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Abstract

We study the positivity and regularity of solutions to the fractional porous medium equations
ut + (−∆)sum = 0 in (0,∞)× Ω, for m > 1 and s ∈ (0, 1) and with Dirichlet boundary data u = 0
in (0,∞)× (RN \ Ω), and nonnegative initial condition u(0, ·) = u0 ≥ 0.

Our first result is a quantitative lower bound for solutions which holds for all positive times
t > 0. As a consequence, we find a global Harnack principle stating that for any t > 0 solutions are
comparable to ds/m, where d is the distance to ∂Ω. This is in sharp contrast with the local case
s = 1, where the equation has finite speed of propagation.

After this, we study the regularity of solutions. We prove that solutions are classical in the

interior (C∞ in x and C1,α in t) and establish a sharp C
s/m
x regularity estimate up to the boundary.

Our methods are quite general, and can be applied to wider classes of nonlocal parabolic equations
of the form ut + LF (u) = 0 in Ω, both in bounded or unbounded domains.
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1 Introduction

Our goal is to investigate the regularity properties of nonnegative solutions to nonlinear nonlocal
diffusion equations of degenerate type that can be written in the form

(1.1) ut = −LF (u).

Here L is a linear operator possibly of fractional order, and F is a monotone nondecreasing function,
satisfying some conditions that allow for degeneracies, like F (0) = 0 and F ′(0) = 0. To see (and
understand) the effect of degeneracy, we impose accordingly zero Dirichlet boundary conditions. The
prototype equation is given by the so-called Fractional Porous Medium Equation

(1.2) ut + (−∆)sum = 0 in (0,∞)× Ω,

with Dirichlet conditions u ≡ 0 in (0,∞)× (RN \Ω). Here m > 1 and s ∈ (0, 1), Ω ⊂ RN is a bounded
C1,1 domain, and L = (−∆)s is the Fractional Laplacian, namely

(−∆)sf(x) = cN,sPV

ˆ
RN

f(x)− f(x+ y)

|y|N+2s
dy,
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where cN,s > 0 is an explicit constant whose exact value is not relevant to our purposes. We have
decided to concentrate here in this particular model, but most of our techniques can be extended to
more general equations of the form (1.1) with the operator L given by

(1.3) Lf(x) := PV

ˆ
RN

(
f(x)− f(x+ y)

)
K(x, y) dy

under appropriate conditions on the kernel K and on the inverse L−1 of the operator L. Also, the
boundedness of Ω is not essential as most of our estimates are of local nature. We postpone the
discussion to these more general situations to Section 4, where further details are given, together with
a discussion about the possible extension of our results also to more general nonlinearities F .

Nonlinear nonlocal diffusion models of this type have received a lot of attention in the last years,
especially because of their applications to anomalous diffusions in physics and biology; see [9, 50, 63].
These equations appear also as hydrodynamic limits of interacting particle systems with long-range
dynamics, cf. [42, 43, 44, 45], and also in boundary heat control problems [5, 36]. We refer the interested
reader to [5, 15, 11, 55, 63, 67, 68] for further details about possible applications.

In this paper we are going to prove positivity, global Hölder regularity, and interior higher regularity
results, for a general class of nonnegative weak solutions, called weak dual solutions; this class has been
introduced in [11] and contains various other classes of solutions such as mild (semigroup), weak, weak
energy, or H−s solutions, as discussed in [11, 12, 10]. In Appendix I, we recall the definition of weak
dual solutions and their basic properties, together with the relation with other notions of solutions.

One of the main results of this paper is to show that nonnegative weak dual solutions are indeed
classical in the interior of the domain: we prove that, inside Ω, they are C∞loc in space and C1,α

loc in time.

Furthermore, we study the boundary regularity of solutions and establish a C
s
m
, 1
2m

x,t Hölder estimate up
to the boundary, which is optimal in the x variable.

Let us mention that, while the case s = 1 (corresponding to the classical Porous Medium Equation) has
been extensively studied in the last 30 years by many authors [1, 2, 3, 16, 17, 21, 22, 28, 29, 31, 32, 34, 39],
see also the books [30, 33, 35, 66], not many results are currently known when s ∈ (0, 1). Indeed, to the
best of our knowledge, the only two results available in this setting are the papers of Athanasopoulos
and Caffarelli [5], where the authors prove the global Cα regularity of solutions in space-time, and
the one of Vazquez, dePablo, Quiros and Rodriguez [64], where it is shown that weak solutions of
the Cauchy problem posed on the whole space are classical. We point out that some arguments in
the latter paper crucially exploits the fact that the problem is set on the whole space, as they use a
fractional version of the Aleksandrov reflection principle / moving planes method. Also, the paper of
Athanasopoulos and Caffarelli relies on the so-called “extension property” for the fractional Laplacian,
and does not generalize to general operators as in (1.3). Hence, new ideas and techniques have to be
introduced in our situation.

A crucial issue addressed in this paper is the positivity of solutions, which opens the road to our
regularity results. Our quantitative and precise lower bounds hold for all times whenever s ∈ (0, 1),
and reveal a peculiar property of the nonlocal evolution (0 < s < 1) versus the local one (s = 1):
indeed this shows that solutions have infinite speed of propagation when 0 < s < 1, in sharp contrast
with the local case s = 1. More comments on this important issue will be given below.

Positivity and Harnack type bounds. Under suitable assumptions on the inverse of the linear operator L,
there is a quite complete theory of existence and uniqueness of a quite general class of weak solutions,
as well as a priori estimates, cf. [11, 12, 13]. In those papers the Global Harnack Principle (GHP) has
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been proved to hold after a waiting time t∗ for all s ∈ (0, 1]:

h0
Φ1(x)

1
m

t
1

m−1

≤ u(t, x) ≤ h1
Φ1(x)

1
m

t
1

m−1

, for all t ≥ t∗ and all x ∈ Ω ,

with some explicit positive constants h0, h1. The GHP turns out to imply a localized version of Harnack
inequalities that hold at the same time and for the same balls, and are more similar to the classical
Harnack inequalities:

sup
x∈BR(x0)

u(t, x) ≤ H inf
x∈BR(x0)

u(t, x) , for all t ≥ t∗ .

It is however remarkable the fact that we can take the same time in both members of the Harnack
inequality. Actually, even backward (in time) Harnack inequalities hold true; see Appendix I for more
details. We recall that Fabes, Garofalo, and Salsa [37] showed that backward Harnack inequalities hold
for the case s = m = 1; indeed, such backward inequalities can be true only for the Dirichlet problem on
bounded domains and fail for solutions to the Cauchy problem on the whole space, as counterexamples
show.

We notice that, while the upper bound in the GHP holds for any t > 0, the lower bound (hence
the local version) was only known to hold after a suitable waiting time t∗, that has been quantified in
[11, 12, 13] as follows:

t∗(u0) =
c∗

‖u0‖m−1
L1

Φ1
(Ω)

,

with explicit c∗ > 0 depending only on N, s,m,Ω.

Finite versus infinite speed of propagation. When s = 1 , i.e. when dealing with the classical (local)
PME, this waiting time cannot be avoided, in view of the finite speed of propagation, see [4, 66]. On
the other hand, when s < 1, it was conjectured in [11, 55] that the fractional PME should have infinite
speed of propagation. Here we answer positively to this question: in Theorem 1.1 below, we prove
a quantitative lower bounds for all positive times, which clearly imply infinite speed of propagation.
In the case of the Cauchy problem on RN , the first qualitative positivity statements for all times can
be found in [55] , and in a more quantitative way using lower barriers in Theorem 1.4 of [63]. The
question of finite vs infinite speed of propagation on RN has been also investigated in [19, 20, 61, 62]
for a different model of fractional PME introduced by Caffarelli and Vazquez [19, 20]; an equivalence
among selfsimilar solutions between the two main models of nonlocal porous medium equations has
been established in [60], and this gives an hint about why we shall expect infinite speed of propagation
also for the PME model under investigation.

Regularity. As mentioned above, the quantitative positivity bounds are crucial for us to attack the
issue of regularity of solutions. Indeed, using these bounds we establish first the global Cα regularity
of solutions in space and time, and then we adapt the arguments in [64] to obtain the C∞x regularity

in the interior of the domain. Furthermore, we also establish the optimal C
s/m
x regularity up to the

boundary for solutions u to (1.2), and prove the Hölder regularity in t up to the boundary. Finally,
this boundary regularity estimate in t combined with the regularity in space, yields the interior C1,α

t

regularity.

Plan of the paper. In the following two subsections we state our main results on the positivity and
regularity of solutions. Section 2 contains the proof of the positivity results, namely Theorem 1.1 and
its consequences Theorems 1.2 and 1.3; to justify our argument, proofs are performed first for solutions
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of a suitable approximate problem, and then we pass to the limit in the estimates. The existence and
basic properties of these approximate solutions are collected in Appendix II. Section 3 contains the
proofs of the regularity results, Theorems 1.4, 1.5, and 1.6. Finally, we discuss in Section 4 how the
techniques used in this paper can be extended to solutions of more general nonlocal diffusion equations
of degenerate type, and which kind of results extend to those settings. Appendix I contains a discussion
on the precise functional analytic setting that we use, together with the definition and basic properties
of weak dual solutions.

After the writing of this paper was completed, we learned that, at the very same time and inde-
pendently of us, de Pablo, Quirós and Rodŕıguez proved in [53] the Hölder regularity for solutions to
the Cauchy problem in RN for equation of the form (1.1) with general kernels and nonlinearities, see
Remark 4.1 in Section 4.

1.1 Main results on positivity and Harnack estimates.

Consider the following homogeneous Dirichlet problem

(1.4)


∂tu+ (−∆)sum = 0 for any (t, x) ∈ (0,∞)× Ω
u(t, x) = 0 for any (t, x) ∈ (0,∞)× (RN \ Ω)
u(0, x) = u0(x) for any x ∈ Ω .

Our first main result concerns quantitative lower bounds. Here and in the following, we denote by Φ1

the first eigenfunction for the operator L (see Appendix I), and we use the notation

‖u0‖L1
Φ1

(Ω) :=

ˆ
Ω
u0 Φ1 dx.

We recall here that, from now on, we will always consider m > 1, s ∈ (0, 1) and N > 2s, unless
explicitly stated. It is worth spending a few words about the condition N > 2s. Our approach is based
on estimates valid for weak dual solutions, a class of weak solutions corresponding to a dual problem,
involving the inverse of the fractional Laplacian L−1 = (−∆)−s, which has a kernel given by the Green
function, see Appendix I for further details. Notice that the Green function of the fractional Laplacian
has a singularity |x|−(N−2s) when N > 2s , a logarithmic singularity when N = 2s and stops to be
singular when N < 2s , cf. [25, 48]. The latter two cases appear only in dimension N = 1 and deserve
a different treatment, even if most of our techniques could be successfully adapted.

Theorem 1.1 (Global quantitative positivity) Let m > 1, 0 < s < 1, and N > 2s. Let Ω be a
bounded domain of class C1,1, and let u be a solution to the Dirichlet problem (1.4) corresponding to a
nonnegative initial datum u0 ∈ L1

Φ1
(Ω) . Then the following bound holds true:

(1.5) u(t, x) ≥ κ‖u0‖mL1
Φ1

(Ω) tΦ1(x)
1
m , for all 0 ≤ t ≤ t∗ and all x ∈ Ω ,

where t∗ = t∗(u0) has the form

(1.6) t∗(u0) =
c∗

‖u0‖m−1
L1

Φ1
(Ω)

,

and c∗, κ are positive constants depending only on N, s,m,Ω. As a consequence, solutions to the
Dirichlet problem (1.4) corresponding to nonnegative and nontrivial initial data have infinite speed of
propagation.
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Remark. We stress on the fact that the constants c∗, κ > 0 have an explicit form (see (2.28) for κ
and [11, 12, 13] for c∗).

Combining the result above with the Global Harnack Principle of [11, 12, 13], we can immediately
obtain the following two theorems.

Theorem 1.2 (Global Harnack Principle for all times) Let m > 1, 0 < s < 1, and N > 2s. Let
Ω be a bounded domain of class C1,1, let u be a solution to the Dirichlet problem (1.4) corresponding
to a nonnegative initial datum u0 ∈ L1

Φ1
(Ω), and let t∗ be as in (1.6). Then

(1.7) κ

(
1 ∧ t

t∗

) m
m−1 d(x)

s
m

t
1

m−1

≤ u(t, x) ≤ κ d(x)
s
m

t
1

m−1

, for all t > 0 and all x ∈ Ω ,

where d(x) = dist(x, ∂Ω), and κ, κ > 0 depend only on N, s,m,Ω.

The constants κ, κ > 0 have an explicit form given by (2.28) for κ, and in [11, 13] for κ.

Theorem 1.3 (Local Harnack inequalities for all times) Let m > 1, 0 < s < 1, and N > 2s.
Let Ω be a bounded domain of class C1,1, let u be a solution to the Dirichlet problem (1.4) corresponding
to a nonnegative initial datum u0 ∈ L1

Φ1
(Ω), and let t∗ be as in (1.6). Then, for all balls BR(x0) ⊂⊂ Ω,

(1.8) sup
x∈BR(x0)

u(t, x) ≤ H(
1 ∧ t

t∗

) m
m−1

inf
x∈BR(x0)

u(t, x) , for all t > 0 ,

where H > 0 depends only on N, s,m,Ω, dist(BR(x0), ∂Ω).

1.2 Main results on higher and boundary regularity.

After proving quantitative positivity and Harnack type estimates for arbitrary positive times, we study
the regularity of solutions. We prove first the interior Cα regularity in space and time, which combined
with the results of [64] lead to the interior C∞ regularity in space. Moreover, we also establish the
sharp regularity up to the boundary in the x-variable, namely we show that u(t, ·) ∈ Cs/m(Ω) for all
t > 0. This is stated in the following:

Theorem 1.4 (Hölder regularity up to the boundary) Let m > 1, 0 < s < 1, and N > 2s. Let
Ω be a bounded domain of class C1,1, and let u be a solution to the Dirichlet problem (1.4) corresponding
to a nonnegative initial datum u0 ∈ L1

Φ1
(Ω). Then, for each 0 < t0 < T we have

(1.9) ‖u‖
C
s
m , 1

2m
x,t (Ω×[t0,T ])

≤ C,

where C depends only on N, s,m,Ω, t0, and ‖u0‖L1
Φ1

(Ω).

Notice that the C
s/m
x regularity up to the boundary is optimal. Indeed, by Theorem 1.2 we have that

u ≥ c(u0, t)d
s/m, with c(u0, t) > 0 for all t > 0, and therefore u(t, ·) /∈ C

s
m

+ε
x (Ω) for any ε > 0.

The interior C∞ regularity of the solution in the x-variable is given by the following result.
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Theorem 1.5 (Higher interior regularity in space) Let m > 1, 0 < s < 1, and N > 2s. Let Ω
be a bounded domain of class C1,1, and let u be a solution to the Dirichlet problem (1.4) corresponding
to a nonnegative initial datum u0 ∈ L1

Φ1
(Ω) . Then u ∈ C∞x ((0,∞)× Ω).

More precisely, let k ≥ 1 be any positive integer, and d(x) = dist(x, ∂Ω). Then, for any t ≥ t0 > 0 we
have

(1.10)
∣∣Dk

xu(t, x)
∣∣ ≤ C [d(x)]

s
m
−k,

where C depends only on N, s,m, k,Ω, t0, and ‖u0‖L1
Φ1

(Ω).

Finally, we study the higher interior regularity in time, and we get the following result.

Theorem 1.6 (C1,α interior regularity in time) Let m > 1, 0 < s < 1, and N > 2s. Let Ω be a
bounded domain of class C1,1, and let u be a solution to the Dirichlet problem (1.4) corresponding to a
nonnegative initial datum u0 ∈ L1

Φ1
(Ω).

Then u ∈ C1,α
t ((0,∞)×Ω) for some α > 0 that depends only on s and m. Moreover, for any compact

set K ⊂⊂ Ω, and any 0 < t0 < T , we have

(1.11) ‖u‖
C1,α
t ([t0,T ]×K)

≤ C,

where C depends only on N, s,m,Ω, t0, ‖u0‖L1
Φ1

(Ω), and K.

Remark 1.7 A possible value for the exponent α in the previous theorem is α = min
{

1
2m , 1− s

}
, see

Remark 3.9.

Notice that results in Theorems 1.4, 1.5, and 1.6 imply that solutions to (1.4) are classical for any
nonnegative initial datum u0 ∈ L1

Φ1
(Ω).

One may wonder whether the interior regularity in time can be improved to C∞t . This is a very
delicate problem that remains open, and is closely related to the higher order boundary regularity in t.
Indeed, recall that for nonlocal parabolic equations the interior regularity in the t-variable depends
strongly on the regularity of the solution in all of RN . For example, for solutions to the fractional heat
equation ut + (−∆)su = 0 in (0, 1)×B1, one has estimates of the form

‖u‖
Ck,αx (( 1

2
,1)×B1/2)

≤ C‖u‖L∞((0,1)×RN ),

for all k ≥ 0 and α ∈ (0, 1), which means that solutions are always C∞ in x. However, analogous
estimates in time do not hold for k ≥ 1 and α ∈ (0, 1). Indeed, one can construct a solution to
ut+ (−∆)su = 0 in (0, 1)×B1, which is bounded in all of RN , but which is not C1 in t in (1

2 , 1)×B1/2;
see [23, Section 2.4.1]. Because of this delicate issue, since we only have a global Hölder regularity in
the t-variable (by Theorem 1.4) then we cannot prove more than C1,α regularity in time in the interior
of the domain. We remark that, to our best knowledge, the higher boundary regularity in time is
unknown even in the classical case s = 1.
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2 Proof of the global lower bounds and Harnack inequalities

In [11, 13] the authors prove that after some waiting time t∗ > 0 solutions are positive and satisfy
sharp quantitative lower bounds. More precisely, letting

(2.1) t∗ = t∗(u0) =
c∗

‖u0‖m−1
L1

Φ1
(Ω)

,

then the following global lower bounds holds:

(2.2) u(t, x) ≥ c0
Φ1(x)

1
m

t
1

m−1

, for any t ≥ t∗ and all x ∈ Ω ,

where the positive constants c∗, c0 depend on only on N, s,m,Ω. The above result holds true for any
0 < s ≤ 1. Recall that Φ1 � ds = dist(·, ∂Ω)s, see (5.3).

It was posed in [11] as an open problem to find precise lower bounds for small times, if possible. Here
we solve that open problem.

Infinite vs finite speed of propagation. The purpose of this section is to extend the above lower
bound to all t ∈ (0, t∗). As mentioned in the previous sections, this can be done only when 0 < s < 1,
and it appears in a relevant way the role of the nonlocal operator L.

We show here, in a quantitative way, that when s < 1 the fractional PME has infinite speed of
propagation; this is obtained by the lower bounds of Theorem 1.1, namely

(2.3) u(t, x) ≥ c(u0, t)Φ1(x)
1
m , for any 0 ≤ t ≤ t∗ and all x ∈ Ω .

Notice that, while for t ≥ t∗ the constant in (2.2) does not depend on the initial datum, the constant
appearing in the lower bound above does depend on u0 .

Approximate solutions and their properties. We begin by defining the following class of ap-
proximate solutions, that we will use throughout the proof. Let us fix δ > 0 and consider a “larger”
approximate problem:

(2.4)


∂tuδ = −Lumδ for any (t, x) ∈ (0,∞)× Ω
uδ(t, x) = δ for any (t, x) ∈ (0,∞)× (RN \ Ω)
uδ(0, x) = u0(x) + δ for any x ∈ Ω .

We summarize here below the basic properties of uδ , which follows by adaptation of the theory in
[11, 12, 13, 55, 64] that we recall in Appendix II for reader’s convenience. We prefer to list only the
properties of the approximate solutions that we need, in order not to break the flow of exposition.

Approximate solutions uδ exists, are unique and bounded for all (t, x) ∈ (0,∞)× Ω , when 0 ≤ u0 ∈
L1

Φ1
(Ω) . Also, they are uniformly positive: for any t ≥ 0,

(2.5) uδ(t, x) ≥ δ > 0 for a.e. x ∈ Ω.

This implies that the equation for uδ is never degenerate and solutions are smooth in the interior (say,
C∞ in space and C1 in time). A possible way to prove this fact is by following the very same argument
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that we use in the next sections to prove the smoothness of u, cf. Section 6.3 in Appendix II for some
more details.

Also, by a comparison principle, for all δ > 0 the approximate solution uδ are ordered and they lie
above u: more precisely, for all δ > δ′ > 0 and t ≥ 0,

(2.6) uδ(t, x) ≥ uδ′(t, x) for x ∈ Ω

and

(2.7) uδ(t, x) ≥ u(t, x) for a.e. x ∈ Ω .

Finally, as the following lemma shows, they converge in L1
Φ1

(Ω) to u, as δ → 0.

Lemma 2.1 Assume 0 ≤ u0 ∈ L1
Φ1

(Ω). Then, for any t ≥ 0, we have

‖uδ(t)− u(t)‖L1
Φ1

(Ω) ≤ ‖uδ(0)− u0‖L1
Φ1

(Ω) = δ ‖Φ1‖L1(Ω) .

Proof. We provide a formal proof of this Lemma for reader’s convenience. The proof can be made
rigorous by taking smooth approximations of the test function Φ1(x)χ[0,t](τ) and then passing to the
limit, as it has been done, for instance, in the proof of [11, Proposition 4.2] or [12, Proposition 5.1].

Since Φ1 is the first eigenfunction for L we know that LΦ1 = λ1Φ1 for some λ1 > 0 (see Appendix I).
Hence, using the equation for both u and uδ and an integration by parts, we get
ˆ

Ω
(uδ(t, x)− u(t, x))Φ1(x) dx−

ˆ
Ω

(uδ(0, x)− u0(x))Φ1(x) dx =

ˆ t

0

ˆ
Ω

Φ1∂t(uδ − u) dx dt

= −
ˆ t

0

ˆ
Ω

Φ1 L(umδ − um) dx dt = −
ˆ t

0

ˆ
Ω
LΦ1 (umδ − um) dx dt

= −λ1

ˆ t

0

ˆ
Ω

Φ1 (umδ − um) dx dt ≤ 0

where at the last step we used (2.7). Recalling (2.7), that uδ(0, ·)− u0(·) = δ, and that
´

Ω Φ1 = 1, the
result follows.

Notice that, as a consequence of (2.6) and Lemma 2.1, we deduce that uδ converge pointwise to u at
almost every point: more precisely, for all t ≥ 0,

(2.8) u(t, x) = lim
δ→0+

uδ(t, x) ≥ 0 for a.e. x ∈ Ω .

Next we prove a lower bound for LpΦ1
(Ω) norms, a crucial ingredient of the proof of Theorem 1.1, and

that may have its own interest.

Lemma 2.2 Let u be a solution to problem (1.4) corresponding to the initial datum u0 ∈ L1
Φ1

(Ω).
Then the following lower bound holds true for any t ∈ [0, t∗] and p ≥ 1:

(2.9) c2

(ˆ
Ω
u0(x)Φ1(x) dx

)p
≤
ˆ

Ω
up(t, x)Φ1(x) dx ≤

ˆ
Ω
upδ(t, x)Φ1(x) dx.

Here t∗ = c∗‖u0‖−(m−1)

L1
Φ1

(Ω)
is as in (2.1), and c2, c∗ > 0 are positive constants that depend only on

N, s,m, p,Ω. Notice that c∗ has explicit form given in [11, 12, 13], while the form of c2 is given in the
proof.
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Proof. Let us first recall the estimates of [11, Corollary 6.2] or [12, Proposition 8.1]. For any time t0
satisfying

(2.10) 0 ≤ t0 ≤ c1‖u0‖−(m−1)

L1
Φ1

(Ω)
=
c1

c∗
t∗

we have that

(2.11)
1

2

ˆ
Ω
u0(x) Φ1(x) dx ≤

ˆ
Ω
u(t0, x) Φ1(x) dx ,

where c1 > 0 is a positive constant that depends only on N, s,m,Ω, and has explicit form given in
[11, 12, 13]. Therefore, by Hölder inequality, the proof of (2.9) is complete for all t ∈ [0, t0] provided t0
satisfies (2.10).

We now prove the inequality for t ∈ [t0, t∗]. Recalling the monotonicity estimates of Benilan and

Crandall [7], namely that t
1

m−1u(t, x) ≥ t
1

m−1

0 u(t0, x) for almost every x ∈ Ω , we conclude that

1

2

ˆ
Ω
u0(x) Φ1(x) dx ≤

ˆ
Ω
u(t0, x) Φ1(x) dx ≤

(
t

t0

) 1
m−1
ˆ

Ω
u(t, x) Φ1(x) dx

≤
(
t

t0

) 1
m−1

‖Φ1‖
1− 1

p

L1(Ω)

(ˆ
Ω
up(t, x) Φ1(x) dx

) 1
p

≤
(
t∗
t0

) 1
m−1

‖Φ1‖
1− 1

p

L1(Ω)

(ˆ
Ω
up(t, x) Φ1(x) dx

) 1
p

=

(
2c∗
c1

) 1
m−1

‖Φ1‖
1− 1

p

L1(Ω)

(ˆ
Ω
up(t, x) Φ1(x) dx

) 1
p

:=
c

1
p

2

2

(ˆ
Ω
up(t, x) Φ1(x) dx

) 1
p

(2.12)

where in the last step we have taken t0 = c1t∗/(2c∗) , which is compatible with the restriction (2.10).
This concludes the proof once we recall that uδ ≥ u .

2.1 Proof of Theorem 1.1

We shall prove the lower bound (1.5) first for the approximate solutions uδ , i.e., solutions to problem
(2.4) keeping δ > 0 fixed, and then we let δ → 0+ . We split the argument into several steps.

• Step 1. Reduction to an approximate problem. Let us fix δ > 0 and consider the approximate
solutions uδ. Recall that uδ ≥ δ > 0 (see (2.5)), that uδ ≥ u (see (2.7)), and that u coincides with
their monotone limit in the strong L1

Φ1
(Ω) topology (cf. Lemma 2.1). We will keep δ > 0 fixed until

the very last step.

• Step 2. Positivity for the approximate problem: Lower barriers. We will show first that our positivity
result holds for approximate solutions uδ, with a lower bound independent of δ. Assume that 0 ≤ t ≤ t∗,
and define the function (lower barrier)

(2.13) ψ(t, x) = κ0 tΦ1(x)
1
m ,

9



where κ0 > 0 is a positive parameter that will be fixed later (as a function of the initial data u0). In
order to determine κ0, we use the lower bounds of [11, 12, 13], see also (2.2): for all t ≥ t∗ we have

u(t, x) ≥ c0Φ1(x)
1
m t−

1
m−1 , where t∗ = t∗(u0) > 0 is given in (2.1). Therefore , since we already know

that uδ ≥ u , we have

(2.14) ψ(t∗, x) = κ0 t∗Φ1(x)
1
m < c0

Φ1(x)
1
m

t
1

m−1

≤ u(t∗, x) ≤ uδ(t∗, x)

whenever

(2.15) 0 < κ0 <
c0

t
m
m−1
∗

= c0c
− m
m−1
∗ ‖u0‖mL1

Φ1
(Ω) = κ0 .

Claim. We want to prove that ψ(t, x) < uδ(t, x) for all 0 ≤ t ≤ t∗ , all x ∈ Ω, for a sufficiently small κ0

independent of δ that satisfies also the condition (2.15) .

We will prove the claim by contradiction. Since ψ(0) = 0 < δ ≤ uδ(0), Assume that the inequality
ψ < uδ is false in [0, t∗] × Ω and let (tδ, xδ) be the first contact point. Notice that 0 < tδ < t∗
(since ψ(0, x) = 0 < δ ≤ uδ(0, x) and by (2.14)). Also, (tδ, xδ) cannot belong to (0, t∗) × ∂Ω since
uδ(t, x) = δ > 0 = ψ(t, x) there, thus (tδ, xδ) ∈ (0, t∗)×Ω. Now, since (tδ, xδ) is the first contact point,
we necessarily have that

(2.16) uδ(tδ, xδ) = ψ(tδ, xδ) and uδ(t, x) ≥ ψ(t, x) ∀t ∈ [0, tδ] , ∀x ∈ Ω ,

and, as a consequence,

(2.17) ∂tuδ(tδ, xδ) ≤ ∂tψ(tδ, xδ) = κ0 Φ1(x)
1
m .

Thus, using (2.17) and
L(ψm)(t, x) = κ0 tL(Φ1)(x) = κ0 t λ1 Φ1(x) ,

we first establish an upper bound for −L(umδ − ψm)(tδ, xδ) as follows:

(2.18) −L(umδ − ψm)(tδ, xδ) = ∂tu(tδ, xδ) + L(ψm)(tδ, xδ) ≤ κ0 Φ1(xδ)
1
m (1 + λ1 tδ).

Next, we want to prove lower bounds for −L(umδ − ψm)(tδ, xδ) (this is the crucial point where the
nonlocality of the operator enters). To this end we recall that

(2.19) L(f)(x) =

ˆ
RN

(
f(x)− f(y)

)
K(x, y) dy and inf

x,y∈Ω
K(x, y) ≥ κΩ > 0 .

Hence, using (2.16) and (2.19), we get

−L(umδ − ψm)(tδ, xδ) = −
ˆ
RN

[(umδ (tδ, xδ)− umδ (tδ, y))− (ψm(tδ, xδ)− ψm(tδ, y))]K(x, y) dy

=

ˆ
Ω

[umδ (tδ, y)− ψm(tδ, y)]K(x, y) dy

≥ κΩ

ˆ
Ω

[umδ (tδ, y)− ψm(tδ, y)] dy

= κΩ

ˆ
Ω
umδ (tδ, y) dy − κΩ

ˆ
Ω
ψm(tδ, y) dy.

(2.20)
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Combining the upper and lower bounds (2.18) and (2.20) we obtain

κΩ

ˆ
Ω
umδ (tδ, y) dy ≤ κ0 Φ1(xδ)

1
m (1 + λ1 tδ) + κΩ

ˆ
Ω
ψm(tδ, y) dy

= κ0 Φ1(xδ)
1
m (1 + λ1 tδ) + κΩ κ

m
0 t

m
δ ‖Φ1‖L1(Ω)

= κ0

[
Φ1(xδ)

1
m (1 + λ1 tδ) + κΩ κ

m−1
0 tmδ ‖Φ1‖L1(Ω)

]
= κ0

[
‖Φ1‖

1
m

L∞(Ω)(1 + λ1 t∗) + κΩ κ
m−1
0 tm∗ ‖Φ1‖L1(Ω)

]
:= κΩK(u0)κ0 .

(2.21)

As a consequence, for tδ ∈ (0, t∗) we have

(2.22)

ˆ
Ω
umδ (tδ, y) dy ≤ K(u0)κ0 , for all 0 < κ0 < κ0 .

To get a contradiction we need to use the lower bounds of Lemma 2.2: choosing p = m > 1 we get
that, for all 0 ≤ tδ ≤ t∗,

(2.23) c2

(ˆ
Ω
u0(x)Φ1(x) dx

)m
≤
ˆ

Ω
umδ (tδ, x)Φ1(x) dx ≤ ‖Φ1‖L∞(Ω)

ˆ
Ω
umδ (tδ, x) dx

where c2 is an explicit positive constant that depends only on N, s,m,Ω.

Combining now (2.22) and (2.23) we obtain

c2

‖Φ1‖L∞(Ω)

(ˆ
Ω
u0(x)Φ1(x) dx

)m
≤ K(u0)κ0 , for all 0 < κ0 < κ0 .

hence a contradiction (choosing κ0 small enough) whenever u0 6≡ 0 a.e. in Ω , independently of δ > 0.
More precisely we can choose κ0 to be

(2.24) κ0 < min

{
c2K(u0)

‖Φ1‖L∞
,
c0

c
m
m−1
∗

}
‖u0‖mL1

Φ1

,

which proves the claim.

Before going on, we would like to have a more explicit expression for κ0. To this end, using that
κm−1

0 tm∗ = cm−1
0 and that ‖Φ1‖L1(Ω) ≤ ‖Φ1‖L∞(Ω)|Ω|, we get

c2K(u0)

‖Φ1‖L∞
=

c2

κΩ

[
‖Φ1‖

1
m
−1

L∞

(
1 + λ1

c∗

‖u0‖m−1
L1

Φ1

)
+
κΩ c

m−1
0

|Ω|
‖Φ1‖L1

‖Φ1‖L∞

]

≤ c2

κΩ

[
λ1 c∗

‖u0‖m−1
L1

Φ1

+
κΩ c

m−1
0

|Ω|
+ ‖Φ1‖

1
m
−1

L∞

]
.

(2.25)

Now we split two cases, depending wether ‖u0‖L1
Φ1
≥ 1 or not. In the case ‖u0‖L1

Φ1
≥ 1 we notice that

K(u0) ≤ 1

κΩ

[
λ1 c∗ +

κΩ c
m−1
0

|Ω|
+ ‖Φ1‖

1
m
−1

L∞

]
:= KΩ ,
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and we can choose

κ0 <
1

KΩ

c2

‖Φ1‖L∞(Ω)
‖u0‖mL1

Φ1

.

On the other hand, when ‖u0‖L1
Φ1
< 1 , it follows by (2.25) that

c2K(u0)

‖Φ1‖L∞
≥ c2

κΩ

[
λ1 c∗ +

κΩ c
m−1
0

|Ω|
+ ‖Φ1‖

1
m
−1

L∞

]
=

c2KΩ

‖Φ1‖L∞(Ω)
,

hence, we can choose

κ0 < min

{
c2KΩ

‖Φ1‖L∞(Ω)
,
c0

c
m
m−1
∗

}
‖u0‖mL1

Φ1

.

Summing up, we have proved the claim, in the following precise form: for any δ > 0

(2.26) uδ(t, x) ≥ ψ(t, x) = κ0 tΦ1(x)
1
m for all 0 < t ≤ t∗ and x ∈ Ω ,

whenever

(2.27) 0 < κ0 < min

{
c2KΩ

‖Φ1‖L∞(Ω)
,

1

KΩ

c2

‖Φ1‖L∞(Ω)
,
c0

c
m
m−1
∗

}
‖u0‖mL1

Φ1

.

• Step 3. Taking the limit δ → 0+: Quantitative positivity for solutions. Using (2.8) and letting
δ → 0+ in (2.26), we obtain that (1.5) follows with

(2.28) κ :=
κ0

‖u0‖mL1
Φ1

= min

{
c2KΩ

‖Φ1‖L∞(Ω)
,

1

KΩ

c2

‖Φ1‖L∞(Ω)
,
c0

c
m
m−1
∗

}
.

2.2 Proofs of Theorems 1.2 and 1.3

Proof of Theorem 1.2. When 0 ≤ t ≤ t∗ we have that inequality (1.5) can be rewritten as follows

(2.29) u(t, x) ≥ κ‖u0‖mL1
Φ1

(Ω) tΦ1(x)
1
m = κ‖u0‖mL1

Φ1
(Ω) t

m
m−1

Φ1(x)
1
m

t
1

m−1

=
κ

c
m
m−1
∗

t
m
m−1

t
m
m−1
∗

Φ1(x)
1
m

t
1

m−1

,

where t∗ = c∗‖u0‖−(m−1)

L1
Φ1

(Ω)
. We combine this lower bound with the one valid for large times, namely

inequality (5.7) that holds for any t ≥ t∗ and all x ∈ Ω , and reads

(2.30) u(t, x) ≥ H0
Φ1(x)

1
m

t
1

m−1

.

Joining the two lower bounds (2.29) and (2.30) finally gives

u(t, x) ≥ min

{
H0,

κ

c
m
m−1
∗

t
m
m−1

t
m
m−1
∗

}
Φ1(x)

1
m

t
1

m−1

:= κ

(
1 ∧ t

t∗

) m
m−1 Φ1(x)

1
m

t
1

m−1

,

which is exactly (1.7).
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Proof of Theorem 1.3. We recall the Harnack inequality for the first eigenfunction

(2.31) sup
x∈BR(x0)

Φ1(x) ≤ HR,x0 inf
x∈BR(x0)

Φ1(x) , HR,x0 = HN,s,Ω dist(BR(x0), ∂Ω)−s,

which follows from (5.3). We then use the Global Harnack Principle, namely inequality (1.7) for all
t > 0, as follows:

sup
x∈BR(x0)

u(t, x) ≤ κ

t
1

m−1

sup
x∈BR(x0)

Φ1(x)
1
m ≤

κHR,x0

t
1

m−1

inf
x∈BR(x0)

Φ1(x)
1
m ≤

κHR,x0κ(
1 ∧ t

t∗

) m
m−1

inf
x∈BR(x0)

u(t, x) ,

where in the second inequality we have used (2.31). This is exactly (1.8) with H = κHR,x0κ .

3 Proofs of the regularity results

About the class of solutions considered. In this section we will work with weak solutions, a class of
solution contained in the class of weak dual solutions to which the results of Theorems 1.1 , 1.2 and
1.3 apply. On the other hand, arguing by approximation, all results that we shall prove for weak
solutions will also be valid for weak dual solution. To clarify this point, we recall that in [11] the
authors construct weak dual solutions starting from weak solutions when the operator L is the so-
called Spectral Fractional Laplacian (which is different from the operators that we use here), but the
methods can be adapted to this setting as well , cf. also [10]. More precisely, as explained in [11], weak
dual solutions have to be interpreted as a class of limit solutions which satisfy a quasi L1

Φ1
contraction,

cf. [12] ; as a consequence, the minimal weak dual solution obtained by approximation from below
turns out to be unique as an L1

Φ1
function. In this section we will prove our regularity results for

weak solutions. To conclude that the same regularity results for weak dual solutions, it suffices to
approximate a weak dual solution from below with a sequence of weak solutions to which the regularity
results apply, and notice that all the constants in the regularity estimates are stable under this limit
process. Indeed, these estimates only depend on the supremum of u, and the latter is controlled by
the L1

Φ1
-norm of the initial datum in view of the smoothing effects, cf. [11, 12]. Hence the constants

are stable under this approximation process and the regularity results valid for weak solutions can be
extended to weak dual solutions.

In this section we prove first Theorem 1.4 and then Theorem 1.5. The main step towards Theorem
1.4 is the following regularity estimate.

Proposition 3.1 Let w be a weak solution of

(3.1) wt + (−∆)swm = 0 for (t, x) ∈ (0, 1)×B1.

Assume that for all t ∈ (0, 1) we have

(3.2) |w(t, x)| ≤ C0

(
1 + |x|s/m

)
for x ∈ RN , and w(t, x) ≥ δ > 0 for x ∈ B3 ,

for some constants C0 and δ > 0. Then, for each 0 < β ≤ s we have the estimate

‖w‖
C
β,β/2s
x,t (( 1

2
,1)×B1/2)

≤ C,

for some constant C that depends only on N , s, m, β, δ, and C0.
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We will split the proof of Proposition 3.1 into some steps. First, we show the following.

Lemma 3.2 Let w be a weak solution of (3.1) satisfying (3.2). Then, for some small ᾱ > 0 we have
the estimate

‖w‖
C
ᾱ,ᾱ/2s
x,t (( 1

2
,1)×B1/2)

≤ C,

for some C that depends only on N , s, m, δ, and C0.

As we will see, the previous Lemma is a consequence of the following Hölder estimate by Felsinger-
Kassmann [38].

Theorem 3.3 ([38]) Let L be an integro-differential operator defined by

(3.3) Lw(t, x) = PV

ˆ
RN

(
w(t, x)− w(t, y)

) a(t, x, y)

|x− y|n+2s
dy,

where a satisfies a(t, x, y) = a(t, y, x) and Λ−1 ≤ a(t, x, y) ≤ Λ for some Λ ≥ 1. Let w ∈ L∞((0, 1)×RN )
be any weak solution of

wt + Lw = f for (t, x) ∈ (0, 1)×B1,

with f ∈ L∞((0, 1)×B1). Then, for some ᾱ > 0 small we have the estimate

‖w‖
C
ᾱ,ᾱ/2s
x,t (( 1

2
,1)×B1/2)

≤ C
(
‖f‖L∞((0,1)×B1) + ‖w‖L∞((0,1)×RN )

)
.

The constants C and ᾱ depend only on N , s, and Λ.

Remark 3.4 In [38] the Hölder regularity is stated for simplicity for the case f = 0. Still, the weak
Harnack inequality is established for the general case f ∈ L∞, and thus the proof of the Hölder regularity
with a nonzero right hand side f (as stated above) is just a minor modification of the one in [38].

Using this estimate, we can now prove Lemma 3.2.

Proof of Lemma 3.2. First, let ρ ∈ C∞c (B4) be a smooth cutoff function with ρ ≡ 1 in B3, and set
v := wρ. Then, we have

(−∆)svm = (−∆)swm − (−∆)s
(
(1− ρm)wm

)
.

Moreover, since (1− ρm)wm ≡ 0 in B3,

−(−∆)s
(
(1− ρm)wm

)
(x) = cn,s

ˆ
RN

(1− ρm(y))wm(t, y)
dy

|x− y|n+2s
for x ∈ B3

and this term belongs to C∞(B2), thus we have

vt + (−∆)svm = g(t, x) ∈ C∞(B2).

Consider now η ∈ C∞c (B2) a radial smooth cutoff function such that η ≡ 1 in B1. Then, for x ∈ B1

and t ∈ (0, 1) we may write

(3.4) vm(t, x)− vm(t, y) =
(
v(t, x)− v(t, y)

)
a(t, x, y) + h(t, x, y),
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with

a(t, x, y) =
vm(t, x)− vm(t, y)

v(t, x)− v(t, y)
η(x− y) +

(
1− η(x− y)

)
and

h(t, x, y) =
(
vm(t, x)− vm(t, y)− v(t, x) + v(t, y)

)(
1− η(x− y)

)
.

Notice that

(3.5) a(t, x, y) = mη(x− y)

ˆ 1

0

[
v(t, x) + λ

(
(v(t, y)− v(t, x)

)]m−1
dλ+

(
1− η(x− y)

)
,

hence, using (3.2), we find that

Λ−1 ≤ a(t, x, y) ≤ Λ for x ∈ B1

for some constant Λ ≥ 1 depending on δ and C0. Thus, using (3.4), we see that v is a weak solution of

vt + Lv = g + f in (0, 1)×B1,

with L as in (3.3), g as above, and

f(t, x) = cn,s

ˆ
RN

h(t, x, y)
dy

|x− y|n+2s
.

Moreover, using that v is bounded and v ≥ δ > 0 in B3, we also find that

(3.6) |h(t, x, y)| ≤ C for x ∈ B1, y ∈ RN , and h ≡ 0 for |x− y| ≤ 1.

This yields ‖f‖L∞((0,1)×B1) ≤ C, and therefore, by Theorem 3.3,

‖v‖
C
ᾱ,ᾱ/2s
x,t ((1/2,1)×B1/2)

≤ C

for some constants ᾱ > 0 and C that depend only on n, s, m, δ, and C0. Since v = w in (0, 1) × B3,
the same estimate holds for w, and thus the Lemma is proved.

Once we know that the solution u is strictly positive and Hölder continuous in a ball, one may apply
the arguments of [64] to obtain higher regularity of u. Indeed, the results of [64] are for global solutions
in RN , but all the proofs therein have a local nature – this is in fact explicitly stated in [64, Section
7]. Thanks to this, we may use the same arguments to obtain higher regularity of solutions u ∈ Cα
satisfying 0 < δ ≤ u ≤ C0 in a ball: more precisely, we have the following.

Lemma 3.5 Let w be a weak solution of (3.1) satisfying (3.2). Assume in addition that w ∈ Cγ,γ/2sx,t ((0, 2)×
B4) for some γ ∈ [γ0, s]. Then, for some small ε > 0 we have the estimate

‖w‖
C
γ+ε,(γ+ε)/2s
x,t ((1,2)×B2)

≤ C.

Here C depends only on N , s, m, δ, C0, ‖w‖
C
γ,γ/2s
x,t ((0,2)×B4)

, and ε only on γ0, s, m.
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Proof of Lemma 3.5. As in [64] we note that, given (x0, t0) ∈ (1, 2) × B2, after the time rescaling
t 7→ t

mwm−1(x0,t0)
we have that w solves the equation

wt + (−∆)sw = (−∆)sf,

where

f(x, t) := w(x, t)− wm(x, t)

mwm−1(x0, t0)
.

Then, denoting Y = (x, t), Y0 = (x0, t0), and |Y |s = (|x|2 + |t|1/s)1/2, since w ∈ Cγ,γ/2sx,t ((0, 2)×B4), it
follows by [64, Equation (4.1)] that

|f(Y1)− f(Y2)| ≤ C|Y1 − Y2|γs max
{
|Y1 − Y0|ε, |Y2 − Y0|ε

}
for all Y1 and Y2 in (0, 1)×B4.

Now, we define F = fη, where η ∈ C∞c (B4) is a cutoff function such that η ≡ 1 in B3, and consider
the unique solution W to

Wt + (−∆)sW = (−∆)sF in (0,∞)× RN ,

with W = 0 for t = 0. Then, by the results in [64, Section 4], we have that

|W (Y0 + Y ) +W (Y0 − Y )− 2W (Y0)| ≤ C|Y |γ+ε
s

for all Y such that Y + Y0, Y − Y0 ∈ (1, 2)×B2.

On the other hand, we notice that v = w −W satisfies

vt + (−∆)sv = (−∆)s(f − F ) in (0, 2)×B3,

and f −F ≡ 0 in (0, 2)×B3. Thus, the right hand side (−∆)s(f −F ) is of class C∞ inside (0, 2)×B3,
and by parabolic regularity for the fractional heat equation (see for example [46] and [24]) we deduce
that v ∈ C∞,1x,t ((1, 2) × B2) (however, as mentioned in the introduction, we cannot deduce from this
that v is of class C∞ in t!). Recalling that w = v +W , this yields

|w(Y0 + Y ) + w(Y0 − Y )− 2w(Y0)| ≤ C|Y |γ+ε
s

for some ε > 0.

Finally, since this can be done for all (x0, t0) ∈ (1, 2)×B2, we find

‖w‖
C
γ+ε,(γ+ε)/2s
x,t ((1,2)×B1)

≤ C,

and thus the lemma is proved.

We can now prove Proposition 3.1.

Proof of Proposition 3.1. First, by Lemma 3.2 we have that

‖w‖
C
ᾱ,ᾱ/2s
x,t ((1/2,1)×B1/2)

≤ C

for some ᾱ > 0. Then, applying Lemma 3.5 we find

‖w‖
C
ᾱ+ε,(ᾱ+ε)/2s
x,t ((3/4,1)×B1/4)

≤ C
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for some fixed ε > 0. Iterating Lemma 3.5 finitely many time, we find

‖w‖
C
β,β/2s
x,t ((1−2q ,1)×B1/2q )

≤ C,

for some integer q ≥ 2. By a standard covering argument this yields

‖w‖
C
β,β/2s
x,t ((1/2,1)×B1/2)

≤ C,

thus the Proposition is proved.

We now show Theorem 1.4.

Proof of Theorem 1.4. Let us fix a ball Br(x0) such that 2r = dist(x, ∂Ω), and define

ur(t, x) = r−s/m u
(
t0 + rs(1+ 1

m
)t, x0 + rx

)
.

Then, it follows by Theorem 1.2 that

0 < δ ≤ ur(t, x) ≤ C0,

for all t ∈ [0, 1] and x ∈ B1, with constants δ > 0 and C0 independent of r and x0. Furthermore, again
by Theorem 1.2 we have

ur(t, x) ≤ Cr−s/md(x0 + rx)s/m

for all x ∈ RN and all t ≥ t0, so that we get

ur(t, x) ≤ Cr−s/mdist(x0 + rx, ∂Ω)s/m ≤ C
(
1 + |x|s/m

)
for all x ∈ RN , t ≥ t0. Noticing that

∂tur + (−∆)sumr = 0 in (0, 1)×B1,

we see that ur satisfies the hypotheses of Proposition 3.1, and thus for any β ≤ s there exists a constant
C such that

‖ur‖Cβ,β/2sx,t ((1/2,1)×B1/2)
≤ C.

Rescaling back to u, we find

[u]
C
β,β/2s
x,t

((
t0+ 1

2
rs(1+ 1

m ),t0+rs(1+ 1
m )

)
×Br/2

) ≤ Crs/m−β.
In particular, setting β = s/m, we find that, for all such ball Br(x0) ⊂ B2r(x0) ⊂ Ω,

[u]
C
s/m,1/2m
x,t

((
t0+ 1

2
rs(1+ 1

m ),t0+rs(1+ 1
m )

)
×Br/2

) ≤ C
for some constant C independent of r and x0. This means that (see for example [58])

‖u‖
C
s/m,1/2m
x,t ([t0,T ]×Ω)

≤ C,

and thus the Theorem is proved.

In order to show Theorem 1.5 we will need the following.
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Proposition 3.6 Let w be a weak solution of (3.1) satisfying (3.2). Then, for each β > 0 we have the
estimate

‖w‖
Cβx ((1/2,1)×B1/2)

≤ C,

for some constant C that depends only on N , s, m, β, δ, and C0.

To prove this result, we first show the following lemma.

Lemma 3.7 Let w be any weak solution of (3.1) satisfying (3.2). Assume in addition that w ∈
Cγx ((0, 2)×B4) for some γ ∈ [γ0, 1] with γ0 > 0. Then, for some small ε > 0 we have the estimate

‖w‖Cγ+ε
x ((1,2)×B2) ≤ C.

Here C depends only on γ0, N , s, m, δ, C0, ‖w‖Cγx ((0,2)×B4), and ε depends only on γ0, s, m.

Proof of Lemma 3.7. As in the proof of Lemma 3.5, given (x0, t0) ∈ (1, 2) × B2, after the time
rescaling t 7→ t

mwm−1(x0,t0)
we have that w solves the equation

wt + (−∆)sw = (−∆)sf,

where

f(t, x) := w(t, x)− wm(t, x)

mwm−1(t0, x0)
,

and that
|f(t0, x1)− f(t0, x2)| ≤ C|x1 − x2|γ max

{
|x1 − x0|ε, |x2 − x0|ε

}
for all (t0, x1) and (t0, x2) in (0, 1)×B4.

Now, again following the argument in the proof of Lemma 3.5, we define F = fη, where η ∈ C∞c (B4)
is such that η ≡ 1 in B3, and we consider the unique solution W to

Wt + (−∆)sW = (−∆)sF in (0,∞)× RN ,

with W = 0 for t = 0. Then, by the results of [64] (see the proofs [64, Sections 4 and 5, and Proposition
6.1]) we have that

|W (t0, x0 + x) +W (t0, x0 − x)− 2W (t0, x0)| ≤ C|x|γ+ε

for all x such that x0 ± x ∈ B2.

On the other hand, we have that v = w −W satisfies

vt + (−∆)sv = (−∆)s(f − F ) in (0, 2)×B3,

and f − F ≡ 0 in (0, 2) × B3. Thus, the right hand side (−∆)s(f − F ) belongs to C∞x , and thus
v ∈ C∞x ((1, 2)×B2). Recalling that w = v +W , this yields

|w(t0, x0 + x) + w(t0, x0 − x)− 2w(t0, x0)| ≤ C|x|γ+ε

for some ε > 0.
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Finally, since this argument can be done at all points (t0, x0) ∈ (1, 2)×B2, we find

‖w‖Cγ+ε
x ((1,2)×B1) ≤ C,

and thus the lemma is proved.

Proof of Proposition 3.6. Exactly as in the proof of Proposition 3.6, using Lemma 3.7 in place of
Lemma 3.5, we find

‖w‖C1+ε
x ((1/2,1)×B1/2) ≤ C.

Then the higher regularity of w follows by considering the equation for the derivatives Dxw, exactly
as in [64, Theorems 6.1 and 6.2].

We can now prove Theorem 1.5.

Proof of Theorem 1.5. As in the proof of Theorem 1.4, by Proposition 3.6 we have

[u]
Cβx

((
t0+ 1

2
rs(1+ 1

m ),t0+rs(1+ 1
m )

)
×Br/2(x0)

) ≤ Crs/m−β.
Hence, setting β = k and r = d(x0) = dist(x0, ∂Ω), we find that∣∣Dk

xu(t, x0)
∣∣ ≤ C[d(x0)]

s
m
−k

for all x0 ∈ Ω and all t ≥ t0.

Remark 3.8 Once we know that u ∈ Cα, an alternative way to show the higher regularity of u (without
using the results of [64]) would be the following: If u is Cα in a ball (0, 1) × B4, then we can define
v = uρ as in Lemma 3.2, and note that v solves vt + (−∆)svm = g ∈ C∞(B2). Then, with the same
construction as in (3.4)-(3.5), we get that v solves vt +Lv = g+ f in (0, 1)×B1, with f and g smooth
in B1/2. Now, the Cα regularity of u and (3.5) imply that the coefficients a(t, x, y) are Cα in x and y.
Thus, a parabolic Schauder-type estimate (like the one in [24]) should yield that v is in fact C2s+α in
a smaller ball. Iterating this procedure (now with α′ = 2s+α) one would obtain the C∞ regularity of u
in the x-variable. We note that such a Schauder estimate has been recently established in [24] for s > 1

2
(the results in [24] hold for fully nonlinear equations and thus only for α ∈ (0, ᾱ), with ᾱ > 0 small);
see also [46] for the case of kernels a(x, y, t) which are C2 in y, and [6] for the elliptic case. Although
we believe that the estimates of [24] could be extended to linear equations with s ≤ 1

2 and to all α > 0,
we have preferred to use the results of [64].

Finally, we show Proposition 1.6.

Proof of Proposition 1.6. Let x ∈ K, and let t, s ∈ [t0, T ]. Using the equation ut = −(−∆)sum,
we have the following:

ut(t, x) = cn,s

ˆ
RN

um(t, x+ y)− um(t, x)

|y|n+2s
dy

= cn,s

ˆ
Br

um(t, x+ y)− um(t, x)

|y|n+2s
dy + cn,s

ˆ
RN\Br

um(t, x+ y)− um(t, x)

|y|n+2s
dy,

where r ∈ (0, r0) is a small number to be chosen later, and r0 > 0 is a fixed number satisfying
K ′ := K +Br0 ⊂⊂ Ω.
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By Theorem 1.5, we know that ‖u‖C2
x(t0,T ]×K′) ≤ C. Hence, since m > 1,∣∣∣∣cn,s ˆ

Br

um(t, x+ y)− um(t, x)

|y|n+2s
dy

∣∣∣∣ ≤ C ˆ
Br

|y|2

|y|n+2s
dy ≤ Cr2−2s.

Therefore,

|ut(t, x)− ut(s, x)| ≤ Cr2−2s + C

ˆ
RN\Br

um(t, x+ y)− um(s, x+ y)− um(t, x) + um(s, x)

|y|n+2s
dy.

Now, by Theorem 1.4 we have that u ∈ Cγt (RN × [t0, T ]), with γ = 1
2m , which yields

|ut(t, x)− ut(s, x)| ≤ Cr2−2s + C

ˆ
RN\Br

|s− t|γ

|y|n+2s
dy ≤ Cr2−2s + |s− t|γr−2s.

Finally, setting r = min{|s− t|γ/2, r0}, we find

|ut(t, x)− ut(s, x)| ≤ C|s− t|α,

with α = γ(1− s), and the Proposition is proved.

Remark 3.9 A slightly improved version of the previous argument allows one to obtain the same result
with α = min

{
1

2m , 1− s
}

. For this, one has to use in addition the interior Lipschitz regularity of u
in t (which follows immediately from the smoothness in x), and split the integrals of the previous proof
into

´
Br

,
´
BR\Br , and

´
RN\BR , with R > r chosen appropriately. We leave the details to the interested

reader.

4 The case of more general domains, operators and nonlinearities

In this Section we discuss briefly how our method can be extended to more general settings. In this
paper, we have preferred to stick to the prototype equation both for ease of exposition and to focus on
the main ideas.

4.1 The case of unbounded domains.

This case includes the case of the whole Euclidean space RN . The extension to this case is possible
by noticing that solutions uR(t, x) to the Cauchy-Dirichlet problem on a ball BR(x0) ⊂ Ω (any smaller
bounded C1,1 subdomain B ⊂ Ω would work) are indeed sub-solutions to the problem on the bigger
domain Ω, hence the instantaneous positivity result of Theorem 1.1 can be extended to the bigger
domains through a simple comparison argument. In particular, the infinite speed of propagation is
valid in general domains Ω ⊆ RN (bounded or unbounded) and with no regularity assumption on ∂Ω.
When the (possibly unbounded) domain Ω has a C1,1 boundary, more precise estimates can be obtained
in terms of the distance to the boundary, as in Theorem 1.2.

As a consequence of the comments above, the C∞x interior regularity hold true for all domains. When

the domain has C1,1 boundary, then the C
s/m
x regularity up to the boundary follows exactly as in

Theorem 1.4. Notice that the results in Propositions 3.1 and 3.6 are local estimates, in the sense that
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only require the equation to be satisfied in a ball, and the function u to be bounded in RN . This
means that both results can be applied directly to any bounded solution u (actually, using smoothing
effects, one can consider even more singular initial data), even when the domain Ω is not bounded or
not regular.

4.2 More general kernels

We can consider a family of nonlocal operators with more general kernels than the one of the fractional
Laplacian, as suggested in formula (1.3) ,

(4.1) Lf(x) := PV

ˆ
RN

(
f(x)− f(y)

)
K(x, y) dy .

The typical assumption on the kernels is K(x, y) = K(y, x) together with

(4.2)
λ

|x− y|n+2s
≤ K(x, y) ≤ Λ

|x− y|n+2s
,

being λ,Λ positive constants. In literature this type of operators are sometimes called “rough kernels”.

In order our positivity result to be true, we do not need any extra assumption on the kernel, and the
proof works for any kernel of the form (4.2). When u and the kernels (4.2) are regular enough, then
the proof is essentially the same. In order to justify rigorously the argument for a general operator
(4.1), one should use the weak formulation of the equation. If we want the sharp two-sided estimate
from Theorem 1.2, then for the upper bound one needs to ensure the validity of suitable Green function
estimates on bounded domains, namely

(4.3) G(x, y) � 1

|x− y|N−2s

(
d(x)s

|x− y|s
∧ 1

)(
d(y)s

|x− y|s
∧ 1

)
.

This estimate is known to hold for the fractional Laplacian in bounded C1,α domains [47], but do not
hold for general kernels (4.2). Still, for general operators with kernels (4.2), one can obtain an L∞

bound for the solution, which combined with our lower bound would imply that the solution is bounded
between two positive constants in any compact subset K ⊂⊂ Ω. This, combined with our regularity
arguments, would yield the C0,α interior regularity of solutions.

Results for more general kernels. We summarize the results for the case of more general kernels,
in the case when Ω is a bounded domain. The case of Ω unbounded is also possible as explained in the
previous section.

• Positivity and infinite speed of propagation. For general kernels as in (4.2), we have infinite speed
of propagation for all 0 < s < 1. The sharp two sided bound from Theorem 1.2 holds whenever the
Green function estimate (4.3) is true.

• Hölder regularity. For general kernels as in (4.2) we have an interior space-time Hölder regularity

estimate, but not up to the boundary. When (4.3) holds, then we obtain the sharp C
s/m
x regularity

at the boundary, exactly as in Theorem 1.4.

• Higher regularity. To prove the higher regularity of solutions we have used the results of [64], which
are true only for (−∆)s. Still, when the kernels are regular in x and y, our methods work provided
one can use parabolic Schauder estimates; see Remark 3.8. In case s > 1/2, these Schauder estimates
follow from the results of [24].
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Remark 4.1 After the writing of this paper was completed, we learned that, at the very same time and
independently of us, de Pablo, Quiros, and Rodriguez proved in [53] the Hölder regularity for solutions
to the Cauchy problem in the whole Euclidean space RN for the the equation ut = −LF (u) , when L
is an operator with rough kernels (as the first example above) and F is a general nonlinearity. Their
result is based on a nonlocal version of the De Giorgi method, and generalizes in many aspects the
previous regularity results of [5, 55, 64]. As explained above, our method could be adapted to cover the
case of rough kernels on the whole space, as in [53] , and in the case of the Cauchy-Dirichlet problem
on domains.

4.3 More general nonlinearities

We can allow more general nonlinearities than the pure power case F (u) = |u|m−1u with m > 1.
Indeed, following the general setup given in [12] , we can allow for continuous and non-decreasing
functions F : R→ R, with the normalization F (0) = 0, satisfying the condition

(N1) F ∈ C1(R \ {0}), F/F ′ ∈ Lip(R), and there exist µ0, µ1 ∈ (0, 1) such that

1− µ1 ≤
(
F

F ′

)′
≤ 1− µ0 ,

where F/F ′ is understood to vanish if F (r) = F ′(r) = 0 or r = 0 .

The main example is F (u) = |u|m−1u, with m > 1 (in which case µ1 = µ0 = (m − 1)/m) , and a
simple variant is the combination of two powers, so that one of them gives the behavior near u = 0,
the other one the behavior near u =∞. A quite complete theory of existence, uniqueness, and a priori
estimates, including the GHP for large times, for weak dual solutions to the Cauchy-Dirichlet problem
for the equation ut = −LF (u) under certain assumptions on the kernels has been given in [12, 13],
see also Appendix 5 for some more details. The key point of assumption (N1) is that it guarantees
monotonicity in time estimates, namely the function t 7→ t1/µ0F (u(t, x)) is non-decreasing for almost
all x ∈ Ω , as it has been proven by Crandall and Pierre in [27].

Results for more general nonlinearities. We summarize the results for the case of more general
nonlinearities, in the case when Ω is a bounded domain. The case of Ω unbounded could also treated
as explained above.

• Positivity and infinite speed of propagation. A minor modification of proof of Theorem 1.1 allows
one to prove the positivity result for small times also in this case; we can also obtain Global and
local Harnack inequalities in the spirit of Theorems 1.2 and 1.3 (in a slighlty modified form) by
combining the results of this paper with the ones of [13]. In particular, we still have infinite speed of
propagation.

• Cαx,t regularity. As a consequence, the Cα regularity results hold both in bounded and unbounded
domains and also for operators with rough kernels, generalizing the recent results of [53] and the
previous results of [5] and [64].

• Higher regularity. Finally, when L = (−∆)s, the higher regularity results of Theorems 1.5 and 1.6
hold for general nonlinearities F under the running assumptions both in bounded and unbounded
domains; when L is a Levy operator with rough kernels, higher regularity shall follow by Schauder
estimates, as already commented in the previous section.
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4.4 The classical case s = 1

The classical case has been intensively studied since the 1980’s, by many authors [1, 2, 3, 16, 17, 21,
22, 28, 29, 31, 32, 34, 39], see also the books [30, 33, 35, 66], as already mentioned in the introduction.
We refer to [66, Chapter 19] for an exposition about the regularity results for the PME.

We first recall that the positivity result for small times is not valid for s = 1, since when s = 1 there
is finite speed of propagation. In any case, after the waiting time t∗, the GHP of Theorem 1.2 holds
true, cf. [11, 13] and as a consequence the regularity results of Theorems 1.4, 1.5 and 1.6 hold also in
the limit case s = 1.

Since the equation is local, it follows by parabolic regularity that, for t ≥ t∗, the solution is C∞ in
space-time in the interior of Ω. However, to our best knowledge, even in this local case higher order
boundary regularity is not known.

5 Appendix I. Weak dual solutions and their basic properties

The fractional Laplacian operator that we are considering in this paper is defined through the singular
integral representation in the whole space

(5.1) (−∆)sg(x) = cN,s P.V.

ˆ
RN

g(x)− g(z)

|x− z|N+2s
dz,

where cN,s > 0 is a normalization constant. Since we study the homogeneous Dirichlet problem, we
“restrict” the operator to functions that are zero outside a bounded domain Ω of class C1,1. It is worth
mentioning that in [11, 12, 13, 10] this operator has been called restricted fractional Laplacian, RFL
for short, in order to distinguish it from other possible (non-equivalent) definitions of the Dirichlet
fractional Laplacian on domains. In this case, the initial and boundary conditions associated to the
fractional diffusion equation ut + (−∆)sum = 0 are

(5.2)

{
u(t, x) = 0 in (0,∞)× RN \ Ω ,
u(0, ·) = u0 in Ω .

We refer to [10] for a careful construction of the RFL in the framework of fractional Sobolev spaces.
The operators (−∆)s, s ∈ (0, 1), are infinitesimal generators of stable and radially symmetric Lévy
processes [51, 8]. These stochastic processes play an important role in Probability, and have been used
in the last years to model prices in Finance [59, 26], or anomalous diffusions in Physics [52, 49], Biology
and Ecology [41, 56], among others.

So defined, L = (−∆)s is a self-adjoint operator on L2(Ω) , with a discrete spectrum: we denote
by λs,j > 0, j = 1, 2, . . . its eigenvalues written in increasing order and repeated according to their
multiplicity, and denote by {φs,j}j the corresponding set of eigenfunctions, normalized in L2(Ω). The
corresponding eigenfunctions are known to be only Hölder continuous up to the boundary cf. [58, 40].
We will denote by Φ1 the first positive eigenfunction, and we recall that

(5.3) Φ1(x) � dist(x,RN \ Ω)s;

see [58].
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The inverse of L = (−∆)s in Ω, L−1 : L1(Ω)→ L1(Ω), can be defined by means of the Green function
of L as follows

L−1f(x) :=

ˆ
Ω
G(x, y)f(y) dy

Moreover, we know by the results of [25, 48] that, when N > 2s,

(5.4) G(x, y) � 1

|x− y|N−2s

(
dist(x, ∂Ω)

|x− y|
∧ 1

)s(dist(y, ∂Ω)

|x− y|
∧ 1

)s
.

The above facts allow one to use the theory of existence and uniqueness and the estimates developed
in [11, 12, 13, 10]. For the convenience of the reader, we now briefly rescall them, referring to those
papers for further details and generalizations.

As shown in [11, 12, 13, 10], the results in this section hold both for more general nonlinearities
F other than |u|m−1u , and for more general operators L. However, in order to avoid unnecessary
confusion, we restrict ourselves to the case of nonnegative solutions and to the power case, hence here
F (u) = |u|m−1u = um. We finally recall that s ∈ (0, 1], N > 2s, and m > 1.

Definition 5.1 A function u is called a weak dual solution to the Dirichlet Problem for the equation
ut = −Lum in QT = (0, T )× Ω if:

• u ∈ C((0, T ) : L1
Φ1

(Ω)) , um ∈ L1
(
(0, T ) : L1

Φ1
(Ω)
)
;

• The identity

(5.5)

ˆ T

0

ˆ
Ω
L−1(u)

∂ψ

∂t
dx dt−

ˆ T

0

ˆ
Ω
um ψ dx dt = 0.

holds for every test function ψ such that ψ/Φ1 ∈ C1
c ((0, T ) : L∞(Ω)) .

We are interested in solving the Cauchy-Dirichlet problem, consisting of the equation ut = −Lum with
homogeneous Dirichlet conditions plus given initial data.

Definition 5.2 A weak dual solution to the Cauchy-Dirichlet problem is a weak dual solution to the
Dirichlet problem for the equation ut = −Lum satisfying u ∈ C([0, T ) : L1

Φ1
(Ω)) and u(0, x) = u0 ∈

L1
Φ1

(Ω).

This kind of solution has been first introduced in [11, 12]. Roughly speaking, we are considering the
weak solution to the “dual equation” ∂tU = −um , where U = L−1u , posed on the bounded domain
Ω with homogeneous Dirichlet conditions. The advantage of considering the dual problem is that the
boundary conditions are implicitly contained in L−1.

Theorem 5.3 (Existence and Uniqueness of weak dual solutions [11, 12]) For every nonneg-
ative u0 ∈ L1

Φ1
(Ω) there exists a unique minimal weak dual solution to the Cauchy-Dirichlet problem

for the equation ut = −Lum. Such a solution is obtained as the monotone limit of the semigroup (mild)
solutions that exist and are unique. We call it the minimal solution. The minimal weak dual solution
is continuous in the weighted space u ∈ C([0,∞) : L1

Φ1
(Ω)), and the standard comparison result holds.
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Remarks. (i) The construction of the minimal weak dual solution is realized by approximation of the
initial datum u0 ∈ L1

Φ1
(Ω) from below, in terms of a sequence u0,n ∈ L1. This sequence generates a

sequence of unique mild (semigroup) solutions as it is shown in [27]. We refer to [12] for further details
and for the proof of the fact that mild solutions are indeed weak dual solutions.

(ii) A large class of solutions fall into this class of solutions: weak, mild, strong, H∗, see [11, 12, 10].
Weak dual solutions satisfy a quite complete set of a priori estimates, namely absolute upper bounds
(sharp up to the boundary), smoothing effects (instantaneous and even backward in time), positivity
estimates (with sharp boundary behaviour). Such bounds combine to yield the following sharp global
Harnack-type estimates.

Theorem 5.4 (Global Harnack Principle [11, 13]) There exist constants H0, H1, c∗ > 0 such that
setting,

(5.6) t∗ =
c∗(´

Ω u0Φ1 dx
)m−1 ,

the following inequality holds for all t ≥ t∗ and all x ∈ Ω:

(5.7) H0
Φ1(x)

1
m

t
1

m−1

≤ u(t, x) ≤ H1
Φ1(x)

1
m

t
1

m−1

We recall that the upper bound in formula (5.7) holds true for all times t > 0, while the lower bound
only holds for t ≥ t∗. The first main result of the present paper is devoted to prove an analogous lower
bound for small times; this problem was left open in [11, 13].

As a corollary of the above estimates we also have local forms of Harnack inequalitites:

Corollary 5.5 (Local Harnack Inequalities of Backward Type [11, 13]) Under the assumptions
of Theorem 5.6, there exist constants H2, L0 > 0 such that the following inequality holds for all t ≥ t∗
and all BR(x0) ∈ Ω:

(5.8) sup
x∈BR(x0)

u(t, x) ≤ H2 inf
x∈BR(x0)

u(t+ h, x) for all 0 ≤ h ≤ t∗ .

Remark. All the above constants H2, H1, H0, c∗ > 0 depend only on N,m, s, and Ω , and have an
explicit form given in [11, 12, 13].

6 Appendix II. Approximate solutions

Let us fix δ > 0. To prove our lower bounds in Section 2, we considered the “larger” approximate
problem:

(6.1)


∂tuδ = −Lumδ for any (t, x) ∈ (0,∞)× Ω
uδ(t, x) = δ for any (t, x) ∈ (0,∞)× (RN \ Ω)
uδ(0, x) = u0(x) + δ for any x ∈ Ω .

Letting now uδ = vδ + δ, we see that vδ solves

(6.2)


∂tvδ = −L [(vδ + δ)m − δm] for any (t, x) ∈ (0,∞)× Ω
vδ(t, x) = 0 for any (t, x) ∈ (0,∞)× (RN \ Ω)
vδ(0, x) = u0(x) for any x ∈ Ω .
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which is a Dirichlet problem with a nonlinearity Fδ(v) = (v + δ)m − δm , which is neither singular
nor degenerate at v = 0, since Fδ(0) = 0 and F ′δ(0) = mδm−1 > 0. Then, the theory developed in
[10, 11, 12, 13] allows one to show that vδ enjoys a number of properties and estimates that we collect
in this Appendix for reader’s convenience.

6.1 Existence and Uniqueness

The definition of solution that we use for the approximate Dirichlet problem (6.2) is the same as
in Definition 5.2. The approximate solutions vδ will always be the minimal weak dual solution of
the Cauchy-Dirichlet problem (6.2). Let us state an existence result, which follows by the results
of [10] applied to the present case. The fractional Sobolev spaces will be denoted by H∗, where

H∗ = H−s(Ω) = (Hs
0)∗ for any s 6= 1/2 and H∗ = (H

1/2
00 )∗ when s = 1/2.

Theorem 6.1 (Existence and uniqueness of approximate solutions) For every 0 ≤ u0 ∈ L1
Φ1

(Ω)
there exists a unique global weak dual solution vδ of Problem (6.2). In addition the solution map
St : u0 7→ vδ(t) defines a semigroup of (non-strict) contractions in H∗(Ω), i. e.,

(6.3) ‖vδ(t)− v̄δ(t)‖H∗(Ω) ≤ ‖vδ(0)− v̄δ(0)‖H∗(Ω),

which turns out to be also compact in H∗(Ω).

Remark. An analogous existence and uniqueness result can be stated for uδ = vδ + δ.

Proof. As mentioned above, existence and uniqueness of weak dual solutions for the approximate
problem (6.2) follows by the results of [10]. More precisely, in [10, Theorem 2.2] the authors prove
existence and uniqueness for a different class of solutions from the one we consider here: the so-called
H∗-solutions. Porous media-type equations are shown to generate a nonlinear semigroup of contraction
in H∗, and existence and uniqueness of strong H∗-solutions are established , for any u0 ∈ H∗. This is
not enough for our purpose here, as we want to prove existence and uniqueness of weak dual solutions
with 0 ≤ u0 ∈ L1

Φ1
, which is a different class of solutions.

Recall that nonnegative functions of H∗ belong to L1
Φ1

. Indeed, by Cauchy-Schwartz inequality,

(6.4) ‖f‖L1
Φ1

(Ω) =

ˆ
Ω
fΦ1 dx =

ˆ
Ω
L−

1
2 fL

1
2 Φ1 dx ≤ ‖f‖H∗‖Φ1‖H ≤ λ1‖f‖H∗ .

Viceversa, if 0 ≤ f ∈ L1
Φ1

and f/Φ1 ∈ L∞ , then f ∈ H∗:

(6.5) ‖f‖H∗ =

ˆ
Ω
fL−1f dx ≤

∥∥∥∥ fΦ1

∥∥∥∥
L∞(Ω)

ˆ
Ω

Φ1L−1u = λ−1
1

∥∥∥∥ fΦ1

∥∥∥∥
L∞(Ω)

‖f‖L1
Φ1

(Ω) .

Notice that if f is compactly supported in Ω , we always have f/Φ1 ∈ L∞, since Φ1 � dist(·, ∂Ω)s.

Thanks to these observation, we can approximate from below 0 ≤ u0 ∈ L1
Φ1

by a sequence of nonneg-
ative compactly supported functions 0 ≤ u0,n ∈ C∞c ⊂ H∗ ∩ L1

Φ1
, with u0,n → u0 in the strong L1

Φ1

topology. Let un(t) be the corresponding unique H∗ solutions, also belonging to H∗ ∩ L1
Φ1

by (6.4).
Next, we recall [10, Lemma 5.3] which shows that nonnegative H∗-solutions are weak dual solutions.
The comparison principle holds for H∗ solutions, hence we have that, for any fixed t > 0, the monotone
sequence 0 ≤ un(t) ≤ un+1(t) converges pointwise to u(t) ≥ 0, defined as the limit of the monotone
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sequence un(t, x) as n → ∞. The solution u constructed in this way is called minimal weak dual
solution in [11, 12] (the only difference in the construction is the class of approximating solutions, here
we use H∗ instead of mild solutions). A standard limiting process shows that also u is a weak dual
solution, the key point being that u− un ≥ 0, which implies

‖u(t)− un(t)‖L1
Φ1

(Ω) ≤ ‖u0 − u0,n‖L1
Φ1

(Ω)

cf. Lemma 2.1 for a proof. Finally, uniqueness of the minimal weak dual solution u can be proven
exactly as in [12, Theorem 4.5].

6.2 Comparison results involving approximate solutions

We prove now some comparison results implying (2.5), (2.6), and (2.7). Recall that these properties
are crucial in the proof of the lower bounds of Theorem 1.1. We will prove them in the two following
lemmata.

Lemma 6.2 Let δ > 0, let vδ be a solution of (6.2), and let u be a weak dual solution, both corre-
sponding to the same initial datum u0 ≥ 0. Then (2.7) holds.

Proof. Notice that the statement is equivalent to showing that vδ(t, x) + δ ≥ u(t, x).

The formal proof is as follows: let H be the Heaviside function, and set (u)+ := max{u, 0}. Then,
since

L [um − (vδ + δ)m + δm] = L [um − (vδ + δ)m]

and
H(u− δ − vδ) = H [um − (vδ + δ)m] ,

for all 0 ≤ t0 ≤ t we have

ˆ t

t0

ˆ
Ω
∂t(u− δ − vδ)+ dxdτ = −

ˆ t

t0

ˆ
Ω
H(u− δ − vδ)L [um − (vδ + δ)m + δm] dxdτ

= −
ˆ t

t0

ˆ
Ω
H [um − (vδ + δ)m]L [um − (vδ + δ)m] dxdτ ≤ 0,

(6.6)

where last inequality follows by the accretivity of L and the fact that H is monotone nondecreasing.
More precisely, recall here the Stroock-Varopoulos inequality, stating that for all smooth increasing
functions φ : R→ R one has

(6.7)

ˆ
Ω
φ(f(x))Lf(x) dx ≥

ˆ
Ω

∣∣∣L 1
2 η(f(x))

∣∣∣2 dx ≥ 0,

where η : R → R is such that (η′)2 = φ′. By a simple approximation argument, we can take φ = H,
which proves the last inequality in (6.6).

For the convenience of the reader, we recall that the Stroock-Varopoulos follows by the following
simple argument: first of all we observe that, for all a, b ≥ 0,

(a− b)(φ(a)− φ(b)) ≥ (η(a)− η(b))2 , where (η′)2 = φ′ .
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Then, thanks to this inequality and using the fact that L can be represented by a symmetric nonnegative
kernel K(x, y), we get

ˆ
Ω
φ(f(x))Lf(x) dx =

ˆ
Ω

ˆ
RN

φ(f(x)) [f(x)− f(y)]K(x, y) dy dx

=
1

2

ˆ
Ω

ˆ
RN

[φ(f(x))− φ(f(y))] [f(x)− f(y)]K(x, y) dy dx

≥ 1

2

ˆ
Ω

ˆ
RN

[η(f(x))− η(f(y))]2 K(x, y) dy dx ≥ 0.

One then obtains the Stroock-Varopoulos inequality (6.7) once one observes that the last term of the
above inequality can also be rewritten as

1

2

ˆ
Ω

ˆ
RN

[η(f(x))−η(f(y))]2 K(x, y) dy dx =

ˆ
RN

η(f)Lη(f) dx =

ˆ
RN

∣∣∣L 1
2 η(f)

∣∣∣2 dx ≥
ˆ

Ω

∣∣∣L 1
2 η(f)

∣∣∣2 dx .

This argument shows that the L1 norm of (u−δ−vδ)+ is decreasing in time, hence it must be identically
zero as it vanishes for t = 0.

Although this proof is formal, it can be made rigorous by taking a smooth approximation of the
function (·)+ and working with weak energy solutions (instead of weak dual solutions). We refer to [11]
for more details. Also, we mention that another proof can be obtained by using the extension problem
for the fractional Laplacian, as it has been done in [55].

This same argument can be used to show also the validity of (2.6). We finally prove a general
comparison principle that, as an immediately consequence, yields (2.5).

Lemma 6.3 (Comparison for approximate solutions) Let δ > 0 and let vδ, wδ be two solutions
of (6.2). Then for all t ≥ t0 ≥ 0 we have

(6.8)

ˆ
Ω

(vδ(t, x)− wδ(t, x))+ dx ≤
ˆ

Ω
(vδ(t0, x)− wδ(t0, x))+ dx .

As a consequence, if wδ(0) ≤ vδ(0) then wδ ≤ vδ in (0,∞)× Ω.

Thanks to this result, if u0 ≥ 0 then vδ ≥ 0 , that is uδ ≥ δ .

Proof. The proof is an adaptation from the proof for the case s = 1, see e.g. [66], or also [55] where the
same result is proved for solutions to the Cauchy problem in the case δ = 0. Therefore we just sketch
the proof for convenience of the reader.

Let H be the Heaviside function and let (u)+ := max{u, 0}. Then, since H(vδ(t, x) − wδ(t, x)) =
H [(vδ + δ)m − (wδ + δ)m)] and using (6.7) with f = (vδ + δ)m − (wδ + δ)m, we get

ˆ t

t0

ˆ
Ω
∂t(vδ(t, x)− wδ(t, x))+ dxdτ = −

ˆ t

t0

ˆ
Ω
H(vδ(t, x)− wδ(t, x))L [(vδ + δ)m − (wδ + δ)m] dxdτ

= −
ˆ t

t0

ˆ
Ω
H [(vδ + δ)m − (wδ + δ)m]L [(vδ + δ)m − (wδ + δ)m] dxdτ ≤ 0.

As before, the proof can be made rigorous by means of smooth approximation of H and (·)+ , and an
approximation of weak dual solutions by weak energy solutions.
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6.3 Boundedness and regularity

A small modification of the proof of [12, Theorem 2.2] or [11, Theorem 5.1] allows us to prove absolute
upper bounds for the approximate solutions uδ. Indeed, by the Benilan-Crandall estimates [7], the
following inequality holds in the distributional sense:

(6.9) ∂tuδ(t, x) ≥ − uδ(t, x)

(m− 1)t

As a consequence, the function t 7→ t
1

m−1uδ(t, ·) is monotone non decreasing for t > 0. We then transfer
the monotonicity of uδ to vδ = uδ − δ to obtain the following:

Proposition 6.4 (Absolute upper estimate for approximate solutions) Let vδ be an approxi-
mate solution to the Cauchy-Dirichlet problem (6.2). Then, there exists a constant K1 > 0 such that
the following estimates hold true

‖vδ(t)‖L∞(Ω) ≤ K1 t
− 1
m−1 + δ , for all t > 0 .

The constant K1 depends only on N,m, s and Ω, and has an explicit form given in [11, 12].

Regularity for uδ. Once we know that vδ are nonnegative and bounded, we can see that uδ is strictly
positive and bounded: more precisely, for almost all (t, x) ∈ (0,∞)× Ω we have

δ ≤ uδ(t, x) ≤ K1 t
− 1
m−1 + 2δ

Therefore, we can apply to the approximate solutions uδ the same arguments of the proofs of Theorems
1.4, 1.5, and 1.6, to deduce the same regularity results for uδ; the approximate solution uδ turns out to
be globally Hölder continuous in space-time. Moreover, they are classical solution in the interior. This
completely justifies all the computations in the proofs involving approximate solutions.

Acknowledgments. M.B. has been partially funded by Project MTM2011-24696 and MTM2014-
52240-P (Spain). A.F. is supported by NSF Grants DMS-1262411 and DMS-1361122. M.B. would like
to thank the Mathematics Department of Texas University at Austin for its kind hospitality, where
part of this work has been done.

References

[1] D. G. Aronson, Regularity propeties of flows through porous media. SIAM J. Appl. Math. 17 (1969), 461-467.

[2] D. G. Aronson, Regularity properties of flows through porous media: A counterexample. SIAM J. Appl.
Math. 19 (1970) 299–307.

[3] D.G. Aronson, L.A. Caffarelli, J.L. Vázquez, Interfaces with a corner-point in one-dimensional porous
medium flow, Comm. Pure Appl. Math. 38 (1985), 375–404.

[4] D. G. Aronson, L. A. Peletier. Large time behaviour of solutions of the porous medium equation in bounded
domains, J. Differential Equations 39 (1981), 378–412.

29



[5] I. Athanasopoulos, L. A. Caffarelli, Continuity of the temperature in boundary heat control problems. Adv.
Math. 224 (2010), 293–315.

[6] B. Barrios, A. Figalli, E. Valdinoci, Bootstrap regularity for integro-differential operators, and its application
to nonlocal minimal surfaces. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 13 (2014), no. 3, 609–639.

[7] P. Bénilan, M. G. Crandall. Regularizing effects of homogeneous evolution equations, Contributions to
Analysis and Geometry (suppl. to Amer. J. Math.), Johns Hopkins Univ. Press, Baltimore, Md., 1981.
23-39.
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