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Abstract. We consider the problem of stability for the Prékopa–Leindler inequality. Exploit-

ing properties of the transport map between radially decreasing functions and a suitable func-

tional version of the trace inequality, we obtain a uniform stability exponent for the Prékopa–

Leindler inequality.

Our result yields an exponent not only uniform in the dimension but also in the log-concavity

parameter τ = min(λ, 1 − λ) associated with its respective version of the Prékopa–Leindler

inequality. As a further application of our methods, we prove a sharp stability result for log-

concave functions in dimension 1, which also extends to a sharp stability result for log-concave

radial functions in higher dimensions.

In honor of R. T. Rockafellar, for his 90th birthday.

1. Introduction

In this paper, we deal with stability versions of the Prékopa–Leindler inequality. This in-

equality asserts that, for measurable non-negative functions h, f, g : Rn → R+ which satisfy

h (λx+ (1− λ)y) ≥ f(x)λg(y)1−λ, ∀x, y ∈ Rn, (1.1)

then ∫
Rn

h ≥
(∫

Rn

f

)λ(∫
Rn

g

)1−λ
, (1.2)

with equality if and only if h is log-concave, and for some x0 ∈ Rn, a > 0, we have

f(x) = a−λh(x− λx0), g(x) = a1−λh(x+ (1− λ)x0).

Such an inequality is of pivotal importance in areas such as convex geometry and high-dimensional

probability, and is intimately related to the Brunn–Minkowski inequality, which asserts that,

for A,B ⊂ Rn measurable sets with A+B := {a+ b, a ∈ A, b ∈ B} measurable, we have

|A+B|1/n ≥ |A|1/n + |B|1/n, (1.3)

with equality if and only if A,B are both convex sets, and A is a translated scaled copy of B.

Indeed, the Prékopa–Leindler is not only a functional version of Brunn–Minkowski, but it also

implies the latter through a scaling argument.

When it comes to the question of stability for both the Prékopa–Leindler and Brunn–Minkowski

inequalities, the matters are much more subtle: indeed, in the Brunn–Minkowski case, the first

work in that direction was achieved by the first author, Maggi, and Pratelli [11], which proved
1
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a sharp stability version when the sets A,B satisfying almost equality in (1.3) are already con-

vex. In spite of this initial contribution, a proof of stability of Brunn–Minkowski, even in the

non-sharp case, would only be addressed in the works of Christ in a series of papers [5, 7, 6],

with an explicit exponent of stability only being achieved later by the works of Jerison and the

first author [10]. Other relevant works addressing the question of stability for that inequality

are [9, 15, 13].

A major breakthrough in that regard is the settling of the sharp stability for the Brunn–

Minkowski in the general case. Indeed, for n = 2, a proof was found by van Hintum, Spink, and

Tiba [16], and, for the n ≥ 3 case, in the recent paper by the first author, van Hintum, and Tiba

[12].

On the other hand, stability results for the Prékopa–Leindler inequality are comparatively

significantly less abundant at the moment. We mention initial works by Böröczky and Ball [2, 1]

in the one-dimensional log-concave case, the recent contribution by Böröczky and De [3] in the

higher-dimensional log-concave setting, and the contributions by Rossi and Salani [14], which

deal with other non-degenerate cases of the Borell–Brascamp–Lieb inequality.

Stability for the case of measurable functions, even with a non-sharp exponent, remained open

until the recent work of Böröczky and the authors of this manuscript [4], where it was shown

that if h, f, g are as in the statement of the Prékopa–Leindler inequality, such that∫
Rn

h(x) dx ≤ (1 + ε)

(∫
Rn

f(x) dx

)λ(∫
Rn

g(x) dx

)1−λ
, (1.4)

then there is a log-concave function h̃ : Rn → R+ and a > 0, x0 ∈ Rn such that∫
Rn

|f(x)− a−λh̃(x− λx0)| dx ≤ C(τ)εαn(τ)

∫
Rn

f(x) dx,∫
Rn

|g(x)− a1−λh̃(x+ (1− λ)x0)|dx ≤ C(τ)εαn(τ)

∫
Rn

g(x) dx,∫
Rn

|h− h̃| ≤ C(τ)εαn(τ)

∫
Rn

h(x) dx.

in all dimensions n ≥ 1, with a computable exponent αn(τ) > 0. It is important to note that the

exponent αn(τ) obtained in [4] is highly dependent on the dimension and on τ = min(λ, 1− λ).

The purpose of this manuscript is to improve the previous result in different contexts. In fact,

the first result we present here is a proof of a uniform stability exponent for the Prékopa–Leindler

inequality for general functions in any dimension, for any λ ∈ (0, 1):

Theorem 1. There is an absolute constant c0 > 0 such that the following holds. Let h, f, g :

Rn → R be non-negative measurable functions satisfying (1.1). Suppose, additionally, that they

satisfy (1.4). Then there are a > 0, x0 ∈ Rn, and a log-concave function h̃ : Rn → R+, such that∫
Rn

|f(x)− a−λh̃(x− λx0)|dx ≤ Cn(τ)ε
c0

∫
Rn

f(x) dx,∫
Rn

|g(x)− a1−λh̃(x+ (1− λ)x0)| dx ≤ Cn(τ)ε
c0

∫
Rn

g(x) dx,∫
Rn

|h(x)− h̃(x)| dx ≤ Cn(τ)ε
c0

∫
Rn

h(x) dx.
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Remark 1.1. The proof of Theorem 1 may be divided into two main parts. The first is a

new proof of the one-dimensional result in [4]. For that, instead of resorting to a four-point

inequality as done in that manuscript, we use an idea similar to the one used in [4] but for

higher-dimensional functions. In effective terms, by a similar truncation argument, we arrive

at the fact that, if we wish to use the stability results for the Brunn–Minkowski inequality

available in dimension 2, we only need to prove that the distribution functions of f and g as in

the statement are close in L1, upon appropriate scaling and translating.

It is equivalent to work with even, radially decreasing functions in dimension one. In order

to prove a uniform stability for those, we consider the transport map between them. Upon

appropriately cutting both f and g at a well-controlled level set, we see that the derivative

of the transport map is bounded except for a set of small measure. By employing a trace-

like inequality on the set where the derivative is bi-Lipschitz, we are able to show the desired

distributional result in one dimension, which concludes the one-dimensional version together

with the results from [16].

For the higher-dimensional case, we first reduce the matter to the level-set analysis mentioned

before. There, by a proposition originally from [4], the one-dimensional estimates automatically

yield bounds on the distribution functions in higher dimensions. This guarantees that the log-

hypographs in question are close by, in terms of a uniform parameter. At that point, instead of

using the result in [9] (as previously done in [4]), we exploit the recent sharp stability result by

the first author, van Hintum, and Tiba [12]. This enables us to not lose a dimensional constant

in the exponents. Since the τ -dependency was only stemming from either the one-dimensional

results – from which we removed such a dependency – or the Brunn–Minkowski stability problem,

this argument yields Theorem 1 as a consequence.

The next result that we present in this manuscript deals with a question originally raised by

Böröczky and Ball in [2]. In analogy to the Brunn-Minkowski theory presented above, where

sharp stability for convex sets may be derived from an argument using a Poincaré-type inequality,

one may wonder what happens if we suppose beforehand that either h or f and g are already

log-concave. In the one-dimensional case, we are able to prove a sharp stability result.

Theorem 2. Let h, f, g : R → R+ be measurable functions satisfying (1.1). Suppose also that

either h is log-concave, or both f and g are log-concave, and that∫
h ≤ (1 + ε)

(∫
f

)λ(∫
g

)1−λ
. (1.5)

Then there exist C, a > 0, x0 ∈ R, and h̃ : R → R+ a log-concave function, such that∫
R
|f(x)− a−λh̃(x+ λx0)| dx ≤ C

( ε
τ

)1/2 ∫
R
f(x) dx,∫

R
|g(x)− a1−λh̃(x− (1− λ)x0)|dx ≤ C

( ε
τ

)1/2 ∫
R
g(x) dx,∫

R
|h(x)− h̃(x)| dx ≤ C

( ε
τ

)1/2 ∫
R
h(x) dx, (1.6)

where τ = min(λ, 1−λ). This result is sharp, in the sense that there are functions h, f, g satisfying

(1.1) and (1.4) for which (1.6) is reversed (with a smaller constant C).
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Remark 1.2. The proof of this result exploits the interplay between f and g provided by the

transport map between them (when looked at as probability measures on the real line). This

allows us to exploit a reduction from [2], which states that it is sufficient to prove that f and g

are close to each other, and then stability follows in the same order. In the proof, a key fact is

to show that outside an interval where both f and g have negligible mass, the transport map

between the densities f and g is universally bi-Lipschitz continuous - which is a property even

stronger than the one needed for us to prove Theorem 1. Then, the conclusion of the proof runs

through an inequality that follows directly from the optimal transport proof of the Prékopa–

Leindler inequality. A crucial step is the use of a suitable trace-like inequality for BV functions

showing that the distance between f and g is bounded by the quantity
∫
R f(x)|T

′(x) − 1| dx,
which, by the reductions above, is in turn bounded by Cε1/2. Thanks to the fact that we are

working in dimension 1, our desired trace-like inequality follows from a simple integration by

parts argument.

A consequence of the methods used to prove Theorem 2 is a sharp stability result for log-

concave radial functions in higher dimensions:

Theorem 3. Let h, f, g : Rn → R+ be radial functions satisfying (1.1). Suppose moreover that

either h is log-concave or that f, g are log-concave, and that∫
Rn

h(x) dx ≤ (1 + ε)

(∫
Rn

f(x) dx

)λ(∫
Rn

g(x) dx

)1−λ
.

Then there is a dimensional absolute constant Cn > 0, a scalar a > 0 and a radial log-concave

function h̃ such that ∫
Rn

|f(x)− aλh̃(x)|dx ≤ Cn

( ε
τ

)1/2 ∫
Rn

f(x) dx,∫
Rn

|g(x)− a−(1−λ)h̃(x)|dx ≤ Cn

( ε
τ

)1/2 ∫
Rn

g(x) dx,∫
Rn

|h(x)− h̃(x)|dx ≤ Cn

( ε
τ

)1/2 ∫
Rn

h(x) dx.

Acknowledgements. We would like to thank Károly Böröczky for valuable comments on the

main results of this manuscript. A.F. is partially supported by the Lagrange Mathematics and

Computation Research Center.

2. Preliminaries

2.1. Notation. Throughout this manuscript, we will write τ = min(λ, 1−λ). We will generally

use the following notation for level sets of functions f, g, h below:

At = {x ∈ Rn : f(x) ≥ t},
Bt = {x ∈ Rn : g(x) ≥ t},
Ct = {x ∈ Rn : h(x) ≥ t}. (2.1)

Given positive quantities a and b, we will sometimes write a ≲ b, meaning that a ≤ c · b, where
c > 0 is an absolute constant, depending only possibly on the dimension. We will also write c(τ)

to denote an absolute computable function of only τ, that may change from line to line.
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2.2. Transport maps and trace-like inequalities. In the proof of the main result of this

manuscript, a crucial tool is the use of the transport map between radially decreasing functions.

We first state the main properties we are going to need about that object.

Proposition 2.1. Let f, g be two non-negative, radially decreasing probability distributions. Let

T denote the transport map between f and g, in the sense that∫ x

−∞
f(t) dt =

∫ T (x)

−∞
g(t) dt, ∀x ∈ R. (2.2)

Then the map T is an increasing bijection of the real line, and hence differentiable almost

everywhere. Furthermore, it satisfies the equation

f(x) = g(T (x)) · T ′(x), for almost every x ∈ R.

Moreover, if we denote the inverse of T by S, we have that

g(y) = f(S(y)) · S′(y), for almost every y ∈ R.

Proof. We simply note that (2.2) is equivalent to the fact that the map T is a transport map

between the measures f(x) dx and g(y) dy. The properties of T then follow, for instance, from

the theory of optimal transport as in [8], restricted to the one-dimensional case. □

We now state a trace-like inequality result for radially decreasing functions on the real line,

which is the main new bridge in order to prove the crucial step in the one-dimensional version

of Theorem 1, as well as in the sharp results Theorems 2 and 3, which is Proposition 3.1 below.

Proposition 2.2. Suppose that f : R → R+ is a L1 function which is furthermore increasing

on (−∞, 0) and decreasing on (0,+∞). Moreover, let Φ be a locally Lipschitz function with

Φ(0) = 0. Under those assumptions, the inequality∫
R
|Φ(x)| |df(x)| ≤

∫
R
|f(x)||Φ′(x)|dx (2.3)

holds, where |df | denotes the variation of the measure df such that f(x) =
∫ x
−∞ df(s).

Proof. We note that, since f is increasing on (−∞, 0) and decreasing on (0,+∞), we may write

the left-hand side of (2.3) as∫ 0

−∞
|Φ(x)| df(x)−

∫ +∞

0
|Φ(x)|df(x).

Suppose first f is compactly supported, so that both integrals exist and are finite. Then we may

use a Riemann–Stieltjes integration by parts together with the fact that Φ(0) = 0 and that the

support of f is compact: ∫ 0

−∞
|Φ(x)| df(x) = −

∫ 0

−∞
f(x)| d

dx
|Φ|(x) dx,∫ ∞

0
|Φ(x)|df(x) = −

∫ ∞

0
f(x)

d

dx
|Φ|(x) dx.
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We readily see that the difference between the right-hand sides above is bounded by∫ ∞

−∞
|f(x)|

∣∣∣∣ ddx |Φ(x)|
∣∣∣∣ dx,

which, on the other hand, is bounded by the asserted quantity. For the non-compactly supported

case, we simply argue by approximation in a standard way. □

2.3. The Prékopa–Leindler inequality and rearrangements. Our next preliminary result

concerns the interplay of rearrangements with the Prékopa–Leindler inequality. We define, for a

function φ : Rn → R+, its symmetric decreasing rearrangement to be the unique radial function

φ∗ : Rn → R+ such that

|{φ > s}| = |{φ∗ > s}|,

for all s > 0 for which the function µ(s) = |{φ > s}| is continuous. A crucial property of the

rearrangement is that it preserves functions satisfying (1.1):

Proposition 2.3. Let h, f, g : Rn → R satisfy (1.1). Then the same inequality follows for their

rearrangements. That is,

h∗ (λx+ (1− λ)y) ≥ f∗(x)λg∗(y)1−λ, ∀x, y ∈ Rn.

Proof. Let H,F,G denote, respectively, the distribution functions of h, f, g. That is,

H(t) = Hn(Ct),

F (t) = Hn(At),

G(t) = Hn(Bt).

By (1.1), we have that

Csλt1−λ ⊃ λAs + (1− λ)Bt,

for all s, t > 0. Hence, by Brunn–Minkowski, it follows that

H(sλt1−λ) ≥
(
λF (s)1/n + (1− λ)G(t)1/n

)n
∀ s, t > 0. (2.4)

We then use that, for each x ∈ Rn, the rearrangement of a function φ may be written as

φ∗(x) = sup{t > 0: Φ(t) ≥ vol(B|x|(0))},

where Φ is the distribution function of φ. Take then s1 for which F (s1) ≥ vol(B|x|(0)) and t1
for which G(t1) ≥ vol(B|y|(0)) in (2.4). Then it follows that

H(sλ1 t
1−λ
1 ) ≥ vol(Bλ|x|+(1−λ)|y|(0)).

Since s1 and t1 can be made arbitrarily close to f∗(|x|) and g∗(|y|), respectively, we conclude

that

f∗(|x|)λg∗(|y|)1−λ ≤ h∗ (λ|x|+ (1− λ)|y|) , ∀x, y ∈ Rn.

Since h∗ is radially decreasing, this implies the claim. □
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2.4. Log-concave functions. Finally, we will need some properties of log-concave functions

on the real line for Theorems 2 and 3. We say that a function φ : Rn → R+ is log-concave if,

for any x, y ∈ Rn and λ ∈ (0, 1), we have

φ(λx+ (1− λ)y) ≥ φ(x)λφ(y)1−λ.

We will focus on properties of log-concave functions in dimension n = 1. For that case, if we

have that
∫
R φ(x) dx = 1, then we say that φ has median mφ if∫ mφ

−∞
φ(x) dx =

∫ ∞

mφ

φ(x) dx =
1

2
.

It turns out that the median plays a special role for pointwise estimates for log-concave probabil-

ity distributions, as highlighted by the next result, which is a particular case of Proposition 2.2

in [1].

Proposition 2.4. Let φ : R → R+ be a log-concave probability distribution with median m. We

have then that

φ(m)e−2φ(m)|x−m| ≤ φ(x) ≤ φ(m)e2φ(m)|x−m|, (2.5)

whenever |x−m| ≤ log(2)
2φ(m) .

Proof. By scaling and translating, we may suppose, without loss of generality, that m = 0 and

φ(0) = 1
2 . We then let ψ : R → R+ be the log-concave distribution defined by

ψ(x) =

{
1
2e

−x whenever x ≥ − log(2),

0 otherwise.

Then ψ(0) = φ(0) and mψ = 0 as well. Hence, since
∫∞
0 φ(x) dx =

∫∞
0 ψ(x) dx, there must exist

v > 0 for which φ(x) ≤ ψ(x) for all x ≥ v. Take the minimal v. It then follows by log-concavity

of φ that φ(x) ≥ ψ(x) for x ∈ [0, v], and φ(x) ≤ ψ(x) otherwise. This implies in particular the

claimed upper bound in (2.5).

In order to prove the lower bound, we suppose without loss of generality that x > 0 and note

that it is enough to prove that φ(log(2)) ≥ 1
4 , since the desired assertion for points in the interval

[0, log(2)] follows by log-concavity directly. Suppose then, for the sake of a contradiction, that

it does not hold - that is, φ(log(2)) < 1
4 . Then we should have, by log-concavity of φ and the

fact that φ(0) = 1
2 , that

φ(x) ≤ 1

4
e−a(x−log(2)),

for some a ≥ 1. We fix then t0 = a−1
a+1 log(2), and note that, since 1

4e
−a(t0−log(2)) = 1

2e
−t0 , then

again by log-concavity we get φ(x) ≤ 1
2e
x for x ∈ [0, t0]. We then estimate∫ ∞

0
φ(x) dx <

1

2

∫ t0

0
ex dx+

1

4

∫ ∞

t0

e−a(t−log(2)) dt <
1

2
,

as a ≥ 1. This is a contradiction to the fact that 0 is the meadian of φ, which implies the

claim. □
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The next result shows how to obtain a generalization of the result in the previous Proposition

where one does not compare the log-concave distribution to the median point. It is a combination

of results from Corollary 2.3 and Proposition 2.2 in [1].

Proposition 2.5. Let φ : R → R+ be a log-concave probability density, and let
∫∞
x φ = ν ∈(

0, 12
]
. Then we have the following:

(i) φ(x) · e−
φ(x)|t−x|

ν ≤ φ(t) ≤ φ(x) · e
φ(x)|t−x|

ν if |t− x| ≤ ν log(2)
φ(x) ;

(ii) φ(w) ≤ φ(x), for all w > x.

Proof. We begin by proving (i). Let |t − x| ≤ ν log(2)
φ(x) . There exists a unique λ ∈ R such that,

for the function

φ̃(t) =

{
φ(t) if t ≥ x

min
{
φ(t), φ(x) · eλ(t−x)

}
if t ≤ x

,

we have
∫ x
−∞ φ̃ = ν. We note that φ̃ is log-concave and λ ≥ −φ(x)

ν . In particular 1
2ν φ̃ is

a log-concave probability distribution whose median is x, and hence Proposition 2.4 yields

φ(t) ≥ φ̃(t) ≥ φ(x) · e
−φ(x)|t−x|

ν . Since for s = 2x − t we have φ(s) ≥ φ(x) · e
−φ(x)|s−x|

ν , we

conclude (i) by log-concavity.

For the proof of (ii), we may translate and dilate (preserving L1 norms) in order to assume

without generality that x = 0 and φ(0) = 1/2. From this, the assertion in part (i) above implies

that we may suppose w > 2ν log(2).

Suppose then that φ(w) > 1. Then, log-concavity of φ directly implies that φ(t) ≥ 1
2e

(t/w) log(2φ(w)),

for each t ∈ (0, w). We have then

ν ≥
∫ w

0
φ(t) dt ≥ w(φ(w)− 1)

2 log(2φ(w))
≥ ν log(2)

2φ(w)− 1

log(2φ(w))
.

It is then a simple computation to verify that the function s 7→ s−1
log(s) is larger than 1

log(2)

for s > 2. Hence, the right-hand side above is bounded from below strictly by ν under our

hypothesis, a contradiction stemming from φ(w) > 1. Hence φ(w) ≤ 1, and the second assertion

is proved. □

We finally note the following simple result for log-concave functions, which will play a crucial

role in extending the results from the λ = 1/2 case to the case of general λ ∈ (0, 1):

Proposition 2.6 (Lemma 7.4 in [3]). For fixed λ ∈ (0, 1), if η ∈ (0, 2 ·min{1− λ, λ}) and φ is

a log-concave function on [0, 1] satisfying φ(λ) ≤ (1 + η)φ(0)1−λφ(1)λ, then

φ

(
1

2

)
≤
(
1 +

η

min{1− λ, λ}

)√
φ(0)φ(1)

Proof. We may assume that 0 < λ < 1
2 . Then, since λ = (1 − 2λ) · 0 + 2λ · 1

2 and φ(λ) ≤
(1 + η)φ(0)1−λφ(1)λ, the log-concavity of φ yield

(1 + η)φ(0)1−λφ(1)λ ≥ φ(λ) ≥ φ(0)1−2λφ

(
1

2

)2λ

.
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Thus (1 + η)
1
2λ ≤ e

η
2λ ≤ 1 + η

λ implies

φ

(
1

2

)
≤ (1 + η)

1
2λ

√
φ(0)φ(1) ≤

(
1 +

η

λ

)√
φ(0)φ(1).

□

3. Proof of Theorem 1

We will divide our discussion of the proof of Theorem 1 into two parts: the one-dimensional

and the higher-dimensional parts. For each part, the proof will be split into several steps.

3.1. Part I: One-dimensional analysis. In this part, we show a new alternative approach

to the stability of the Prékopa–Leindler inequality in dimension n = 1. This new approach has

the major advantage of removing the exponent dependency on λ in that case. In fact, in the

n = 1 case, the result of Theorem 1 can be deduced from [16] directly, since it uses only the

two-dimensional sharp Brunn–Minkowski inequality as a black box.

Step 1. Bounding the level sets of near-extremals. We first discuss some more immediate

properties of functions h, f, g : R → R+ satisfying (1.1) and (1.4) for n = 1.

First of all, up to multiplying f, g, h by constants that preserve the relations between them,

and up to a rescaling in the variable x, one can always assume that

∥f∥∞ = 1 and ∥f∥1 = ∥g∥1 = 1. (3.1)

Then, it follows by [4, Lemma 2.4] that

∥g∥∞ ∈ (1− c(τ)ε1/2, 1 + c(τ)ε1/2) (3.2)

whenever ε ≲ τ3.

Given the above reductions, we recall the following result, which first appeared in [4, Lemma 2.5].

We refer the reader to that manuscript for a proof of this result.

Lemma 3.1. Let h, f, g satisfy (1.1), (1.4), and (3.1), and assume that ε ≲ τ3. If ε1/2 ≤ η < 1,

then

H1({f ≥ η}) ≲ τ−
5
2 · | log ε|

4
τ , H1({g ≥ η}) ≲ τ−

5
2 · | log ε|

4
τ , (3.3)

and ∫
{f<η}

f ≲ τ−
5
2 · η | log ε|

4
τ ,

∫
{g<η}

g ≲ τ−
5
2 · η | log ε|

4
τ .

Step 2. Reduction to the radial case. Let h, f, g satisfy (1.1), (1.4), and (3.1). Given θ > 0

a small constant to be fixed later, define the truncated log-hypographs of f, g, h as

Sf = {(x, T ) ∈ R2 : x ∈ {f > εθ}, εθ ≤ eT < f(x)},

Sg = {(x, T ) ∈ R2 : x ∈ {g > εθ}, εθ ≤ eT < g(x)},

Sh = {(x, T ) ∈ R2 : x ∈ {h > εθ}, εθ ≤ eT < h(x)}.

We will start by controlling the measure of Sf and Sg.
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We have directly by the definitions that

1

2
≤ H2(Sf ) ≤ θ| log ε|H1(Aεθ) ≲ c(τ)| log ε|

4
τ
+1. (3.4)

The same argument can be used in order to prove entirely analogous bounds for H2(Sg). Now,
the condition (1.1) implies that

λSf + (1− λ)Sg ⊂ Sh.
The goal is then to show that the triple (Sh,Sf ,Sg) satisfies near-equality in the Brunn–

Minkowski inequality, with deficit given by an absolute power of ε. We shall use the following

numerical lemma:

Lemma 3.2. Let x, y, z > 0 be such that x ≥
(
λy1/2 + (1− λ)z1/2

)2
. Then

0 ≤ x−
(
λy1/2 + (1− λ)z1/2

)2
≤ |x− (λy + (1− λ)z)|+ τ |y1/2 − z1/2|2.

Proof. It suffices to verify that(
λy1/2 + (1− λ)z1/2

)2
≥ λy + (1− λ)z − τ |z1/2 − y1/2|2.

This assertion is equivalent to

τ |z1/2 − y1/2|2 ≥ λ(1− λ)|z1/2 − y1/2|2,

which is true by the definition of τ . □

Using Lemma 3.2 with x = H2(Sh), y = H2(Sf ), z = H2(Sg), we readily obtain that

0 ≤ H2(Sh)−
(
λH2(Sf )1/2 + (1− λ)H2(Sg)1/2

)2
≤
∫ 2

εθ

∣∣H1(Ct)− λH1(At)− (1− λ)H1(Bt)
∣∣ dt
t
+ τ

∣∣∣H2(Sf )1/2 −H2(Sg)1/2
∣∣∣2

≤ ε−θ
∫ 2

0

∣∣H1(Ct)− λH1(At)− (1− λ)H1(Bt)
∣∣ dt

+
τ

ε2θmax{H2(Sf ),H2(Sg)}

(∫ 2

0
|H1(At)−H1(Bt)| dt

)2

. (3.5)

Now, by invoking [4, Lemma 3.2], we have that∫ 2

0

∣∣H1(Ct)− λH1(At)− (1− λ)H1(Bt)
∣∣ dt ≲ τ−

3
2 ε1/2.

Now, assume that we can bound∫ 2

0
|H1(At)−H1(Bt)|dt ≲ εθ0 , (3.6)

for some absolute constant θ0 > 0. Then, choosing θ > 0 to be a small enough absolute constant

and recalling (3.4) (and its analogue for g), we conclude that

H2(Sh) ≤ (1 + c(τ)εα0)
(
λH2(Sf )1/2 + (1− λ)H2(Sg)1/2

)2
(3.7)

for some α0 > 0 universal.
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Notice now that the left-hand side of (3.6) equals∫
R
|f∗(x)− g∗(x)|dx,

where φ∗ denotes the radially decreasing rearrangement of a given function φ, as defined in

Section 2. Also, using Proposition 2.3, it follows that h∗, f∗, g∗ also satisfy (1.1) and (1.4).

In other words, we have reduced the validity of (3.7) to proving a uniform closeness rela-

tionship between functions f, g which are even and radially decreasing, in addition to satisfying

(1.1), (1.4), and (3.1)

Step 3. Uniform bound for the even case. Next, we show the following result, which

confirms the validity of a uniform estimate in the even case:

Proposition 3.1. Suppose h, f, g : R → R+ satisfy (1.1) and (1.4). Suppose, moreover, that f

and g are both even and radially decreasing,
∫
R f =

∫
R g = 1, and max(∥f∥∞, ∥g∥∞) ≤ 2. Then,

for any γ > 0, τ ∈ (0, 1), we may find cγ(τ) > 0 such that∫
R
|f(x)− g(x)|dx ≲ cγ(τ)ε

1/2−γ . (3.8)

Proof. Let I1 = {f > ε1/2} and I2 = {g > ε1/2}. Since f and g are both even and decreasing,

either I1 ⊃ I2 or I2 ⊃ I1. Suppose without loss of generality that I1 ⊃ I2 so that {f ≤ ε1/2} ⊂
{g ≤ ε1/2}.

Consider then transport map between f and g, as in Proposition 2.1. Since f and g are

origin-symmetric, we must have T (0) = 0. We then split the integral on the left-hand side of

(3.8) into two parts:∫
R
|f(x)− g(x)| dx =

∫
{f>ε1/2}

|f(x)− g(x)| dx+

∫
{f≤ε1/2}

|f(x)− g(x)| dx =: I1 + I2.

For I2, we bound it by

I2 ≤
∫
{f≤ε1/2}

f +

∫
{f≤ε1/2}

g ≤
∫
{f≤ε1/2}

f +

∫
{g≤ε1/2}

g,

by the reductions made. By Lemma 3.1, both integrals above are bounded by cγ(τ)ε
1/2−γ , and

hence we focus on I1. There, we divide into two further parts, using the transport map between

f and g. Indeed, let

S0 = {x ∈ R : either T ′(x) > 10 or T ′(x) < 1/10}.

We start with the following proof of the Prékopa–Leindler inequality: suppose
∫
R f(x) dx =∫

R g(x) dx = 1. Then

1 =

∫
R
f(x) dx =

∫
R
f(x)λg(T (x))1−λ(T ′(x))1−λ dx

≤
∫
R
h (λx+ (1− λ)T (x)) (T ′(x))1−λ dx

≤
∫
R
h (λx+ (1− λ)T (x))

(
λ+ (1− λ)T ′(x)

)
dx =

∫
R
h(x) dx.
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If, however, we know that
∫
h ≤ 1 + ε, then a thorough analysis of the proof above yields

ε ≥
∫
R
h(λx+ (1− λ)T (x))

(
(λ+ (1− λ)T ′(x))− (T ′(x))1−λ

)
dx

≥
∫
R
f(x)

(
λ+ (1− λ)T ′(x)

(T ′(x))1−λ
− 1

)
dx ≥ τ

∫
R
f(x)

(1−
√
T ′(x))2

(T ′(x))1−λ
dx. (3.9)

Consider then the splitting

I1 =

∫
{f>ε1/2}∩S0

|f − g|+
∫
{f>ε1/2}∩Sc

0

|f − g| =: J1 + J2.

We bound J1 by using the optimal transport approach for Prékopa–Leindler above: indeed,

J1 ≤ (∥f∥∞ + ∥g∥∞) |{f > ε1/2} ∩ S0|.

On the other hand, by (3.9), we have

ε ≥ τ

∫
{f>ε1/2}∩S0

f(x)
(1−

√
T ′(x))2

(T ′(x))1−λ
dx ≥ c(τ)−1 · ε1/2|{f > ε1/2} ∩ S0|, (3.10)

which implies that

J1 ≤ c(τ)ε1/2.

Thus, we can focus on J2. There, we need to use the transport map approach. Write, for

shortness, R0 = {f > ε1/2} ∩ Sc0. Then we have∫
R0

|f(x)− g(x)|dx =

∫
R0

|g(T (x))T ′(x)− g(x)| dx

≤
∫
R0

|g(T (x))||T ′(x)− 1| dx+

∫
R0

|g(x)− g(T (x))| dx

≤
∫
T (R0)

|g(y)||S′(y)− 1|dy +
∫
R0

|g(x)− g(T (x))| dx

=: K1 +K2.

Let us first look at what T (R0) looks like. Since R0 ⊂ Sc0, we have T (R0) ⊂ T (Sc0) =

{T (x) : 1/10 < T ′(x) < 10} = {y ∈ R : 1/10 < S′(y) < 10}. We then notice that the esti-

mate (3.9) can be done in the exact same fashion with f and T replaced by g and S, where one

obtains instead that

ε ≥ τ

∫
R
g(y)

(1−
√
S′(y))2

(S′(y))λ
dy. (3.11)

Let us use this in order to estimate K1: we have, by Cauchy-Schwarz and the inclusions above,∫
T (R0)

g(y)|S′(y)− 1|dy ≤

(∫
{1/10<S′<10}

g(y)|S′(y)− 1|2 dy

)1/2

≤ c(τ)

(∫
R
g(y)

(1−
√
S′(y))2

(S′(y))λ
dy

)1/2

,

and, since the right-hand side above is bounded by c(τ)ε1/2, this bounds K1.
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It remains to bound K2. We shall use the fundamental theorem of calculus in order to do

that: indeed, first we analyse it inside the set for which T (x) > x. There, we have∫
R0∩{T (x)>x}

|g(x)− g(T (x))| dx ≤
∫
R

(∫
R
χ{T (x)>s>x} · χR0(x) dx

)
|dg(s)|

=

∫
R

(∫ s

S(s)
χR0(x) dx

)
|dg(s)|.

Let then Φ(s) =
∫
R χ{s>x>S(s)} · χR0 dx. This is a locally Lipschitz function satisfying Φ(0) = 0.

Hence, we can apply Proposition 2.2. Inequality (2.3) implies that the right-hand side above is

bounded by ∫
R
|g(s)||χR0(s)− S′(s)χR0(S(s))|ds

≤
∫
R
χR0(S(s))|g(s)| |S′(s)− 1| ds+

∫
R
|g(s)||χR0(s)− χR0(S(s))| ds

≤
∫
{1/10<S′<10}

|g(s)| |S′(s)− 1| ds+
∫
R
|g(s)||χR0 − χT (R0)| ds.

Since the first term in the last line is already bounded by c(τ)ε1/2, we focus on the second one.

This second term is clearly bounded by∫
R0△T (R0)

g(s) ds ≤
∫
R0\T (R0)

g(s) ds+

∫
T (R0)\R0

g(s) ds.

Note that T (R0) \ R0 ⊂ Rc0 ⊂ {f < ε1/2} ∪ S0, which we write as the disjoint union {f <

ε1/2} ⊔
(
S0 ∩ {f > ε1/2}

)
. Hence,∫

T (R0)\R0

g(s) ds ≤
∫
{f≤ε1/2}

g(s) ds+

∫
S0∩{f>ε1/2}

g(s) ds

≤
∫
{g≤ε1/2}

g(s) ds+ ∥g∥∞|S0 ∩ {f > ε1/2}| ≲ cγ(τ)ε
1/2−γ ,

where the last inequality follows from Lemma 3.1 and (3.10). Similarly, we have

R0 \ T (R0) ⊂ T (Rc0) ⊂
(
T ({f < ε1/2}) ∪ T (S0)

)
=
(
T ({f < ε1/2}) ⊔ (T (S0) ∩ T ({f ≥ ε1/2}))

)
Note that T (S0) = {y = T (x) : either 1/10 > T ′(x) or T ′(x) > 10} = {y ∈ R : either S′(y) <

1/10 or S′(y) > 10}. From restricting the integral on the right-hand side of (3.11) to T (S0), we

get that

c(τ)ε ≥
∫
T (S0)

g(s) ds.

Thus, using again Lemma 3.1, we have∫
R0\T (R0)

g(s) ds ≤
∫
T ({f<ε1/2})

g(s) ds+

∫
T (S0)

g(s) ds

≤
∫
{f<ε1/2}

f(s) ds+ c(τ)ε ≤ cγ(τ)ε
1/2−γ .
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By repeating the exact same analysis as above in the set {T (x) < x}, this allows us to conclude

the desired estimate on the distance between f and g, concluding our proof. □

Step 4. Conclusion. We are now ready to prove the n = 1 case of Theorem 1.

Indeed, applying Proposition 3.1 to f∗, g∗, h∗, we get∫
R
|f∗(x)− g∗(x)|dx ≤ cγ(τ)ε

1/2−γ .

Then, combining this bound with (3.5), for θ sufficientyl small we obtain

H2(Sh)−
(
λH2(Sf )1/2 + (1− λ)H2(Sg)1/2

)2
≤ cγ(τ)

(
ε

1
2
−θ + ε1−2(γ+θ)

)
=: δ.

Since H2(Sf ),H2(Sg) > 1
2 , we conclude that (Sh,Sf ,Sg) form a triple of near-extremals for

the Brunn–Minkowski inequality in dimension 2. We then conclude, from either [16] or [12],

that, denoting the closure of the convex hull of Sf ,Sg,Sh by Sf , Sg, Sh, respectively, there are

w̃ = (w, ϱ) ∈ R2, and a convex set Sh ⊃ Sh with

Sh ⊃ (Sf − w̃) ∪ (Sg + w̃),

H2(Sh \ Sh) +H2(Sf \ Sf ) +H2(Sg \ Sg) ≤ c(τ)| log ε|
4
τ δ,

H2(Sh \ Sh) +H2(Sh \ (Sf − w̃)) +H2(Sh \ (Sg + w̃)) ≤ c(τ)| log ε|
4
τ δ1/2.

(3.12)

We now employ the analysis of [3, Lemma 6.1]. Suppose first w̃ = (w, ϱ), ϱ > 0. We let

Sϱf = {(x, T ) ∈ Sf : θ log ε ≤ T ≤ θ log ε+ ϱ}.

By the fact that H2(Sf + (0, ϱ)) = H2(Sf ) = H2(Sf ∩ (Sf + (0, ϱ))) + H2(Sϱf ), it follows that

H2(Sf∆(Sf + (0, ϱ))) = 2H2(Sϱf ). Since S
ρ
f ⊂ Sf \ (Sh + w̃), we also have

H2(Sϱf ) ≤ c(τ)| log ε|
4
τ δ1/2.

Thus, by triangle inequality,

H2(Sf∆(Sh + (w, 0))) ≤ 2H2(Sϱf ) +H2(Sf∆(Sh + w̃)) ≤ c(τ)| log ε|
4
τ δ1/2.

A similar argument works in case ϱ < 0, if one considers S
|ϱ|
h instead of Sϱf . In the end, this

allows one to conclude that

H2(Sh∆(Sf − w)) +H2(Sh∆(Sg + w)) ≤ c(τ)| log ε|
4
τ δ1/2. (3.13)

We now note that, as {f > εθ} × {T = θ log ε} ⊂ Sf , then

Sf ⊃ co({f > εθ})× {T = θ log ε}.

We associate to each x ∈ co({f > εθ}) the function

Tf (x) = sup{T ∈ R : (x, T ) ∈ Sf}.

This function satisfies Tf (x) ≥ θ log ε for every x ∈ co({f > εθ}). Also, it is this function is

concave. Hence, we let

f̃(x) =

{
eTf (x), if x ∈ co({f > εθ});
0, otherwise .
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Now notice that (x, r) belongs to the interior of Sf if and only if Tf (x) > r > θ log ε and x

belongs to the interior of co({f > εθ}). This shows that

H2(Sf \ Sf ) ≥
1

2

∫ 2

εθ
H1({f̃ > s}∆{f > s}) ds.

Moreover, we see that, by Chebyshev’s inequality and (3.12), there is

s0 ∈ (εθ, εθ + c(τ)| log ε|2/τδ1/2)

such that

H1({f̃ > s0}∆{f > s0}) ≲ cγ(τ)| log ε|2/τε1/2−γ . (3.14)

Define then the function f̃1 to be zero whenever f̃ ≤ s0, and equal to f̃ otherwise. This new

function is again log-concave. We claim that it is sufficiently close to f.

Effectively, we have by the previous considerations that

∥f̃1 − f∥1 =
∫ 2

0
H1({f̃1 > t}∆{f > t}) dt

≤
∫ s0

0

(
H1({f̃1 > s0}) +H1({f > t})

)
dt+

∫ 2

s0

H1({f̃1 > t}∆{f > t}) dt

≤ c(τ)| log ε|6/τs0 +
∫ 2

s0

Hn({f̃ > t}∆{f > t}) dt

≤ c(τ)| log ε|6/τs0 + 2Hn+1(Sf \ Sf ) ≤ c(τ)| log ε|6/τε1/4,

(3.15)

where we chose θ = 1
4 . By employing the same argument for g and h, we are able to construct

functions g̃1, h̃1, both of which are log-concave, which satisfy

∥g̃1 − g∥1 + ∥h̃1 − h∥1 + ∥f̃1 − f∥1 ≤ c(τ)| log ε|6/τε1/4.

We have, furthermore, that

c(τ)| log ε|6/τε1/4 ≥
∫
Rn

(
|h̃1(x)− f̃1(x+ w)|+ |h̃1(x)− g̃1(x− w)|

)
dx, (3.16)

therefore

∥h̃1 − h∥1 + ∥h̃1(· − w)− f∥1 + ∥h̃1(·+ w)− g∥1 ≤ c(τ)| log ε|6/τε1/4.

This concludes the result in the n = 1 case, with exponent 1
5 .

3.2. Part II: the higher-dimensional case. In this part, we highlight the changes needed in

order to prove Theorem 1 in its full generality. Again up to scaling and multiplication, we can

assume that

∥f∥∞ = min(∥f∥∞, ∥g∥∞) = 1 and ∥f∥1 = ∥g∥1 = 1. (3.17)

Step 1. Estimates for the distribution functions. We first need to recall the following

estimate from [4, Lemma 5.2]:
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Proposition 3.2 (Lemma 5.2 from [4]). Let h, f, g : Rn → R be functions satisfying (1.1), (1.4),

and (3.17). Let H,F,G : R+ → R+ be their distribution functions. Then there is an absolute,

dimensional constant cn(τ) > 0 such that∫ ∞

0
|F (t)−H(t)|dt+

∫ ∞

0
|G(t)−H(t)| dt ≤ cn(τ)ε

α0 ,

for some α0 > 0.

Proof. Indeed, Lemma 5.2 from [4] does not yield the result in the exact current formulation,

but rather it is an automatic difference estimate: if for any h, f, g : R → R+ with
∫
f =

∫
g = 1

which satisfy (1.1), (1.4), and (3.1) stability holds with some power Q(τ), then the conclusion

of Proposition 3.2 holds in the following form:∫ ∞

0
|F (t)−H(t)|dt+

∫ ∞

0
|G(t)−H(t)|dt ≤ cn(τ)ε

Q(τ)/2.

Since we have proved in Part I that we may take Q(τ) = 1
5 for each λ ∈ (0, 1), we conclude the

validity of our claim with α0 =
1
10 . □

Step 2. Estimates on the measure of level sets. Before moving on to the main part of our

argument, we need to prove that we can cut a fixed proportion of the functions at hand, where

the height of the cut is independent in the dimension – at least in terms of the power of ε at

which one cuts.

In order to do that, we first show the following uniform bound on the L∞ norm of g, given

that ∥f∥∞ is controlled.

Lemma 3.3. Let h, f, g : Rn → R+ satisfy (1.1), (1.4), and (3.17). Then

∥g∥∞ ≤ cn(τ). (3.18)

Proof. Indeed, if y0 ∈ Rn is fixed, we have

Ct ⊃ (1− λ)A
t

1
1−λ /g(y0)

λ
1−λ

+ λy0.

In particular,∫ t

0
F (s) ds =

1

1− λ

∫ t1−λg(y0)λ

0
F

(
r1/(1−λ)

g(y0)λ/(1−λ)

)(
r

g(y0)

)λ/(1−λ)
dr

≤ 1

1− λ

(
t

g(y0)

)λ ∫ t1−λg(y0)λ

0
F

(
r1/(1−λ)

g(y0)λ/(1−λ)

)
dr

≤ 1

(1− λ)n+1

(
t

g(y0)

)λ ∫ t1−λg(y0)λ

0
H(r) dr.

Therefore, choosing t = 1 and using that
∫
H ≤ 1 + ε and

∫ 1
0 F (s) ds = 1, we get

g(y0) ≤
2 · (1 + ε)1/λ

(1− λ)(n+1)/λ
≤ cn(τ),

as desired. □
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We now formulate an important result on the size of level sets for the higher-dimensional case,

which allows us to cut away the tails of log-concave functions at an uniform height.

Proposition 3.3. Let h, f, g : Rn → R+ be as in Proposition 3.2. Then, for each β ≥ εα0 , we

have

F (β) +G(β) ≤ cn(τ)| log ε|cn
| log τ |

τ , (3.19)

where cn > 0 is a dimensional constant.

Proof. Thanks to [4, Equation (5.21)], the conclusion of the Proposition holds as long as β ≥
εQ(τ)/2, where Q(τ) is the stability exponent obtained in dimension 1. Again, since we have

already proved that we may take Q(τ) = 1
5 for all τ ∈ (0, 1/2], Proposition 3.3 follows at

once. □

Step 2. Conclusion. We are now ready to prove Theorem 1. In what follows, we let cn(τ) > 0

be an absolute, computable constant depending only on n and τ , which may change from line

to line.

Let θ > 0 be small, to be chosen later. Define again the truncated log-hypographs of f, g, h

as

Sf = {(x, T ) ∈ Rn+1 : x ∈ {f > εθ}, εθ ≤ eT < f(x)},

Sg = {(x, T ) ∈ Rn+1 : x ∈ {g > εθ}, εθ ≤ eT < g(x)},

Sh = {(x, T ) ∈ Rn+1 : x ∈ {h > εθ}, εθ ≤ eT < h(x)}.

It follows again, the same method employed in the n = 1 case, that the measure of Sf ,Sg is

well-controlled: indeed,

cn(τ)θ| log ε|cn
| log τ |

τ ≥ θ| log ε| · Hn({f > εθ}) ≥ Hn+1(Sf ) ≥
1

2
. (3.20)

The same estimates together with (3.18) show that

cn(τ)θ| log ε|cn
| log τ |

τ ≥ Hn+1(Sg) ≥
1

cn(τ)
(3.21)

holds as well. Employing Proposition 3.3, we obtain that

|Hn+1(Sf )−Hn+1(Sh)|+ |Hn+1(Sg)−Hn+1(Sh)|

≤
∫ ∞

θ log ε
(|F (es)−H(es)|+ |G(es)−H(es)|) ds

≤ ε−θ
∫ ∞

0
(|F (t)−H(t)|+ |G(t)−H(t)|) ds

≤ cn(τ)ε
α0−θ =: δ.

(3.22)

By (1.1), it still follows that

λSf + (1− λ)Sg ⊂ Sh. (3.23)

In particular, (3.22), (3.23), and the fact that Hn+1(Sf ) > 1/2, imply

cn(τ)θ| log ε|cn
| log τ |

τ ≥ Hn+1(Sh) ≥ cn(τ). (3.24)
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Now, we use the main result in [12]. Indeed, that result states that, under the conditions satisfied

by the sets Sf ,Sg, and Sh in (3.20), (3.21), (3.22), and (3.23), then for δ < dn, the sets Sf ,Sg
are both close (in sharp quantitative terms of δ) to their convex hulls.

In more effective terms, [12, Theorem 1.5] implies that there exist an absolute constant cn(τ) >

0 such that the following holds. Denote again the closure of the convex hull of Sf ,Sg,Sh by

Sf , Sg, Sh respectively. There are w̃ = (w, ϱ) ∈ Rn+1, and a convex set Sh ⊃ Sh with

Sh ⊃ (Sf − w̃) ∪ (Sg + w̃),

Hn+1(Sh \ Sh) +Hn+1(Sf \ Sf ) +Hn+1(Sg \ Sg) ≤ cn(τ)| log ε|cn
| log τ |

τ δ,

Hn+1(Sh \ Sh) +Hn+1(Sh \ (Sf − w̃)) +Hn+1(Sh \ (Sg + w̃)) ≤ cn(τ)| log ε|cn
| log τ |

τ δ1/2.

(3.25)

An analysis entirely analogous to the one in Step 3 in Part I shows that

Hn+1(Sh∆(Sf − w)) +Hn+1(Sh∆(Sg + w)) ≤ cn(τ)| log ε|cn
| log τ |

τ δ1/2. (3.26)

The same method of constructing log-concave functions as before shows that, by choosing θ =

α0/8, there exists h̃1 log-concave such that

∥h̃1(· − w)− f∥1 + ∥h̃1(·+ w)− g∥1 + ∥h̃1 − h∥1 ≤ cn(τ)| log ε|cn
| log τ |

τ εα0/8 ≤ c̃n(τ)ε
α0/16.

This concludes the proof of the claim for n ≥ 2, as desired.

Remark 3.1. Instead of using Proposition 3.2 in order to propagate the result from dimension

1 to higher dimensions with the aid of the sharp Brunn–Minkowski stability estimate, one could

use a version of Proposition 3.1 for radial functions in higher dimensions.

This would imply that one can take virtually the same constant as in the one-dimensional

proof in higher dimensions as well. The proof of such a radial version would work in the same

fashion, but with additional notational and technical obstacles. In order to keep the exposition

short, we decided not to include it in this manuscript.

However, it should be noted that even by doing so the stability exponent obtained and op-

timizing the methods above, we do not expect to be able to obtain the conjectured optimal

exponent 1
2 .

Remark 3.2. We have not attempted to compute the functions cn(τ), although this is certainly

achievable through a thorough inspection of the proof above.

On the other hand, we would expect that such an attempt would yield a poor dependency

on τ . This stems mainly from the fact the estimates in Lemma 3.1 for measures of level sets, in

spite of having a seemingly harmless log(1/ε)cn(τ) factor, introduce exponential dependencies on

1/τ , since the power of the logarithm is of order cn/τ . It is possible to replace the conclusions

of Lemma 3.1 and Proposition 3.3 by an absolute power of | log ε|, but at least with the method

from [4] it seems that one still has to pay the price of a constant of the form C1/τ , C > 1, in

front.

4. Proof of Theorems 2 and 3

4.1. Proof of Theorem 2 for λ = 1/2. We may suppose
∫
f =

∫
g = 1. Let T be the transport

map taking g to f, in the sense of Proposition 2.1. By translating f , we may assume that f has
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a global maximum at 0, and by translating g if needed, we may assume that T (0) = 0. After

those reductions, we wish to prove that there is a common log-concave function h̃ such that∫
R
|f(x)− h̃(x)|dx+

∫
R
|g(x)− h̃(x)| dx+

∫
R
|h(x)− h̃(x)| dx ≲ ε1/2.

We then make the following basic observation, already present in [2, 1] and in the proof of

Proposition 3.1 above: since h satisfies that h
(x+y

2

)
≥
√
f(x)g(y) for every x, y ∈ R, we may

write

1 =

∫
R
f(x) dx =

∫
R

√
f(x)g(T (x))T ′(x) dx

≤
∫
R
h

(
x+ T (x)

2

)√
T ′(x) dx

≤
∫
R
h

(
x+ T (x)

2

)
1 + T ′(x)

2
dx =

∫
R
h(y) dy. (4.1)

Since we know that
∫
R h ≤ 1 + ε, from the chain of inequalities above we get

ε ≥
∫
R
h

(
x+ T (x)

2

)(
1 + T ′(x)

2
−
√
T ′(x)

)
dx

≥ 1

2

∫
R

f(x)√
T ′(x)

(
1−

√
T ′(x)

)2
dx ≥

∫
R
f(x)

(1−
√
T ′(x))2

2
√
T ′(x)

dx.

The inequality we obtain, that is,

ε ≥
∫
R
f(x)

(1−
√
T ′(x))2

2
√
T ′(x)

dx, (4.2)

will be the main tool in our proof of sharp stability.

Before proving Theorem 2, in the following lemma we use an argument from [1] to show that

it suffices to prove that f and g are close.

Lemma 4.1. Suppose that, for f, g, h as in the statement of Theorem 2, normalized so that∫
f =

∫
g = 1, we have that ∫

R
|f(x)− g(x)| dx ≤ Cε1/2,

for some absolute constant C > 0. Then there is an absolute constant C̃ > 0 such that∫
R
|h(x)− f(x)|dx ≤ C̃ε1/2. (4.3)

Proof. We suppose first that f, g are both log-concave. Let then Af := supp(f), Ag := supp(g).

We start by defining the auxiliary function h̃ : R → R+ by h̃(x) = 0 if x ̸∈ 1
2 (Af +Ag) , and by

h̃

(
x+ T (x)

2

)
=
√
f(x)g(T (x))

otherwise. It then follows at once from the definitions that h ≥ h̃ pointwise. Furthermore, note

that (4.1) applies verbatim by replacing h by h̃. Hence,∫
|h(x)− h̃(x)|dx =

∫
R
(h(x)− h̃(x)) dx ≤ ε.
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In order to prove (4.3), we only have to prove that h̃ is ε−close to f. In order to do that, note

that we instantly have ∫
R

(
h̃(x)− g(x)

)
dx ≤ ε.

Thus, let Ã = {x ∈ R : h̃(x) > g(x)}, and B its counter-image under x+T (x)
2 . Note that

Ã ⊂ 1
2 (Af +Ag) . Moreover, we have∫

Ã

(
h̃(x)− g(x)

)
dx =

∫
B

(
h̃

(
x+ T (x)

2

)
− g

(
x+ T (x)

2

))
· 1 + T ′(x)

2
dx

≤
∫
B

(√
f(x)g(T (x))−

√
g(x)g(T (x))

)
· 1 + T ′(x)

2
dx

≤
∫
B
(f(x)− g(x))

√
g(T (x))√
f(x)

· 1 + T ′(x)

2
dx

=

∫
B
(f(x)− g(x))

(
1 +

(1−
√
T ′(x))2

2
√
T ′(x)

)
dx

≤
∫
R
|f(x)− g(x)| dx+

∫
R
f(x)

(1−
√
T ′(x))2

2
√
T ′(x)

dx

≤
∫
R
|f(x)− g(x)| dx+ ε.

Here, we used the change of variables x 7→ x+T (x)
2 , taking Ã to its image under the inverse

of that change-of-variables map in the first passage; then we used the definition of h̃ and the

log-concavity of g in the second line, and from that point on we simply used the previous

considerations and the hypothesis of the lemma.

Now, for the case where h is log-concave, we consider f̃ , g̃ the log-concave hulls of f, g, re-

spectively. Then it follows that, since h is log concave,

h

(
x+ y

2

)
≥
√
f̃(x)g̃(y), ∀x, y ∈ R.

Since
∫
R h ≤ 1 + ε, and since, by definition, we have f̃ ≥ f, g̃ ≥ g pointwise, then∫

R
|f(x)− f̃(x)| dx+

∫
R
|g(x)− g̃(x)|dx ≤ ε.

Upon normalizing (f̃ , g̃) 7→ (f, g) :=

(
f̃∫
R f̃
, g̃∫

R g̃

)
, we have that h, f, g satisfy (1.1) and (1.4). It

follows that ∣∣∣∣∫
R
|f(x)− g(x)|dx−

∫
R
|f(x)− g(x)|dx

∣∣∣∣ ≲ ε. (4.4)

Hence, the conclusion in this case follows from the first case we treated, finishing thus the

proof. □

We can now start with the proof of Theorem 2. We shall first consider the case when f, g are

log-concave, and then the case when h is log-concave.

• Case 1: f, g are log-concave. We begin with the following result.
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Lemma 4.2. Let x1, x2, y1, y2 be defined such that yi = T (xi), i = 1, 2, and∫ x1

−∞
f =

∫ ∞

x2

f = 8ε < 1/6.

Assume that f and g are log-concave. Then, for x ∈ (x1, x2) we have T ′(x) < 16, and for

y ∈ (y1, y2) we have S′(y) < 16.

Proof of Lemma 4.2. We suppose, for the sake of a contradiction, that there is x ∈ (x1, x2)

with T ′(x) ≥ 16. Suppose without loss of generality that
∫∞
x f = ν < 1

2 . This implies, by

Proposition 2.1, that f(x)
16 ≥ g(T (x)). From Proposition 2.5, part (i), we have that f(t) > f(x)

2

for t ∈ (x, x+log(2)ν/f(x)). On the other hand, Proposition 2.5, part (ii) implies that g(T (t)) <

2g(T (x)) for t ∈ (x, x+ log(2)ν/f(x)). Hence, we obtain that

g(T (t)) < 2g(T (x)) ≤ f(x)

8
≤ f(t)

4
=
g(T (t))T ′(t)

4
.

Hence, T ′(t) > 4 for such t, and thus

ε ≥
∫
R

(1−
√
T ′(t))2

2
√
T ′(t)

f(t) dt >
1

4

f(x)

2

log(2)ν

f(x)
=

log(2)

8
ν.

Since x ∈ (x1, x2), we must have ν ≥ 8ε, a contradiction. Thus, T ′(x) < 16, as desired.

The estimate for S′ is analogous. □

Consider then f1 = 1(x1,x2)f, g1 = 1(y1,y2)g. We notice that the transport map T1 between g1
and f1 coincides with T on (x1, x2). Moreover, we have that T ′ is bounded from above and from

below by absolute constants in the interval (x1, x2).

We now have all the ingredients needed for our proof: by Lemma 4.1, we only need to show

that
∫
|f − g| ≲

√
ε. To do that, we only need to prove, in turn, that∫

|f1 − g1| ≲
√
ε,

since f1, g1 are defined by cutting off a tail of size at most Cε of f, g, respectively. In order to do

it, we shall resort to the same overall strategy of proof of Proposition 3.1, but now made even

more precise, thanks to Lemma 4.2.

Let then S be the inverse map of T. Thus, we may write∫
|f1(x)− g1(x)|dx =

∫
|f1(x)− f1(S(x)) · S′(x)| dx

≤
∫

|f1(x)− f1 ◦ S(x)|dx+

∫
|f1(S(x))||S′(x)− 1|dx

=

∫
|f1(x)− f1 ◦ S(x)|dx+

∫
|f1(y)||T ′(y)− 1|dy.

We now claim that ∫
|f1(x)− f1 ◦ S(x)| dx ≤ 2

∫
R
|f1(s)||T ′(s)− 1|ds.
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Indeed, we may write∫
|f1(x)− f1 ◦ S(x)| dx =

∫
{x : S(x)>x}

|f1(x)− f1 ◦ S(x)| dx

+

∫
{x : S(x)<x}

|f1(x)− f1 ◦ S(x)|dx =: I1 + I2. (4.5)

The desired bound will follow by bounding both I1 and I2 by the asserted quantity. Since the

treatment of both terms is the same, we will only deal with the first. We have then that

∫
{x : S(x)>x}

|f1(x)− f1 ◦ S(x)|dx =

∫
{x : S(x)>x}

∣∣∣∣∣
∫ S(x)

x
df1(s)

∣∣∣∣∣ dx
≤
∫
R

(∫
R
1{x : S(x)>s>x}dx

)
|df1|(s)

=

∫
R

(∫
{x : s>x>T (s)}

dx

)
|df1|(s)

≤
∫
R
|T (s)− s| |df1|(s) ≤

∫
R
|f1(s)||T ′(s)− 1|ds.

Here, we have used the fundamental theorem of calculus for f1 in the first equality, Fubini’s

theorem in the passage from the first line to the second, and Proposition 2.2 in the last inequality.

Thus, we obtain that ∫
|f1(x)− g1(x)| dx ≤ 3

∫
R
|f1(s)||T ′(s)− 1| ds.

Since Lemma 4.2 implies that T ′ ≤ 16 in the support of f1, we have from (4.2) and the Cauchy-

Schwarz inequality that∫
f1(s)|1− T ′(s)|ds ≤

(∫
f1(s)|1− T ′(s)|2 ds

)1/2(∫
f1(s)

2 ds

)1/2

≤ 15 ·

(∫
f1(x)

(1−
√
T ′(x))2

2
√
T ′(x)

dx

)1/2

≤ 15ε
1
2 .

Thus, we have from the previous considerations that∫
|f(x)− g(x)|dx ≤ 32ε+

∫
|f1(x)− g1(x)|dx ≤ 32ε+ 45ε1/2.

This, together with Lemma 4.1, concludes our proof of Theorem 2 when f and g are log-concave.

• Case 2: h is log-concave. Consider the log-concave functions f and g defined in the proof

of Lemma 4.1. Applying Case 1 to these functions, we deduce that∫
R
|f(x)− g(x)| dx ≤ Cε1/2.

Combining this bound with (4.4) and Lemma 4.1, we conclude the proof.
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4.2. Proof of Theorem 3 for λ = 1/2. Let now h, f, g : Rn → R be radial functions satisfying

h
(x+y

2

)
≥
√
f(x)g(y) for all x, y ∈ Rn. Suppose, moreover, that∫

Rn

h(x) dx ≤ (1 + ε)

(∫
Rn

f(x) dx

)1/2(∫
Rn

g(x) dx

)1/2

,

and let T : Rn → Rn denote the transport map between the probability measures f(x) dx and

g(x) dx. Since f and g are radial, T has the form

T (x) = T (|x|) · x
|x|
.

Thus, since we have that f(x) = g(T (x)) · det(DT (x)), a straightforward computation shows

that

f(|x|) = g(T (|x|)) · T
′(|x|)T (|x|)n−1

|x|n−1
, ∀x ∈ Rn.

Note that T is then nothing but the transport map between the measures f(r)rn−1 dr and

g(r)rn−1 dr. As those densities are log-concave as long as f and g are log-concave, it follows

that, for x0, y0 ∈ R+, y0 = T (x0), such that∫ ∞

x0

f(r)rn−1 dr =

∫ ∞

y0

g(r)rn−1 dr = c̃nε < 1/6,

we have that T ′(r) ∈ (1/16, 16). Hence, we may suppose this in the upcoming steps of our proof.

Our next step is, once more, to redo the optimal transport proof of the Prékopa–Leindler

inequality: indeed, if we suppose that
∫
f =

∫
g = 1, we have that

1 =

∫
Rn

f(x) dx = cn

∫ ∞

0

√
f(r)g(T (r))T ′(r)T (r)n−1rn−1 dr

≤ cn

∫ ∞

0
h

(
r + T (r)

2

)√
T ′(r)T (r)n−1

rn−1
rn−1 dr

≤
∫ ∞

0
h

(
r + T (r)

2

)(
T (r) + r

2r

)n−1 1 + T ′(r)

2
rn−1 dr =

∫ ∞

0
h(x) dx.

Arguing exactly as in the proof of Theorem 2, we obtain that

ε ≥ cn

∫ ∞

0
h

(
r + T (r)

2

)((
T (r) + r

2r

)n−1 1 + T ′(r)

2
−
√

T ′(r)T (r)n−1

rn−1

)
rn−1 dr

≥ cn

∫ ∞

0

f(r)√
T ′(r)T (r)n−1

rn−1

((
T (r) + r

2r

)n−1 1 + T ′(r)

2
−
√

T ′(r)T (r)n−1

rn−1

)
rn−1 dr.

In order to move on with the proof, we need to use the following claim:

Lemma 4.3. Let a, b ∈ (1/16, 16). There exists an absolute, dimensional constant cn > 0 such

that (
a+ 1

2

)n−1 1 + b

2
−
√
ban−1 ≥ cn

(√
ban−1 − 1

)2
. (4.6)
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Proof. First, note that, if either a or b is not within, say, δ0 of 1 – where δ0 will be a small number,

to be specified later –, then the left-hand side of (4.6) is larger than a fixed constant. Indeed, this

follows directly by the fact that we have
(
a+1
2

)n−1−a
n−1
2 ≥ cn(a−1)2 and b+1

2 −
√
b ≥ cn(

√
b−1)2.

Hence, we may concentrate on the case in which the pair (a, b) belongs to a δ0−neighborhood

of (1, 1), viewed as elements of R2.

In that case, rewrite the left-hand side of (4.6) as

√
ban−1

( 1√
a
+
√
a

2

)n−1( 1√
b
+
√
b

2

)
− 1

 .

Since 1 ∼
√
an−1b for the asserted range, we need only to deal with the expression within the

brackets. Let then F (s, t) =
(
t−1+t

2

)n−1
s−1+s

2 . Then ∂sF (1, 1) = ∂tF (1, 1) = 0. On the other

hand, a direct computation shows that, for δ0 sufficiently small, we have that

∂2t F (s, t), ∂
2
sF (s, t) ≥ cn,

whenever (s, t) belongs to a Cδ0−neighborhood of (1, 1). Since we have that

|∂s∂tF (s, t)| ≲ δ0

for (s, t) in the same neighborhood, we conclude, by Taylor’s theorem with integral remainder,

that for such (s, t), we have

F (s, t)− F (1, 1) ≥ cn
(
(t− 1)2 + (s− 1)2

)
.

On the other hand, it also holds for such pairs (s, t) that(
tn−1s− 1

)2
≲ (t− 1)2 + (s− 1)2.

The lemma then follows directly by applying these observations to s =
√
a, t =

√
b. □

We use Lemma 4.3 with a = T (r)
r and b = T ′(r).We conclude that there exists cn > 0 absolute

dimensional constant such that((
T (r) + r

2r

)n−1 1 + T ′(r)

2
−
√

T ′(r)T (r)n−1

rn−1

)
≥ cn

(√
T ′(r)T (r)n−1

rn−1
− 1

)2

.

Since
√

T ′(r)T (r)n−1

rn−1 ≥ 1
16 , we have that

cnε ≥
∫ ∞

0
f(r)

(√
T ′(r)T (r)n−1

rn−1
− 1

)2

rn−1 dr. (4.7)

We then proceed to estimate the L1 distance between f and g. For S := T −1, we have:∫
Rn

|f(x)− g(x)| dx =

∫ ∞

0

∣∣∣∣f(r)− f(S(r))S(r)
n−1S ′(r)

rn−1

∣∣∣∣ rn−1 dr

≤
∫

|f(r)− f ◦ S(r)| rn−1 dr +

∫
|f(s)||T ′(s)T (s)n−1 − sn−1| ds.
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We then bound the first term again in analogy to the previous section: in the set where S(r) > r,

we have ∫
{S(r)>r}

|f(r)− f ◦ S(r)|rn−1 dr ≤
∫ ∞

0
|f ′(r)||T (r)n − rn| dr

≤
∫ ∞

0
|f(r)||T (r)n−1T ′(r)− rn−1| dr. (4.8)

In the last inequality, we simply used an integration by parts, as f radial and log-concave implies

that f ′ is decreasing when viewed as a function in R+.Moreover, it is evident from the definition

of T that T (0) = 0. The treatment for the set {S(r) < r} is entirely analogous.

We conclude that it suffices to bound the term on the right-hand side of (4.8). On the other

hand, since T ′ ∈ (1/16, 16), T (r)/r ∈ (1/16, 16), we have∫ ∞

0
f(r)|T (r)n−1T ′(r)− rn−1| dr ≤ cn

(∫ ∞

0
f(r)rn−1

∣∣∣∣T (r)n−1T ′(r)

rn−1
− 1

∣∣∣∣2 dr

)1/2

≲n

∫ ∞

0
f(r)

(√
T ′(r)T (r)n−1

rn−1
− 1

)2

rn−1 dr

1/2

≲n ε
1/2.

By using the same methods as in the one-dimensional case, we conclude the proof of Theorem

3.

4.3. Proof of Theorems 2 and 3 for general λ ∈ (0, 1). We now use an argument, originally

by K. Böröczky and A. De, in order to pass from the case λ = 1/2 to general λ ∈ (0, 1) in

Theorems 2 and 3.

First we note that, by an argument similar to that of Lemma 4.1, we may suppose without

loss of generality that all functions involved are log-concave, by possibly passing to log-concave

hulls. Furthermore, by scaling, we may assume that∫
R
f(x) dx =

∫
Rn

g(x) dx = 1.

Consider then, for each t ∈ (0, 1), the log-concave function

ht(z) = sup
z=tx+(1−t)y

f(x)tg(y)1−t. (4.9)

As we see from the result below, this new function also has an additional log-concavity property

in terms of integrals. We refer to [3, Lemma 7.3] for a proof.

Lemma 4.4 (Lemma 7.3 in [3]). Under the hypotheses above, the function t 7→
∫
Rn ht(x) dx is

log-concave in t ∈ [0, 1].

Note then that the function

φ(t) =

∫
Rn

ht(x) dx
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satisfies φ(0) = φ(1) = 1 by the normalization we adopted for f and g, and, by the conditions

on f, g, h, we conclude that

1 ≤
∫
Rn

hλ(x) dx ≤
∫
Rn

h(x) dx ≤ 1 + ε.

Hence, Proposition 2.6 together with Lemma 4.4 yield that

φ

(
1

2

)
=

∫
Rn

h1/2(x) dx ≤ 1 +
ε

τ
. (4.10)

We then divide into two cases:

• Case 1: the case λ ∈ (0, 1) of Theorem 2. From the λ = 1/2 case of Theorem 2, we

conclude from (4.10) that, for some w ∈ R,∫
R
|f(x)− h1/2(x+ w)| dx ≤ C

( ε
τ

)1/2
,∫

R
|g(x)− h1/2(x− w)| dx ≤ C

( ε
τ

)1/2
. (4.11)

Continuing arguing in a way similar to that in Lemma 4.1, we may also conclude that∫
R
|h(x)− h1/2(x)|dx ≤ C

( ε
τ

)1/2
,

as desired, concluding the proof of Theorem 2.

• Case 2: the case λ ∈ (0, 1) case of Theorem 3. We use again (4.10). This, together with

the λ = 1/2 case of Theorem 3 already proved, shows that∫
Rn

|f(x)− h1/2(x)| dx ≤ Cn

( ε
τ

)1/2
,∫

Rn

|g(x)− h1/2(x)| dx ≤ Cn

( ε
τ

)1/2
. (4.12)

We then argue one final time as in Lemma 4.1, which allows us to conclude that∫
Rn

|h(x)− h1/2(x)| dx ≤ Cn

( ε
τ

)1/2
,

finishing the proof of Theorem 3 and concluding this part.

4.4. Counterexample construction. We now adapt the construction from [4, Example 1.8]

in order to show that the assertion of (1.6) is sharp:

Proposition 4.1. There is an absolute constant c ∈ (0, 1) such that the following holds. For

any ε sufficiently small, and any t ∈ (0, 1), there exist log-concave probability densities f, g on

R such that ∫
R

sup
z=tx+(1−t)y

f(x)tg(y)1−t dz < 1 + ε,

while ∫
R
|g(x)− f(x+ x0)|dx ≥ c

( ε
τ

) 1
2

for any x0 ∈ R.
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Proof. We suppose, without loss of generality, that τ = t ∈ (0, 1/2). We fix f(x) = e−πx
2
, and

let ϕ be an odd C2 on R satisfying suppϕ ⊂ [−1, 1] and maxϕ = 1. Note that, since ϕ is odd,∫
R fϕ = 0.

For δ sufficiently small, to be fixed later, we consider g = (1 + δϕ)f, so that
∫
R g = 1. We

note that there exists an absolute constant c > 0 such that∣∣∣∣ ddx [log(1 + δϕ)](x)

∣∣∣∣ = ∣∣∣∣δ · ϕ′

1 + δϕ

∣∣∣∣ ≤ cδ,∣∣∣∣ d2dx2
[log(1 + δϕ)](x)

∣∣∣∣ =
∣∣∣∣∣δ · ϕ′′(1 + δϕ)− δ (ϕ′)2

(1 + δϕ)2

∣∣∣∣∣ ≤ cδ, (4.13)

for any δ ∈
(
0, 12
)
. In particular, Since (log f)′′ = −2π, it follows that g is log-concave for small

enough δ.

Note now that, since g(x) = f(x) = e−πx
2
for |x| ≥ 1, there exists a constant c0 > 0 such that∫

R
|g(x)− f(x+ w)|dx ≥

∫ ∞

1

∣∣∣e−πx2 − e−π(x+w)
2
∣∣∣ dx ≥ c0min{|w|, 1}. (4.14)

On the other hand, we have∫
R
|g(x)− f(x+ w)|dx ≥

∫
R
|g(x)− f(x)| − |f(x)− f(x+ w)|dx ≥ δ

∫
R
f(x)|φ(x)|dx− c|w|.

Hence, combining this last estimate with (4.14), we deduce the existence of a constant c1 > 0

such that ∫
R
|g(x)− f(x+ w)| dx ≥ c1δ ∀w ∈ R. (4.15)

Finally, we estimate
∫
R h for h(z) = supz=tx+(1−t)y f(x)

tg(y)1−t. To this aim, consider the

auxiliary function h̃(z) = f(z)tg(z)1−t. Thanks to Hölder’s inequality, this satisfies
∫
R h̃ ≤ 1.

Since f and g are log-concave and g(x) = f(x) for |x| ≥ 1, for any z ∈ R, there exists a point

yz ∈ R such that h(z) = f
(
z
t −

(1−t)yz
t

)t
g (yz)

1−t. Also, yz = z if |z| ≥ 1, and |yz| ≤ 1 if |z| ≤ 1.

We now observe that, for any z ∈ R, the function

ψz(y) = log

(
f

(
z

t
− (1− t)y

t

)t
g (y)1−t

)
satisfies ψz(z) = log h̃(z), ψz (yz) = log h(z), and ψz has a maximum at yz. Then, recalling

(4.13), we have

0 = ψ′
z (yz) = 2π

1− t

t
(z − yz) + (1− t)[log(1 + δϕ)]′ (yz) ⇒ |z − yz| ≤ c · t · δ.

On the other hand, we have that ∣∣ψ′′
z (y)

∣∣ ≤ C
1− t

t
+ δ,

which implies, through a Taylor expansion argument, that

log
h(z)

h̃(z)
= ψz (yz)− ψz(z) ≤ c

1

t
· (tδ)2 = c · tδ2 ∀z ∈ R,

for some constant c > 0. We then conclude that
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∫
R
h ≤ ectδ

2

∫
R
h̃ ≤ ectδ

2
< 1 + 2ctδ2 for δ sufficiently small. (4.16)

Choosing δ ∼ ε
1
2 , we have that (4.15) and (4.16) imply the claim of the Proposition, as desired.

□

Remark 4.1. It can be proved, just like in the one-dimensional case, that the results in Theorem

3 are optimal: indeed, instead of picking ϕ in the construction of the one-dimensional example

to be odd, take ϕ to be any even function supported in [1/2, 2] for which
∫
R fφ = 0, and let

g(r) = (1+δϕ(r))f(r). Extend then f and g radially to Rn, denoting by Fn and Gn, respectively,

these extensions. Since f and g are log-concave, it follows by a simple computation that Fn and

Gn are also log-concave. By redoing the same computations as in the one-dimensional case, we

may conclude the desired analogue of Proposition 4.1. We omit the details.
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