a subsequence and replacing u with —u, we can assume that u(y;) = —1 for all 4. Then, if we define
; ; 1
oi(r) = MEFTDFL
Ti

it follows that v; satisfies

Av; =0 and v; >0 in By, sup |Vu;| =1+ &, [V, (0)] 15 1+ &, [Vu;|=1 on 0{v; >0}.
RTL

Also, up to a rotation, we can assume that z; — y; = 7€, therefore v;(—e,) = 0.

Then, up to a subsequence, the functions v; converge locally uniformly in R™ to a (1 + &)-Lipschitz function vs,
that is harmonic in B; and satisfies |V (0)] = 1 + K, ve > 0 in By, and ve(—e,) = 0. Thus, by the strong
maximum principle, |Vus| = 1+ £ in By, and therefore voo(x) = (1 + k)(x, + 1) in B;. By unique continuation,
it follows that veo(z) = (1 + k)(zy, + 1) in {-1 <z, <1}

Thus, we have proved that the non-negative functions v; converge locally uniformly to (1 + )(x, + 1) inside
{-1 < z, < 1}. Consider now the harmonic sub-barrier

Une(@) i= (L 5)(wn + 1)+ (o + 1% = i (@ 4+ 422 )).

n—1

For e sufficiently small (depending only on x) and for i large enough (depending on & and k), we see that v; >
Yy e(x — se,) on OBa(—e,) for all s € 0,1], and ¢y, (x — e,) < v; in Ba(—ey,).

We now perform a sliding argument and let s decrease from 1 until ¥, .(« — se,,) touches v; from below. By the
previous considerations and the maximum principle, the touching point must be on the free boundary of v;. But
this is a contradiction, since |Vuv;| = 1 on the free boundary while |V, | > Opthe > 1+ 5 — Cre > 1 for € small
enough, depending only on n and k. O

The stability inequality ((10.2)) will now be used in four ways:

(1) With a Euclidean log-cut-off in R3, showing that the amount of “bad regions” is sublinear. This results in
a clean annulus (see Lemma .

(2) With a Euclidean Lipschitz cut-off, ensuring good estimates in the clean annulus (see Proposition [10.9)).

(3) With an intrinsic log-cut-off on a level set, a 2-surface, bounding the average area near the “bad region”
(see Lemma [10.14)).

(4) With an intrinsic “tent” function of the form (r — dgp)4, in an integral way (see (10.30))), allowing us to
close a Gauss—Bonnet type estimate (see Lemma .

10.2. Definition of 8. From now on, we will assume that n = 3 and w is a global classical stable solution to
the free boundary Allen-Cahn in R? according to Definition We start with the following universal derivative
bounds, which follow from the curvature bounds on the free boundary of stable solutions of the one-phase Bernoulli
problem.

Lemma 10.5 (Regularity). For any k > 2 there exists a constant C, > 0, depending only on k, such that
|DFu| < Cy inside {|u| < 1}.

Proof. Fix z, € 0{|u| < 1} and, up to replacing u with —u, assume that u(z,) = —1. Thanks to Lemma [10.4]
we know that |Vu| < 1, therefore v < 0 < 1 in Bj(z,). This implies that u 4+ 1 is a classical stable solution to
the Bernoulli problem in Bj(z,) (see Definition , so we can apply Corollary and Lemma to deduce that
|D*u| < Cy in Byja(xo)N{u+1 > 0}. Repeating this argument at every free boundary point, we obtain |D*u| < Cj,
inside {0 < dist (-, {|u] = 1}) < 1/2}. Finally, the bound inside {|u| < 1} follows by interior regularity estimates for
harmonic functions. O

Motivated by Lemma [10.2] given d, € (0,1) we define

X(6o) := {z € {|u| <1} /B . |Aw)?|Vul|* dz > (50} #+ . (10.4)
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Note that Theorem is equivalent to showing that X (d,) = @ for any d, > 0. So, by contradiction, we assume
that there exists d, € (0,1) small (to be fixed later) such that X(d,) # @, and define

G(6s) = { € {Jul < 1} \ X () : dist (2, {Ju] = 1}) < 8} (10.5)

and
W(0o) := {Ju] <1} \ (X(0o) UG(d,)).
The following result says that the set G(d,) locally looks like arbitrarily flat strips:

Lemma 10.6 (Curvature bound in G(d,)). Given n, € (0,1), there exists 6o = do(no) > 0 such that if zo € G(d),
then
|D*ul <no in Bsa(we) N{|ul <1},
and Vu almost achieves equality in Modica’s inequality (10.3)):
1—n,<|Vu| <1 in {|u| <1} N Bs/a(xo). (10.6)
In particular, for all A € (—=1,1), the level set {|u| = A} N Bs/3(x0) is a smooth surface with curvature bounded by 1..

Proof. Translating if necessary, we can assume z, = 0. We show first the bound on the Hessian.
As in the proof of Lemma |D?u|? < 3| A(u)|?|Vu|* wherever u is harmonic. Thus,

/ |D2u\2daﬁ < 35,.
Ban{|ul<1}

Also, thanks to Lemma |D3u| < C in Bg/y N{Ju| < 1}, and the free boundaries have bounded curvature and
they are uniformly separated. So, by Lemma applied to |D?u| we get

|D%u| < C83/*  in Byjy N {Ju] < 1}. (10.7)

This proves the first bound in the statement.

For the second one, we proceed by contradiction and compactness. Let uj be a sequence of (nonconstant) stable
critical points of J{ in R? for which 0 € G(0x) with 0y = ¢, but |V (x)| < 1—1n, for some zy, € {|ug| < 1}N Bs)s.
Note that, as a consequence of

HDQU/k||Loc(BS/2|"~|{|uk|<1}) < Ck% 0, as k — oc. (10.8)

Thanks to Lemma [10.5] up to a subsequence the functions uj converge to u., which is a classical stable solution
satisfying (because of and unique continuation) |D?*u| = 0 in any connected component of {|us| < 1}
touching Bj/s. Also, there exists a point oy € {|ties| < 1} N Bj/ such that [Vus (Tao)| < 1—16. Since [Vus| =1
on the free boundary, this implies that every connected component of {|us| < 1} touching Bs/, cannot have any
boundary, therefore the only option is that {|us| < 1} = R3. By the convergence of uj to uso, this implies that ug
has no free boundary point inside Bjg for k large, a contradiction to the fact that 0 € G(d,). O

Remark 10.7. As a consequence of the previous result, inside G(d,) the integral curves of Vu are almost straight
and |Vul is very close to 1. Hence, by looking how the value of u changes along integral curves of Vu, for any point
z € G(do) it holds dist (2, {|u| = 1}) < 1—|u|40s,(1) < 2, where o5, (1) | 0 as d J 0. In particular, by the definition
of W(ds), it follows that |z, — 2z,| > 6 for any (zg, zw) € G(0o) X W(d,). Hence, these two sets are separated and
since W(d,) is far from the free boundaries, it must always be surrounded by X (d).

Now, given o > 0 we define
Si(6) = |J Balz) =X(6)+ Ba.
zEX (6o)

Then, given = € G(d) \ S;(do) and A € [—1,1], we define the my “projection” as the point on ¥ := {u = A}
obtained from flowing x perpendicularly to the level sets until it intersects X 5. That is, let n, : [—1,1] — {|u] < 1}
be defined by

. Vu(ng(t))

Ng(t) = =—F——5, ng(u(x)) = x, 10.9
and set

ma(x) = ng(N). (10.10)

Notice that, if z € G(J,)\ S5 (o), then Lemma and Remark imply that 1 —7n, < |Vu| < 1in By(z)N{|u| <
1}, so the map above is well defined (provided d, is sufficiently small so that n, < 1/2).
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Finally, we define
B, (do) := S (do) U U {n.(t):te[-1,1]} =S5 (do) U U {mx(z) : A e [-1,1]}.
2€0S87 (66)NG(80) 2€0S] (65)NG(80)

In other words, we add to S;(d,) the image of S5 (d,) N G(ds) through the flow Vu across the level sets. Observe
that, by construction and thanks to Lemma [10.6

B, (0o) C Sg(do)- (10.11)
Moreover, G(do) \ B+(do) is “invariant” under the flow of Vu, that is,
if x € G(8,) \ B«(do), then my(x) is well defined and 7y (z) € G(do) \ B« (Jo) for all A € [—1,1].

Now, thanks to the stability of u, we can prove that for any A > 0 (large) we can find an annulus Brya(z)\ Br(2)
of width A, with z € X(d,), which does not intersect Sg(do).

Lemma 10.8 (Existence of a clean annulus). Let d, > 0 be sufficiently small so that no < 1/2. For every A > 0
there exist z € X(8,) and R > 1 such that

B, (06) N Broa(2) C S:(56) N Bria(2) C Br(2).

Proof. The first inclusion follows from ((10.11]).
For the second inclusion, assume by contradiction that it does not hold. Then, there exists A > 0 such that for

every z € X(d,) and k > 1, there is z € X'(d,) with Bg(2) N Bp11)a(2) \ Bra(2) # @. In particular

By1ya+s(2) \ Bra-s(2) D Bs(2) = 1S (00) N (Bry1y)a+s(2) \ Bra—s(2))| > [Bs|  Vk >

from which we easily deduce that
R
|S3(05) N Br(2)| > cx forall R>1, z€ X(d), (10.12)

for some ¢ > 0 universal.
On the other hand, applying the stability inequality (10.2) with ¢ € CZ°(Bag(Zz)) such that ( =1 in Bg(z) and
|V¢| < C/R in R3, recalling that |Vu| < 1 we get

/ |A(u)|?|Vul? dz < CR.
Br(2)

Now, recalling the definition of X'(J,), a covering argument implies that the left-hand side above is bounded from
below by ¢d0|S%(do) N Br—_g(z)| for all R > 9. Therefore, we have proved that

IS5(6,) N Br(2)| < C6;'R - forall R>1, Z€ X(d), (10.13)
with C universal.
Now, given z € X(d,) and R large, for ¢t > 1 we define
A= J{Bi(2): z€ X(5), Bs(2) N Br(2) # @} .

Then, for any ¢t € [4, R], by Vitali’s covering lemma we can find a disjoint subcollection of balls of radius ¢/4,
centered at some z € X(d,), such that the balls of radius 2¢ cover AtRj. Since:

(i) each disjoint ball of radius ¢/4 contains at least cA~'t mass from SZ(d,) (by (10.12));
(ii) these balls are all contained inside Byg(Z);

(iii) and |SZ(8o) N Bagr(2)| < Co; 1R (by (10.13));
it follows that the number of disjoint balls of radius ¢/4 is bounded by C(d,t) AR with C universal. In particular,
since the balls of radius 2¢ cover Aﬁ%j, we get

|A% ;| < (number of disjoint balls) x |By| < C6; ' ARE? for all te€[4,R].

Note that, for ¢ € (0,4], we can simply use the bound |A%; .| < C6;'R.
Now, consider R > 1 large (to be fixed later), set d(x) := dist(z, A%,E), and define the test function:

1 .
- log(L+d(x)) b satisfios _ Jmraeyeemry H0<d< R
C(.Z‘) = (1 - W)+ , which satisfies ‘VC(£)| = {(() (2)) log( ) otherwise.

Applying the stability inequality with ((z) and R > 1, we estimate the two terms as follows:
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e by a covering argument, the definitions of X' (d,) and S3(d,), and (10.12)), we can bound the left-hand side:

/ |A(w) 2| Vul?¢? dx>/ |A (u)|2|Vu|2dx20(50|88*(5O)OBR(2)| > cdo AT R;

e by the “layer-cake formula” and since \Vu| < 1, we can bound right-hand side:

R 2
1 d(CARt R
/ V¢ de < C / ¥ ( ) < .
R3 o (1+¢)2log"(1+ R) dt log R
For R large enough, this provides the desired contradiction, proving the lemma. O

Now, for a given d, > 0 small and A > 1 large, let zp € X(d,) and Rp > 1 be given by Lemma |10.8] and define
the sets
B =B(d5,A) == B.(0.) N Brasa(za),  Sa=3Su(lo,A) := U B.(z). (10.14)
2EX (66)NB(8,,A)
Note that, since S;(do) C B.(do) C S5(0o), it follows from Lemma that Sy C B C Ss. We now start our
analysis.

10.3. A first case: annulus formed of W(d,). With §, > 0 (small) and A > 1 (large) fixed, we recall that
zp € X(d,) and Ry > 1 are given by Lemma [10.8] Since dist (W(d,), {|u| = 1} UG(d5)) > 6 (by the definition of
W(d,) and Remark [10.7)), Lemma implies that

either BRA+A(ZA) \BRA(ZA) C W(éo), (10.15)
or Bp,ia(za) \ Bry(2a) C {|u] =1} UG(do). (10.16)

We want to prove that the first case cannot occur.
Proposition 10.9. There exists Ag sufficiently large, depending only on o, such that if A > Ag then (10.16|) holds.
In order to prove it, we will use the following:

Lemma 10.10. Let 6, > 0 and A > 64, and let B and Sg be as in (10.14). Then
/ |A(w) || Vu|? dz > ¢do|Ss| > bo|B],
B

for a universal constant c.

Proof. Recall that S, C B C Ss. Let S C Sy be the union of a maximally disjoint family of N balls of radius 2
centered at X(d,) NB such that the balls with radius 2 -3 4+ 6 cover S = S + Bg. In particular, we know that
N|B;| < |S2| < |Ss| < N|Bjz|. Moreover, by the definition of X' (d),

/~ |A(u) 2| Vul|? dz > N6, > ¢|Ss|do > ¢[B]ds.
S2(60)

This yields the result. U
We can now prove that (|10.15)) does not occur.

Proof of Proposition[10.9 We argue by contradiction and assume ([10.15) holds. Then, |u| < 1 (and so it is
harmonic) inside W(do ) D Bpr,+a(2a) \ Br, (2a). Also, since dist W (do), {|u| = 1}UG(05)) > 6, we have OW(ds) C
0X(d,) (i.e., W(do) is surrounded by X (do)). In particular, thanks to Lemma the following Lipschitz function
is compactly supported inside Bg, y/2(2a) (note [V(| # 0 only in W(d,)):
) = 1 if xe(BUG(s)U{|ul=1})N Bgr,(2a),
(1 — 2dist (z,B))4 otherwise.
Now, consider the set S; as in (10.14)) and note that |S;(,)| < Ct3|B| for t > 2. Also, by harmonic estimates,
|Vu| < < inside {|V(| # 0} N Bgr,+a/2(24) \ St(o). Hence, since [Vdist (-, B)| = 1, by the layer-cake formula we

get
C A d(CE|B)) C|B|
2 2 < = 2 < )
[, IvuPIveR e < <|32<5o>|+ [ e ) 8

Thus, by the stability inequality (10.2]), the bound above, Lemma [10.10} and (10.2)), we obtain
¢ |%|

¢|B]5, </ LA 2| Vul? de <
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This provides the desired contradiction for A sufficiently large (depending on d,). a
Thanks to the previous proposition, we now on we will assume that (10.16[) holds.

10.4. The intrinsic distance projection. Define
XY =S\ NG(6) = {u=A}NG(S),  for e (-1,1).
Also, recall (10.10). We have the following result about the comparability of the length of curves when projected
onto different level sets:
Lemma 10.11. For any €, > 0 there exists 6, > 0 such that the following holds.
Given \ € (—1,1) and a Lipschitz curve vy : [0,1] = X \ B.(6,), define 7, : [0,1] = £\ B (o) as 3, (t) :=
(A (1)), p € [—1,1]. Then,

(1 — eo)Length(%y,) < Length(yx) < (1 + &,)Length(¥,,) Vue[-1,1].
Proof. This is a direct consequence of the smallness of the curvature of the level sets given by Lemma [10.6 g

Next, given A € [—1,1], we define the intrinsic distance along ¥y in the set G(d,) as follows:

disty, (mA(z),B) if z € G(d) \ B,

i (10.17)
0 otherwise.

4 Brosa(za) N{Jul <1} > RU{+00},  di(z):= {

where disty, is the intrinsic distance inside the surface ¥y, and zy € X(6,) and Ry > 1 are given by Lemma [10.8|
(We have omitted in dj the dependence on d, and A for the sake of readability.) Note that {dg > 0} is disjoint
from W(d,). The next result shows how disty, changes when varying A.

Lemma 10.12 (Comparison across levels). Let 6o > 0 and A > 0. Let B = B(5,,A) be as in (10.14)), with dy as
in (10.17). Then, for any A\,pu € (—1,1) and 0 < r < A/8, it holds:

e For any p € N, there exists 6, small enough depending only on p such that,
(r— d(\B)+ < (21/pr - d%)# in  Bryt+a(za) N{lu| < 1}.
o Lete, be as in Lemma|10.11, Then
|Vdys| < 1+e, in Bryia(za) N {|ul < 1} N {dy < A/4}.

Proof. Let € Br,+a(za) N{|u] <1} N{dy < A/4}. We can assume that G(d,) \ B, otherwise dy () = 0 for all
 and the result holds.

Now, for 0 < dj(z) < r < A/8, it follows from Lemma that x € Br,4/6(22). Also, by Lemma and
the definition of B, (d,), we have dg(z) > (1 — &, )dh (). Thus,

€o

(= @) < (- (-t < (1 dho)+ 2o dh@)) < (14220 = dy (@), < o= dh (),
° +

for £, small enough, depending only on p.

The second part is a consequence of Lemma Indeed, recalling the validity of , the distance to B
(when nonzero) is achieved along curves fully contained inside Br,14/2(2a) N G(do) \ B (recall Lemma . So,
we can apply Lemma to deduce that 7 is (1 4 &,)-Lipschitz near the support of minimizing curves. Since
the intrinsic distance is always 1-Lipschitz, the result follows. O

10.5. Consequences of stability. Recall that, thanks to Proposition we can assume that (10.16)) holds. We
now show some first consequences of stability.

Lemma 10.13. Let 0, > 0 and A > 64, and let B and Sg be as in (10.14). Then, for any A € (—1,1) we have
CIB| > H2(5) N {0 < d)y < 2}) > c/ A@)RIVu2 da > ¢6,|Ss| > ¢6.|B),
B

where C, ¢, and ¢ are positive universal constants.

Proof. The third and fourth inequalities are from Lemma [10.10

For the second one, we apply the stability inequality (10.2)) with ((z) = (2—dg(z))+ (recall Remark|10.3)), which
is compactly supported in Bg, A /2(2a) by Lemma Then, thanks to Lemmas [10.4] and [10.12| and we get

4/ |A(u) 2| Vul? de < / |A(w) 2| Vul*¢? de < / \Vaul?|V¢[* de < CH{0 < dyy < 2} N {|u| < 1}].
B R3 {

0<dy <2}
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Observing that H2(Xx N {0 < dj < 2}) is comparable to [{0 < dg, < 2} N {|u| < 1} (by the curvature estimates on
the level sets and lower bound on |Vu| from Lemma [10.6]), we get the second inequality. Finally, since [{0 < dg <
2} N {Ju] < 1} < |S16] < C|S2| < C|B|, also the first inequality follows. O

We now start bounding level sets near B:

Lemma 10.14 (Stability near B, intrinsic). Let A € (—1,1), do > 0, A > 64, and B = B(d,,A) as in (10.14).
Consider the following set of “indicator functions” on N:

2(A) = {§ :N = {0,1} : such that {& =1} C [%log, A,logy A — 5] and Zg [4log, ]} (10.18)
keN
Then
C H2(E) N {28 < dyy < 2K
HA(SAN{0 < dy < 2}) < 5TTog AT 2n Zg o , (10.19)

for a universal constant C.

Proof. Let ¢ : R — [0, 1] be a smooth nonincreasing function satisfying ¢(¢) =1 for ¢t < 1, ¢(¢) = 0 for ¢ > 2, and
|| < 2. Given £ € E(A) fixed, we consider the stability inequality ((10.2]) with

1
= > S(R)p(2 R dy
¢(x) €0 2 (k)Y (27 dy (2))
(recall Remark [10.3). Notice that ¢ is supported in {dy < A/16} C Bp,a/s(2a) (by Lemma and (10.16))),

and it is constantly equal to 1 on {dy < AY/4}.
Now, thanks to Lemma [10.12] the right-hand side of the stability inequality (10.2)) can be bounded by

/ V¢ Vuf? d < / V¢ de < / IV¢[? de
R3 {lul<1} Br,+a/4(20)\B
1+€o /
< B Z o |

(Here we used that, for each ¢t > 0, ¢/(27%¢) is non-zero for a single k = k(t) € N.)
Recalling Lemma we now consider adapted coordinates (y,t) € X X [1,1] +— = = ny(t) € X; (recall
(10.9)), so that dx < (1 + Cno) dt dH;. Thus

W' (27  diy (2))? da.

Rp+a/4(20)\B

1
(2 ()2 d < (1+ C) / / o (2 () [PdH2 d
>

AN(BRry +/4(24)\B)
41+ Cno)H? (Ban{2F <djy < 2811},

/BRA+A/4(ZA)\%

where we used that |¢'| < 2. Thus, for §, universally small enough (so that both e, and 7, are small), we get

H2 (Zan{2F < dgy <281
2 2
/RS |V¢|* | Vul” dz < A|2 Z{ 5o .
Combining this estimate with (10.2) and Lemma [10.13] the result follows. O

Next, we prove a doubling property:

Lemma 10.15 (Doubling). Given §, > 0 small, there exists Ag > 64, depending only on 0, such that the following
holds whenever A > Ag.

Let B = B(do,A) be as in (10.14), Z(A) as in (10.18), and fixr p > 16. Then, for any given A € (—1,1) there

exists 7 € (A%, A/8) such that the following two inequalities hold simultaneously:

H (o {o<day <2/rr}) <22 (Sanf{o < ay <r}) (10.20)
and
1 , H2(Z) N {2k < dyy < 281} H2(EAN{0<dy <r})
—— = <1 . 10.21
[log, Al e£2(A) 2_ ) 22k =10 72 (10.21)
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Proof. Fix A € (—1,1) and define
O(r) := H*(Zx N {0 < dyy < 7}).

Note that, by the curvature estimates of the level sets and lower bound on |Vu/| from Lemma(10.6, ©(r) is comparable
to |{0 < dj < r}n{|u| < 1}|. Hence, recalling (10.14) and noticing that [{0 < d3y < r}N{|u| < 1}| < |S;42| < CS, ],
by the Euclidean cubic volume growth of balls and Lemma [10.13] we get

O(r) < C|S,| < C|S4|r* < Cs;710(2)r*  forall 4 <r < A/2. (10.22)
Recalling the definition of Z(A) in ([10.18)), we define
@(2k+1) _ @(Qk)

K :=Nn[7log, A logy A — 5], a(k) := ook for ke K.
Let M be the median value of a within K,
M := median({a(k) : k € K}),
and note that, from the definition of Z(A), we have
1 , H2(Dy N {28 < d)y < 26+1}) 1 ,
k — = k)a(k M 10.23
g, & Eglgl&)zkjé( ) o 1og2A£151&)2k:£( Ja(k) < (10.23)
Define K’ := {k € K : a(k) > M} and notice that
O(2k+! O
M <a(k) < (22k ) <16 T(;) for all k € K’ and r € [2k+1 2k+2], (10.24)

Hence, to show that (10.20) and ([10.21)) hold simultaneously at some scale r € (A1/4, A/8), we only need to find an

r as in (10.24) for which (10.20) holds.
To prove it, we will consider r as in (10.24)) of the form r = 2¢/? for ¢ € N. So, we define

L:={{eN : {/pelk+1,k+2) forsomekeK'},

and we notice that
#L > p#K' > C#K > Tlog, A. (10.25)

To conclude the proof, we claim that there exists £ € L such that ©(2+1)/P) < 20(2%/?). Indeed, if the claim were
false, we would have that ©(2+1/P) > 20(2%/?) for all £ € L. Thus, since since £ — ©(2¢/?) is nondecreasing,
setting £, := p([log, A] — 4) we would get

0(24/7) > 2#LQ(2) > (24-/P)P/1Q(2) > (2¢/7)10(2),

where we used (10.25) and that p/4 > 4. This quartic growth contradicts the cubic growth bound in (10.22) if
26+/P ~ A is large enough, depending only on d,, so the claim holds. O

10.6. Integrated Gauss—Bonnet result. Our next result is an estimate on the areas of sublevel sets of the
distance to a compact set. Here we crucially use the fact that we consider 2-dimensional surfaces, since we exploit
Gauss—Bonnet on level sets of the distance. Our proof is inspired by a classical argument of Pogorelov [77], but
requires a much more refined analysis due to potential singularities of the distance function. We recall that the
distance function to a set is always semiconcave (namely, in any chart, it can be written as the sum of a concave
and a smooth function), see [68], therefore its distributional Riemannian Hessian is a measure whose singular part
is negative definite.

Lemma 10.16. Let ¥ be a smooth 2-dimensional Riemannian surface, K C X, and di := distx (-, K), where disty
is the intrinsic distance on X. Then, for a.e. r1,72 > 0 such that ro > 2r; and {r1 < dx < ro} € ¥ (namely,
{r1 <dx < ra} is compactly contained in %), we have

9 ro pSs p2
H ({7“1<d}c<7"2}) ng({dlC:rl})ff /// sz,]'lszdtd‘Sﬁ*l (Ad}c)ad’}‘[2,
r1 JriJ1 J{

r2—T T <di <t} " J{ri<die<2r}

where (Adx), denotes the absolutely continuous part of the (Riemannian) Laplacian of di, and Ky, is the Gauss
curvature.
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Proof. Throughout the proof, all the differential operators are the Riemmanian ones on ¥. We divide the proof
into two steps:

Step 1: Assume first that {r;y < dx < ra} is connected and {dx > ro} # @. Since |Vdx| = 1 a.e., by the coarea
formula we have

7‘[2({7’1 <dk <re}) = /T2 Hl({dK =s})ds

We now observe that, for a.e. s, Vdx is H'-a.e. equal to the outer normal of {dx < s}, hence

H ({dx = s}) —H ({dx =71}) = / vV dH' = / Ady dH?
O{ri<dix<s} {ri<dx<s}

where Ady is the distributional Laplacian. Recalling that the distance function is always locally semiconcave, Ady
is a locally finite measure whose positive part has bounded density with respect to H?2.
This implies that, for a.e. r; < ro,

7'[2({7“1 <dg <7”2})=(Tz—Tl)Hl({dIC:ﬁ})-i-/ / Ady dH? ds.
{ri<dx<s}

Now, given a smooth function ¢ : ¥ — R, consider the expression

/ |ch|d1v( Ve )d?—[2 / / dlv( Ve ) '’ dt,
{ri<e<s} Vel {p=t} Vel

where the equality follows by the coarea formula. We observe that, by Sard’s Theorem, for a.e. t the level set
{p = t} is a smooth curve without critical points of ¢, and div(‘ggl) corresponds to its geodesic curvature.

Assume, moreover, that {r; < ¢ < re} € 3. Then, by Gauss-Bonnet, for any 7 € [1,2] it holds

/ div( Ve ) dH' = —/ Ky dH? —|—/ diV( Ve ) dH' +2nx({tr1 < o < t}).
{p=t} |v<¢0| {rri<e<t} {o=7r1} ‘V |

Averaging this bound with respect to 7 € [1,2], this proves that

VSO s 2
/ ch|div<) dH? < —/ / / Ks, dH? dr dt
{ri<ep<s} |V | {rri<e<t}

s—rl// dlv(v )d?-l dT+27T// ({rr <@ <t})drdt. (10.26)
{p=7r1} | |

We are now going to apply this identity to a smoothed version of the distance function, and then let the regularization
parameter go to zero. More precisely, fix a compact neighborhood of {r; < dx < s} and cover it with a finite atlas
{(Upm, ¢m)}N_;. Then consider a partition of unity {t,,}_; subordinate to this atlas, and fix p : R* — [0, 00)
a smooth compactly supported mollifier. Then, for n > 0, set p,(2) := n""p(z/n), we define the following local
smoothing operator for functions f : ¥ — R:

N
Fo fln@) =" bm(@)((f 0 61) * py) (dm ().
m=1

While this regularization does not commute with derivatives, it does in the limit. More precisely we recall that, in
local coordinates, the Hessian of a function f is given by (D?f);; = 82 f—Trk Ok f, where I’fj are the Christoffel
symbols of the Riemannian metric g on ¥, and we adopt the Elnbteln conventlon of summation over repeated
indices. Hence, when locally mollifying in charts as done above, for any given smooth h : U, — R, € ¢, (Upn)
and n >0 suﬂic1ently small, we have

(D?(h py))ij(x) — (D?h)ij * py(x) = /¢ o [T (y) — TF;(2)] Och(y) py(x — y) dy.

Now, if we define ¢, := [dx],, applying the formula above to h = di o ¢,,,}, m = 1,..., N, since df is 1-Lipschitz
it follows easily that

(D*¢y)ij = [(D?dx)isly + O(n). (10.27)
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Now, since ¢, — dx locally uniformly and Ay, —* Adyk in the sense of measures, using (10.26)) with ¢ = ¢, for
a.e. rp < s we have

/ Ady dH? = lim Ay, dH?
{ri<di<s}

n—0 {ri<en<s}

< limsup/ |Vg@n|div( Ve )d?—l2 —|—hmsup/ <D29"n' Ve , Vo, >d7‘l2
n—0 {ri<en<s} |v 7]‘ n—0 {ri<en<s} |V<,077| |V5077|

s 2
,/ / / KEdHQdet+(57T1 hmsup/ / d1V< )dH dr
r1 J1 J{rri<e<t} n—0 {on=7r1} |V(p7,|

+27 1imsup/ / ({rr1 < @, <t})dr dt+11msup/ <D29077 . Ve 7 Vo, >d7—l2.
n—0 n—0  J{ri<e,<s} ‘v<p77| |v<p?7‘

Recall now that y = 2 — 2g — b for surfaces with b boundary components and genus g. Hence, since by assumption
{di < 72} is connected and {dx > ro} # @, it follows that g > 0 and b > 2, and therefore x ({771 < ¢, <t}) <0
for n sufficiently small.

Also, as discussed before, the semiconcavity of dx implies that D?dx is a matrix-valued measure whose singular
part is negative. Hence, if D2dx denotes the absolutely continuous part of the Hessian, recalling we get

) Ve, Vo o . dipn Ojp
hmsup/ <D2g0 . UG £/ >d7-l < lim sup [(D2dx)ijly - I
n—=0 J{ri<p,<s} ! \V(p,,| |V<Pn‘ n—0  J{ri<p,<s} o |V<Pn| |V<Pn|

Since [(D2dyc)i;]y — (D2dx)i; in Li,. (because (D2dx);; is a locally integrable function) and Ve, — Vdx H?-a.e.,

by dominated convergence we deduce that the limsup in the right-hand side above is equal to

/ (D2dx - Vdic, Vdx ) dH>.
{ri<dx<s}

Also, because D2dx - Vdx = (§V|Vdk|*)a = 0 a.e. (where the subscript a denotes the absolutely continuous part,
and the derivative is zero because |Vdx|? = 1 a.e.), the integral above is zero. Hence, we proved that

s 2
/ Ady dH? S*/ / / sz’]—[Qdet+(Sf’l"1 hmsup/ / d1v< >d7—[ dr
{ri<dx<s} ry J1 {rri<di<t} n—0 {on=7r1} ‘V(Pn|

s 2
_/ / / Ks d?—[Qdet—i—(s—rl)hmsup—/ |V<pndlv< Ve ) dH2,
ry J1 {rri<di<t} n—0 T1 {ri<en<2ri} ‘v 77|

where the last identity follows by the coarea formula. Finally, arguing exactly as before, we have

. Ve 2 vt "2 \es 2 2 (VL‘Pn)i (VL‘Pn)j
Ve d1v< 1 ) = <D Oy - = 77> < [(Dgdk)ijly - + O(n),
Vel div{ 1G] 1 Wl Wl ) < Padedil TG =g,

and therefore

1 1
limsup—/ |Vg0,7|div( Ve ) dH? < — (D2dy - V*die, VVidi) dH>.
{ri<en,<2ri} |VQ07]‘ r {ri<dx<2ri}

n—0 T1

Noticing that
(Adx)q = (D2dx - V*dic, Vidic) + (D2dx - Vi, Vdi ) = (D2dx - V'die, VVidi)
(recall that (D2dx - Vdx, Vdx) = 0 a.e.), the result follows.

Step 2: In the general case, we can treat each connected component of {r; < dx < r2} separately. More precisely,
given a connected component C of {r; < dx < ra} and 1 < 79, fix r§ € (r1,72) and consider a smooth submanifold
Y4 such that {r < dkx <ry}NC € X, € C. Then, we first apply Step 1 with {r; < dx < 75} NC inside X}, (note
that {di > 5} N X, # @) and finally we take the limit as 75 1 ro. This concludes the proof. O

10.7. Proof of Theorem and its corollaries. We can now proceed with the proof of our main result that,
as explained before, directly implies Theorem

Proposition 10.17. For every d, € (0,1), the set X(d,) is empty.

Proof. Since the sets X (d,) are monotonically decreasing, it suffices to prove the result for all d, sufficiently small.
So, assume by contradiction that X(d,) # &, then for A > 64 we construct the set B # & as in ((10.14). Also,
by choosing A sufficiently large (depending on d,), we can assume ([10.16) holds (recall Proposition [10.9)
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Now, let ¥ denote one of the level sets of w inside Br,+a(2a) N G(d5) \ B (note that this is a smooth surface),
and apply Lemma [10.16| with I = B, r1 € (1/4,2), and 73 = r < A/8 (recall B surrounds W(J,) and separates it

from G(8,) on X). Since (Hessdwp)a(Vidy, Vids) < C on {r; < dw < 2r1} by the semiconcavity of the distance
(see for instance [68]), for a.e. 71 < r we have

H2({r1 <dw <7}) < (r—r)H'({ds =71})

/ / / / Ky dH?*drdtds + O(r —r1)*H?*({r1 < dws < 2r1}). (10.28)
riJ Ty {

Tri<dwy <t}

Since f:l f:’l Ly <ty dtds = 3(r —dg)2 for ry < dg and |Kx| < |Ag|? (where |Ag|? denotes the sum of squares
of principal curvatures), using Fubini we get

/ / / / KZ d?‘[2 dr dtds <= / / / ‘Ag| ]]-{d%<t} dH dtds
2ﬂ{‘l”l"1<d1§ <t} Eﬁ{’l‘1<dg <T}

:f/ |As|?(r — dg)3 dH>.
4 Sn{ri<ds <r}

Thanks to this bound, averaging (10.28)) over ry € [3, 1], since f11/2 HY(EN{dy =r1})dr; = H2(EN{1/2 < dy < 1})
we obtain

1
2SN {1 < dg < 1)) < 1/ As2(r — dw)2 dH? + CrPH2(E N {0 < do < 2})
£\
for a.e. r € (1,A/8), which also implies (up to replacing C with C' + 1 in the right-hand side)
1
HA(EN{0<dy <r}) < Z/ |As | (r — dp)? dH? + Cr*H*(E N {0 < dg < 2}).
S\ B
Now choose v € (—1,1) such that
1
[ s e-a) e [ as - dy))anea
=, —1J%x
and apply the bound above to the level set ¥ = X,. Then, thanks to Lemma [10.14] we get

H2(X, m{O<d” <r})

47«2][ / |As, 2 (r — dy) dH? dA + CH2(S, N {0 < di < 2})

M2 a2 c . HA(E, N{2F <dg <21}
< 4r2][ / [ As, |? (r — day), dH? d\ + 5.1 Tog A 5?151(111\)%:6(/{) o7 . (10.29)

Note now that, thanks to Lemma [10.12| with p = 16, the coarea formula, and Lemma for any p € (—1,1) it

holds
! 2 ! 2
/ / |As, |2 (rfd%)er”sz)\g/ / A, |7 (2V/Pr — diy )", dH dX
—1J3,\B —-1J3\®

<(1+Cn) / A@)? [Vul (2'/7r — dty)* da,
{lu]<1}\B

for some universal C. Next, we apply the stability inequality (10.2)) with test function (21/ Pr — dy (m)) N (which is
admissible for » < A/8, due to Lemma for r < A/8 and (|10.16]), recall also Remark , giving

1
/1/E \AZA\Z(r—dg)idHZdAg (1+cn0)/
- A

2
2 pp _ q¢
ey 7 V(- dy), | do

< 1+ 0o +0)) ‘{|u| <1}n{0<dy < 21/,,7,}‘ (10.30)

<21+ C(1o + €0)YHA(2, N {0 < dlyy < 2V/P1}),

for some universal C' (that can be different line to line). In the last inequality we have again used the flatness of
level sets given by Lemma [10.6
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Combining this bound with (10.29)), we obtain
HA(Z, N{0< dy <7} 14+ C0ete) HA(S, N {0 < dg < 2V/Pr})

r - ! " (10.31)
2C HA(, N{2F < dg < 2"} '
- i k v — 7% )
TS log AP énﬁlgzlw%: ) 22k
Recalling Lemma this implies the existence of 7 € (A'/4, A/8) such that
HA(Z, N{0 < ds <7}) - 1+ C(no +e0) H*(E,N{0<dy <r}) C  HA(Z,Nn{0<dy <1} (10.32)
r? - 2 2 do|log Al r? o

Fixing 7, and &, (and thus J,) sufficiently small so that C(n, + &,) < i, and then fixing A sufficiently large

so that m < % and Proposition holds, we deduce H2(%, N {0 < dg <r}) = 0. This means that ¥, N
{0 < di§ < r} = @ forsome v € (—1,1), and therefore for all v € (—1, 1) (this follows, for instance, by Lemma/|10.11]).

Since A (and therefore r) can be chosen arbitrarily large, we have shown that {|u| < 1} has a bounded connected
component C that is contained inside B C Br(z). However this is impossible, as one can show, for instance, by
taking a test function ¢ in such that C C {¢ = 1} and supp(V() C {|u| = 1}. This contradiction proves that
X (6o) = &, as desired. O

Thanks to this last result, our main theorem follows immediately:

Proof of Theorem[I.1] Thanks to Proposition[10.17] the sets X (d,) = @ are empty for every §, > 0. Recalling their
definition, this implies that locally either A(u) = 0 or Vu = 0. Thus, by unique continuation, either the solution is
constant, or all level sets are flat and the solution is one-dimensional. O

Next, we want to prove Corollary The following lemma will be useful:

Lemma 10.18. Let n > 2, and let u be a global classical solution to the free boundary Allen—Cahn problem in R™
(see Definition . Given V' any connected component of {|u| < 1}, there is a unique global classical solution to
the free boundary Allen—Cahn problem u such that:

-u=uinV;

- @ restricted to R™ \ 'V takes values in {£1}.

Proof. The only delicate part is to show that we can assign a constant value (either +1 or —1) to each connected
component W of R™ \ V in a way that it agrees with u on 9W. Although intuitive, to rigorously justify it, we use
that the two free boundaries I'y := OV N {u = £1} are smooth submanifolds of R™ (in particular, they are oriented
and embedded). We want to show that, given a connected component W of R™ \ V, the boundary OW is either
fully contained in I'y (and then we assign +1 to w in W) or in I'_ (and then we assign —1).

Assume by contradiction the existence of two points py € I'y such that p1 := py — tv(py) € W for ¢t > 0 small
enough, where v is the inward unit normal to V. Since W is open and connected, there is a smooth curve 7; joining
P+ and p_ that does not intersect W —in particular, it does not intersect I'y.. On the other hand, since V' is open
and connected, there is another curve 75 contained in V' and joining the two points py = py+ + tv(p+) € V (for t
small) that does not intersect OV—in particular, it does not intersect I'y. But then the concatenation of v, and
o with the two segments pyp; and p_p_ would give a closed curve intersecting I'; exactly once (notice that the
segment p_p_ intersects I'_ and not I'y). However, by the invariance of the mod 2 self-intersection number (see,
e.g., |48, Chapter 2]), any closed curve has to intersect I'y an even number of times (being homologous to zero in
Z/2-homology), a contradiction. O

The proof of Corollary now follows through rather standard arguments, which we sketch for the reader’s
convenience:

Proof of Corollary[1.3 By Lemma [10.18] we can assume that {|u| < 1} is connected. Similarly to the proof of
Corollary (see Subsection , thanks to the monotonicity assumption, the solution is stable and we have
universal curvature estimates for the free boundary (see Proposition [9.4)), so the limits

w(xy, xe, x3) 1= Mlinﬁl(x)u and u(xy, e, x3) = 1;413200 u.

are classical stable solutions in R®. Thus, by Theorem w and u depend only on one Euclidean variable.
We now claim « is an energy minimizer. Indeed, since u is monotone in the x4 direction, there are three cases
to consider (up to rotation in the first three variables and replacing u(z’, z4) by —u(a’, —z4), if needed):

(i) u= -1 and w= +1;



73

(i) w = —1 and @ = h(x;) for some h : R — [~1, 1] not constant;

(iii) u = h(x1) and @ = h(z1) for some h,h : R — [~1,1] not constant.
Now, the assumption that {|Ju| < 1} is connected and —1 < u < v <@ < 1 imply that {# = 1} cannot contain
a slab {a < x; < b} with a < b finite, as otherwise we would have that « = 1 in such a slab, thus disconnecting
{Ju| < 1}. Symmetrically, there cannot be a slab {a < 27 < b} where w = —1.

It follows that, in the previous possible scenarios: either w is a minimizer (identically —1, or a 1D monotone
solution) or a maximum of two minimizers, and @ is either a minimizer (identically +1, or a 1D monotone solution) or
a minimum of two minimizers. This ensures that u and @ are, respectively, lower and upper barriers for minimizers.
Therefore, since the family of translated graphs {x5 = u(z + teq) }+er foliates the region

{u(e) < o5 <T(2)} C R x [~1,+1],

via a standard foliation argument (see [54}, Proof of Theorem 1.3]) it follows that v must be an energy minimizer
in every compact subset of R*, as claimed. Thanks to the energy minimality, we can apply [85, Theorem 3] to
conclude that u is one-dimensional. g

Finally, we provide the proof of Corollary relying on the C1'! to C%® estimate established in [9]. Notably,
the estimate in [9] is significantly more elementary than its Allen—Cahn counterpart in [28}/91], as it does not need
to account for sheet interactions.

Proof of Corollary[1.3 We claim that
sup e|D?u.| < C, (10.33)
Bs/an{|us|<1}
with a universal constant C. Note that since |u.| < 1 and |Vu.| = 1/¢ on 9{|uc| < 1}, the estimate provides
universal curvature bounds for the free boundary and all level sets of u. within Bg 4, for ¢ sufficiently small.

To prove , we argue by contradiction, combining the C1'!-to-C%% estimates from [9] with Theorem
This approach is a standard scaling-compactness argument analogous to the curvature estimate proofs in [23,[91].
Indeed, suppose—for the sake of contradiction—that there exists a sequence wy of classical stable critical points of
J2 in By for some ¢, € (0,1) such that

sup e D*up(x)| (1 —|2]) > B — oo.
By N {|ur|<1}
Let z be a point where the maximum is attained and set
hi, = ex| D% ()| (1 = |zk]) = max er|D*uk(2)[(1 — |z]) = 00, as k — oo.
z€B1N{|uk|<1}
Let dy, := | D?ug(z)| and pp = 1 — |2/, so that hy = dipr and dj, — oo. Notice that, by Lemma applied to
Ue,, (€% ), we have g,d < C with C universal.
Now, choose any sequence 7y J 0 such that 7xhy — oo and define

Uk (y) := ug (:ck + dyk> for y € Brdype-

Then wuy is a classical stable critical point of JE% in B, a,p,, Where &, = epdy, < C, with 0 € {|ug| < 1} and
kD% (0)] = 1. Also, by definition of hy, for x =z, + 4 € {ux > 0} with [y[ < 7xdrpy we have

y 5 1 — |y Pk
e |D%up [ 2p + = || < ep|D?up(z d .
k k( k dk)‘_ k| k( k)‘lf\kary/dk\_ kpk*TkPk
Therefore,
o € 1 I
x| D% (y)| = £ D2y, (2 + Y < for y € Bra,p, N{ur > 0}.
dk dk 1—Tk

By construction, the radius of the ball mdypr = T1hi goes to infinity as k — co.
We now distinguish two cases:

(a) If limg_,o & = 0, then using the C'H1-to-C*“ estimates in [9]—similarly to [28/91]—we obtain that the free
boundaries of u; converge (with local graphical C? convergence) to a complete stable minimal surface in
the Euclidean space R? with non-zero second fundamental form at the origin. This contradicts the classical
classification of stable minimal surfaces in R3 (see [34L|44l[77]), stating that such surfaces must be flat.

(b) Otherwise, up to passing to a subsequence, we have € := limy_, o, £ > 0. Then the functions ug(¢-) must
converge—similar to the proof of Lemma to a classical stable critical point of J in the whole R? with
nonzero Hessian at the origin, contradicting Theorem

This completes the proof. O
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Remark 10.19. With arguments similar to the ones above, one could also show the following Riemannian version

of Corollary
Let g be a Riemannian metric on the Euclidean ball By C R?, and assume that ||gllc2(p,) + 197 lc2p,) < M. Let

ue : By = [—1,1] be a classical stable critical point of

jgo,s(u;Bl) = /

. 1
{59”81'113]"& + 51(_1,1)(10} dvolg, e€(0,1).
B1

Then the principal curvatures of the level sets of u. are bounded in By /o by a constant depending only on M.

APPENDIX A. SOME CLASSICAL RESULTS
We begin by recalling the following quantitative version of Hopf’s lemma.

Lemma A.1 (Hopf). Suppose Bi(ey) touches & C R™ from the interior at 0. Suppose

—Au > 0 in Bi(en),
u > 0 in Bi(e,),
u(0) = 0.

Then there exist dimensional constants c1,co > 0 such that
O,u(0) >¢p  inf wu> 02][ wdz.
Biya(en) Bi/2(en)
Here v is the inward unit normal of Q (as consistent with the Bernoulli problem).

Proof. Define
_loglz—en| yp 9
Ty Bilen) \{en} =R, Tp(z):=4 82 | ’
leenl 21 it > 3,
so that
AI‘n =0 in Bl(en) \ {en}, Fn|831(en) = 0, Pn|331/2(en) = 1.
Then v(z) = (infaBln(en) u) I, (z) is a lower barrier for u inside Bi(e,) \ Bi/a(en), thus d,u(0) > 9,I',(0) =
c(n)infyp, Ja(en) u- This proves the first inequality. The second follows from the mean value inequality for super-
harmonic functions. U

We also present a useful interpolation inequality between L! and Lip:

Lemma A.2 (Interpolation). Let n > 2, and let Q = {(2',2,) € R"™* x R : 2, > ¢(2')} with #(0) = 0 and
[Vo| < Co. Let u € Lip(Q2N By). Then,

lull 7% ong,) < Cllullcr@nsylIVullie @ns,):

for some C depending only on n and C,. In particular, for any € > 0,
lull L~ @nB,) < Cellullrns,) + &l Vull L= @ns,),

for some C. > 0 depending only on n, Cs, and €.

Proof. Let h = ||u|l z(anpy), V = llullni@npy)s L = |Vul|p<@np,), and let 2, € QN By be such that [u(z.)| > 4.
Then, since u is L-Lipschitz, we have
h
ju(@)] > 5 ~ Ll o]
In particular, denoting r = =, we have |u| > 2 in B, (z,) and therefore
h hn+1
V= / lu| > / lu| > —|Br(xo) NQ| > chr™ = 4™ ——,
QnB, By (z0)NQ2 4 L

which gives the first result. The second estimate then follows from Young’s inequality. O

In the following result, we will use the stability inequality for classical solutions to the Bernoulli problem in By,
which reads as

/ He2an 1 < / |VE? da, for all ¢ € C°(By), € >0, (A.1)
o{u>0} {u>0}
(see [19, Lemma 1]). We recall that H denotes the mean curvature of the free boundary, and H(z) = —92, u(z) for

x € FB(u), where v is the inward unit normal vector field to FB(u) (cf. Lemma [3.12)).
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Setting £ = cn in ([A.1)) and integrating by parts, we get the following equivalent formulation:
/ cAcn?dx —|—/ c(c, + He)p? dH" ! < / c?|Vn|? dz, for all ¢,ne€ C(By), c>0. (A.2)
{u>0} o{u>0} {u>0}

One can then prove the following version consequence of the stability inequality.

Lemma A.3 (Sternberg—Zumbrun inequality). Let n > 2, and let u be a classical stable solution to the Bernoulli
problem in By C R™. Then

/ |D?ul?n? dz < n/ \Vul|?|Vn|? dz for all n € CX(By).
Bin{u>0} By
Proof. The proof follows along the lines of [40, Theorem 1.9] (cf. [14,/39,[81] for the semilinear case), using the
stability condition (A.2)) with ¢ = |Vu|. More precisely, by harmonicity of u we have
1
|VulAlVu| = §A(|Vu|2) - ’V|Vu|f2 = |D?uf* - ’V|Vu||2 inside {u > 0} N{|Vu| > 0}.

Setting v = @Z' (which is the inward unit normal of super-level sets of u and extends the inward unit normal on

FB(u) to {u > 0} N {|Vu| > 0}), we note that

2.
V|Vu| = W = (0%, u)v, therefore 0,|Vu| = —H on d{u > 0}.
u
Thus, thanks to (A.2]), we have
/ |Vu|?|Vn|? de > / (|D2u|2 — |V|Vu||2> n* dx for any 7€ C°(By). (A.3)
B Bin{u>0}N{|Vu|>0}

Notice that, since u is harmonic in {u > 0}, the set {|Vu| = 0} N{u > 0} has zero measure (by unique continuation)
and therefore the right integral above is in fact inside B; N {u > 0}. Now, given any point z, € {u > 0}, up to a
rotation we can assume then Vu(z,) = e1|Vu(z,)|. Then, at such point, the previous integrand equals

(10l = [19) () = 3 @) - @huteo) = 3 (@ue)
i.j=1 (i3 11)

Notice that, by harmonicity,
(Fru(we))? = (BByulwo) + Bgulwe) + - + 37y u(we))’
< (n = 1) ((92u(wo))” + (Fzul@o))® + -+ + (95,u(20))?) ,

and so, for any 7 € [0, 1],

n n

T
Z (07 u(zo))? > (1—7) Z (07u(xo))? + m(aflu(%))2~
ij=1 =1

(i3 (L,1) (i) (1,1)

Choosing 7 = "T_l, this proves that

2,12 2 1 ¢ 2 2 1. 2
(102l = |VIVul*) (2.) > w2 Ot = CIDPuteof
Combining this inequality with (A.3]), we get the desired result. O

APPENDIX B. LINEAR ESTIMATES FOR THE BERNOULLI PROBLEM

In this appendix, we prove some linear estimates for the Bernoulli or one-phase problem that are useful throughout
the work. In the following, we keep in mind the equivalence:

Lemma B.1. Let n > 2, e € S"!, and let u be a classical solution to the Bernoulli problem in By C R™ with
0 € FB(u). Then, the following are equivalent for any e5 = €,(n) small enough:

(i) lu—e-z| <e, in By N{u>0};

(1)) (e-x—e0)y <u<(e-xz+eo)s in By.
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Proof. All implications are elementary, except that (i) implies u > (e -z — &5)+ in By. By contradiction, we would
have u = 0 in By N {|z - €| > &,}. However, since 0 € FB(u), this contradicts Lemma [3.5] (or Remark if e, is
small enough. O

Remark B.2. In the previous statement, the hypothesis 0 € FB(u) can be replaced, e.g., with B7/s N {u > 0} # @.

Theorem B.3. Given n > 2, there exists e, > 0 small enough depending only on n such that the following holds.
Let u be a classical solution to the Bernoulli problem in By C R™, and suppose that

lu—e-z—0blLeBnfus0}) < o for some e€S"' beR.
Then, for any a € (0,1) we have
[Vu = ellLe (B, sn{u>0}) + [Vulca (s, onfus0y) < Cllu— e 2 = bl|L=(B,n{u>0})
for some constant C' depending only on n and «.

Proof. Denote € := ||u — e - & — b = (B,n{u>0}) < 0. If there are no free boundary points in Bs,4 we are done,
either by harmonic estimates if u > 0 in Bj,4, or because v = 0 in Bg/4. Thus, let us assume z, € B3y N FB(u),
and consider a(z) = 8u (xo + %), which is a classical solution to the Bernoulli problem in B such that
@ —€- (8z0 + ) — 8| oo, n{as0p) < 8E < 8o
In particular, since @(0) = 0, we have |8¢ -z, + 8b| < 8¢, and therefore
||/ITL — € x||L°°(Blﬁ{ﬂ>0}) S 165 S 1680.

Recalling Lemma [B.1] for €, small enough we can iteratively apply [30, Lemma 4.1] (cf. [30, Proof of Theorem 1.1])
to get

[Vﬁ]clva(Bl/zm{aw}) < Ce.

Le,

In particular, setting z, := 7

||Vﬁ — Vﬂ(zo)”Loo(Bl/Zm{u>0}) < Ce.
Since the free boundary is flat, we can use harmonic estimates for @ — e - x in By /3(2,), to deduce
|V’U’(ZO) - €| < C”ﬂ —e- xHLOQ(Bl/S(ZO)) < Ce.
Combining this bound with the above estimate at z,, we obtain
IVt = el LB, ,n(aso) < IVE = Vi(zo) LB, nniasop) + [Vi(zo) — €] < Ce.
By rescaling back and a covering argument, we get the desired result. O
Remark B.4. Since u is Lipschitz, the estimate
[Vu —ellL=(B, yn{u>0}) < Cllu — €z = b Lo (B,n{u>0});
holds with C' = 2e7 1 when the right-hand side is not smaller than &,.
By a standard interpolation argument, we can now show that L!'-flatness implies L>°-flatness:
Proposition B.5. Let n > 2, and let u be a classical solution to the Bernoulli problem in By C R™. There exists
a dimensional constant C' such that, for any e € S* ! and b € R,
|u—e-x—bllLe(B, onfu>0}) < Cllu—e-x—bllLi(B,n{u>0})s
for some constant C depending only on n.
Proof. From Theorem and Remark [B.4)), we know that for any e € S*~! and b € R,
IVu — eHLoo(Bl/zﬂ{u>0}) < Cllu—e-x —blLe(B,n{u>0})-
Combining this bound with the interpolation Lemma for any e € S* 1, b€ R, and § > 0,
lu— ez = bllLe(B, pnfusop) < Csllu— ez =bllLi(p, onfusop) +0llu— ez = bl L= (B0 {u0}):

u(z4r:) btez
T r 7

for some Cs5 > 0. Now, for any B,(z) C B; applying this estimate to u, , =
deduce that

with b replaced by we

rlu— ez —=bllLe(s,,()nfus0p) < Csllu— ez =bl[L1(B, mnfusoy) + 07" |[u — €2 = bl (B,(2)n{u>0})-
Now, choosing § sufficiently small, we can apply a standard covering trick to reabsorb the L*-term in the right-hand
side (see, for example, [41, Lemma 2.27]) and we deduce that, for any e € S*~! and b € R, it holds

|u—e-2—bllLe(B, nfu>0y) < Cllu—e-z—bllLi(B, ,nus0})-
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After a final covering and scaling argument, this proves our desired result. O

Finally, exploiting the recent results in [63], one obtains the linear estimates for higher-order derivatives of
solutions to the Bernoulli problem:

Proposition B.6. Let n > 2 and k € N. There exists e, = £5(n) > 0 small enough such that the following holds.
Let u be a classical solution to the Bernoulli problem in By C R™, and let us suppose that
lu—e-x—0blLeBn{u>0}) < €o for some e€S"' beR.
Then, we have
ID*ul| Lo (B, ynus0y) < Cllu— €z = bl (B,n{usop)
for some constant C' depending only on n and k.
Proof. Let us denote ¢ := |[u — e -2 — bl|Lo(B,n{u>0}) < €. The proof follows by tracking the dependence on e

in |63 Theorem 1.31] (with right-hand side f = 0). More precisely, after a translation, rotation, and a covering
argument, thanks to Theorem we can assume that

lu = @nllorarz (s, gniusop < Cc

where {u > 0} coincides inside By ¢ with the epigraph {z,, > ¢(z’)}, where ¢ is uniformly CY1/2. From this point,
the proof follows by induction as in |63, Theorem 1.31]. Namely, by repeated applications of [63, Theorem 1.29] we
deduce that, for any k& > 2,

lu = znllgrireong,, ) < Cre, for some radii ~ § < ppg1 < pr < 1,

which gives the desired result. O

APPENDIX C. COMPACTNESS OF STABLE SOLUTIONS

In this appendix we show the compactness of sequences of stable solutions to the Bernoulli problem, as stated
in Lemma Before that, we need an auxiliary lemma:

Lemma C.1. Letn > 2, § > 0, and let u be a classical stable solution to the Bernoulli problem in By C R™ with
0 € FB(u). Assume, in addition:
u>0 in BaN{x, >}
u<d in Ba N {x, < =6}
Then u =0 in By N{x, < —Cé&}, where C is a dimensional constant.
Proof. Combining our assumption with Lemma it follows that the free boundary of u is contained in a strip
{=Cod < x,, <6} inside By 4, with Cy dimensional. Hence, to prove the result, we assume by contradiction that
O<u<é inside {x, < —Cyd} N Bj. (C.1)
By Lemma and Lipschitz estimates (see, e.g., [20, Lemma 11.19]), we have supg, u > ¢1 > 0 and |Vu| < Cz in
B33, where ¢; and Cy are dimensional constants. Hence, there exists y € By such that minBr/Z(y) u > ¢1/2 where
r =¢1/Cy > 0. Assuming that § is sufficiently small (if not, we take C' = 1/4 in the conclusion) and recalling that
u < §in By N{z, < —d}, it follows that y, > r/4.
Since Au =0 in By N {x, > d} C {u > 0}, by Harnack’s inequality we obtain
u>c>0 in B7,4 N {x, >1/8}
and therefore, by a standard barrier argument,
u(z) > c(zy, —38) >0 for all x € Bsjp N {x, > d}. (C.2)

We now want to exploit Lemma Recall that, by contradiction, we are assuming (C.1)). Thus, by Fubini’s
theorem we have

/ \D2u|2dx>/ / |D?u|?(o,t) dtda>/ / |D?u|? (o, t) dt do,
Bin{u>0} ' 1/2,1/2]N{u(o,t)>0} 4 1/2

1/2 1/2
where:
- B, c R""! denotes the ball of radius r in R~ 1;
- given 0 € B 5, t; denotes the maximal value ¢, € [~1/4,1/4] such that (=1/2,¢,) C {u(c,-) > 0}.
Now, let II,, : R — R™~! denote the orthogonal projection onto the first n — 1 variables, and define

A =11, (FB(u) N (B} 5 x (—1/2,1/2))) C By CR""L.
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Notice now that, by (C.I)) and harmonic estimates, there exists C > 1 dimensional such that |Vu(o, —C6)[? < 1/2
for all o € By 5. Also, for o € A, we have —Cod < t, < ¢. Hence, since |Vu|? =1 on FB(u) and |V|Vul?| < 2[D?ul,

it follows that , 5
1 o
La< / / 10,V ul? (0. )| dt do < 2/ / | D2uldt dor
2 AJ-Ts AJ-Ts
Thus, applying Cauchy—Schwarz and Lemma we obtain
X 1/2
S|A] < O(|A]6)M? / |D2ul*dz | < C(A[9)Y? =  |A| <06
2 Bin{u>0}
On the other hand, for o € B] ), \ A we have t, = 1 > §Y/2. Thus, from (C.2) and the fact that 0 < u < § for

{z,, < —d}, for 0 sufficiently small we obtain
51/2

/ 02 ulo, B)|dt > u(o,0%?) — u(o, —C6) ~ u(o, =C%) — u(o, —671/2)
gz T = §1/2 L C§ —C5 + 6172
c(6Y? =6) =86 6-0 c

> — > —.

= 251/2 %51/2 —4
Hence, arguing similarly to before, we get
. 5172 1/2
S8\ Al< [ 02 (o Dldt < C(1B 5\ Al5%)" ( / |D2u|2dx> < (1B \ 4102,

1 p\AS =51/ Bin{u>0}

which proves that [B] ,\A| < C6'/2. Combining the bounds that we have obtained, we get 1B} ol < A|+|B] 5 \Al <
C(6 + 6'/2), a contradiction for § small enough. O

We can now give the proof of Lemma This fixes a small gap in [57, Theorem 1.2], since the authors rely on
[20, Lemma 1.21] and the proof there is incomplete, as one can see by comparing their argument with ours below.

Proof of Lemmal[{.5 We prove the three points separately.

(1) Since ||Vvk||Lm(Bk/2) < C (by Lipschitz regularity of classical solutions, see e.g. [20, Lemma 11.19]), for any
a € (0,1) we have vy — v in Ci%(R™), where [VUsol| oo mny < C(n) (in fact, v is 1-Lipschitz by Lemma .
Also, since vy, is subharmonic, so is v, and we have

Vo = Ve strongly in L] (R"),
(see for instance [15, Lemma A.1(b1)]). Hence, thanks to the bound [[V(vk — veo)||L=(B,,,,) < C, it follows by
interpolation that vy — v strongly in H_(R™).
(2) We now prove the Hausdorff convergence of the different sets.

e Hausdorff convergence of free boundaries.
Thanks to (4.4)), given z;, € FB(vy) with 25 — 2o, we have

HkaLm(Br(zk)) > c(n)r = ||’UOO||L°°(BT(I(X,)) > c(n)r.

In particular, since Voo (Zoo) = limg 00 vk (xk) = 0, it follows that 2o, € FB(veo).

Conversely, let 2, € FB(vs) and assume by contradiction that there is no free boundary point for vy in a
neighborhood, for all k large. Then the functions vy are all harmonic around z, (they are either identically zero,
or positive and harmonic), and thus v would be harmonic in a uniform neighborhood around z,; impossible.

e Hausdorff convergence of {vy = 0} to {ve = 0}.
If ¢ € {vp = 0} and 2 — Too, then vy () = 0. Conversely, if vy (To) = 0, we want to prove that there exist
points zy, € {vg = 0} such that xx — zo. This is the main part of the proof.

Let C C {voo = 0} denote the set of zero points of v, that are also accumulation points of convergent sequences x,
with vg(z) > 0. Note that C is closed and that, by the Hausdorff convergence of the free boundaries, 0C C FB(vso).
We need to prove that the interior of C is empty.

If not, by contradiction, there exists x, € JC such that the open sets intC N By(x,) and {ve > 0} N By(zo)
are both nonempty. By Lemma and Lemma the sets FB(vg) are “equi-uniformly” Alfohrs-David regular:
namely, there exists a dimensional constant C; > 1 such that, for all &,

cir”—l < H" N FB(vr) N By(y)) < Crr"~! forall y e FB(vy), r > 0.
1
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This implies, by standard covering arguments using Besicovitch theorem,
H"((FB(vr) + B;) N B,(y)) < Cor™ 't forall yeR" r>0,te(0,r).
This last inequality is stable under Hausdorff convergence, giving
H"(FB(voo) + By) N B, (y)) < Cor™ 't forall yeR™ r>0,te(0,r).
This proves that the (n — 1)-dimensional upper Minkowski content of the boundary
0C N By(xo) = FB(veo) N By(o)

is finite, and therefore the set {ve, > 0} N B,(z,) has finite (relative) perimeter in B,(z,). Thus, as a consequence
of De Giorgi’s structure theorem, [67, Chapter 15], there is a point y, belonging to the reduced boundary of C
in B,/2(x0), Yo € 0°C N B,s(x,). Hence, by zooming enough around y,, both C and {vs > 0} look locally like
half-spaces around y,, and therefore we can apply Lemma to deduce that the functions v; have to vanish
somewhere near y,, for k large enough. This provides a contradiction and concludes the proof.

o Hausdorff convergence of {vy > 0} to {vee > 0}.
This follows from the convergence of the free boundaries and the closures of the contact sets.

(3) Given u € H (R™) and a smooth compactly supported vector field ¥ € C°(R™; R™), it is a direct computation
to obtain the first and second inner variation of the energy in the direction W¥:

i ut RY) = —Z4Vu u) " u|?div x iv x
7 t:O(E( (-+t¥));R™) /Rn{ 2VuD¥(Vu)' + |Vul*div(DP)} d +/{u>0}d () dr,
and
c;i; (E(“(‘”‘I’));R"):/ Vu[4(DW)? +2DW(DW) T — d(div W) DY + (div ¥)2Id — tr((D¥)2)] (Vu) T da
t=0 n

+/{u>0} ((div ¥)? — tr((D¥)?)) da.

Thanks to the convergences proved in points (1) and (2) above, together with the fact that ||Vvk||LM(Bk/2) <,
we can let k — oo in the formulas for the first and second variation to deduce that v, is stationary and that

d2
0< —
— dt?

2

(B(un(- + t0)RY) |

(E(voo (- +tT)); R™) as k — oo,

t=0 0

for any ¥ € C°(R™;R™) fixed. This proves that v, is a stable solution. O

APPENDIX D. ESTIMATES FOR POSITIVE HARMONIC FUNCTIONS IN A FLAT-LIPSCHITZ DOMAIN

Proof of Lemma[6.3 The statement is scale-invariant, so we can fix r = 1. Let B;"t := ByN{z, > t}, and consider
Py(z,y) : B;’t X (“)B;“t — [0, 00) the Poisson kernel for the domain B;“t. We note that there exists some dimensional
constant ¢, > 0 such that P, (3e,,y) > ¢, > 0 for any ¢ € [0,1] and y € Bsj, N {x,, = t} (this can be seen, for
example, by comparing P; to the Poisson kernel of the half-space). Therefore,

w%mz/ a@%ww»mwsz%/ Wiy, 1) dy.
ly'|<3/2 ly'|<3/2

Since the values w (%en) and w(e,) are comparable (by Harnack inequality), the result follows. O

Proof of Lemma[6.J} We divide the proof into two steps.

Step 1: By scaling invariance, we fix 7 = 1. Let 7, = 27 and split B;ND = Ukzl Sk, where S, ={zx € By : 1, <
dist (z, D) < 7—1} can be covered by a union of balls J;c; Br,,,(z;) with bounded overlapping. In particular,

41, < Crp, Y.
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Now, using Harnack inequality and interior estimates, holds in S; (in place of By N D). Also, again by
interior estimates, for k > 2 we have

/ |D?*w|" da < Z / |D?w| da < C Z L -2 / wv, dz
B1NSk

1€y, ’k-;—z($ €1}, 7k+1

, 1 "
< Cry Y4B, 1|( > f/ wdx)
’ - #1, |B7“k+1 ‘ iely, ¥ Brigi (@)

. td
_ont 1—
<O Y (#1k|Brs ) (/ wdcc)
Sk_1USrUSk 11

!’
~
G !’
SCri 3 </ wdm) ,
Sk—1USKUSk 11

where, in the second line, we applied Jensen’s inequality (note that ¢ — ¢ is concave).
Step 2: Let 7 << 1 be universally small (to be fixed later) and assume that co < 72. For i € N, consider
the scales p; =

8
(pgz))’ € %GpiZ” L' c {x, = 0}. Then, consider the covering by spherical caps,

L7t and indices j € 1) so that the “graphical lattice” p € 0D n B3/2 projects along e, to

(oo}
DﬂBg/gﬂ{xngl—lﬁ}C U U Dy), for D() _p —I—{a:n>7' pz}ﬂBpiCD. (D.1)
i=0 je1(®)

Using Lemma at scale p; and integrating over ¢ € [0, 1], since ¢, < 72) we deduce that
/(_) wdz < 0/ wde, for DY i=pl 4 {en > 1pi} N By, (D.2)
Djz Dj1,

We now define the slabs
S =) + (300 < 20 < 47} 01 By
and note that
SJ(-i) D U ﬁéiﬂ) for some family of indices Ij(-”l) satisfying U IJ(.Hl) = JO+D,

(i+1) je ()
Cel; JE€

Applying Lemma again at scale p;, but this time integrating over t € [0,47]), we have

/ wdeC'/ wd:cgé’r/ wdzx,
DG+ s B

80 D icr) / D W dr decays geometrically as long as 7 < % Hence, recalling (D.2) we get

(i+1)
tel

/ w < Z / Cwdx < (éT)H—l/ wdx < C wdz < C(C1) ™ w(e,),
Bg/gﬂs D(l) D

0
JeI® D; ) {3>1/64}NB7 /4

where ST = {77+2/8 < dist (-, D) < 7%/16}, and where we have also used Harnack inequality.
Observe now that Sy_1 U Sk U Skq1 C Bsa N (ST UST, ) as long as 27771 > 7772/8 and 27+ < 7771 /16. This
holds, for instance, for ¢ = | k/|log,(7)|] with 7 universally small. Hence, by the previous inequality, we get

/ wd:rg/ o wdz < C(Cr)F/Mos2(Nly(e,) < C2F Tox T 92~ Fw(ey).
Sk 1USkUSk+1 Bg/2ﬁ(S USl+1)

Applying Step 1 and adding over k, we finally
1—2+

, , __cy
/ |D?w|” dx < C(w(e,))” E Ty Hogrl
BiND

Note that previous sum is finite as long as —2+v'+1— |10g P> 0, which holds for any v/ < = by choosing 7 sufficiently
small (depending on 7). This concludes the proof. O
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Proof of Lemma[8.9 By scale invariance, we fix r = 1. Proceeding exactly as in Step 2 of the proof of Lemma
(see above), by applying Lemma [8.8] instead of Lemma [6.3] (which is integrable in ¢ as long as (n — 1)(1 —¢) > —1)

we obtain
Z /<+1 |Vw|qdm<C/ \Vw|?dz < Cyrn= (b4 / [Vw|? dx.
V= I(’L+1)

As before, 3.6 fD§“

|7 dx decays geometrically (now for ¢ € (1, %) and 7 = 7(n, q) fixed). Thus,

Vwl|ldr < C / Vwl|?dz
/DﬂB3/2ﬁ{zn§116} | Z Z | |

=0 je1(®)
< CZ (C Fn=(n=1)q Z / V|t dz < C, / IVw|? dz,
i=0 eI Brjan{en>751 }
from which it follows that
/ |[Vw|?dr < Cq/ [Vwl|? de.
DNBg /s Brsn{zn>& }
Using again Lemma (to replace {xn > é} with {xn > i}), the result follows. O
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