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Abstract. Given Ω, Λ ⊂ Rn two bounded open sets, and f and g two probability densities
concentrated on Ω and Λ respectively, we investigate the regularity of the optimal map ∇ϕ (the
optimality referring to the Euclidean quadratic cost) sending f onto g. We show that if f and
g are both bounded away from zero and infinity, we can find two open sets Ω′ ⊂ Ω and Λ′ ⊂ Λ
such that f and g are concentrated on Ω′ and Λ′ respectively, and ∇ϕ : Ω′ → Λ′ is a (bi-Hölder)
homeomorphism. This generalizes the 2-dimensional partial regularity result of [8].

1. Introduction

Let Ω,Λ ⊂ Rn be two bounded open sets, and f and g two probability densities concentrated
on Ω and Λ respectively. According to Brenier’s Theorem [1, 2] there exists a globally Lipschitz
convex function ϕ : Rn → R such that ∇ϕ#f = g and ∇ϕ(x) ∈ Λ for a.e. x ∈ Rn. Assuming
the existence of a constant λ > 0 such that λ ≤ f, g ≤ 1/λ inside Ω and Λ respectively, then ϕ
solves the Monge-Ampère equation

λ2 χΩ ≤ det(D2ϕ) ≤ 1
λ2
χΩ in Rn (1.1)

in a weak sense (which we will call Brenier sense). Moreover, as shown in [6], if Λ is convex
then ϕ solves (1.1) also in the Alexandrov sense (see Section 2 for the definition of Brenier and
Alexandrov solutions), and this is the starting point to develop a satisfactory regularity theory
[3, 4, 5, 6]. On the other hand, if Λ is not convex, ∇ϕ may not be continuous even if f and g
are smooth [6].

The aim of this paper is to generalize the 2-dimensional result of [8] by showing that there
exist two open sets Ω′ ⊂ Ω and Λ′ ⊂ Λ, with |Ω \ Ω′| = |Λ \ Λ′| = 0, such that ϕ is C1,α

and strictly convex inside Ω′, and ∇ϕ is a bi-Hölder homeomorphism between Ω′ and Λ′. In
particular ϕ is an Alexandrov solution of (1.1) inside Ω′, so that higher regularity of ϕ follows
when f and g are smooth. Note that by general results on (semi-)convex functions, it is known
that the set where ϕ is not differentiable consists of a countable union of Lipschitz hypersurfaces.
Our result prevents such singular set makes a pathological picture: for example, such set cannot
be dense inside Ω. Let us however point out that in this higher dimensional case we are not able
to find a precise geometric description of the singular set as in [8] (see also [7, 11]).
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The structure of the paper is as follows: in Section 2 we introduce some notation, we recall
useful facts about convex functions, and we introduce the notion of Brenier and Alexandrov
solutions to (1.1). In Section 3 we first recall how Alexandrov estimates play a key role in show-
ing regularity for Alexandrov solutions of (1.1), and then we prove the partial regularity result
outlined above (see Theorem 3.5).

It is a pleasure for us to dedicate this paper to Louis Nirenberg on the occasion of his 85th
birthday.

2. Notation and preliminary results

Throughout the paper, we use the notation C(a1, . . . , an) to denote a constant which depends
on the quantities a1, . . . , an only. Given a set E ⊂ Rn, |E| denotes its Lebesgue measure. More-
over the concept of “almost everywhere” will always be considered with respect to the Lebesgue
measure.

Let ψ : Rn → R be a convex function. Its subdifferential at a point x is defined as

∂−ψ(x) :=
{
y ∈ Rn | ψ(z) ≥ ψ(x) + y · (z − x) ∀ z ∈ Rn

}
.

From the above definition it is easily seen that the map x 7→ ∂−ψ(x) is upper semicontinuous,
i.e.

xk → x, yk → y, yk ∈ ∂−ψ(xk) ⇒ y ∈ ∂−ψ(x). (2.1)
This implies in particular that x 7→ ∇ψ(x) is continuous on the set where ψ is differentiable.
Moreover, ψ is differentiable at a point x if and only if ∂−ψ(x) is a singleton. Recall that convex
functions are locally Lipschitz (and hence differentiable a.e. by Rademacher’s Theorem) inside
any open set where they are finite. We will denote by dom∇ψ the domain of ∇ψ, i.e. the set of
points where ψ is differentiable.

We denote by ψ∗ : Rn → R the Legendre transform of ψ:

ψ∗(y) := sup
x∈Rn

x · y − ψ(x).

Let us recall that the following duality relation holds:

y ∈ ∂−ψ(x) ⇔ x ∈ ∂−ψ∗(y). (2.2)

A (open) section Z of ψ is any (non-empty) set of the form

Z := {x : ψ(x) < `(x)}
for some linear function `(x) = a · x+ b. Since every section Z is convex, by John’s Lemma [10]
there exists an affine map L : Rn → Rn such that

B1 ⊂ L(Z) ⊂ Bn.

If the above inclusions hold, we will say that the convex set L(Z) is renormalized.

A convex function ϕ : Rn → R solves the Monge-Ampère equation (1.1) in the Brenier sense
if

λ2 χΛ ≤ ∇ϕ#χΩ ≤ 1
λ2
χΛ,
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together with the “boundary condition” ∇ϕ(Rd) ⊂ Λ (i.e. ∇ϕ(x) ∈ Λ a.e.).
A convex function ϕ : Rn → R solves the Monge-Ampère equation (1.1) in the Alexandrov

sense if, for any Borel set B ⊂ Rn,

λ2 |B ∩ Ω| ≤ |∂−ϕ|(B) := |∂−ϕ(B)| ≤ 1
λ2

|B ∩ Ω|,

where ∂−ϕ(B) := ∪x∈B∂
−ϕ(x), and |∂−ϕ| denotes the Monge-Ampère measure associated to ϕ.

This is can be written in a concise form as

λ2 χΩ ≤ |∂−ϕ| ≤ 1
λ2
χΩ.

Let us remark that while the target set Λ enters in the notion of Brenier solution, it plays no
role in the notion of Alexandrov solution.

3. Partial regularity

As shown in [6], if the target set Λ is convex, then any Brenier solution of (1.1) is also an
Alexandrov solution. More precisely, without any assumption on Λ any Brenier solution ϕ
satisfies

|∂−ϕ| ≥ λ2 χΩ,

while the other inequality needs the convexity of Λ to be true (see the proof of [6, Lemma 4]).
In order to prove the partial regularity result for Brenier solutions described in the introduc-

tion, we first recall the strategy to show regularity for Alexandrov solutions of (1.1).

3.1. Alexandrov estimates, renormalization, and regularity of Alexandrov solutions.
As shown in [3, 5, 6], the regularity theory of Alexandrov solutions of (1.1) relies crucially on
the so-called Alexandrov estimates. Let us briefly recall the main points of this theory.

First, let ψ : Rn → R be a convex function, and let Z be a renormalized section of ψ such
that ψ = 0 on ∂Z. Then the following estimates hold (recall that since Z is renormalized we
have 0 < c(n) ≤ |Z| ≤ C(n)):

(LA) Lower Alexandrov estimate: for all α ∈ (0, 1)

|∂−ψ(αZ)| ≤ C(n, α)
∣∣inf

Z
ψ

∣∣n.
(UA) Upper Alexandrov estimate: let Cx denote the cone generated by (x, ψ(x)) and (∂Z, ψ),

i.e. Cx : Rn → R satisfies Cx(x) = ψ(x), Cx = ψ(= 0) on ∂Z, and z 7→ Cx(z − x) is
1-homogeneous. Then∣∣ψ(x)

∣∣n ≤ C(n) |∂−Cx({x})| dist(x, ∂Z).

Now, let ϕ be an Alexandrov solution of (1.1). Fix a point x ∈ Rn, and consider a section
Z := {ϕ < `} such that x ∈ Z. By John’s Lemma there exists an affine map L such L(Z) is
renormalized. Set ϕL(z) := |detL|2/n[ϕ− `](L−1z). Then ϕL is an Alexandrov solution of

λ2 χL(Ω) ≤ |∂−ϕL| ≤
1
λ2
χL(Ω),

and L(Z) = {ϕL < 0} is renormalized. These facts together with (LA) give

λ2
∣∣(αL(Z)

)
∩ L(Ω)

∣∣ ≤ |∂−ϕL(αL(Z))| ≤ C(n, α)
∣∣ inf
L(Z)

ϕL

∣∣n,
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so that, since c(n)|detL|−1 ≤ |Z| ≤ C(n)|detL|−1 with C(n), c(n) > 0, we get∣∣inf
Z
ϕ
∣∣n ≥ c(n, α, λ) |(αZ) ∩ Ω| |Z| > 0. (3.1)

On the other hand, let CL,x denote the cone generated by (L(x), ϕL(x)) and (∂(L(Z)), ϕL|∂(L(Z))).
Then (UA) implies

|ϕL(L(x))|n ≤ C(n) |∂−CL,x({L(x)})| dist
(
L(x), ∂(L(Z))

)
,

that is ∣∣ϕ(x)
∣∣n ≤ C(n) |∂−Cx({x})| |Z| dist

(
L(x), ∂(L(Z))

)
≤ C(n) |∂−ϕ(Z)| |Z| dist

(
L(x), ∂(L(Z))

)
≤ C(n, λ) |Z ∩ Ω| |Z| dist

(
L(x), ∂(L(Z))

)
,

(3.2)

where the second inequality follows from the inclusion ∂−Cx({x}) ⊂ ∂−ϕ(Z), which can be
easily proven by moving down any supporting plane of Cx at x and lifting it up until it touches
the graph of ϕ inside Z.

Using (3.1) and (3.2), the regularity theory for Alexandrov solutions to (1.1) goes as follows:

• Strict convexity. Let y ∈ ∂−ϕ(Ω), and set Sy := {z : y ∈ ∂−ϕ(z)} = ∂−ϕ∗(y). (Here
ϕ∗ denotes the Legendre transform of ϕ.) We want to prove that Sy is a singleton, which is
equivalent to the strict convexity of ϕ.

Assume that is not the case. Since Sy is convex, there are two possibilities:
(1) Sy contains an infinite line (Rv) + w (v, w ∈ Rn, v 6= 0).
(2) There exists x0 an exposed point for Sy, namely, there is an affine function A : Rn → R such
that A(x0) = 0 and A < 0 on Sy \ {x0}.

Case (1) is excluded by the Monge-Ampère equation, since this would imply that ∂−ϕ(Rn) is
contained inside the (n − 1)-dimensional subspace v⊥, so that |∂−ϕ|(Rn) = 0, a contradiction
to (1.1). (See [6] or [9, Lemma 2.4] for more details.)

For the remaining case (2), with no loss of generality we can assume y = 0, x0 = 0 and
A(z) = zn = z · en.

First of all, one shows that x0 6∈ Ω. In fact, if this was the case, we could apply the Alexadrov
estimates (3.1) and (3.2) to the sections Zε := {ϕ(z) < ε(zn − 1)} 3 0. Since 0 is almost
a minimum point for ϕ − ε(zn − 1) and his image after renormalization is very close to the
boundary of the renormalized section, as shown in [3, Theorem 1] this leads to a contradiction
to (3.1) and (3.2) as ε→ 0.

Analogously one proves that x0 6∈ ∂Ω. Indeed, one considers the sections Zε := {ϕ(z) <
ε(zn − 2R0)}, where R0 is such that Ω ⊂ BR0 . This ensures that after renormalization the
measure |∂−ϕLε | has some positive mass inside Lε(Zε) (uniformly as ε→ 0), and this allows to
conclude as above [6, Lemma 3].

Finally, since |∂−ϕ| = 0 outside Ω but |∂−ϕ| has always some positive mass inside a section
Zε as the ones above, it is easily seen that x0 cannot belong to Rn \ Ω (see [6, Lemma 3]).
This together with above implies that there is no exposed point, yielding a contradiction. This
concludes the proof of the strict convexity of ϕ.
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• Differentiability and C1,α-regularity. As shown in [3, Corollary 1], (3.1) and (3.2) allow also
to show the differentiability of ϕ at any point of strict convexity. This implies that ϕ is strictly
convex and C1 inside Ω. Finally, using again the Alexandrov estimates, the C1,α-regularity of
ϕ follows by a compactness argument [5, Lemma 2 and Theorem 2].

3.2. Partial regularity of Brenier solutions. In this subsection we show the partial regu-
larity result for Brenier solutions described in the introduction. As we already observed at the
beginning of this section, if ϕ is a Brenier solutions of (1.1) then |∂−ϕ| ≥ λ2 χΩ. In particular
(3.1) still holds true. The problem in this case is that we cannot deduce (3.2), since now no
upper bound on |∂−ϕ| is available [6].

To bypass this problem, we will use the following two preliminary results:

Lemma 3.1. Let C ⊂ BR be a convex set such that 0 ∈ C, and fix δ ∈ (0, R). Then

|C ∩Bδ| ≥ C(δ,R) |C|.

Proof. Since |C| = |C ∩Bδ| + |C \Bδ|, it suffices to bound |C \Bδ|.
Set D := C ∩ ∂Bδ, E := R+D = {tx : t > 0, x ∈ D}, Eδ := E ∩Bδ, and ER := E ∩BR. Since

0 ∈ C, by the convexity of C it is easily seen that the following inclusions hold:

C \Bδ ⊂ ER, Eδ ⊂ C ∩Bδ.

Hence
|C \Bδ| ≤ |ER| ≤ C(δ,R) |Eδ| ≤ C(δ,R) |C ∩Bδ|,

as desired. �

Lemma 3.2. Let ϕ be a Brenier solution of (1.1), and let Z be a section of ϕ. Then

|∂−ϕ(Z) ∩ Λ| ≤ 1
λ2

|Z ∩ Ω|.

Proof. Let ϕ∗ denote the Legendre transform of ϕ. Since ∇ϕ#χΩ ≥ λ2 χΛ, for a.e. y ∈ Λ there
exists x ∈ Ω such that x ∈ ∂−ϕ∗(y). Thanks to (2.1), this implies that ∂−ϕ∗(y) ∩ Ω 6= ∅ for all
y ∈ Λ, so by the boundedness of Ω we deduce that ϕ∗ is Lipschitz, and hence differentiable a.e.,
inside Λ. This gives

|∂−ϕ(Z) ∩ Λ| = |∂−ϕ(Z) ∩ Λ ∩ (dom∇ϕ∗)|.
Now, thanks to the duality relation (2.2), if y ∈ ∂−ϕ(x1) ∩ ∂−ϕ(x2) and y ∈ dom∇ϕ∗ then
x1 = x2. This implies

(∇ϕ)−1
(
∂−ϕ(Z) ∩ (dom∇ϕ∗)

)
⊂ Z.

Combining all together and using the definition of Brenier solution we finally obtain

|∂−ϕ(Z) ∩ Λ| = |∂−ϕ(Z) ∩ Λ ∩ (dom∇ϕ∗)|

≤ 1
λ2

∣∣(∇ϕ)−1
(
∂−ϕ(Z) ∩ (dom∇ϕ∗)

)
∩ Ω

∣∣ ≤ 1
λ2

|Z ∩ Ω|.

�

Thanks to the two results above, we can show the following key estimate, which will play the
role of (3.2) in our situation:



6 ALESSIO FIGALLI AND YOUNG-HEON KIM

Proposition 3.3. Fix δ > 0, let ϕ be a Brenier solution of (1.1), and Z be a section of ϕ.
Let L : Rn → Rn an affine map which renormalize Z, and let x ∈ Z be a point such that
∂−ϕ(x) ∩ {y ∈ Λ : dist(y, ∂Λ) > δ} 6= ∅. Then∣∣ϕ(x)

∣∣n ≤ C(n, λ, δ,R) |Z ∩ Ω| |Z| dist
(
L(x), ∂(L(Z))

)
, (3.3)

where R := diam(Λ).

Proof. Let y ∈ ∂−ϕ(x) ∩ {y ∈ Λ : dist(y, ∂Λ) > δ}. Then Bδ(y) ⊂ Λ, and moreover Λ ⊂ BR(y).
Let Cx be the cone generated by (x, ϕ(x)) and (∂Z, ϕ|∂Z). Then ∂−Cx({x})−y is a convex set

satisfying the assumptions of Lemma 3.1. Indeed y ∈ ∂−Cx({x}) and ∂−Cx({x}) ⊂ ∂−ϕ(Z) ⊂
co(Λ) ⊂ BR(y). (Here co(Λ) denotes the convex envelope of Λ, and the inclusion ∂−Cx({x}) ⊂
∂−ϕ(Z) follows as in (3.2).) Hence, thanks to Lemma 3.1 and recalling that Bδ(y) ⊂ Λ we
obtain

|∂−Cx({x})| = |∂−Cx({x}) − y| ≤ C(δ,R) |(∂−Cx({x}) − y) ∩Bδ|
= C(δ,R) |∂−Cx({x}) ∩Bδ(y)|
≤ C(δ,R) |∂−Cx({x}) ∩ Λ| ≤ C(δ,R) |∂−ϕ(Z) ∩ Λ|.

Combining the above estimate with Lemma 3.2 and the first inequality in (3.2) (which is a
consequence of (UA)) we get the result. �

We can now prove the strict convexity and differentiability on a open subset of Ω of full
measure. Fix y ∈ Λ. We first show that the contact set Sy still reduces to a singleton.

Assume this is not the case. As in the previous subsection, we can exclude that Sy contains
an infinite line. Moreover, if Sy as an exposed point, then it has to belong to Ω.

Since Λ is open, there exists a small ball Bδ(y) ⊂ Λ. As above we can assume y = 0. Suppose
there exists an exposed point, say x ∈ Sy ∩ Ω (the case x ∈ Sy ∩ ∂Ω is analogous). Then we
can consider a section Zε around x as in the proof of the strict convexity outlined above, and
by combining (3.1) and (3.3) the proof of the strict convexity goes through as in the case of
Alexandrov solutions, and we deduce that Sy is singleton. This shows that for any x ∈ Ω with
∂−ϕ(x) ∩ Λ 6= ∅, ϕ is strictly convex at x. Moreover, at such a point x, (3.1) and (3.3) allow to
prove the differentiability of ϕ exactly as in the classical case [3, Corollary 1].

All in all, we have proved:

Proposition 3.4. Let ϕ be a Brenier solution of (1.1), fix x ∈ Ω, and assume that ∂−ϕ(x)∩Λ 6=
∅. Then ϕ is strictly convex and differentiable at x.

Let us now define the set

Ω′ := {x ∈ Ω : ∂−ϕ(x) ∩ Λ 6= ∅}.

Observe that Proposition 3.4 implies that Ω′ = {x ∈ Ω : x ∈ dom∇ϕ, ∇ϕ(x) ∈ Λ}. In particular,
since ∇ϕ(x) ∈ Λ for a.e. x ∈ Ω (which follows by ∇ϕ#χΩ ≤ 1

λ2χΛ), we get |Ω \ Ω′| = 0. We
claim that Ω′ is open. Indeed, fix x ∈ Ω′ and assume by contradiction that xn → x but
∂−ϕ(xn) ⊂ Rn \Λ. Since ϕ is differentiable at x, (2.1) gives ∂−ϕ(xn) → ∇ϕ(x) ∈ Λ, impossible.

Hence Proposition 3.4 together with the continuity of the subdifferential at every differentia-
bility point (see (2.1)) implies that ϕ is strictly convex and C1 inside the open set Ω′.
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In particular one can easily deduce that ϕ is a strictly convex Alexandrov solution of (1.1) in
Ω′ (see for instance the proof of [8, Theorem 3.1]), so that by [5] we get that ϕ is C1,α inside Ω′

(and it is smooth if ∇ϕ#f = g, with f and g smooth).
To conclude the proof of the result described in the introduction, it suffices to observe that,

since ∇ϕ|Ω′ is continuous and injective, the set Λ′ := ∇ϕ(Ω′) is open. Moreover the Legendre
transform ϕ∗ of ϕ is strictly convex and of class C1 inside Λ′, and it is an Alexandrov solution of
(1.1) with Λ′ instead of Ω. In particular ϕ∗ is C1,α inside Λ′ thanks to [5], and since ∇ϕ∗|Λ′ =
(∇ϕ|Ω′)−1 we conclude:

Theorem 3.5. Let ϕ be a Brenier solution of (1.1). Then there exist two open sets Ω′ ⊂ Ω
and Λ′ ⊂ Λ, with |Ω \ Ω′| = |Λ \ Λ′| = 0, such that ϕ is C1,α and strictly convex inside Ω′, and
∇ϕ : Ω′ → Λ′ is a bi-Hölder homeomorphism.
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[1] Brenier, Y. Décomposition polaire et réarrangement monotone des champs de vecteurs. (French) C. R.
Acad. Sci. Paris Sér. I Math. 305 (1987), no. 19, 805–808.

[2] Brenier, Y. Polar factorization and monotone rearrangement of vector-valued functions. Comm. Pure Appl.
Math. 44 (1991), no. 4, 375–417.

[3] Caffarelli, L. A. A localization property of viscosity solutions to the Monge-Ampère equation and their
strict convexity. Ann. of Math. (2) 131 (1990), no. 1, 129–134.

[4] Caffarelli, L. A. Interior W 2,p estimates for solutions of the Monge-Ampère equation. Ann. of Math. (2)
131 (1990), no. 1, 135–150.

[5] Caffarelli, L. A. Some regularity properties of solutions of Monge Ampère equation. Comm. Pure Appl.
Math. 44 (1991), no. 8-9, 965–969.

[6] Caffarelli, L. A. The regularity of mappings with a convex potential. J. Amer. Math. Soc. 5 (1992), no.
1, 99–104.

[7] Cannarsa, P.; Yu, Y. Dynamics of propagation of singularities of semiconcave functions J. Eur. Math. Soc.
11 (2009), no. 5, 999–1024.

[8] Figalli, A. Regularity properties of optimal maps between nonconvex domains in the plane. Comm. Partial
Differential Equations, to appear

[9] Figalli, A.; Loeper, G. C1 regularity of solutions of the Monge-Ampère equation for optimal transport in
dimension two. Calc. Var. Partial Differential Equations 35 (2009), no. 4, 537–550.

[10] John, F. Extremum problems with inequalities as subsidiary conditions. In Studies and Essays Presented to
R. Courant on his 60th Birthday, January 8, 1948, pages 187–204. Interscience, New York, 1948.

[11] Yu, Y. Singular set of a convex potential in two dimensions. Comm. Partial Differential Equations 32 (2007),
no. 10-12, 1883–1894.

Alessio Figalli: Department of Mathematics, The University of Texas at Austin, Austin TX
78712, USA. e-mail: figalli@math.utexas.edu

Young-Heon Kim: Department of Mathematics, University of British Columbia, Vancouver BC
V6T 1Z2, Canada. e-mail: yhkim@math.ubc.ca


