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Abstract

In this paper we improve the regularity in time of the gradient of the pressure field
arising in Brenier’s variational weak solutions [8] to incompressible Euler equations. This
improvement is necessary to obtain that the pressure field is not only a measure, but a
function in L2 _((0,7); BVioc(D)). In turn, this is a fundamental ingredient in the analysis

loc
made in [2] of the necessary and sufficient optimality conditions for the variational problem

in [5], [8].

1 Introduction

The Euler equations for incompressible fluids flowing inside a d-dimensional domain D relate the
evolution of the velocity field u to the spatial gradient of the pressure field p:

Ou+ (u-V)u=—-Vp in [0,T] x D,
divu=0 in [0,7T] x D, (1)
u-n=0 on [0,T] x dD.

Let us assume that u is smooth, so that it produces a unique flow g, given by

{ g(tv a) = u(t,g(t, a)),
9(0,a) = a.

(we will also use the notation e'“(a) in the sequel). By the incompressibility condition, we get
that at each time ¢t the map ¢(¢,-) : D — D is a measure-preserving diffeomorphism of D, that is
g(t,-)gpp = pp (here and in the sequel fup is the push-forward of a measure p through a map
f, and pp is the volume measure of the manifold D). Viewing the space SDiff (D) of measure-
preserving diffeomorphisms of D as an infinite-dimensional manifold with the metric inherited
from the embedding in L?, and with tangent space made by the divergence-free vector fields,
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Arnold interpreted the equation above, and therefore (1), as a geodesic equation on SDiff(D) [3].
According to this intepretation, one can look for solutions of (1) by minimizing the action

Tri
| [ 3lat.oP dup)a ©)
0 D

among all paths g(t,-) : [0,7] — SDiff (D) with ¢(0,-) = f and g(T,-) = h prescribed (typically,
by right invariance, f is taken as the identity map i), and the pressure field arises as a Lagrange
multiplier from the incompressibility constraint.

Although in the traditional approach to (1) the initial velocity is prescribed, while in the
minimization of (2) it is not, this variational problem has an independent interest and leads
to deep mathematical questions, namely existence of relaxed solutions, gap phenomena and
optimality conditions, that have been thoroughly investigated by Brenier and Shnirelman in a
series of papers (see [5], [6], [7], [8], [9], [10]). Recently, in [2] we compared the different models
proposed by Brenier in [5] and [8], and we found necessary and sufficient optimality conditions for
minimizers in the more general framework of action-minimizing curves in the space of measure
preserving plans

I'(D):={y€ 2D xD): v(BxD)=pup(B) =D x B) VB € B(D)}.

This space can be viewed as a kind of closure of the space of measure-preserving maps: indeed,
if f: D — D is measure-preserving, then (i x f)xup € I'(D) and, conversely, if v € I'(D) is
concentrated on the graph of f, then f is measure-preserving.

Let us describe briefly the minimization problem considered in [2], that is the natural ex-
tension of Brenier’s original model in the space of measure-preserving maps. Let us denote, as
in [8], by (x,a) the typical variable in D x D and, for given 7, v € I'(D), let us denote by
n(dz,da) = ng(dz)dup(a) € T'(D), v(dx,da) = v4(dz)dup(a) € T'(D) their disintegration with
respect to the a variable (in a probabilistic language, 1, and 7, can be thought as conditional
probability distributions given a). For classical solutions a can be thought as the initial posi-
tion (the Lagrangian variable) of the particle, and = as the actual position of it (the Eulerian
variable), and this motivates the terminology Fulerian-Lagrangian model adopted in [§].

Now we consider the family of distributional solutions ¢; 4, indexed by a € D, of the continuity
equation

Orctq +div(vegcr,) =0  in D'((0,T) x D), for up-a.e. a, (3)

with the initial and final conditions
€0,a = Na; CT.a = Yas for up-a.e. a. (4)

Notice that minimization of the kinetic energy fOT f D %\UW\Q dct o dt among all possible solutions
of the continuity equation would give, according to [4], the optimal transport problem between
na and 7, (for instance, a path of Dirac masses on a geodesic connecting g(a) to h(a) if 7, = dy(a),
Ya = On(a))- Here, instead, by averaging with respect to a we minimize the mean kinetic energy

T 1 ,
// /5‘0t7a| deq dt dpp(a)
pJo Jb
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with the only global constraint between the family {c; o} given by the incompressibility of the
flow:

/D ctadpp(a) = pp vt € [0,T]. (5)

It is useful to rewrite this minimization problem in terms of the the global measure ¢(dt, dx, da)
in [0,7] x D x D and the measures ¢;(dx,da) in D x D

c(dt,dx,da) := ¢t q(dx)dtdpp(a), ct(dx, da) = ¢ q(dx)dpp(a)

(from whom ¢ , can obviously be recovered by disintegration), and the velocity field v(t, z,a) :=

Ut,q(): the action becomes
r 1
/ / —|v|?(t, z,a) de(t, z, a),
0 Jpxp?2

while (3) is easily seen to be equivalent to

a
dt Jpxp

oa) derfo,) = [ (T(e.a),02.0)) der(,0) (©
DxD

for all ¢ € Cy(D x D) with a bounded continuous gradient with respect to the x variable.
Thus, we can minimize the action on the class of couples measures-velocity fields (¢, v) that

satisfy (6) and (5), with the endpoint condition (4). We refer to [8] and [2]| for general results

on the existence of minimizing pairs (c,v) (it holds when, for instance, D = [0,1]¢ or D = T¢

it the flat d-dimensional torus), and describe here the two properties of minimizing pairs (c,v)

that play a role in this paper:

(a) (Constancy of kinetic energy) The map t — [ |v|?(¢,z,a)dc; coincides a.e. in (0,T)
with a constant (27! times the minimal action);

(b) (Weak solution to Euler’s equations) There exists a distribution p in (0,7°) x D
satisfying

Vp = -0, </D o(t,z, a) dct,z(a)> _ div </D o(t,z,a) @ o(t, z, a) dcm(a)) o

in the sense of distributions.

The proof of the first one follows, as for classical action-minimizing curves, by using the mini-
mality among all possible reparameterizations.

The second one follows by a perturbation argument based on [6], see also [2].

In this paper we refine a little bit the deep analysis made in [8] of the regularity of the gradient
of the pressure field: Brenier proved that the distributions 0,,p are locally finite measures in
(0,T7) x D, but this information is not sufficient (due to a lack of time regularity) to imply
that p is a function. As shown in Corollary 3.3, a sufficient condition, that gives also p €
12_((0,7); LYV (D)), is that

loc

O, € Lo ((0,T); Mioe (D)), i=1,...,d.

3



The proof of this regularity property is the main scope of this paper. The fact that p is a
function at least in some Llloc(LfOC) space, for some r > 1, plays an important role in the analysis,
developed in [2], of the necessary and sufficient optimality conditions for action-minimizing curves
in I'(D). Indeed, these conditions involve the Lagrangian

L) = [ SHOF - st ) at

the (locally) minimizing curves for £, and the value function induced by £,, and none of these
objects makes sense if p is only a measure in the time variable.
Throughout this paper a minimizing pair (¢, v) is fixed, and we shall denote by

T 1 T
A* ;:/ / —|v|?(t, z, a)dc(t, x,a) = —/ lw[*(t, 2, a) de(x, a)
0o Jpxp?2 2 Jpxp

its action (the last equality follows from the property (a) stated above). To simplify our notation
we just denote by | the integration on the whole space (0,7') x D x D, whenever no ambiguity
arises. We shall also assume that either D is the closure of a bounded Lipschitz domain in R,
or that D = T is the d-dimensional flat torus, and denote by | dx the integration with respect

to up-

2 A difference quotients estimate

In order to proceed to the proof, we recall an approximation of the pressure field obtained in [§]
through a dual formulation. The arguments in [8] extend with no change to the more general
model described in the introduction, where an initial and final measure-preserving plan (instead
of i and a measure-preserving map f) are considered.

Let us consider the Banach space E := C°(Q) x [C%(Q)]?, where Q := [0,T] x D x D, and
we define the convex functions o : E — (—00,00] and 3 : E — (—00, 0] given by

0 if F+3|®? <0,
400 otherwise,

ME¢%={

(¢, F) +{ve,®) if F'=-0;0—p, ®=-Vz0,
B(F,®) := for some ¢ € C°(Q) and p € C°([0,T] x D),
400 otherwise,

where (c,v) is the fixed minimizing pair. By the Fenchel-Rockafeller duality Theorem, Brenier
proved in [8, Section 3.2] that

sup {—a(—F,—®) — B(F,®)} = inf {a*(G5¢) + 4G 50)),
(F,®)EE (¢,08)€E*

where a* and (§* denote the Legendre-Fenchel transforms of o and [ respectively. Writing
explicitly the minimization problem appearing in the right hand side, one exactly recovers the



minimization of the action % i |v|? de, coupled with the endpoint and incompressibility constraints

(4) and (5). Indeed

1 1
" (650) = 3 (o 0) = 5 [ 1ol de
and
0 if (c—¢,0i0+p) + (ve—0E, V) =0 V p, ¢,
+o00 otherwise.

gt =

Thus it is simple to check that §*(¢,v¢) = 0 if and only if the two constraints (4) and (5) are
satisfied.

One therefore deduces that the minimum of the action coincides with the dual problem
sup(pe)epi—a(—F, —®) — B(F, ®)}, which more concretely can be written as

sup (¢, 0y + p) + (ve, Vo),
p,¢

with .
g + 5\vm? +p<0.

Thus, the duality tells us that, for any ¢ > 0, there exist p.(t,z) and ¢.(t,z,a) satisfying

1
Orpe + §‘vx¢a‘2 +p: <0

and
1

3
As shown in [8, Section 3.2], from this one deduces the estimate

[, ¢) < (e, D¢ + o) + (ve, Vo) + €2

1
3 [0 Vaotae < )

We remark that, up to adding to ¢. a function of time, one can always assume |, pPe(t,x)de =
0 for all ¢ € [0,7]. As shown in [8, Section 3.4], the family p. in compact in the sense of
distributions, so that there exists a cluster point p. Moreover, since any limit point p of p. is
seen to satisfy (7) in the sense of distribution for any minimizing pair (c,v), Vp is uniquely
determined, and this enforces the convergence of the whole family (Vp.).>o to Vp in the sense
of distributions.

Let us now prove the following regularity result on V,¢.: we present a proof slightly different
from the one in [8].

Proposition 2.1. Let 7 € (0,7), let w: D — R? be a smooth divergence-free vector field parallel
to OD and let e5*(x) be the measure-preserving flow in D generated by w. Then, for n < 7 we
have

T—1
/ / V20 (t + 1,62 (2),a) — Voo (t, 2,0)|* de < L(e? + 1? + 62), (9)
T DxD

with L depending only on 7, w, T and A*.



Proof. In the sequel we fix a cut-off function ¢ : [0,7] — [0, 1] identically equal to 1 on [r,T —7].
We recall the following estimate (Proposition 3.1 in [8]), which follows by the “quasi optimality”
of (pe, ¢e) in the dual problem:

1 2
5 / ‘(at + o7 vx)eégw — Ve o 65<w‘ dc”

1 2 1
<&+ 3 / ‘(8,5 + 0" - Vx)e‘sgw‘ dc — 3 / [v|* de, (10)

(here ¢ (x) is the flow generated by w starting from x, at time 0¢) where (v7,¢") is the
“reparameterization” of (v, c) given by

= Cn(t)dt = Ct+ﬁ4(t)dt) Un(tu x, a) = (1 + ngl(t))v(t + nC(t)u x, CL).

The minimality of (v,c) gives [ |[v7*dc" > [ |v|? de, and the constancy of ¢t — [ [v]?(t,z,a) de
gives

[ = [1ofde= [ a2+ 200 de < Cop (1)
with C depending on T', A*, and (.

Since c is a weak solution to the incompressible Euler equations and w is divergence-free, we
have

/v (O +v-Vy)(Cw)de = 0.

As a consequence, performing a change of variable in time, it is simple to check that
/v" (O + 0" V) (Cw) de" = O(n). (12)
If we now add and subtract v", we can rewrite (10) as
5 scun |2
1@+ 0 T @)~ )+ (071 = Voo o ) der

< 2% + / ‘(at + 07 - V) (€% (z) — z) 4 "

2
alc"—/\v|2 de.

v — Ve 0 65Cw‘2 dc" < —2/ |:(at + 0" - V) (2% (2) — x)} . [qﬂ? — Ve o e5§w} dc"

Rearranging the squares we get

/

+2¢2 + 2/1}" (O 4 0" - V) (€5 () — x) de”

+/|v"|2dcn—/|v|2dc.



Defining

f(5,€,77) = / ‘1177 — Ve 0 €5Cw‘2 dc" — /‘(1+77C,)U(1+77€,JI,CL) \Vi ¢5(1+T7€7 5Cw | de

T—1
> / / |0 — Vet + 1, (2), a)|* de
T DxD

we see that it suffices to bound f from above. Since ez — z = ¢ (t)w(z) + O(6?) (in the C*
norm in spacetime), by Schwartz inequality, (11) and (12) we get

f<CVfo+ 224+ C(on + 6%) + Cr?,

which implies f(6,e,n) < C(6% + &2 +n?), with C depending on T', A*, ¢, and w. This, together
with [ v — Vao.|* de < 262, gives (9). O

3 Proof of the main result

Theorem 3.1. Let 7 € (0,T) and let w: D — R be a smooth divergence-free vector field parallel
to OD. Then there exists a constant C = C(w,1,T, A*) such that

[(Vp-w,CH) < CllfllscllSlzzory ¥ € CE((r T = 7);[0,400)), f € C((0,1) x D). (13)

Proof. For ¢ € C°(1,T — 7) nonnegative, n € (0,7/2) and §, ¢ > 0 we consider the following
expression:

1(¢,0,n,¢e / / ‘/ pe(t 4+ 0, e (x)) — pe(t +n0,2)] d@' dxdt

= /C(t) '/0 [p=(t + 10, (z)) — pe(t + b, )] d@‘ de(t, z, a).

Our goal is to bound I from above. This will be achieved in the following (many) steps: I <
I; + Iy + I3 and estimate of Iy, I3; I1 < 2||¢|lc0g? — (I + I5 + I) and estimate of I5 and Ig;
14 = I7 + Ig and estimate of Ig; I7 = 2Ig + I1¢ and estimate of Ig; I1g = I11 + I12 and estimate
of I19; finally 111 = I13 + 114 and estimate of I13 and I14. In order to avoid a cumbersome
notation, during this proof we denote by C' a generic constant depending only on (w,7,T, A*),
whose specific value can change from line to line.

We now consider A (t,z,a) := — (8,5(155 + %|qu§5|2 +p5) > 0, and we recall that [ A.de < e2.
We have

1<+ 1+ I3,



where

1

[Ae(t 416, (2),a) — \e(t + b, z,a)] d@‘ de,
1

[8t¢)5(t + 7707 e&U (‘T)v CL) - 8t¢6(t + 7767 €z, (I)] da‘ dC,

| 1
[§|Vx¢)5\2(t + 00, e (), a) — i\vxgbg\Q(t +nb,z,a)] dH‘ dc.

hon.

Il

—
S— S— >—

By (9) we have
IVade(t +n6, e (x), )|l r2(c2e) < Vade(t, 2,0) | 12¢c20) + VIICoo(e +n+6) VO € (0,1).
Therefore writing |A|? — |B|? as (A — B) - (A + B) and using (9) once more, we can estimate
1/2

I3 <C(e+n+9) (/ ()| Vatel*(t, z,a) de+ C|IC|12,(€* +1* + 52)) : (14)
For I» we first integrate with respect to 6 and then use the mean value theorem to obtain

5 1

L) [ ]19aett £ 0.0 @), 0) = a7 (@), )] (e )| e

<C- / /< Vade(t+7,e7 (@), ) = Vi (1,7 (2),a)| dedo
<c? o €+ 0+ 9)lcl20m), (15)

Let us now consider [I;: using A\, > 0 and f e de < €2, we obtain

L < /C / St 40, (x),a) + At + b, z,a)] dide

1
< 2HC||0052 + /((t)/ [/\E(t + n@,e‘sw(a:),a) + At +nb,z,a) — 2)\5(t,x,a)] dfdc
0
< 2|[¢lloc® = Iy — I5 — I,

where
Iy /C / 8t¢)5 t+nb, e‘sw( ),a) + 0rp(t +nb, x,a) — 20;p:(t, x, a)] dfdec,
/ c(t / Vade(t+ 18, 7 (2), a) + [Vade2(t + 16, 2, a) — 2V o 2(t, x,a)] dBde,

Ig : /C / pe(t +n0, ™ (x)) + pe(t + 10, x) — 2p(t, )] dfdc.



Now we notice that
Is =0, (16)

ow

since [ ¢(t,z,da) =1 (by the incompressibility constraint (5)), e
[ pe(t,z) dx = 0. For I5, we have the same bound as for I3, that is

is measure-preserving, and

1 < €+ ) ([ O 0. P0,.0)de+ O +17+ 52>)”2. (17)
We continue splitting I, as Ir + Iy, with
L / / ) (00t + 10, (), @) + Bucbe(t + 16, 2, @) — 20 (t — On)Dyoe(t, z, )] dbde,
Iy: =2 / /0 [C(t — 0n) — C(1)] e (2, 2, a) dbde.

For Ig, using once more that A. > 0 and f e dc < €2, we have the bound

ug|sz‘ / / 6t~ 6) — C))Ac(t, ) dBde +' / / ¢t — ) — C(0)] Va2t 2, 0) dbide

+2 ‘//01 [C(t—6n) — C(t)]pe(t, z, a) dodc

1
< 4]¢fle® + ‘ [ [Tt = 0n) 1920 0.0) o

where in the last inequality we used that [p.de; = [p.dz = 0. Using also the fact that
t — [|v|*(t,x,a) dec; does not depend on t we get

[Is] < 4)[¢|ooe” +2HCHOO/HVx¢5\2(t,x,a) — [vP(t,z,a)| de. (18)

We now consider Iy = Iy 4+ 2119, where
Iy : /C / 8t¢)5 t + nd, e5w( ),a) — O (t + n@,x,a)] dbdc,

I : // (t)Oppe(t +nb,z,a) — C(t — Qn)ﬁtgbs(t,x,a)] dbdc.

We have, as for I,

I = \ / () [(cba(t L0, (), a) — gelt +1,,0)) — (et € (2), a) — fu(t,,a))] de

‘ 6O [ [9a0utt-4 1,675 @), 0) = Tt ), )] (e () e

<c? (€+77+5)||C||L20T (19)



For I o, we use the continuity equation d;c + div,(ve) = 0 (see (6)) and add and subtract ()
to get

1,1
Lo = //0 /0 Oy [C(t — (1= 0)n0)0spe(t + nbo, x, a)]n@ dodfdc
11
- // / C(t— 1 —=0)nd)0Vyo:(t +nbo,z,a) - v(t,x,a)nd dodfde
0o Jo
11
- // / [C(t— (1 —0)mf) — (V)]0 V2¢e(t + nbo, x,a) - v(t, z, a)nd dodfdc
o Jo
- //1 /1 C(t)OV 2 (t +nbo, x,a) - v(t, z,a)nd dodddc
0o Jo
11
- // / Ct—(1—=o)mb) — ()]0 Vade(t + nbo,x,a) - v(t, x,a)nd dodfdc

/C / x(bs t+776 € OL) ng)g(t,x,a)] -v(t,x,a) dfdc
=: I11 + Io.

Now we see that, using (9) and the Schwarz inequality, we easily get

ol < Cle ) ([ GOIV20cP e+ CleI(e + 7)) (20)
For I, it can be written as I3 + I14, where
11
L3 = // / O[[C(t — (1 = o)nb) — ((1)]Va0e(t + nbo,z,a)] - v(t, x,a)nd dodfdc
// (t—n0) — C(t)|Veoe(t,z,a) - v(t,z,a) dOde,
// (t = nb) — C(t)][Vad(t, 2, a) — v(t,z,a)] - v(t, z,a) dide

// (t —n0) — C(O)]|v|2(t, 2, a) dOde

1 1
Iy = / / / [C/(t— (1= 0)16) — ¢'(8)] Vade(t + 60, 2, a) - v(t, z, a)6 dodbde.

and

Recalling that ¢ — [ |[v]*(¢,2,a) de; is constant, by (8) we have

‘113‘ < ‘//0 [C(t - 779) - C(t)](vxﬁbs(taxva) - U(t7$’a)) : v(t,x,a) dfdc < O”C”ooE (21)

10



Finally, by (9) we can bound I14 with

T—1/2 1,1
\114\g\|g”\|00772/ / //‘ngi)g(t+n00,x,a).v(t,x,a)‘dadedc
T/2 DxAJo JoO
<N oon*C ([[Vadell2 + Cle + 1)) - (22)

Collecting (14), (15), (16), (17), (19), (20), (21), (22) we can bound from above I as follows:

1
2
e+ +9) ( [ O det U2 + 7 + 52>>
1)
I+ O+ 0Kl + 16 1o C (19l + Cle + ) + 2Gc? + Cle

Now, recalling the definition of I, we integrate p.( against a function f € Cgo((O,T) X D) and
pass to the limit as ¢ — 0, with 1 = ¢ frozen, to obtain

1

1
5 /O <q)C(t)[f(t_697€_5w($))_f(t_(s'g?‘r)bde‘SC”f”oo(”C”LQ(O,T)+5HC”H00+5HCHOO)

for any limit point ¢ of p. in the sense of distributions, thanks to the fact that, by (18), Is — 0
as € — 0 (here we use again that ¢ — [ |v|*(¢,z,a) dc; is constant). So, letting 6 — 0, we finally
obtain (13), with V¢ in place of Vp. But Vp. — Vp implies that Vp = V¢ and concludes the
proof. O

Remark 3.2. In the case D = T¢ one can also consider constant vector fields w and therefore
(13) holds in a stronger (and simpler) form:

(020, CHI < CllFlloollCl 20y V€ CE((r, T = 7); [0, +00)), f € C([0,1] x TY)  (23)
with C' depending only on 7, T and A*.

A simple localization and smoothing argument based on (13) gives that the pressure field is
locally (globally, in the case D = T%) induced by a function.

Corollary 3.3. Let d > 2. Then for all smooth subdomains D' CC D there exists

q € Li,.((0,7); BV(D')) C L{,.((0,T); L' (D"))

loc

(here 1* = d/(d — 1)) with Vq = Vp in the sense of distributions in (0,T) x D'. In the case
D = T? the same statement holds globally in space, i.e. with D' = D. Moreover, in this case the
result holds also for d =1 (with 1* = ).

Proof. We first notice that for d > 2 any constant vector field w in D’ can be extended to a
divergence-free, smooth and compactly supported vector field in D: indeed, if D’ CcC Dy CC

11



D, cC D, with Dy and D; smooth, we may set w = w in Dy, w =0in D \ Dg, and w = V¢ in
Dy \ Dy, where 1 is a solution of

[en}

in D2 \El,
0 on dDo,
w-v on 0D,

QD>
S

S

(existence of ¢ can be obtained by minimizing %ng\ﬁl Vo> = [yp, 6w - v in H' (D3 \ Dy)).
By construction w is divergence-free (in the sense of distributions) in D, compactly supported
and coincides with w in a neighbourhood of D’, so that a suitable mollification of w provides the

required extension.
Thanks to this remark, (13) yields

(02,0, CHI < Ll fllooliCllzzory ¥ € C((r, T = 7);[0,+00)), f € C((0,1) x D), (24)

with L depending only on 7, T, D" and A*. If we denote by ¢. the mollified functions of p, this
easily implies that [Vg.| is uniformly bounded in L ((0,T); L'(D’)). In particular, if we denote

by . the mean value of . on D', g. — g. is uniformly bounded in the space L2 _((0,T); L' (D’)),
and if ¢ is any weak limit point (in the duality with L2 _((0,T); LY(D"))) we easily get Vg = Vp
and g € L _((0,T); BV(D")).

In the case D = T¢ the proof is analogous: it suffices to apply Remark 3.2. O
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