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Abstract. In this paper we provide a well-posedness theory for weak measure solutions
of the Cauchy problem for a family of nonlocal interaction equations. These equations
are continuum models for interacting particle systems with attractive/repulsive pairwise
interaction potentials. The main phenomenon of interest is that, even with smooth
initial data, the solutions can concentrate mass in finite time. We develop an existence
theory that enables one to go beyond the blow-up time in classical norms and allows for
solutions to form atomic parts of the measure in finite time. The weak measure solutions
are shown to be unique and exist globally in time. Moreover, in the case of sufficiently
attractive potentials, we show the finite time total collapse of the solution onto a single
point for compactly supported initial measures. Our approach is based on the theory
of gradient flows in the space of probability measures endowed with the Wasserstein
metric. In addition to classical tools, we exploit the stability of the flow with respect
to the transportation distance to greatly simplify many problems by reducing them to
questions about particle approximations.
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1. Introduction

We consider a mass distribution of particles, µ ≥ 0, interacting under a continuous
interaction potential, W . The associated interaction energy is defined as

W[µ] :=
1
2

∫
Rd×Rd

W (x− y) dµ(x) dµ(y). (1.1)

Our paper is devoted to the class of continuity equations of the form

∂µ

∂t
= div

[(
∇δW
δµ

)
µ

]
= div [(∇W ∗ µ)µ] x ∈ Rd , t > 0. (1.2)

The equation is typically coupled with an initial datum

µ(0) = µ0. (1.3)

The velocity field in the continuity equation, −(∇W ∗ µ)(t, x), represents the combined
contributions, at the point x, of the interaction through the potential W with particles
at all other points.
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The choice of W depends on the phenomenon studied. For instance in population
dynamics, one is interested in the description of the evolution of a density of individuals.
Very often the interaction between two individuals only depends on the distance between
them. This suggests a choice of W as a radial function, i.e. W (x) = w(|x|). Moreover,
a choice of w such that w′(r) > 0 corresponds to an attractive force among the particles
(or individuals), whereas w′(r) < 0 models a repulsive force.

Equation (1.2) arises in several applications in physics and biology. Simplified inelastic
interaction models for granular media were considered in [4, 18] with W = |x|3/3 and
[43, 28] with W = |x|α, α > 1. Such models usually lead to convex attractive potentials.

Mathematical modeling of the collective behavior of individuals, such as swarming,
has also been treated by continuum models steaming from discrete particle models [33,
14, 41, 34, 42, 15, 36, 13, 21, 23, 16, 17]. Typical examples of interaction potentials
appearing in these works are the attractive Morse potential W (x) = −e−|x|, attractive-
repulsive Morse potentials W (x) = −Cae−|x|/`a + Cre

−|x|/`r , W (x) = −e−|x|2 , W (x) =
−Cae−|x|

2/`a + Cre
−|x|2/`r , or W being the characteristic function of a set in Rd. A

major issue is the possibility of a finite time blow-up of initially regular solutions, which
occurs when w is attractive enough near r = 0. In particular, the solution can aggregate
(collapse) part (or all) of its mass to a point in finite time. Blow-up producing potentials
feature a suitable singularity in their second derivative at r = 0. Typically, the potential
is of the form W (x) ≈ |x|1+α with 0 ≤ α < 1, see [27, 7, 6, 5] in case of the Lipschitz
singularity. Related questions with diffusion added to the system have been tackled in
[9, 29, 30, 31].

Finally, another source of models with interaction potential appear in the modeling of
cell movement by chemotaxis. In fact, the classical Patlak-Keller-Segel [38, 26] system,
see [12, 10, 11], corresponds to the choice of the Newtonian potential in R2 as interaction,
W = 1

2π log |x|, with linear diffusion. In the case without diffusion, a notion of weak mea-
sure solutions was introduced in [39] for which the author proved global-in-time existence,
although uniqueness is lacking.

Given a continuous potential W , thanks to the structure of (1.2), we can assume
without loss of generality that the following basic assumption holds:

(NL0) W is continuous, W (x) = W (−x), and W (0) = 0.

Moreover, the potentials considered in this paper will also satisfy the following assump-
tions:

(NL1) W is λ–convex for some λ ≤ 0, i.e. W (x)− λ
2 |x|

2 is convex.
(NL2) There exists a constant C > 0 such that

W (z) ≤ C(1 + |z|2), for all z ∈ Rd.

(NL3) W ∈ C1(Rd \ {0}).
We will say that the potential is a pointy potential if it satisfies (NL0)-(NL3) and

it has a Lipschitz singularity at the origin. If in addition, the potential is continuously
differentiable at the origin, we will speak about a C1-potential. If 0 is a local minimum
of the potential W , we will say that the potential is locally attractive. Note that any
potential which is λ-convex for a positive λ is also λ-convex for λ = 0 and thus satisfies
assumption (NL1).
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Remark 1.1. Assumptions (NL0)-(NL1) imply that

W (x) ≥ λ

2
|x|2, (1.4)

since 0 ∈ ∂W (0) and W (0) = 0. Hypotheses (NL1)-(NL3) imply a growth control on
the gradient of W . More precisely, using the convexity of x 7→ W̃ (x) := W (x) − λ

2 |x|
2

and the quadratic growth of W (x), there exists K > 0 such that

∇W̃ (x) · p ≤ W̃ (x+ p)− W̃ (x) ≤ K(1 + |x|2 + |p|2)

for any x 6= 0. Now, taking the supremum among all vectors p such that |p| = max{|x|, 1},
we get |∇W̃ (x)| ≤ K(2 + 2|x|) from which

|∇W (x)| ≤ 2K + (2K + |λ|) |x|. (1.5)

Let us also remark that (NL1) together with (NL3) imply that if the potential is not
differentiable at the origin, then it has at most a Lipschitz singularity at the origin.
Examples of locally attractive potentials neither pointy nor smooth are the ones with a
local behavior at the origin like |x|1+α, with 0 < α < 1.

The first problem we treat in this paper is to give a well-posedness theory of weak
measure solutions in the case of pointy potentials. Due to the possible concentration of
solutions in a finite time, one has to allow for a concept of weak solution in a (nonnegative)
measure sense. Our work fills in an important gap in the present studies of the equation.
Simplistically speaking: on the one hand, [2, 3] provide a good theory for weak measure
solutions for potentials which are either smooth or do not produce blow-up in finite time.
Indeed, when solutions concentrate and the potential is not everywhere differentiable,
this is the first paper where one is able to characterize the subdifferential of W, see
Proposition 2.2. On the other hand, in the works that study potentials that do produce
blow-up [27, 7, 6, 5] the notion of the solution breaks down at the blow-up time.

Before discussing the main results of this work, we introduce the concept of weak
measure solution to (1.2). A natural way to introduce a concept of weak measure solution
is to work in the space P(Rd) of probability measures on Rd. Since the class of equations
described here does not feature mass–threshold phenomena, we can normalize the mass
to 1 without loss of generality, due to the following invariance of the equation: if µ(t) is
a solution, so is Mµ(Mt) for all M > 0. Following the approach developed in [2, 3], we
shall consider weak measure solutions which additionally belong to the metric space

P2(Rd) :=
{
µ ∈ P(Rd) :

∫
Rd

|x|2 dµ(x) < +∞
}

of probability measures with finite second moment, endowed with the 2–Wasserstein
distance dW ; see the next section.

Definition 1.2. A locally absolutely continuous curve µ : [0,+∞) 3 t 7→ P2(Rd) is said
to be a weak measure solution to (1.2) with initial datum µ0 ∈ P2(Rd) if ∂0W ∗µ belongs
to L1

loc([0,+∞);L2(µ(t))) and∫ +∞

0

∫
Rd

∂ϕ

∂t
(x, t) dµ(t)(x) dt+

∫
Rd

ϕ(x, 0) dµ0(x) =∫ +∞

0

∫
Rd×Rd

∇ϕ(x, t) · ∂0W (x− y) dµ(t)(x) dµ(t)(y) dt, (1.6)
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for all test functions ϕ ∈ C∞c ([0,+∞)× Rd).

In this definition, ∂0W (x) denotes the element of minimal norm in the subdifferential
of W at x. In particular, thanks to our assumptions on W the formula

(∂0W ∗ µ)(x) =
∫
y 6=x
∇W (x− y) dµ(y)

holds. Here, the absolute continuity of the curve of measures means that its metric
derivative is integrable, see next section. Let us point out that, as a consequence of (1.5),
∂0W ∗ µ ∈ L2(µ) for any µ ∈ P2(Rd).

The main idea to construct weak measure solutions to (1.2) is to use the interpreta-
tion of these equations as gradient flows in the space P2(Rd) of the interaction potential
functional (1.1) with respect to the transport distance dW . Such an interpretation turns
out to be extremely well-adapted to proving uniqueness and stability results for gradient
flow solutions compared to other strategies. This basic intuitive idea, introduced in [37]
for the porous medium equation and generalized to a wide class of equations in [19], was
made completely rigorous for a large class of equations in [2, 3] including some partic-
ular instances of (1.2). For gradient flow solutions we are able to obtain the existence,
uniqueness and dW -stability. Let us point out that gradient flow solutions are eventually
shown to be equivalent to weak measure solutions.

Let us remark that the well-posedness theory of gradient flow solutions in the space of
probability measures is developed in [2, 3] for λ-convex potentials. However, a character-
ization of the subdifferential of the interaction functional W is provided only when the
potential W is C1. Here, we mainly focus on generalizing this theory to allow Lipschitz
singularities at the origin. In the case of not C1-potentials satisfying (NL0)-(NL3), the
technical point to deal with is the characterization of the subdifferential and its element
of minimal norm. Moreover, we generalize this gradient flow theory allowing a nega-
tive quadratic behaviour at infinity. This fact introduces certain technical difficulties at
the level of coercivity and lower semicontinuity of the functional defining the variational
scheme. The well-posedness theory of gradient flow solutions is the goal of Section 2.

One of the key properties of the constructed solutions is the stability with respect to
dW : given two gradient flow solutions µ1(t) and µ2(t),

dW (µ1(t), µ2(t)) ≤ e−λt dW (µ1
0, µ

2
0)

for all t ≥ 0. If λ > 0 the above estimate still holds provided that the initial measures
have the same center of mass, see Remark 2.14. The above stability estimate is not
only useful for showing uniqueness but it is mainly a tool for approximating general
solutions by particle ones. In fact, the previous estimate can be considered as a proof
of the convergence of the continuous particle method for this equation on bounded time
intervals. This is very much in the spirit of early works in the convergence of particle
approximations to Vlasov-type equations in kinetic theory [22, 35, 40].

Let us finally mention that it is not difficult to check that weak-Lp solutions with initial
data in L1

+ ∩ Lp(Rd) with finite second moment constructed in [5, 20, 8] are also weak
measure solutions in the sense of Definition 1.2 up to their maximal existence time, see
Remark 2.15.

Section 3 is devoted to show qualitative properties of the approximate solutions ob-
tained by the variational scheme as in [25]. More precisely, we prove that particles
remain particles at the level of a discrete variational scheme, provided the time step is



PROPERTIES OF SOLUTIONS TO NONLOCAL INTERACTION EQUATIONS 5

small enough. In particular, this shows that the gradient flow solution starting from a fi-
nite number of particles remains at any time a finite number of particles, whose positions
are determined by an ODE system. Although one can check directly via the solution
concepts that such construction provides the solution for a finite number of particles, it
is quite interesting to prove this property directly at the variational scheme level, as it is
shown by its suitability as a numerical scheme.

Section 4 is devoted to the question of finite-time blow-up of solutions. For a radially
symmetric attractive potential, i.e. W (x) = w(|x|), w′(r) > 0 for r > 0, the number

T (ε1) :=
∫ ε1

0

dr

w′(r)
, ε1 > 0 (1.7)

can be thought as the time it takes for a particle obeying the ODE Ẋ = −∇W (X) to
reach the origin if it starts at a distance ε1 from the origin. This number quantifies the
attractive strength of the potential: the smaller T (ε1) is, the more attractive the potential
is. It was shown in [6, 7, 8] that if T (ε1) = +∞ for some (or equivalently for all) ε1 > 0,
then solutions of (1.2) starting with initial data in Lp will stay in Lp for all time, whereas
if T (ε1) < +∞ for some ε1 > 0, then compactly supported solutions will leave Lp in finite
time (this result holds in the class of potentials which does not oscillate pathologically
around the origin). Here, thanks to our developed existence theory, we are able to obtain
further understanding of the large time behavior of the solutions: loosely speaking, we
prove that if the potential is attractive enough (i.e. T (ε1) < +∞ for some ε1 > 0) then
solutions of (1.2) starting with measure initial data will concentrate to a single Delta
Dirac in finite time. We refer to this phenomena as finite time total collapse.

We will say that W is an attractive non-Osgood potential if in addition to (NL0)-
(NL3), it satisfies the finite time blow-up condition:

(NL-FTBU) W is radial, i.e. W (x) = w(|x|), W ∈ C2(Rd \ {0}) with w′(r) > 0
for r > 0 and satisfying the following monotonicity condition: either (a) w′(0+) >
0, or (b) w′(0+) = 0 with w′′(r) monotone decreasing on an interval (0, ε0).
Moreover, the potential satisfies the integrability condition∫ ε1

0

1
w′(r)

dr < +∞, for some ε1 > 0. (1.8)

Let us point out that the condition of monotonicity of w′′(r) is not too restrictive. It is
actually automatically satisfied by any potential which satisfies (1.8) and whose second
derivative does not oscillate badly at the origin, as in [6, 7] (more comments on this
assumption are done in Section 4). Examples of this type of potentials are the ones
having a local behavior at the origin like w′(r) ' rα with 0 ≤ α < 1 or w′(r) ' r log2 r.

The proof of finite-time total collapse of solutions for attractive non-Osgood potentials
is based on showing a finite-time total collapse result for the particles approximation
independent of the number of particles, but possibly depending on the initial support.
This fact, together with the convergence of the particle approximation, leads to the finite-
time aggregation onto a single particle with the total mass of the system. This is the
main technical novelty of our approach to blow-up.

It is worthwhile to remark on how our finite time total collapse result relates to previous
works on finite time blow-up of weak-Lp solutions [7, 5, 8]. It was shown in [8] that a
weak-Lp solution will exist as long as its Lp-norm is bounded. Since weak-Lp solutions
agree with the weak measure solutions for as long as weak-Lp solutions exist, if the finite
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time collapse occurs then there exists a time T ∗ such that the Lp-norm of the density
of the measure µ(t) goes to infinity as t → T ∗. That is, the finite time collapse of weak
measure solutions implies finite time blow-up in the Lp-norm for weak-Lp solutions. In
this way, we recover the results of finite time blow-up for more restrictive potentials
W obtained in [6] under the condition (NL-FTBU). We emphasize that the condition
(NL-FTBU) implies both the finite time blow-up in Lp and the finite time collapse.
Let us also point out that, even if we extend the notion of solution in a unique way
after any Lp blow-up time, we are not able with this strategy to characterize the typical
profile of L∞ or Lp blow-up. We refer the reader to [24] for a numerical study of this
question. Let us remark that the blow-up of the solution in Lp-norms will in general
happen before the total aggregation/collapse onto a single point. The transition from the
first L∞ blow-up to the total collapse can be very complicated. For instance one could
have multiple points of aggregation onto Dirac deltas interacting between them and with
smooth parts of the measure in a challenging evolution before the total aggregation onto
a single point. As explained in Section 4, as a consequence of the strategy of proof for the
finite time total collapse, we can exhibit the appearance of multiple collapses into different
Dirac deltas which eventually will collapse all together, see Proposition 4.6. This also
shows that generically any Lp blow-up will happen before the total collapse time except
for very particular initial symmetric distributions. This complex behavior was already
encountered in [39] in the case of the chemotaxis model without diffusion, but his notion of
solution lacks of uniqueness and stability. Many problems on the details of the blow-up in
(1.2) and the interaction of delta masses with surrounding absolutely-continuous-measure
part remain open.

2. The Jordan–Kinderlehrer–Otto (JKO) scheme

In this section we develop the existence theory for measure–valued solutions in the
sense of Definition 1.2 by following the set up developed in [2]. A natural choice of a
space of measures where to develop such a theory is the space P2(Rd) endowed with the
Wasserstein distance

dW (µ, ν) :=
[
min

{∫
Rd×Rd

|x− y|2dγ(x, y) : γ ∈ Γ(µ, ν)
}]1/2

, (2.1)

where the set Γ(µ, ν) of transport plans between µ and ν is defined by

Γ(µ, ν) :=
{
γ ∈ P(Rd × Rd) : (π1)#γ = µ and (π2)#γ = ν

}
with π1(x, y) = x and π2(x, y) = y, that is,∫

Rd×Rd

φ(x)dγ =
∫

Rd

φ(x)dµ,
∫

Rd×Rd

φ(y)dγ =
∫

Rd

φ(y)dν, for allφ ∈ Cb(Rd).

The space (P2(Rd), dW ) is a complete metric space [44, 2]. The standard theory of
optimal transportation [2, 44] provides the existence of an optimal transport plan for the
variational problem (2.1), i.e. there exists γo ∈ Γ(µ, ν) such that

d2
W (µ, ν) =

∫
Rd×Rd

|x− y|2dγo(x, y). (2.2)

The set of all the optimal plans γo satisfying (2.2) is denoted by Γo(µ, ν).
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We recall that the interaction energy W : P2(Rd)→ R is defined as follows:

W[µ] :=
1
2

∫
Rd×Rd

W (x− y)dµ(x)dµ(y). (2.3)

Note that W is well-defined on P2(Rd) due to assumptions (NL1)-(NL2), which
provide suitable control of the integral at infinity. Also, the continuity of W ensures the
well-posedness of W on singular measures.

Following [2], we shall first address the problem of the existence of a curve of maximal
slope for the functionalW. For this purpose, let us introduce some definitions. The slope
of W is defined as:

|∂W|[µ] := lim sup
ν→µ

(W[µ]−W[ν])+

dW (µ, ν)
, (2.4)

where u+ := max{u, 0}. Given an absolutely continuous curve [0, T ] 3 t 7→ µ(t) ∈ P2(Rd),
its metric derivative is:

|µ′|(t) := lim sup
s→t

dW (µ(s), µ(t))
|s− t|

. (2.5)

Finally, we recall the definition of a curve of maximal slope for the functional W. With
the notation in [2], such a notion is referred to as a “curve of maximal slope with respect
to |∂W|”.

Definition 2.1. A locally absolutely continuous curve [0, T ] 3 t 7→ µ(t) ∈ P2(Rd) is a
curve of maximal slope for the functional W if t 7→ W[µ(t)] is an absolutely continuous
function, and the following inequality holds for every 0 ≤ s ≤ t ≤ T :

1
2

∫ t

s
|µ′|2(r) dr +

1
2

∫ t

s
|∂W|2[µ(r)] dr ≤ W[µ(s)]−W[µ(t)]. (2.6)

The notion of solutions provided in Definition 2.1 is purely metric (see [2, Part I]).
We shall improve this notion of solution (in the spirit of [2, Part II]) to a solution in the
“gradient flow” sense in Subsection 2.3.

The inequality (2.6), which defines the notion of a curve of maximal slope, is better
understood after providing a representation formula for the slope |∂W| in terms of an
integral norm of a vector field involving the “gradient” of W , or rather its minimal
subdifferential ∂0W . Moreover, the metric derivative |µ′| should be interpreted in a
“length space” sense, which accounts for the metric space P2(Rd) being endowed with a
kind of Riemannian structure, first introduced in [37] and then proven rigorously in [2].
For the sake of clarity, let us briefly recall this framework (see [2, Chapter 8] for further
details).

Given a measure µ ∈ P2(Rd), the tangent space TanµP2(Rd) to P2(Rd) at µ is the
closed vector subspace of L2(µ) given by

TanµP2(Rd) := {∇φ : φ ∈ C∞c (Rd)}
L2(µ)

.

Moreover, given an absolutely continuous curve t 7→ µ(t) ∈ P2(Rd), the “tangent vectors”
to µ(t) can be identified as elements of the set of vector fields v(t) solving the continuity
equation

∂tµ(t) +∇ · (v(t)µ(t)) = 0 (2.7)
in the sense of distributions. Among all the possible velocity fields v(t) solving (2.7), as
a consequence of [2, Theorem 8.3.1], there is one with minimal L2(µ(t))-norm, equal to
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the metric derivative of µ(t). Therefore, we have the following representation formula for
|µ′|(t): for a.e. t ∈ (0, T ),

|µ′|(t) = min
{
‖v(t)‖L2(µ(t)) : v(t) solves (2.7) in the sense of distributions

}
.

More precisely, for every solution v(t) of (2.7) the inequality |µ′|(t) ≤ ‖v(t)‖L2(µ(t)) holds
at a.e. t ∈ (0, T ), and there exists a “unique” solution of (2.7) for which equality holds
a.e. on (0, T ), see [2, Theorem 8.3.1 and Proposition 8.4.5]. We recall here the upper
bound

lim sup
ε↘0

dW ((id+ εξ)#µ, µ)
ε

≤ ‖ξ‖L2(dµ) (2.8)

which follows immediately from the trivial inequality

W2(S#µ, T#µ) ≤ ‖S − T‖L2(dµ).

As for the slope |∂W| of the functional W (similarly to the classical subdifferential
calculus in Hilbert spaces), it can be written as

|∂W|(µ) = min
{
‖w‖L2(µ) : w ∈ ∂W(µ)

}
,

where ∂W(µ) is the (possibly multivalued) subdifferential of W at the measure µ. The
definition of subdifferential of a functional W on P2(Rd) in the general case is pretty
involved (see [2, Definition 10.3.1]) and we shall not need to recall it here. In the next
subsection, we follow the approach of [2] to characterize the (unique) element of the
minimal subdifferential of W denoted by ∂0W(µ).

2.1. Subdifferential of W. Given W a potential satisfying (NL0)-(NL3), let ∂W (x)
be the (possibly multivalued) subdifferential of W at the point x, namely the convex set

∂W (x) :=
{
κ ∈ Rd : W (y)−W (x) ≥ κ · (y − x) + o(|x− y|), for all y ∈ Rd

}
.

Denoting by ∂0W (x) the (unique) element of ∂W (x) with minimal norm, due to the
assumptions (NL0)-(NL1) and (NL3) we have ∂0W (x) = ∇W (x) for x 6= 0 and
∂0W (0) = 0.

A vector field w ∈ L2(µ) is said to be an element of the subdifferential of W at µ, and
we write w ∈ ∂W[µ], if

W[ν]−W[µ] ≥ inf
γo∈Γo(µ,ν)

∫
Rd×Rd

w(x) · (y − x) dγo(x, y) + o(dW (ν, µ)). (2.9)

In principle, according to [2, Definition 10.3.1], the elements of ∂W[µ] are plans γ in the
set P2(Rd×Rd) such that (π1)#γ = µ. If a plan γ ∈ ∂W[µ] is concentrated on the graph
of a vector field w ∈ L2(µ), then [2, Definition 10.3.1] reduces to (2.9). By following the
approach of [2, Sections 10.3 and 10.4], it is easy to see that the (unique) element with
minimal norm of ∂W[µ] is concentrated on the graph of a vector field. Following [2], we
call this element the minimal subdifferential ofW at µ, and we denote it by ∂0W[µ]. The
following characterization of the subdifferential is obtained in [2, Theorem 10.4.11] for
smooth C1-potentials, and here we generalize it to potentials satisfying (NL0)-(NL3):

Proposition 2.2. Given a potential satisfying (NL0)-(NL3), the vector field

κ(x) := (∂0W ∗ µ)(x) =
∫
y 6=x
∇W (x− y) dµ(y)
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is the unique element of minimal L2(µ)-norm in the subdifferential of W, i.e. ∂0W ∗µ =
∂0W[µ].

Proof. We divide the proof into two steps.
Step 1: κ(x) ∈ ∂W[µ]. We have to show that

W[ν]−W[µ] ≥ inf
γ∈Γo(µ,ν)

∫
Rd×Rd

κ(x) · (y − x) dγ(x, y) + o(dW (ν, µ)).

Thanks to the λ-convexity of W , it suffices to prove that, for any fixed γ ∈ Γo(µ, ν), we
have

lim inf
t→0

W[(1− t)π1 + tπ2)#γ]−W[µ]
t

≥
∫

Rd×Rd

κ(x) · (y − x) dγ(x, y). (2.10)

To see this, we observe that the λ–convexity of W implies that the function

t 7→ f(t) :=
W (ty + (1− t)x)−W (x)

t
− λ

2
t|x− y|2 (2.11)

is nondecreasing in t. Therefore, by writing f(1) ≥ lim inft↘0 f(t), integrating with
respecto to γ, and using the monotone convergence theorem, we easily recover

W[ν]−W[µ] ≥ lim inf
t→0

W[(1− t)π1 + tπ2)#γ]−W[µ]
t

+
λ

2
d2
W (ν, µ).

We now prove (2.10). Let us write W = W̃ + λ
2 |x|

2, so that W̃ := W − λ
2 |x|

2 is convex
and 0 ∈ ∂W̃ (0). Moreover we define

W̃[µ] :=
1
2

∫
Rd×Rd

W̃ (x− y)dµ(x)dµ(y), Q[µ] :=
1
2

∫
Rd×Rd

|x− y|2dµ(x)dµ(y).

Observe that W = W̃ + λQ. We first estimate 1
t

(
W̃[(1 − t)π1 + tπ2)#γ] − W̃[µ]

)
: since

W̃ is nonnegative, we have

W̃[(1− t)π1 + tπ2)#γ]− W̃[µ]
t

=
1
2

∫
Rd×Rd

∫
Rd×Rd

[
W̃ (t(y2 − y1) + (1− t)(x2 − x1))− W̃ (x2 − x1)

t

]
dγ(x1, y1) dγ(x2, y2)

≥ 1
2

∫
x1 6=x2

[
W̃ (t(y2 − y1) + (1− t)(x2 − x1))− W̃ (x2 − x1)

t

]
dγ(x1, y1) dγ(x2, y2).

Thanks to the convexity of W̃ and its (at most) quadratic growth at infinity, and using the
fact that ∇W̃ is odd, it is easily seen that the last term in the above equation converges
to ∫

x1 6=x2

∇W̃ (x2 − x1) · (y2 − x2) dγ(x1, y1) dγ(x2, y2).

On the other hand, it is an easy computation to check that

Q[(1− t)π1 + tπ2)#γ]−Q[µ]
t

→
∫

Rd×Rd

(x2 − x1) · (y2 − x2) dγ(x1, y1) dγ(x2, y2)

=
∫
x1 6=x2

(x2 − x1) · (y2 − x2) dγ(x1, y1) dγ(x2, y2).
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Combining all these estimates together, we get the desired result.
Step 2: w is the element of minimal norm of ∂W[µ]. We closely follows the
argument in [2, Theorem 10.4.11]. Fix a vector field ξ ∈ C∞c (Rd,Rd). Observing that
W (x− z + t(ξ(x)− ξ(z))) = W (x− z) = 0 when x = z, we get

lim
t→0

W[(id+ tξ)#µ]−W[µ]
t

= lim
t→0

1
2

∫
Rd×Rd

W ((x− z) + t(ξ(x)− ξ(z)))−W (x− z)
t

dµ(x) dµ(z)

= lim
t→0

1
2

∫
x 6=z

W ((x− z) + t(ξ(x)− ξ(z)))−W (x− z)
t

dµ(x) dµ(z)

=
1
2

∫
x 6=z
∇W (x− z) · (ξ(x)− ξ(z)) dµ(x) dµ(z)

=
∫

Rd

κ(x) · ξ(x) dµ(x). (2.12)

Hence, since the definition of slope (2.4) easily implies

lim inf
t↘0

W[(id+ tξ)#µ]−W[µ]
dW ((id+ tξ)#µ, µ)

≥ −|∂W|(µ),

we can use (2.8) and (2.12) to get∫
Rd

κ(x) · ξ(x) dµ(x) ≥ −|∂W|(µ) lim inf
t→0

dW ((id+ tξ)#µ, µ)
t

≥ −|∂W|(µ)‖ξ‖L2(µ).

Changing ξ with −ξ gives∣∣∣∣∫
Rd

κ(x) · ξ(x) dµ(x)
∣∣∣∣ ≤ |∂W|(µ)‖ξ‖L2(µ),

so that by the arbitrariness of ξ we get ‖κ‖L2(µ) ≤ |∂W|(µ), and therefore κ is the (unique)
element of minimal norm. �

2.2. Well-posedness and convergence of the scheme. The approach of [2] in proving
the existence of a curve of maximal slope for a functional on P2 is based on a variational
version of the implicit Euler scheme, sometimes referred to as the Jordan–Kinderlehrer–
Otto (JKO) scheme or minimizing movement scheme [25, 1, 2]. Given an initial measure
µ0 ∈ P2 and time-step τ > 0, we consider a sequence µτk recursively defined by µτ0 = µ0

and

µτk+1 ∈ arg minµ∈P2

{
W[µ] +

1
2 τ

d2
W (µτk, µ)

}
, (2.13)

for all k ∈ N.
We shall address here the well-posedness of the definition (2.13) and the convergence of

µτk as τ → 0 (after a suitable interpolation) to a limit which satisfies Definition 2.1. Such
a problem has been widely studied for smooth convex potentials in [2], where convergence
of the discrete scheme to a suitable limit is shown. However, allowing for W (x) behaving
like −C|x|2 as |x| → +∞ and for a pointy singularity at x = 0 would require in general
some improvements of the arguments in [2, Part I], as we shall see below. Indeed let
us point out that, for W (x) behaving like −C|x|2, the functional W[µ] is upper (and
not lower!) semicontinuous with respect to the narrow convergence. Let us observe that
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in our case one could exploit the fact the functional W is λ-convex along generalized
geodesic to directly apply the theory developed in [2], see Remark 2.9. On the other
hand our proofs are more flexible, and so we believe that our strategy can be of interest
also in other situations.

For the sake of clarity, we shall recall all the main steps of the JKO scheme developed in
[2] in the particular case of a functional given by a pure nonlocal interaction energy. We
shall perform this task also for another reason, namely to relax the set of assumptions
(NL0)-(NL3) in order to admit |∇W | to be possibly unbounded at the origin (see
Remark 2.11).

We start by showing that the minimization problem (2.13) admits at least one solution,
which in our situation is not a trivial issue. To this aim, we prove a technical lemma
which will be also useful in the sequel.

Lemma 2.3 (Weak lower semi–continuity of the penalized interaction energy). Suppose
W satisfies (NL0)-(NL3). Then, for a fixed µ ∈ P2(Rd), the penalized interaction energy
functional

P2(Rd) 3 µ 7→ W[µ] +
1
2τ
d2
W (µ, µ)

is lower semi–continuous with respect to the narrow topology of P(Rd) for all τ > 0 such
that 8τλ− ≤ 1, where λ− := max{0,−λ}.

Proof. Let {µn}n ⊂ P2(Rd) such that limn→+∞ µn = µ∞ narrowly. We have to prove
that

lim inf
n→+∞

[
W[µn] +

1
2 τ

d2
W (µn, µ)

]
≥ W[µ∞] +

1
2 τ

d2
W (µ∞, µ). (2.14)

From the estimate in Remark 1.1 and the fact that λ ≤ 0, we have

W (x− y) ≥ λ

2
|x− y|2 ≥ λ(|x|2 + |y|2),

which implies that
h(x, y) := W (x− y)− λ(|x|2 + |y|2)

is a nonnegative continuous function. Therefore,

W[µn] +
1

2 τ
d2
W (µn, µ) = λ

∫
Rd×Rd

(|x|2 + |y|2) dµn(x) dµn(y)

+
∫

Rd×Rd

h(x, y) dµn(x) dµn(y) +
1

2 τ
d2
W (µn, µ)

=
∫

Rd×Rd

h(x, y) dµn(x) dµn(y)

+
1

2 τ
d2
W (µn, µ) + 2λ

∫
Rd

|x|2 dµn(x). (2.15)

Since h ≥ 0, we easily get

lim inf
n→+∞

∫
Rd×Rd

h(x, y) dµn(x) dµn(y) ≥
∫

Rd×Rd

h(x, y) dµ∞(x) dµ∞(y). (2.16)

Therefore, to get the desired assertion it suffices to prove that

lim inf
n→+∞

1
2 τ

d2
W (µn, µ) + 2λ

∫
Rd

|x|2 dµn(x) ≥ 1
2 τ

d2
W (µ∞, µ) + 2λ

∫
Rd

|x|2 dµ∞(x). (2.17)
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Now, let γn ∈ Γo(µ, µn). Then,

1
2 τ

d2
W (µn, µ)+ 2λ

∫
Rd

|x|2dµn(x) =
∫

Rd×Rd

(
1
2τ
|x− y|2 + 2λ|y|2

)
dγn(x, y). (2.18)

Stability of optimal transportation plans (see [45, Theorem 5.20]) implies that there exists
a subsequence, that we may assume to be the whole sequence, such that γn converges
narrowly to an optimal plan γ∞ ∈ Γo(µ, µ∞). As a consequence of∫

Rd×Rd

|x|2 dγn(x, y) =
∫

Rd

|x|2 dµ(x) =
∫

Rd×Rd

|x|2 dγ∞(x, y)

and of the elementary inequality |y|2 ≤ 2|x− y|2 + 2|x|2 which implies

1
2τ
|x− y|2 + 2λ|y|2 +

1
2τ
|x|2 ≥

(
1
4τ

+ 2λ
)
|y|2 ≥ 0 if τ ≤ 1

8λ−
, (2.19)

we easily obtain

lim inf
n→+∞

∫
Rd×Rd

(
1
2τ
|x− y|2 + 2λ|y|2

)
dγn(x, y)

= − 1
2τ

∫
Rd×Rd

|x|2dγ∞(x, y) + lim inf
n→+∞

∫
Rd×Rd

(
1
2τ
|x− y|2 + 2λ|y|2 +

1
2τ
|x|2
)
dγn(x, y)

≥ − 1
2τ

∫
Rd×Rd

|x|2dγ∞(x, y) +
∫

Rd×Rd

(
1
2τ
|x− y|2 + 2λ|y|2 +

1
2τ
|x|2
)
dγ∞(x, y)

=
∫

Rd×Rd

(
1
2τ
|x− y|2 + 2λ|y|2

)
dγ∞(x, y).

This proves (2.17). �

Remark 2.4. We observe that the optimality of the plans γn and γ∞ is never actually
needed in the previous proof. More precisely, the weak lower semi–continuity property
stated in the above lemma still holds for the functional

P2(Rd × Rd) 3 γ 7→ W[(π1)#γ] +
1
2τ

∫
Rd×Rd

|x− y|2 dγ(x, y),

where (π2)#γ = µ is fixed.

Next, we prove the solvability of the minimization problem (2.13).

Proposition 2.5 (Existence of minimizers). Suppose W satisfies (NL0)-(NL3). Then,
there exists τ0 > 0 depending only on W such that, for all 0 < τ < τ0 and for a given
µ ∈ P2(Rd), there is µ∞ ∈ P2(Rd) such that

W[µ∞] +
1

2 τ
d2
W (µ, µ∞) = min

µ∈P2(Rd)

{
W[µ] +

1
2 τ

d2
W (µ, µ)

}
.

Proof. Step 1: Compactness. Let us fix a measure µ ∈ P2(Rd) and a time step τ > 0,
and consider a minimizing sequence µn ∈ P2(Rd), i.e.

inf
µ∈P2(Rd)

{
W[µ] +

1
2 τ

d2
W (µ, µ)

}
= lim

n→+∞

{
W[µn] +

1
2 τ

d2
W (µn, µ)

}
.
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Since µn is a minimizing sequence, we have

W[µn] +
1

2 τ
d2
W (µn, µ) ≤ C1 (2.20)

for some constant C1. Then, the lower estimate of W in Remark 1.1 and the inequality
(2.19) imply, after very similar computations as in Lemma 2.3, that d2

W (µn, µ) is uniformly
bounded with respect to n if τ is small enough. Prokhorov’s compactness theorem then
implies that the sequence {µn}n is tight.

Step 2: Coercivity. We need to prove that

lim inf
n→+∞

[
W[µn] +

1
2 τ

d2
W (µn, µ)

]
≥ C0 d

2
W (µn, µ)− C1

for some positive constant C0, C1 independent on n. This follows similarly to Step 1 for
τ small enough.

Step 3: Passing to the limit by lower semi–continuity. This is a consequence
of Lemma 2.3. �

Next we have to establish that the family {µτk}τ∈(0,τ0) (up to a suitable interpolation)
converges narrowly to a certain limit. This task can be performed exactly as described
in [2, Chapters 2, 3]. For the sake of clarity, we recall here the result in [2] stating the
convergence of the JKO scheme. The proof can be found in [2, Proposition 2.2.3]. First,
we introduce the piecewise constant interpolation

µτ (0) := µ0

µτ (t) := µτk if t ∈ ((k − 1)τ, kτ ], k ≥ 1.

Proposition 2.6 (Compactness in the JKO scheme [2]). Suppose W satisfies (NL0)-
(NL3). There exist a sequence τn ↘ 0, and a limit curve µ ∈ ACloc

(
[0,+∞);P2(Rd)

)
,

such that
µn(t) := µτn(t)→ µ(t), narrowly as n→ +∞

for all t ∈ [0,+∞).

According to the notation recalled in [2, Definition 2.0.6], the above proposition states
that the set of minimizing movements forW starting from µ0 is not empty. The last step
of the procedure proposed in [2] is to check that the limit curve provided by Proposition
2.6 is a curve of maximal slope for W according to definition 2.1.

Let µ̃n(t) denote the De Giorgi variational interpolation (see [2, Section 3.2]). Then,
from [2, Equation (3.1.12)] and the argument in the proof of [2, Lemma 3.2.2] we have
the energy inequality

W[µ0] ≥ 1
2

∫ T

0
‖vn(t)‖2L2(µn(t)) dt+

1
2

∫ T

0
|∂W|(µ̃n(t))2 dt+W[µn(T )] (2.21)

for all T > 0, where on any interval [(k − 1)τn, kτn] the curve µn(t) is a Wasserstein
geodesic connecting µτnk−1 to µτnk , and vn(t) is its velocity field. Let us recall that the
continuity equation ∂tµ

n(t) + div(vn(t)µn(t)) = 0 holds, and that up to a subsequence
both µn(t) and µ̃n(t) narrowly converge to the same limit curve µ(t) on [0,+∞) provided
by Proposition 2.6. The following lemma is needed to suitably pass to the limit the slope
term in (2.21).
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Lemma 2.7 (Lower semicontinuity of the slope).

lim inf
n→+∞

∫ T

0
|∂W|2(µ̃n(t))dt ≥

∫ T

0
|∂W|2(µ(t))dt.

Proof. By using the representation formula proven in Proposition 2.2, we have to prove
that

lim inf
n→+∞

∫ T

0

∫
Rd

|κn(x, t)|2dµ̃n(t)(x)dt ≥
∫ T

0

∫
Rd

|κ(x, t)|2dµ(t)(x)dt,

where
κn(x, t) := ∂0W ∗ µ̃n(x, t), κ(x, t) := ∂0W ∗ µ(x, t).

Without loss of generality, up to passing to a subsequence we can assume that

sup
n

∫ T

0

∫
Rd

|κn(x, t)|2 dµ̃n(t)(x) dt < +∞.

Hence, as a byproduct of [2, Theorem 5.4.4] on the measure space X := Rd × [0, T ]
with the family of measures µn ⊗ dt, we get the desired assertion once we prove that κn

converges weakly to κ, i.e. that for any vector field φ ∈ C∞c (Rd × [0, T ]; Rd)∫ T

0

∫
Rd

φ(x, t) · κn(x, t)dµ̃n(t)(x)→
∫ T

0

∫
Rd

φ(x, t) · κ(x, t)dµ(t)(x) (2.22)

as n→ +∞. To show this, we observe that term on the left-hand side is given by∫ T

0

∫
Rd

φ(x, t)·κn(x, t) dµ̃n(t)(x) =
∫ T

0

∫
x 6=y

φ(x, t) · ∇W (x− y) dµ̃n(t)(y) dµ̃n(t)(x) dt

=
1
2

∫ T

0

∫
x 6=y

(φ(x, t)− φ(y, t)) · ∇W (x− y) dµ̃n(t)(y) dµ̃n(t)(x) dt,

where for the second equality we used the (crucial) fact that ∇W is odd, so we could
symmetrize the expression inside the integral.

By [2, Lemma 3.2.2], the sequence µn has uniformly bounded second moments. There-
fore, thanks to the linear growth control on the gradient of W in (1.5), the function
(φ(x, t)− φ(y, t)) · ∇W (x− y) is uniformly integrable with respect to µ̃n(t)⊗ µ̃n(t)⊗ dt,
and we easily recover (2.22) by weak convergence arguments. �

We are now ready to complete the proof of the existence of a solution to (1.2)–(1.3) in
the sense of Definition 2.1.

Theorem 2.8 (Existence of curves of maximal slope). Let W satisfy the assumptions
(NL0)-(NL3). Then, there exists at least one curve of maximal slope for the functional
W, i.e. there exists at least one curve µ ∈ ACloc

(
[0,+∞);P2(Rd)

)
such that the energy

inequality

W[µ0] ≥ 1
2

∫ T

0
‖v(t)‖2L2(µ(t)) dt

+
1
2

∫ T

0

∫
Rd

∣∣∣∣∫
x 6=y
∇W (x− y)dµ(t)(y)

∣∣∣∣2 dµ(t)(x) dt+W[µ(T )], (2.23)

is satisfied, where v(t) ∈ L2(µ(t)) is the minimal velocity field associated to µ.
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Proof. We want to prove that the curve µ(t) provided by Proposition 2.6 satisfies the
desired condition. As a consequence of (2.21) and of Lemma 2.7, if we show that

lim inf
n→∞

1
2

∫ T

0
‖vn(t)‖2L2(µn(t)) dt+W[µn(T )] ≥ 1

2

∫ T

0
‖v(t)‖2L2(µn(t)) dt+W[µ(T )], (2.24)

all the remaining parts of the proof of the convergence of the scheme to a solution goes
through like in the case when W is lower semicontinuous with respect to the narrow
topology, see [2, Chapter 3].

To prove the inequality (2.24), having in mind the constitutive relation (2.7) linking
µn and vn, we regularize the solutions of ∂tµn(t) + div(vn(t)µn(t)) = 0 and ∂tµ(t) +
div(v(t)µ(t)) = 0 as follows:

vn,ε(t) :=
(vn(t)µn(t)) ∗ ηε

µn(t) ∗ ηε
, µn,ε(t) := µn(t) ∗ ηε,

vε(t) :=
(v(t)µ(t)) ∗ ηε
µ(t) ∗ ηε

, µε(t) := µ(t) ∗ ηε,

where ηε = 1
εd η
( ·
ε

)
∈ C∞(Rd) is a smooth convolution kernel with support the whole Rd,

say a gaussian. Applying [2, Proposition 8.1.8] we deduce that the measures µn,ε(t), µε(t)
are given by the formula µn,ε(t) = (Xn,ε(t))#µ0 and µε(t) = (Xε(t))#µ0, where Xn,ε(t)
and Xε(t) denote the flows of vn,ε(t) and vε(t) respectively, more precisely

d

dt
Xn,ε(t, x) = vn,ε(t,Xn,ε(t, x)), Xn,ε(0, x) = x,

d

dt
Xε(t, x) = vε(t,Xε(t, x)), Xε(0, x) = x.

We now define the transport map from µε(T ) to µn,ε(T ) as T εn := Xn,ε(T ) ◦ (Xε(T ))−1.
We have

d2
W (µε(T ), µn,ε(T )) ≤

∫
Rd

|T εn(x)− x|2 dµε(T )(x)

=
∫

Rd

|Xn,ε(T ) ◦ (Xε(T ))−1(x)− (Xε(T ))−1(x) + (Xε(T ))−1(x)− x|2 dµ(T )(x)

=
∫

Rd

∣∣∣∣∫ T

0

[
vn,ε(t,Xn,ε(t) ◦ (Xε(T ))−1(x))− vε(t,Xε(t) ◦ (Xε(T ))−1(x))

]
dt

∣∣∣∣2dµε(T )(x)

=
∫

Rd

∣∣∣∣∫ T

0

[
vn,ε(t,Xn,ε(t, x))− vε(t,Xε(t, x))

]
dt

∣∣∣∣2 dµε0(x)

By Hölder’s inequality and expanding the squares, we get

d2
W (µε(T ), µn,ε(T )) ≤ T

∫
Rd

∫ T

0

∣∣vn,ε(t,Xn,ε(t, x))− vε(t,Xε(t, x))
∣∣2 dt dµε0(x)

≤ T
∫ T

0

∫
Rd

|vn,ε(t, x)|2 dµn,ε(t)(x) dt+ T

∫ T

0

∫
Rd

|vε(t, x)|2 dµε(t)(x) dt

− 2T
∫ T

0

∫
Rd

vn,ε(t,Xn,ε(t, x)) · vε(t,Xε(t, x)) dµ0(x) dt. (2.25)
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Thanks to [2, Lemma 8.1.10] we have∫ T

0

∫
Rd

|vn,ε(t, x)|2 dµn,ε(t)(x) dt ≤
∫ T

0

∫
Rd

|vn(t, x)|2 dµn(t)(x) dt ∀ ε > 0. (2.26)

Moreover, thanks to the weak convergence of (µn(t), vn(t)µn(t)) to (µ(t), v(t)µ(t)), which
is a consequence of the linear growth control of the gradient of W in (1.5) and the fact
that µn,ε(t) and µε(t) are uniformly (in n ∈ N) bounded away from zero on compact sets
of Rd, we deduce that

vn,ε(t)→ vε(t) in L1([0, T ], C∞loc(Rd)). (2.27)

Indeed,

Dα[vn,ε − vε] =
Dαηε ∗ (vnµn)

µn,ε
− Dαηε ∗ (vµ)

µε

= Dαηε ∗ (vnµn)
(
µε − µn,ε

µεµn,ε

)
+

1
µε
Dαηε ∗ (vµ− vnµn)

and vn is uniformly bounded in L2(µn) with respect to n. Since the flows Xn,ε(t) and
Xε(t) are globally defined (see for instance [2, Proposition 8.1.8]), (2.27) easily implies
that for any t ∈ [0, T ]

Xn,ε(t)→ Xε(t) locally uniformly on compact subsets of Rd. (2.28)

This fact, together with the fact that vn,ε(t,Xn,ε(t)) are uniformly bounded in L2(µ0⊗dt)
thanks to (2.26), implies that

lim
n→∞

∫
Rd

∫ T

0
vn,ε(t,Xn,ε(t, x)) · vε(t,Xε(t, x)) dt dµ0(x)

=
∫

Rd

∫ T

0
|vε(t,Xε(t, x))|2 dt dµ0(x) =

∫
Rd

∫ T

0
|vε(t, x)|2 dµ0(x) dt. (2.29)

To prove (2.29), split the integral on the left-hand side as follows∫
Rd

∫ T

0
vn,ε(t,Xn,ε(t, x)) · vε(t,Xε(t, x)) dt dµ0(x)

=
∫
|x|>R

∫ T

0
vn,ε(t,Xn,ε(t, x)) · vε(t,Xε(t, x)) dt dµ0(x)

+
∫
|x|≤R

∫ T

0
vn,ε(t,Xn,ε(t, x)) · vε(t,Xε(t, x)) dt dµ0(x) =: I1 + I2.

Now, thanks to (2.26) and the fact that vn is uniformly bounded in L2(µn) with respect
to n, we can estimate

I2
1 ≤

∫
Rd

∫ T

0
|vn,ε(t,Xn,ε(t, x))|2 dt dµ0(x)

∫
|x|>R

∫ T

0
|vε(t,Xε(t, x))|2 dt dµ0(x)

≤ C
∫
|x|>R

∫ T

0
|vε(t,Xε(t, x))|2 dt dµ0(x)
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for some constant C independent on n. Hence, one can choose R large enough such that
|I1| < η for an arbitrarily small η > 0. On the other hand, (2.27) and (2.28) imply

I2 →
∫
|x|≤R

∫ T

0
|vε(t, x)|2 dµ0(x) dt

as n→ +∞, and (2.29) follows by letting R→ +∞.
Therefore, by combining (2.29) with (2.25) and (2.26) we obtain

lim inf
n→∞

d2
W (µε(T ), µn,ε(T )) + 2TW[µn(T )] (2.30)

≤ lim inf
n→∞

T

[∫ T

0

∫
Rd

|vn(t, x)|2 dµn(t)(x) dt−
∫ T

0

∫
Rd

|vε(t, x)|2 dµε(t)(x) dt+ 2W[µn(T )]
]
.

We now claim that there exists a constant C0 > 0, depending only on the convolution
kernel η, such that for any µ ∈ P(Rd)

d2
W (µ, µ ∗ ηε) ≤ C0ε

2. (2.31)

Indeed is suffices to consider the transport plan γε ∈ Γ(µ, µ ∗ ηε) defined has∫
Rd×Rd

f(x, y) dγε(x, y) :=
∫

Rd×Rd

f(x, y)ηε(y − x) dy dµ(x) ∀ f ∈ Cb(Rd × Rd),

to get that ∫
Rd×Rd

|y − x|2 dγε(x, y) =
∫

Rd

|z|2ηε(z) dz = ε2

∫
Rd

|z|2η(z) dz,

which proves (2.31). We finally observe that

lim inf
ε→0

∫ T

0

∫
Rd

|vε(t, x)|2 dµε(t)(x) dt ≥
∫ T

0

∫
Rd

|v(t, x)|2 dµ(t)(x) dt (2.32)

(actually using (2.26) one could prove that the above liminf is a limit, and equality holds).
Combining (2.30) with (2.31) we obtain

lim inf
n→∞

d2
W (µ(T ), µn(T )) + 2TW[µn(T )] ≤ lim inf

n→∞
T

[∫ T

0

∫
Rd

|vn(t, x)|2 dµn(t) dt

−
∫ T

0

∫
Rd

|vε(t, x)|2 dµε(t)(x) dt+ 2W[µn(T )]
]

+O(ε),

so, that letting ε→ 0, thanks to (2.32) we finally get

lim inf
n→∞

d2
W (µ(T ), µn(T )) + 2TW[µn(T )] (2.33)

≤ lim inf
n→∞

T

[
2W[µn(T )] +

∫ T

0

∫
Rd

|vn(t, x)|2 dµn(t)(x) dt−
∫ T

0

∫
Rd

|v(t, x)|2 dµ(t)(x) dt
]
.

Moreover, in view of Lemma 2.3 we deduce

lim inf
n→∞

d2
W (µ(T ), µn(T )) + 2TW[µn(T )] ≥ 2TW[µ(T )] (2.34)

for T small enough. Combining (2.34) with (2.33), we obtain that (2.24) holds provided
T is sufficiently small (but independent on the initial datum µ0), and this allows to prove
the existence of a curve of maximal slope on a small time interval [0, T ]. Iterating now
the construction via minimizing movements on [T, 2T ], [2T, 3T ] and so on, and adding
the energy inequalities (2.23) on each time interval, we get the desired result. �
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Remark 2.9 (λ-Generalised convexity). Let us emphasize that, since λ ≤ 0, our func-
tional is not only λ-convex with respect to Wasserstein geodesics, but also with respect
to generalized geodesics, see [2, Definition 9.2.4]. It follows directly from [2, Proposition
9.3.5], decomposing W = W̃ + λQ as in Proposition 2.2. Exploiting this fact, the exis-
tence of solutions for the discrete scheme and the convergence of the scheme follow from
the theory developed in [2]. On the other hand, we believe that our strategy to show the
convergence of the discrete scheme is of interest in itself, being much more flexible and
since it may be applied to more general situations where λ-convexity fails. This is why
we chose to prove existence of curves of maximal slope in this way.

Remark 2.10 (The ODE system). Let xi(t), i = 1, . . . , N , be C1-solutions of the ODE
system (for the time intervals that such exist)

ẋi = −
∑
j 6=i

mj∇W (xi − xj), i = 1, . . . , N, (2.35)

withmi > 0 and
∑

imi = 1. Then it is straightforward to check that µ(t) :=
∑N

i=1miδxi(t)

is a solution of (1.2) in the sense of Definition 1.2. Conversely, if µ(t) of the form above
solves the PDE and xi(t) are C1 curves for i = 1, . . . , N , then xi(t) solve the ODE system.

The question is what happens if the particles collide: can the solutions of the PDE
still be represented by an ODE? This question has a positive answer, see for instance [2,
Theorems 8.2.1 and 11.2.3 and Equation (11.2.22)] For completeness, we give a sketch a
proof in our particular case.

We consider absolutely continuous solutions of

ẋi =−
∑
j∈C(i)

mj∇W (xi − xj), i = 1, . . . , N, (2.36)

with C(i) := {j ∈ {1, . . . , N} : j 6= i, xj(t) 6= xi(t)}. (2.37)

More precisely we consider the solutions of the associated integral equation. If C(i) is
empty, then all particles have collapsed to a single particle. We then define the right hand
side to be zero, that is we define the sum over empty set of indexes to be zero. The right
hand side of this ODE system is bounded and Lipschitz-continuous in space on short time
intervals. Thus the ODE system has a unique Lipschitz-continuous solutions on short time
intervals. The estimate (1.5) then implies that the solutions are global-in-time. Note that
the solutions are Lipschitz (in time) on bounded time intervals. Also note that collisions
of particles can occur, but that we do not relabel the particles when they collide. Since
the number of particles is N there exist 0 ≤ k ≤ N − 1 times 0 =: T0 < T1 < T2 < · · · <
Tk < ∞ =: Tk+1 at which collisions occur. Note that µ(t) =

∑N
i=1miδxi(t) is a solution

of the PDE on the time intervals [Tl, Tl+1). Furthermore, the Lipschitz continuity of xi
implies that µ is an absolutely continuous curve in P2(Rd). It is then straightforward
to verify that µ is a weak solution according to Definition 1.2. Since the solution to the
PDE is unique the converse claim also holds.

Let us mention that while above we did not relabel the particles after collisions, at
times it is useful to do so. That is on time intervals [Tl, Tl+1) the ODE system (2.36) is
equivalent to

dx̃i
dt

= −
∑
j 6=i

m̃j∇W (x̃l − x̃j), i = 1, . . . , Nl, (2.38)
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where Nl is the number of distinct particles on the time interval [Tl, Tl+1), and x̃j , m̃j

are their locations and masses, respectively.

Remark 2.11 (Existence of minimizing movements when∇W is unbounded). We remark
here that the construction of the JKO scheme, up to the proof of the Proposition 2.6, can
be performed even in case ∇W has a singular behavior such as W (x) = |x|α for α ∈ (0, 1)
(although in this case we are not able to characterize the subdifferential). Therefore,
one can easily prove that there exist at least one minimizing movement for such a kind
of functional. Note that the case α = 0 is critical, since one recovers the logarithmic
kernel W (x) = log |x| as α → 0, for which it is an open problem how to define unique
global-in-time weak measure solutions for all initial masses, see [39].

2.3. Gradient Flow Solutions. In this subsection, we will show the existence of global-
in-time weak measure solutions for (1.2) for potentials satisfying (NL0)-(NL3) as a con-
sequence of the general abstract theorems proved in [2]. In fact, using that the potential
is λ-convex by (NL1), Lemma 2.3 and the existence of minimizers in Proposition 2.5,
we meet the hypotheses of [2, Theorem 11.1.3]. This abstract theorem shows that curves
of maximal slope are equivalent under certain hypotheses to gradient flows. As a direct
consequence of the existence of curves of maximal slope in Theorem 2.8, we can assert
the following result. Let us remark that Proposition 2.2 has played a key role in the
argument leading to Theorem 2.8 in two ways: allowing to show the lower semicontinuity
of the slope to get the energy inequalities, and in order to identify the limiting velocity
field.

Theorem 2.12 (Existence of the Gradient Flow). Let W satisfy the assumptions (NL0)-
(NL3). Given any µ0 ∈ P2(Rd), then there exists a gradient flow solution, i.e. a curve
µ ∈ ACloc([0,∞);P2(Rd)) satisfying

∂µ(t)
∂t

+ div(v(t)µ(t)) = 0 in D′([0,∞)× Rd),

v(t) = −∂0W[µ(t)] = −∂0W ∗ µ(t),

‖v(t)‖L2(µ(t)) = |µ′|(t) a.e. t > 0,

with µ(0) = µ0. Moreover, the energy identity∫ b

a

∫
Rd

|v(t, x)|2 dµ(t)(x) dt+W[µ(b)] =W[µ(a)] (2.39)

holds for all 0 ≤ a ≤ b <∞.

To summarize, the notions of curves of maximal slope and gradient flow solutions are
equivalent and they imply the notion of weak measure solutions in the sense of Definition
1.2. Furthermore, absolute continuity of the curve of weak measure solutions and the
characterization of the subdifferential imply that weak measure solutions are gradient
flow solutions, see [2, Sections 8.3 and 8.4]. Thus, the three notions of solution are
equivalent.

The λ-geodesic convexity of the functional plays a crucial role for the uniqueness of
gradient flow solutions. Since the interaction potential is λ-geodesically convex for λ ≤ 0,
the following result follows readily from [2, Theorem 11.1.4].
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Theorem 2.13 (dW -Stability). Let W satisfy the assumptions (NL0)-(NL3). Given
two gradient flow solutions µ1(t) and µ2(t) in the sense of the theorem above, we have

dW (µ1(t), µ2(t)) ≤ e−λt dW (µ1
0, µ

2
0)

for all t ≥ 0. In particular, the gradient flow solution starting from any given µ0 ∈ P2(Rd)
is unique. Moreover, this solution is characterized by a system of evolution variational
inequalities:

1
2
d

dt
d2
W (µ(t), σ) +

λ

2
d2
W (µ(t), σ) ≤ W[σ]−W[µ(t)] a.e. t > 0,

for all σ ∈ P2(Rd).

With this we have completed the existence, uniqueness and stability for gradient flow
solutions for potentials satisfying (NL0)-(NL3).

Remark 2.14 (Case λ > 0). All the theory and results obtained in this section can be
applied to λ-convex potentials with λ > 0, i.e. allowing for λ > 0 in (NL1), provided
we restrict ourselves to measures with equal initial center of mass. This relies on the
fact that, when λ > 0, the interaction potential is λ-geodesically convex on the space of
probability measures with fixed center of mass, a set which is preserved by the evolution
equation, see [32, 18, 44, 2].

Remark 2.15 (Weak-Lp solutions). Since weak measure solutions are equivalent to gra-
dient flow solutions, our main uniqueness-stability Theorem 2.13 concludes the uniqueness
of weak measure solutions to (1.2). Therefore, we can easily check that the previous con-
structed solutions in the series of papers [27, 7, 5, 20] for a family of more restrictive
potentials W than the ones presented in this work, are indeed weak measure solutions
up to their maximal time of existence. Let us make this statement more precise. It
was shown in [8, Theorem 18] that weak-Lp solutions with initial data in P2(Rd) remain
in P2(Rd) as long as they exist. These weak-Lp solutions satisfy equation (1.2) in the
distributional sense, and they lead to curves in the space P2(Rd)∩Lp(Rd) which are con-
tinuous with respect to the strong topology in Lp, for suitable p, up to a maximal time
of existence T ∗. Hence, for potentials satisfying (NL0)-(NL3) and assuming the same
additional conditions of growth at infinity in ∇W as in [27, 7, 5, 20, 8], one can show
that the velocity field ∇W ∗ ρ belongs to L1((0, T );L2(ρ(t))) for all 0 < T < T ∗, see for
instance the proofs in [7, Section 3], [20, Section 2.2] or [8, Section 3]. Therefore, weak-Lp

solutions with initial data in P2(Rd) are weak measure solutions up to their maximal time
of existence, and thus, they do coincide up to that time with the weak measure solution
constructed in Theorems 2.12-2.13. Let us also remark that in the works [27, 7, 5, 20, 8]
the energy identity (2.39) was used as a tool for proving blow-up of the Lp-norm in finite
time. To be more precise, for weak-Lp solutions one can prove an energy inequality like
(2.39), where the equality sign is replaced by a less or equal sign, but the exact energy
identity was missing. Hence our result in Theorem (2.12) also implies the energy identity
for weak-Lp solutions.

Remark 2.16 (Comparison with classical PDE arguments). Let us observe that a more
classical strategy to construct weak measure solutions is based on approximating the
initial datum by atomic measures, i.e. showing the convergence of the particle method.
More precisely, one exploits the existence of solutions for the discrete particle system in
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Remark 2.10 and the stability result in Theorem 2.13 to show convergence of the discrete
approximating solutions to a limit curve. In this way, everything reduces to prove that
the limit curve is a weak measure solution to (1.2), which is however not completely
trivial, and would require some work. Moreover, it is not clear how to show directly that
the weak measure solutions constructed in this way are both gradient flow solutions and
curves of maximal slope, and that they satisfy the energy identity. This kind of strategy
is well-known in kinetic theory, see for instance [22, 35, 40].

3. Particle measures in the JKO scheme

In this section, we show that the JKO scheme preserves the atomic part of the initial
datum for all times, provided the time step is small enough. In particular, if we start
with N -particles measure, it remains so, possibly with less particles, for all times. As
a consequence, this immediately identifies the limit solution of the JKO scheme in this
particular case. Moreover, it shows the well-posedness of a particle numerical scheme for
solving numerically (1.2). More comments on this will be given below. Throughout this
section, we allow λ to be positive, in which case our statements are stronger.

Given µ ∈ P2(Rd) let, for τ > 0,

Fτ [µ] :=W[µ] +
1
2τ
d2
W (µ, µ). (3.1)

Let us denote u− := max{0,−u}. We show that during a sufficiently small step of the
JKO scheme, the mass contained in a particle remains concentrated, regardless of what
the rest of the state looks like.

Definition 3.1 (Atomization). Given µ ∈ P1(Rd), µ∗ stands for the point mass located
at the center of mass of µ, i.e:

µ∗ := δz where z =
∫

Rd

x dµ(x)

We say that µ∗ is the atomization of µ.

Theorem 3.2. Assume W satisfies (NL0)-(NL1). Let µ = mδa + µr ∈ P2(Rd) with
0 < m ≤ 1 and δa⊥µr. Given any τ > 0 such that τλ− < 1, let

µ ∈ argmin ν∈P2(Rd)Fτ [ν], (3.2)

and denote by π an optimal transportation plan between µ and µ. Let us define

µ1(E) :=
1
m
π({a} × E), (3.3)

for any Borel set E. Then µ1 = µ∗1. In particular,

µ = mδz + µs

for some z ∈ Rd and µs a nonnegative measure.

To rephrase the statement of the theorem in plain language: Any optimal transporta-
tion plan from the present state µ to a minimizer of the JKO step µ carries all the mass
from the particle at a to another point z. Thus the updated state has a particle at z,
whose mass is at least the same as the one of the particle which was in a.

In case the measure µ is a sum of N particles, by applying Theorem 3.2 to each particle,
we easily conclude that µ is still a sum of particles, possibly less than N .
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Corollary 3.3 (Particles remain particles). Assume W satisfies (NL0)-(NL1). Let
µ =

∑N
i=1miδxi, where x1, . . . , xN are distinct points in Rd,

∑N
i=1mi = 1 and mi ∈ (0, 1).

Given any τ > 0 such that τλ− < 1, let

µ ∈ argmin ν∈P2(Rd)Fτ [ν].

Then there exist y1, . . . , yN ∈ Rd, not necessarily distinct, such that µ =
∑N

i=1miδyi.

To prove Theorem 3.2, given a minimizer µ of the JKO step, we show that

µnew := mµ∗1 + (µ−mµ1) (3.4)

decreases the JKO functional:

Fτ [µnew] < Fτ [µ], if µ1 6= µ∗1. (3.5)

This implies µ = µnew. To prove (3.5) we examine what effect does atomizing µ1 have
on the two terms in the JKO functional: the energy and the Wasserstein distance. We
show that, as expected, atomizing decreases the Wasserstein distance. On the other
hand atomizing can increase the interaction energy, but only if λ is negative. The key
observation is that in each of the terms the change is controlled by the variance of µ1.
Taking the time step small enough allows us to conclude.

Lemma 3.4. Assume W satisfies (NL0)-(NL1). Let ν1, ν2 ∈ P2(Rd) and ν = m1ν1 +
m2ν2 with 0 ≤ m1 ≤ 1 and m2 = 1−m1. Let νnew := m1ν

∗
1 +m2ν2. Then

W[ν]−W[νnew] ≥ λ

2
m1V ar(ν1)

Proof. Introduce the symmetric bilinear form

B(η1, η2) =
1
2

∫
Rd×Rd

W (x− y) dη1(x) dη2(y)

so that

W[ν]−W[νnew] = B(m1ν1 +m2ν2,m1ν1 +m2ν2)−B(m1ν
∗
1 +m2ν2,m1ν

∗
1 +m2ν2)

= 2m1m2B(ν1, ν2) +m2
1B(ν1, ν1)− 2m1m2B(ν∗1 , ν2)−m2

1B(ν∗1 , ν
∗
1)

= m1m2

∫
Rd×Rd

[W (x− y)−W (z1 − y)] dν1(x) dν2(y)

+
m2

1

2

∫
Rd×Rd

[W (x− y)−W (z1 − z1)] dν1(x) dν1(y),

where z1 is the center of mass of ν1. By the λ-convexity assumption (NL1), for each
p ∈ Rd and rp ∈ ∂W (p) 6= ∅ the inequality

W (q) ≥W (p) + rp · (q − p) +
λ

2
|q − p|2

holds for all q ∈ Rd. Semiconvexity of W also implies that for y ∈ Rd there exists
rz1−y ∈ ∂W (z1 − y). Using this along with the fact that 0 ∈ ∂W (0) we obtain

W (x− y)−W (z1 − y) ≥ rz1−y · (x− z1) +
λ

2
|x− z1|2,

W (x− y)−W (0) ≥ λ

2
|x− y|2,
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for all x, y ∈ Rd. Since
∫

Rd(x− z1) dν1(x) = 0 we get

W[ν]−W[νnew] ≥ m1m2
λ

2
V ar(ν1) +

m2
1

2
λ

2

∫
Rd×Rd

|(x− z1)− (y − z1)|2 dν1(x) dν1(y)

= m1m2
λ

2
V ar(ν1) +m2

1

λ

2
V ar(ν1)

=
m1λ

2
V ar(ν1),

which concludes the proof. �

Lemma 3.5. Let µ given as in Theorem 3.2. Given any ν ∈ P2(Rd), let π be an optimal
transportation plan between µ and ν and let ν1 be defined by (3.3). Let νnew := mν∗1 +
(ν −mν1). Then

d2
W (µ, ν)− d2

W (µ, νnew) ≥ mVar(ν1).

Proof. Let z be the center of mass of ν1 (so that ν∗1 = δz). Denote by π1 the restriction
of π to {a} × Rd, and π2 := π − π1. Let πnew := mδ(a,z) + π2. Note that πnew is a
transportation plan between µ and νnew. Therefore,

d2
W (µ, ν) =

∫
Rd×Rd

|x− y|2 d(π1 + π2)

= m

∫
Rd

|y − a|2 dν1(y) +
∫

Rd×Rd

|x− y|2 dπ2

= m

∫
Rd

[
|y − z|2 + 2(y − z) · (z − a) + |z − a|2

]
dν1(y) +

∫
Rd×Rd

|x− y|2 dπ2

= m

∫
Rd

|y − z|2 dν1(y) +
∫

Rd×Rd

|x− y|2 d(mδ(a,z) + π2)

≥ mV ar(ν1) + d2
W (µ, νnew),

as desired. �

Proof of Theorem 3.2. Assume that the claim does not hold, and consider µnew defined
by (3.4). Then, Lemmas 3.4 and 3.5 imply that

Fτ [µ]− Fτ [µnew] =W[µ]−W[µnew] +
1
2τ
(
d2
W (µ, µ)− d2

W (µ, µnew)
)

≥ m

2

(
λ+

1
τ

)
V ar(µ1) > 0,

contradicting the minimality of µ. �

Remark 3.6. The above property of minimizers in each step of the JKO scheme carries
over to the limiting solution, thanks to the convergence of the JKO scheme towards curves
of maximal slope and gradient flow solutions of Section 2, see Theorem 2.8. Therefore,
solutions corresponding to initial data with a finite number of particles plus an orthogonal
part remain so for all times, with a possibly decreasing number of particles in time, see
also Proposition 4.5. Moreover, combining Corollary 3.3 with the convergence of the JKO
scheme in Theorem 2.8 allows to recover Remark 2.10, i.e. the correspondence between
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solutions of the ODE system (2.35) and gradient flow solutions of (1.2) with atomic initial
measures.

4. Finite-time Total Collapse and Multiple Collapse by Stability

In this section, we focus on studying the large-time asymptotics of attractive non-
Osgood potential, i.e. potentials satisfying assumptions (NL0)-(NL3) and (NL-FTBU).

We start by discussing the monotonicity assumption in (NL-FTBU). If the potential
satisfies w′(0+) > 0, i.e. it has a Lipschitz singularity at the origin, nearby particles move
towards each other with a relative speed comparable to w′(0+), and thus we expect the
concentration in finite time. In case (NL-FTBUb), thanks to the non-Osgood condition,
we do expect again concentration in finite time. In fact, in the case of a single particle
subject to the potential W (x), one easily checks that the particle reaches the origin in
finite time. As we show in Theorem 4.3, compactly supported measures do collapse
completely in finite time.

Remark 4.1 (No Oscillation Condition on the potential). Let us point out that the
condition of w′′(r) being monotone decreasing in a right interval of 0 is not too restrictive.
Actually, plain monotonicity of w′′ in a right interval of 0 together with the non-Osgood
condition, the nonnegativity of w′, and the fact that w′(0+) = 0, imply that w′′ is
monotone decreasing on a right interval of 0 (the only possibility to violate this condition
would be that the second derivative oscillate wildly at 0). To see this, note that the
monotonicity of w′′ implies that w′ is either convex or concave in an interval (0, ε0).
But w′ cannot be convex, as otherwise its graph would be below the graph of the linear
function r 7→ (w′(ε0)/ε0)r, which is not compatible with the integrability of 1/w′ at 0.

Let us start by showing the finite total collapse in the case of finite number of particles.

Proposition 4.2 (Finite Time Particles Collapse). Assume W satisfies (NL0)-(NL3)
and (NL-FTBU). Given the initial datum µ0 =

∑N
i=1miδx0

i
with center of mass

xc :=
N∑
i=1

mix
0
i ,

let µ(t) denote the unique gradient flow solution with µ(0) = µ0. Set R0 to be the largest
distance from the initial particles to the center of mass:

R0 := max
i=1,...,N

|x0
i − xc|.

Then there exists T ∗ > 0, depending only on R0 but not on the number of particles, such
that µ(t) = δxc for t ≥ T ∗.

Proof. Let us define the curves t 7→ xi(t), i = 1, . . . , N as the solution of the ODE
system discussed in Remark 2.10:

ẋi = −
∑
j∈C(i)

mj∇W (xi − xj), i = 1, . . . , N

where C(i) = {j ∈ {1, . . . , N} : j 6= i, xj(t) 6= xi(t)}. Recall also that we define the
sum over empty set of indexes to be zero. Then, µ(t) =

∑N
i=1miδxi(t), where possibly

xi(t) = xj(t) for some i 6= j.
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Our claim is equivalent to saying that there exists T ∗ > 0 such that xi(t) = xc for all
t ≥ T ∗ and i = 1, . . . , N . Note that, due to assumption (NL0) the center of mass of the
particles is preserved in time for the solutions of the ODE system. Since the system is
translation invariant, we can assume that xc = 0 without loss of generality.

We define the Lipschitz function R(t) to be the distance of the furthest particle from
the center of mass:

R(t) := max
i=1,...,N

|xi(t)|.

Recall that xi are Lipschitz in time, and are C1 for all but finitely many collision times
0 =: T0 < T1 < T2 < · · · < Tl < Tl+1 := +∞.

We first compute a differential inequality for the function R(t). Due to assumption
(NL-FTBU), for all t ≥ 0 and all i = 1, . . . , N

d+xi
dt

:= lim
h→0+

xi(t+ h)− xi(t)
h

= −
∑
j∈C(i)

mj∇W (xi − xj)

= −
∑
j∈C(i)

mj
xi − xj
|xi − xj |

w′(|xi − xj |). (4.1)

While it would have been sufficient to deal with the derivative dxi
dt which exists a.e., we

wanted to highlight the fact that the right-hand derivative exists for all times, including
the collision times. Using (4.1), we have

d+

dt
R2(t) = max

{i : xi(t)=R(t)}

d+

dt
|xi|2

= max
{i : xi(t)=R(t)}

−2
∑
j∈C(i)

mj
(xi − xj) · xi
|xi − xj |

w′(|xi − xj |) .
(4.2)

Note that since R is Lipschitz, d
dtR

2 exists a.e. and is equal to d+

dt R
2. Observe that for

any i as above, (xi − xj) · xi ≥ 0 since all other particles are inside B(0, R(t)). Using
again assumption (NL-FTBU), we have w′(|xi − xj |) > 0 and thus d+

dt R(t) ≤ 0, from
which we deduce that R(t) ≤ R0 for all t ≥ 0. Let us distinguish two cases:

Case (a): w′(0+) > 0. Let us define

D := min
r∈[0,2R0]

w′(r) > 0.

By coming back to (4.2), we deduce that for all t ≥ 0

d+

dt
R(t)2 ≤ max

{i : xi(t)=R(t)}
−2D

∑
j∈C(i)

mj
(xi − xj) · xi
|xi − xj |

≤ max
{i : xi(t)=R(t)}

− D

R(t)

∑
j 6=i

mj(xi − xj) · xi

since |xi − xj | ≤ 2R(t) for j 6= i and (xi − xj) · xi ≥ 0. It is easy to check, using the unit
total mass of the measure and that the center of mass is zero, that for any i as above∑

j 6=i
mj(xi − xj) · xi = R(t)2.
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Hence d+

dt R(t) ≤ −D. We conclude that the claim holds with T ∗ = R0/D.
Case (b): w′(0+) = 0 together with the other assumptions in (NL-FTBUb). The

function w′ is then concave on (0, ε0). Together with the fact that w′(0+) = 0 this implies
that w′(r)/r is decreasing in (0, ε0). Without of loss of generality, we can assume that
ε0 < ε1, with ε1 as in (NL-FTBUb).

Let us first show that R(t) must reach values less than ε0/2 in finite time. Since
R(t) is decreasing, it suffices to consider the case R0 > ε0/2. Fix any time such that
R(t) ≥ ε0/2. Coming back to (4.2), we distinguish for any i such that R(t) = |xi(t)|, two
sets of particles: I, where |xi − xj | ≤ ε0/2, and II, where |xi − xj | > ε0/2. For indexes
in the set I we can use that w′(r)/r is decreasing, while to handle the set II we define

D := min
r∈[ε0/2,2R0]

w′(r) > 0.

Using again |xi − xj | ≤ 2R(t) for j 6= i and (xi − xj) · xi ≥ 0, we can write

d+

dt
R2(t) ≤ max

{i : xi(t)=R(t)}

−2
w′(ε0)
ε0

∑
(I)

mj(xi − xj) · xi −
D

R(t)

∑
(II)

mj(xi − xj) · xi

 .

Thanks to R(t) ≥ ε0/2 and w′(ε0) ≥ D, we can finally conclude that

d+

dt
R2(t) ≤ max

{i : xi(t)=R(t)}
− D

R(t)

∑
j 6=i

mj(xi − xj) · xi = −DR(t)

for all times such that R(t) ≥ ε0/2. Thus, there exists a time τ such that R(t) ≤ ε0/2
for t ≥ τ . We now refine the above argument for t ≥ τ using that the distance between
any two particles satisfies |xi − xj | ≤ 2R(t) ≤ ε0. Since w′(r)/r is decreasing on (0, ε0)
we deduce that for times t ≥ τ

d+

dt
R(t)2 ≤ max

{i : xi(t)=R(t)}
−w

′(2R(t))
R(t)

∑
j 6=i

mj(xi − xj) · xi = −w′(2R(t))R(t),

so that d
dtR(t) ≤ −w′(2R(t))/2 for almost all t ≥ τ . Using the non-Osgood condition,

i.e. the integrability of 1/w′(r) at the origin, we conclude that R(t) = 0 for a certain T ∗

completely determined by the inequality d
dtR(t) ≤ −w′(2R(t))/2.

Let us remark that this proof shows that the time of total collapse of the particles to
their center of mass does not depend either on the number of particles or their masses,
but only on R0. �

Making use of the stability result, the convergence of the particle method, and the total
collapse for finite number of particles, we deduce the second main result of this work.

Theorem 4.3 (Finite Time Total Collapse). Assume W satisfies (NL0)-(NL3) and
(NL-FTBU). Let µ(t) denote the unique gradient flow solution starting from the prob-
ability measure µ0 with center of mass

xc :=
∫

Rd

x dµ0,

supported in B(xc, R0). Then there exists T ∗, depending only on R0, such that µ(t) = δxc

for all t ≥ T ∗.
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Proof. As in the previous proposition, we can assume xc = 0. Given any compactly
supported measure µ0 in B(0, R0) and any η > 0, we can find a number of particles
N = N(η), a set of positions {x0

1, . . . , x
0
N} ⊂ B(0, R0), and masses {m1, . . . ,mN}, such

that

dW

(
µ0,

N∑
i=1

miδx0
i

)
≤ η.

Let us denote by µη(t) the particle solution associated to the initial datum µη(0) =∑N
i=1miδx0

i
.

By Proposition 4.2, there exists a time T ∗ independent of N such that µη(t) = δ0 for
t ≥ T ∗. Hence, by the stability result in Theorem 2.13 we obtain

dW (µ(T ∗), δ0) = dW (µ(T ∗), µη(T ∗)) ≤ e−λT
∗
dW

(
µ0,

N∑
i=1

miδx0
i

)
≤ e−λT ∗η.

By the arbitrariness of η, we conclude that µ(t) = δ0 for all t ≥ T ∗ as desired. �

Remark 4.4 (Finite Time Total Collapse and Tail Behavior). The previous result can be
generalized for measures which are not compactly supported by the following procedure.
Let us consider the case in which c0 := inf [0,+∞)w

′ = w′(0+) > 0. Then the proof of case
(a) in Proposition 4.2 shows that, if µ0 is supported in B(xc, R0), then µ(t) = δxc for
t ≥ R0/c0. From this fact and the stability estimate, it is not difficult to show that for
any initial datum µ0 decaying more than exponentially at infinity (say a gaussian), µ(t)
converges exponentially fast to δxc in infinite time. Indeed, if

µ0,R :=
µ0bB(xc,R)

µ0(B(xc, R))
,

then one easily gets dW (µ0, µ0,R) . e−CR for any C > 0, and their centers of mass xc
and xc,R are exponentially close too. Hence, if µR(t) denotes the solution starting from
µ0,R, then µR(R/c0) = δxc,R . Therefore, choosing C > 2|λ|/c0, we get

dW (µ(t), δxc) ≤ dW (µ(t), µc0t(t)) + |xc − xc,c0t| . e−λtdW (µ0, µ0,c0t) + e−Cc0t . e−Cc0t,

as desired. As expected the tail behavior of the initial measure has to be fast enough
to compensate the exponential growing bound in the stability when λ < 0. On the
other hand, if λ ≥ 0 then we do not need any assumption on the initial datum to prove
convergence in infinite time, although having estimates on the tails allows to prove better
rates of convergence.

The aim of the following proposition is to show that, if we start with a measure which
has some atomic part, then the atoms can only increase their mass. We present a proof
based on particle approximations, an alternative approach is using the JKO-scheme, via
Theorem 3.2.

Proposition 4.5 (Dirac Deltas can only increase mass). Let µ(t) denote the unique
solution starting from the probability measure

∑N
i=1miδx0

i
+ ν0, and define the curves

t 7→ xi(t), i = 1, . . . , N, as the solution of the ODE

ẋi(t) = −(∂0W ∗ µ(t))(xi(t)).

Then µ(t) ≥
∑N

i=1miδxi(t) for all t ≥ 0, with possibly xi(t) = xj(t) for some t > 0, i 6= j.
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Proof. This result is again an application of the result in the case of a finite number
of particles, combined with the stability of solutions. Let us approximate ν0 with a
sequence νk0 = m

∑k
j=1

1
kδyj , with m := ν0(Rd). Then the unique solution starting from∑N

i=1miδx0
i

+ νk0 is given by

µk(t) =
N∑
i=1

miδxk
i (t) +

k∑
j=1

m

k
δyk

j (t),

where xki (t) and ykj (t) solve the ODE system

ẋki = −
∑

l 6=i, xk
l 6=x

k
i

mj∇W (xkl − xki )−
∑

l, yk
l 6=x

k
i

m

k
∇W (ykl − xki ), i = 1, . . . , N,

ẏkj (t) = −
∑

i, xk
i 6=yk

l

mi∇W (xki − ykj )−
∑

l 6=j, yk
l 6=y

k
j

m

k
∇W (ykl − ykj ), j = 1, . . . , k.

This gives in particular

µk(t) ≥
k∑
i=1

miδxk
i (t) (4.3)

as measures, since the particles coming from the “discretization” of ν0 can only join
the fixed particles xi but they will not split them. We now observe that the curves
t 7→ xki (t) are uniformly Lipschitz (locally in time). Indeed to obtain a bound on the
velocity ∂0W ∗ µ, by (1.5) it suffices to show that the second moments of the measures
µk(t) are uniformly bounded, locally in time. To check this, we use as test function |x|2
for a general gradient flow solution µ(t) of (1.2), and exploiting the λ-convexity of W we
get

d

dt

∫
Rd

|x|2 dµ(t)(x) = − 2
∫

Rd

x · (∂0W ∗ µ(t)) dµ(t)(x)

= −
∫
x 6=y

(x− y) · (∇W (x)−∇W (y)) dµ(t)(y) dµ(t)(x)

≤ − λ
∫
x6=y
|x− y|2 dµ(t)(y) dµ(t)(x) ≤ 4|λ|

∫
Rd

|x|2 dµ(t)(x).

Therefore, using the stability of solutions and Ascoli-Arzelà Theorem, up to a subse-
quence each curve t 7→ xki (t) converges locally uniformly to a limit curve t 7→ xi(t) which
satisfies

ẋi(t) = −
∫

Rd

∂0W (y − xi(t)) dµ(t)(x), i = 1, . . . , N.

Taking the limit in the inequality (4.3) we get the desired result. �

Finally, let us show that the blow up of the L∞ norm of a solution to (1.2) may
occur at a time strictly less than the time of total collapse. In order to produce such
a phenomenon, we shall work again with the ODE system (2.35) and then we argue by
approximation. We first show a simple argument in a particular situation. We introduce
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some notation following Proposition 4.2. Let us define the curves t 7→ xi(t), i = 1, . . . , 2N
as the solution of the ODE system

dxi
dt

= −
∑
j∈C(i)

1
2N
∇W (xi − xj), xi(0) = x0

i , i = 1, . . . , 2N,

so that µ(t) =
∑2N

i=1
1

2N δxi(t) is a gradient flow solution to (1.2). We define xc1(t) and
xc2(t) to be the center of masses of the first N and the last N particles respectively. Let
us consider the functions

R1(t) := max
i=1,...,N

|xi(t)− xc1(t)| and R2(t) := max
i=N+1,...,2N

|xi(t)− xc2(t)|,

and denote by µ1(t) and µ2(t) the measures
∑N

i=1
1

2N δxi(t) and
∑2N

i=N+1
1

2N δxi(t) respec-
tively.

Proposition 4.6 (Multiple Collapse). Assume the potential W satisfies (NL0)-(NL3),
(NL-FTBUa), and limx→+∞w

′(x) = 0. There exist r0, d0, T0, T1 > 0 such that if
max{R1(0), R2(0)} ≤ r0 and |xc1(0)− xc2(0)| ≥ d0, then

µ1(t) = δxc1 (t) 6= µ2(t) = δxc2 (t) for all T0 ≤ t < T1.

Proof. The ODE system satisfied by the particles is given by
dxi
dt

= −
∑
j∈C(i)

1
2N

xi − xj
|xi − xj |

w′(|xi − xj |) , i = 1, . . . , 2N.

We distinguish two sets of particles: (I) the set of the first N particles and (II) the set of
last N particles. Arguing as in Proposition 4.2, we obtain

d+

dt
R2

1(t) = max
{i : |xi(t)−xc1 (t)|=R1(t)}

−
∑
j∈C(i)

1
N

(xi − xj) · (xi − xc1)
|xi − xj |

w′(|xi − xj |) .

with (xi − xj) · (xi − xc1) ≥ 0 for j = 1, . . . , N . Fix d0 large enough such that |w′(r)| ≤
1
4w
′(0+) for r ≥ d0/2. Then, as long as max{R1(t), R2(t)} ≤ 1

8d0 and |xc1(t)− xc2(t)| ≥
3
4d0, we have that for some i for which |xi(t)− xc1(t)| = R1(t)

d+

dt
R2

1(t) ≤ − w′(0+)
2N R1(t)

∑
(I)

(xi − xj) · (xi − xc1) +
|xi − xc1 |

N

∑
(II)

∣∣w′(|xi − xj |)∣∣
≤ −w

′(0+)
2

R1(t) +
w′(0+)

4
R1(t) = −w

′(0+)
4

R1(t), (4.4)

where we used ∑
(I)

(xi − xj) · (xi − xc1) = NR1(t)2.

By continuity in time of solutions, there exists t∗ > 0 small enough such that |xc1(t)−
xc2(t)| ≥ 3

4d0 is satisfied for 0 ≤ t ≤ t∗. Choosing r0 ≤ min{1
8d0,

w′(0+)
8 t∗} and using (4.4),

we ensure that max{R1(t), R2(t)} ≤ 1
8d0 in 0 ≤ t ≤ t∗ and R1(t∗) = 0. Analogously,

we have that R2(t∗) = 0. Then, it is clear by continuity in time that we can choose
T0 ≤ t∗ < T1 such that the statement holds. �

By a more refined analysis, one could produce an analogous result in case the poten-
tial W satisfies (NL0)-(NL3), (NL-FTBUb), and limx→+∞w

′(x) = 0. For instance,
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one can explicitly construct examples of particle configurations with special symmetries
where one can check by tedious computations the multiple collapse phenomena. As a
consequence, we obtain the following result

Corollary 4.7. Assume the potential W satisfies (NL0)-(NL3), (NL-FTBU), and
limx→+∞w

′(x) = 0. Then, there exists a nonnegative function ρ0 ∈ C∞c (Rd) with unit
mass and there two curves xck(t), k = 1, 2, and 0 < T0 < T1 such that the gradient flow
solution associated with the initial datum ρ0 dx satisfies

µ(t) =
1
2
δxc1 (t) +

1
2
δxc2 (t) and xc1(t) 6= xc2(t)

for all t ∈ (T0, T1).

It is clear from the previous proof that this two particle collapse can be generalized to
multiple collapse situations with as many particle collapses as we want and choosing the
time ordering of their collapses in any desired manner.
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