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Abstract

We prove a quantitative stability result for the Brunn-Minkowski inequality on sets of equal
volume: if |A| = |B| > 0 and |A + B|1/n = (2 + δ)|A|1/n for some small δ, then, up to a
translation, both A and B are close (in terms of δ) to a convex set K. Although this result
was already proved in our previous paper [9] even for sets of different volume, we provide here
a more elementary proof that we believe has its own interest. Also, in terms of the stability
exponent, this result provides a stronger estimate than the result in [9].

1 Introduction

The Brunn-Minkowski inequality is a very classical and powerful inequality in convex geometry
that has found important applications in analysis, statistics, and information theory. We refer the
reader to [14] for an extended exposition on the Brunn-Minkowski inequality and its relation to
several other famous inequalities; see also [6, 7].

To state the inequality, we first need some basic notation. Given two subset A,B ⊂ Rn, and
c > 0, we define the set sum and scalar multiple by

A+B := {a+ b : a ∈ A, b ∈ B}, cA := {ca : a ∈ A} (1.1)

We shall use |E| to denote the Lebesgue measure of a set E. (If E is not measurable, |E| denotes
the outer Lebesgue measure of E.) The Brunn-Minkowski inequality says that, given A,B ⊂ Rn
measurable sets,

|A+B|1/n ≥ |A|1/n + |B|1/n. (1.2)

In addition, if |A|, |B| > 0, then equality holds if and only if there exist a convex set K ⊂ Rn,
λA, λB > 0, and vA, vB ∈ Rn, such that

A ⊂ λAK + vA, B ⊂ λBK + vB,
∣∣(λAK + vA) \A

∣∣ =
∣∣(λBK + vB) \B

∣∣ = 0.

In other words, if equality holds in (1.2), then A and B are subsets of full measure in homothetic
convex sets.
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Because of the variety of applications of (1.2) as well as the fact the one can characterize the
case of equality, a natural stability question that one would like to address is the following:

Let A,B be two sets for which equality in (1.2) almost holds. Is it true that, up to translations
and dilations, A and B are close to the same convex set?

This question has a long history. First of all, when n = 1 and A = B, inequality (1.2) reduces to
|A+A| ≥ 2|A|. If one approximates sets in R with finite unions of intervals, then one can translate
the problem to Z, and in the discrete setting the question becomes a well studied problem in additive
combinatorics. There are many results on this topic, usually called Freiman-type theorems. The
precise statement in one dimension is the following.

Theorem 1.1. Let A ⊂ R be a measurable set, and denote by co(A) its convex hull. Then

|A+A| − 2|A| ≥ min{| co(A) \A|, |A|},

or, equivalently, if |A| > 0 then

δ(A) ≥ 1

2
min

{
| co(A) \A|
|A|

, 1

}
.

This theorem can be obtained as a corollary of a result of G. Freiman [12] about the structure
of additive subsets of Z. (See [13] or [17, Theorem 5.11] for a statement and a proof.) However,
it turns out that to prove of Theorem 1.1 one only needs weaker results, and one can find an
elementary self-contained proof of Theorem 1.1 in [8, Section 2].

In the case n = 1 but A 6= B, the following sharp stability result holds again as a consequence of
classical theorems in additive combinatorics (an elementary proof of this result can be given using
Kemperman’s theorem [3, 4]):

Theorem 1.2. Let A,B ⊂ R be measurable sets. If |A + B| < |A| + |B| + δ for some δ ≤
min{|A|, |B|}, then | co(A) \A| ≤ δ and | co(B) \B| ≤ δ.

Concerning the higher dimensional case, in [1, 2] M. Christ proved a qualitative stability result
for (1.2), giving a positive answer to the stability question raised above. However, his results do
not provide any quantitative control.

On the quantitative side, V. I. Diskant [5] and H. Groemer [15] obtained some stability results
for convex sets in terms of the Hausdorff distance. More recently, in [10, 11], the first author
together with F. Maggi and A. Pratelli obtained a sharp stability result in terms of the L1 distance,
still on convex sets. Since this last result will be used later in our proofs, we state it in detail.
(Here and from now on, E∆F denotes the symmetric difference between sets E and F , that is
E∆F = (E \ F ) ∪ (F \ E).)

Theorem 1.3. Let A,B ⊂ Rn be convex sets, and define

A (A,B) := inf
x0∈Rn

{
|A∆(x0 + τB)|

|A|
: τ =

(
|A|
|B|

)1/n
}
, σ(A,B) := max

{
|A|
|B|

,
|B|
|A|

}
.
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There exists a computable dimensional constant C0(n) such that

|A+B|1/n ≥
(
|A|1/n + |B|1/n

){
1 +

A (A,B)2

C0(n)σ(A,B)1/n

}
.

More recently, in [8, Theorem 1.2 and Remark 3.2], the present authors proved a quantitative
stability result when A = B: given a measurable set A ⊂ Rn with |A| > 0, set

δ(A) :=

∣∣1
2(A+A)

∣∣
|A|

− 1 =
|A+A|
|2A|

− 1. (1.3)

Then, a power of δ(A) dominates the measure of the difference between A and its convex hull co(A).

Theorem 1.4. Let A ⊂ Rn be a measurable set of positive measure. There exist computable
dimensional constants δn, cn > 0 such that if δ(A) ≤ δn, then

δ(A)αn ≥ cn
| co(A) \A|
|A|

, αn :=
1

8n−1n! [(n− 1)!]2
.

In addition, there exists a convex set K ⊂ Rn such that

δ(A)nαn ≥ cn
|K∆A|
|A|

.

After that, we investigated the general case A 6= B. Notice that, after a dilation, one can always
assume |A| = |B| = 1 while replacing the sum A+B by a convex combination St := tA+ (1− t)B.
It follows by (1.2) that |St| = 1 + δ for some δ ≥ 0. The main theorem in [9] is a quantitative
version of Christ’s result. Since the proof is by induction on the dimension, it is convenient to allow
the measures of |A| and |B| not to be exactly equal, but just close in terms of δ. Here is the main
result of that paper.

Theorem 1.5. Let n ≥ 2, let A,B ⊂ Rn be measurable sets, and define St := tA + (1 − t)B for
some t ∈ [τ, 1− τ ], 0 < τ ≤ 1/2. There are computable dimensional constants Nn and computable
functions Mn(τ), εn(τ) > 0 such that if∣∣|A| − 1

∣∣+
∣∣|B| − 1

∣∣+
∣∣|St| − 1

∣∣ ≤ δ (1.4)

for some δ ≤ e−Mn(τ), then there exists a convex set K ⊂ Rn such that, up to a translation,

A,B ⊂ K and |K \A|+ |K \B| ≤ τ−Nnδεn(τ).

Explicitly, we may take

Mn(τ) =
23n+2

n3n | log τ |3n

τ3n
, εn(τ) =

τ3n

23n+1n3n | log τ |3n
.
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In particular, the measure of the difference between the sets A and B and their convex hull is
bounded by a power δε, confirming a conjecture of Christ [1].

The result above provides a general quantitative stability for the Brunn-Minkowski inequality
in arbitrary dimension. However the exponent degenerates very quickly as the dimension increases
(much faster than in Theorem 1.4), and, in addition, the argument in [9] is very long and involved.
The aim of this paper is to provide a shorter and more elementary proof when |A| = |B| > 0, that
we believe to be of independent interest.

After a dilation, one can assume with no loss of generality that |A| = |B| = 1. In this case, it
follows by (1.2) that |12(A + B)| = 1 + δ for some δ ≥ 0, and we want to show that a power of δ
controls the closeness of A and B to the same convex set K. Again, as in the previous theorem, it
will be convenient to allow the measures of |A| and |B| not to be exactly equal, but just close in
terms of δ.

Here is the main result of this paper:

Theorem 1.6. Let A,B ⊂ Rn be measurable sets, and define their semi-sum S := 1
2(A+B). There

exist computable dimensional constants δn, Cn > 0 such that if∣∣|A| − 1
∣∣+
∣∣|B| − 1

∣∣+
∣∣|S| − 1

∣∣ ≤ δ (1.5)

for some δ ≤ δn, then there exists a convex set K ⊂ Rn such that, up to a translation,

A,B ⊂ K and |K \A|+ |K \B| ≤ Cnδβn ,

where

β1 := 1, βn :=
1

26n−53n−1n!(n− 1)!

n∏
k=1

α2
k ∀n ≥ 2,

and αk is given by Theorem 1.4. (Recall that |S| is the outer measure of S if S is not measurable.)

The proof of this theorem is specific to the case |A| near |B|. It uses a symmetrization and other
techniques introduced by Christ [2, 3], Theorems 1.3 and 1.4, and two propositions of independent
interest, Propositions 2.5 and 2.6 below. See Section 3 for further discussion of the strategy of the
proof.

Acknowledgements: AF was partially supported by NSF Grant DMS-1262411 and NSF Grant
DMS-1361122. DJ was partially supported by NSF Grant DMS-1069225 and DMS-1500771. This
work started during AF’s visit at MIT during the Fall 2012. AF wishes to thank the Mathematics
Department at MIT for its warm hospitality.

2 Notation and preliminary results

Let Hk denote the k-dimensional Hausdorff measure on Rn. Denote by x = (y, t) ∈ Rn−1 × R a
point in Rn, and let π : Rn → Rn−1 and π̄ : Rn → R denote the canonical projections, i.e.,

π(y, t) := y and π̄(y, t) := t.

4



Given a compact set E ⊂ Rn, y ∈ Rn−1, and λ > 0, we use the notation

Ey := E ∩ π−1(y) ⊂ {y} × R, E(t) := E ∩ π̄−1(t) ⊂ Rn−1 × {t}, (2.1)

E(λ) :=
{
y ∈ Rn−1 : H1(Ey) > λ

}
. (2.2)

Following Christ [2], we consider two symmetrizations and combine them. For our purposes (see
the proof of Proposition 2.5), it is convenient to use a definition of Schwarz symmetrization that
is slightly different from the classical one. (In the usual definition of Schwarz symmetrization
E∗(t) = ∅ whenever Hd−1

(
E(t)

)
= 0.)

Definition 2.1. Let E ⊂ Rn be a compact set. We define the Schwarz symmetrization E∗ of E
as follows. For each t ∈ R,

- If Hd−1
(
E(t)

)
> 0, then E∗(t) is the closed disk centered at 0 ∈ Rn−1 with the same measure.

- If Hd−1
(
E(t)

)
= 0 but E(t) is non-empty, then E∗(t) = {0}.

- If E(t) is empty, then E∗(t) is empty as well.

We define the Steiner symmetrization E? of E so that for each y ∈ Rn−1, the set E?y is empty if
H1(Ey) = 0; otherwise it is the closed interval of length H1(Ey) centered at 0 ∈ R. Finally, we
define E\ := (E?)∗.

As for instance in [2, Section 2], both the Schwarz and the Steiner symmetrization preserve the
measure of sets, and the \-symmetrization preserves the measure of the sets E(λ). The following
statement collects all these results.

Lemma 2.2. Let A,B ⊂ Rn be compact sets. Then |A| = |A∗| = |A?| = |A\|,

|A∗ +B∗| ≤ |A+B|, |A? +B?| ≤ |A+B|, |A\ +B\| ≤ |A+B|,

and, for almost every λ > 0,∣∣A \ π−1
(
A(λ)

)∣∣ =
∣∣A\ \ π−1

(
A\(λ)

)∣∣ and Hn−1
(
A(λ)

)
= Hn−1

(
A\(λ)

)
,

where A(λ) :=
{
y ∈ Rn−1 : H1(Ay) > λ

}
and A\(λ) :=

{
y ∈ Rn−1 : H1(A\y) > λ

}
.

Another important fact is that a bound on the measure of A + B in terms of the measures of
A and B gives bounds relating the sizes of

sup
y
H1(Ay), sup

y
H1(By), Hn−1

(
π(A)

)
, Hn−1

(
π(B)

)
.

We refer to [9, Lemma 3.2] for a proof.

Lemma 2.3. Let A,B ⊂ Rn be compact sets such that |A|, |B| ≥ 1/2 and |12(A + B)| ≤ 2. There
exists a dimensional constant M > 1 such that

supyH1(Ay)

supyH1(By)
∈ (1/M,M),

Hn−1
(
π(A)

)
Hn−1

(
π(B)

) ∈ (1/M,M),
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(
sup
y
H1(Ay)

)
Hn−1

(
π(A)

)
∈ (1/M,M),

(
sup
y
H1(By)

)
Hn−1

(
π(B)

)
∈ (1/M,M).

Thus, up a measure preserving affine transformation of the form (y, t) 7→ (τy, τ1−nt) with τ >
0, all the quantities supyH1(Ay), supyH1(By), Hn−1

(
π(A)

)
, Hn−1

(
π(B)

)
are of order one. In

particular,
Hn−1

(
π(A)

)
+Hn−1

(
π(B)

)
+ sup

y
H1(Ay) + sup

y
H1(By) ≤M. (2.3)

In this case, we say that A and B are M -normalized.

The following result of Christ [1, Lemma 4.1] shows that suptHn−1
(
A(t)

)
and suptHn−1

(
B(t)

)
are close in terms of δ:

Lemma 2.4. Let A,B ⊂ Rn be compact sets, define S := 1
2(A + B), and assume that (1.5) holds

for some δ ≤ 1/2. Also, suppose that A and B are M -normalized as defined in Lemma 2.3. Then,
there exists a dimensional constant C > 0 such that

suptHn−1
(
A(t)

)
suptHn−1

(
B(t)

) ∈ (1− Cδ1/2, 1 + Cδ1/2
)
.

Two other key ingredients in our proof of Theorem 1.6 are the following propositions, whose
proofs are postponed to Section 4:

Proposition 2.5. Let A,B ⊂ Rn be compact sets, define S := 1
2(A + B), and assume that (1.5)

holds for some δ ≤ 1/2. Also, suppose that we can find a convex set K ⊂ Rn such that

|S∆K| ≤ Cδα

for some α > 0, where C > 0 is a dimensional constant. Then there exists a dimensional constant
C ′ > 0 such that

| co(S) \ S| ≤ C ′δα/2n.

Proposition 2.6. Let A,B ⊂ Rn be compact sets, define S := 1
2(A + B), and assume that (1.5)

holds for some δ ≤ 1/2. Also, suppose that

| co(S) \ S| ≤ Cδβ (2.4)

for some β > 0, where C > 0 is a dimensional constant. Then, up to a translation,

|A∆B| ≤ C ′δβ/2

and there exists a convex set K containing both A and B such that

|K \A|+ |K \B| ≤ C ′δβ/2n,

for some dimensional constant C ′ > 0.
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3 Proof of Theorem 1.6

As explained in [8], by inner approximation1 it suffices to prove the result when A,B are compact
sets. Hence, let A and B be compact, define S := 1

2(A+B), and assume that (1.5) holds. We want
to prove that there exists a convex set K such that, up to a translation,

A,B ⊂ K, |K \A|+ |K \B| ≤ Cnδβn .

Moreover, since the statement and the conclusions are invariant under measure preserving affine
transformations, by Lemma 2.3 we can assume that A and B are M -normalized (see (2.3)).

Ultimately, we wish to show that, up to translation, each of A, B, and S is of nearly full measure
in the same convex set. The strategy of the proof is to show first that S is close to a convex set,
and then apply Propositions 2.5 and 2.6. To obtain the closeness of S to a convex set, we would
like prove that |12(S + S)| is close to |S| and then apply Theorem 1.4. It is simpler, however, to
construct a subset S̄ ⊂ S such that |S \ S̄| is small and |12(S̄ + S̄)| is close to |S̄|.

To carry out our argument, one important ingredient will be to use the inductive hypothesis
on the level sets A(λ) and B(λ) defined in (2.2). However, two difficulties arise here: first of all, to
apply the inductive hypothesis, we need to know that Hn−1(A(λ)) and Hn−1(B(λ)) are close. In
addition, the Brunn-Minkowski inequality does not have a natural proof by induction unless the
measures of all the level sets Hn−1(A(λ)) and Hn−1(B(λ)) are the nearly same. (See (3.11) below.)
Hence, it is important for us to have a preliminary quantitative estimate on the difference between
Hn−1(A(λ)) and Hn−1(B(λ)) for most λ > 0. For this we follow an approach used first in [2] and
readapted in [9], in which we begin by showing our theorem in the special case of symmetrized
sets A = A\ and B = B\ (recall Definition 2.1). Thanks to Lemma 2.2, this will give us the
desired closeness between Hn−1(A(λ)) and Hn−1(B(λ)) for most λ > 0, which allows us to apply
the strategy described above and prove the theorem in the general case.

Throughout the proof, C will denote a generic constant depending only on the dimension, which
may change from line to line.

3.1 The case A = A\ and B = B\

Let A,B ⊂ Rn be compact sets satisfying A = A\, B = B\. Since

π
(
A(t)

)
⊂ π

(
A(0)

)
= π(A) and π

(
B(t)

)
⊂ π

(
B(0)

)
= π(B) are disks centered at the origin,

applying Lemma 2.4 we deduce that

Hn−1
(
π(A)∆π(B)

)
≤ Cδ1/2. (3.1)

Hence, if we define

S̄ :=
⋃

y∈π(A)∩π(B)

Ay +By
2

,

1The approximation of A (and analogously for B) is by a sequence of compact sets Ak ⊂ A such that |Ak| → |A|
and | co(Ak)| → | co(A)|. One way to construct such sets is to define Ak := A′k ∪ Vk, where A′k ⊂ A are compact sets
satisfying |A′k| → |A|, and Vk ⊂ Vk+1 ⊂ A are finite sets satisfying | co(Vk)| → | co(A)|.
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then S̄y ⊂ Sy for all y ∈ Rn−1. In addition, using (1.5), (2.3), and (3.1), we have

1 + δ ≥ |S| =
∫
Rn−1

H1(Sy) dy ≥
∫
π(A)∩π(B)

H1(Sy) dy ≥
∫
π(A)∩π(B)

H1(S̄y) dy

= |S̄| ≥ 1

2

∫
π(A)∩π(B)

H1(Ay) dy +
1

2

∫
π(A)∩π(B)

H1(By) dy

≥ |A|+ |B|
2

−MHn−1
(
π(A)∆π(B)

)
≥ 1− Cδ1/2,

which implies (since S̄ ⊂ S)
|S \ S̄| ≤ Cδ1/2. (3.2)

Furthermore, since each section Sy is an interval centered at 0 ∈ R, for all y′, y′′ ∈ π(A) ∩ π(B)

such that y′+y′′

2 = y,

S̄y′ + S̄y′′ =
Ay′ +By′

2
+
Ay′′ +By′′

2
=
Ay′ +By′′

2
+
Ay′′ +By′

2
⊂ Sy + Sy = 2Sy,

which gives
S̄ + S̄

2
⊂ S. (3.3)

Recalling (1.3), by (3.2) and (3.3) we obtain that δ(S̄) ≤ Cδ1/2. Hence, we can apply Theorem 1.4
to S̄ to find a convex set K̄ such that

|S̄∆K̄| ≤ Cδnαn/2.

Hence, by (3.3),
|S∆K̄| ≤ Cδnαn/2,

and using Propositions 2.5 and 2.6 we deduce that, up to a translation, there exists a convex set
K such that A ∪B ⊂ K and

|A∆B| ≤ Cδαn/8, |K \A|+ |K \B| ≤ Cδαn/8n. (3.4)

Notice that, because A = A\ and B = B\, it is easy to check that the above properties still hold
with K\ in place of K. Hence, in this case, without loss of generality one can assume that K = K\.

3.2 The general case

Since, by Theorem 1.2, the result is true when n = 1, we may assume that we already proved
Theorem 1.6 through n− 1, and we want to show its validity for n.

Step 1: There exist a dimensional constant ζ > 0 and λ̄ ∼ δζ such that we can apply
the inductive hypothesis to A(λ̄) and B(λ̄).

Let A\ and B\ be as in Definition 2.1 and denote

ᾱ :=
αn
8
. (3.5)

8



Thanks to Lemma 2.2, A\ and B\ still satisfy (1.5), so we can apply the result proved in Section
3.1 above to get (see (3.4))∫

Rn−1

∣∣H1
(
A\y
)
−H1

(
B\
y

)∣∣ dy ≤ ∫
Rn−1

∣∣H1
(
A\y∆B

\
y

)∣∣ dy = |A\∆B\| ≤ Cδᾱ (3.6)

and
K ⊃ A\ ∪B\, |K \A\|+ |K \B\| ≤ Cδᾱ/n (3.7)

for some convex set K = K\.
In addition, because A and B are M -normalized (see (2.3)), so are A\ and B\, and by (3.7) we

deduce that there exists a dimensional constant Rn > 0 such that

K ⊂ BRn . (3.8)

Also, by (3.6) and Chebyshev’s inequality we obtain that, except for a set of measure ≤ Cδᾱ/2,∣∣H1
(
A\y
)
−H1

(
B\
y

)∣∣ ≤ δᾱ/2.
Thus, recalling Lemma 2.2, for almost every λ > 0

Hn−1
(
A(λ)

)
= Hn−1

(
A\(λ)

)
≤ Hn−1

(
B\(λ− δᾱ/2)

)
+ Cδᾱ/2 = Hn−1

(
B(λ− δᾱ/2)

)
+ Cδᾱ/2.

Since, by (2.3),∫ M

0

(
Hn−1

(
B(λ)

)
−Hn−1

(
B(λ+ δᾱ/2)

))
dλ =

∫ δᾱ/2

0
Hn−1

(
B(λ)

)
dλ ≤Mδᾱ/2,

by Chebyshev’s inequality we deduce that

Hn−1
(
A(λ)

)
≤ Hn−1

(
B(λ)

)
+ Cδᾱ/4

for all λ outside a set of measure ≤ Cδᾱ/4. Exchanging the roles of A and B we obtain that there
exists a set F ⊂ [0,M ] such that

H1(F ) ≤ Cδᾱ/4,
∣∣Hn−1

(
A(λ)

)
−Hn−1

(
B(λ)

)∣∣ ≤ Cδᾱ/4 ∀λ ∈ [0,∞] \ F. (3.9)

Using the elementary inequality(a+ b

2

)n−1
≥ an−1 + bn−1

2
− C|a− b|2 ∀ 0 ≤ a, b ≤M,

and replacing a and b with a1/(n−1) and b1/(n−1), respectively, we get(a1/(n−1) + b1/(n−1)

2

)n−1
≥ a+ b

2
− C|a− b|2/(n−1) ∀ 0 ≤ a, b ≤M (3.10)

(notice that |a1/(n−1) − b1/(n−1)| ≤ |a− b|1/(n−1)). Finally, it is easy to check that

A(λ) + B(λ)

2
⊂ S(λ) ∀λ > 0.
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Hence, by the Brunn-Minkowski inequality (1.2) applied to A(λ) and B(λ), using (1.5), (2.3), (3.10),
and (3.9), we get

1 + δ ≥ |S| =
∫ M

0
Hn−1

(
S(λ)

)
dλ

≥ 1

2n−1

∫ M

0

(
Hn−1

(
A(λ)

)1/(n−1)
+Hn−1

(
B(λ)

)1/(n−1)
)n−1

dλ

≥ 1

2

∫ M

0

(
Hn−1

(
A(λ)

)
+Hn−1

(
B(λ)

))
dλ

− C
∫ M

0

∣∣Hn−1
(
A(λ)

)
−Hn−1

(
B(λ)

)∣∣2/(n−1)
dλ

=
|A|+ |B|

2
− Cδᾱ/[2(n−1)]

≥ 1− Cδᾱ/[2(n−1)].

(3.11)

We also observe that, since K = K\, by Lemma 2.2, (3.8), and [2, Lemma 4.3], for almost every
λ > 0 we have ∣∣A \ π−1

(
A(λ)

)∣∣ =
∣∣A\ \ π−1

(
A\(λ)

)∣∣
≤
∣∣K \ π−1

(
K(λ)

)∣∣+M Hn−1
(
A\(λ)∆K(λ)

)
≤ Cλ2 +M Hn−1(A\(λ)∆K(λ)),

(3.12)

and analogously for B. Also, by (3.7),∫ M

0

(
Hn−1

(
A\(λ)∆K(λ)

)
+Hn−1

(
B\(λ)∆K(λ)

))
dλ ≤ |K \A\|+ |K \B\| ≤ Cδᾱ/n. (3.13)

Define

η := min

{
ᾱ

2(n− 1)
,
ᾱ

4

}
, (3.14)

and note that η ≤ ᾱ/n. Let ζ ∈ (0, η) to be fixed later. Then by (3.9), (3.11), (3.12), (3.13), and
by Chebyshev’s inequality, we can find a level

λ̄ ∈ [10δζ , 20δζ ] (3.15)

such that ∣∣Hn−1
(
A(λ̄)

)
−Hn−1

(
B(λ̄)

)∣∣ ≤ Cδη. (3.16)

2n−1Hn−1
(
S(λ̄)

)
≤
(
Hn−1

(
A(λ̄)

)1/(n−1)
+Hn−1

(
B(λ̄)

)1/(n−1)
)n−1

+ Cδη−ζ , (3.17)∣∣A \ π−1
(
A(λ̄)

)∣∣+
∣∣B \ π−1

(
B(λ̄)

)∣∣ ≤ C(δ2ζ + δη−ζ
)
, (3.18)

In addition, from the properties Hn−1
(
A(λ)

)
≤M for any λ > 0 (see (2.3)),

∫M
0 H

n−1
(
A(λ)

)
dλ =

|A| ≥ 1− δ, and s 7→ Hn−1
(
A(λ)

)
is a decreasing function, we deduce that

1

2M
≤ Hn−1

(
A(λ)

)
≤M ∀λ ∈

(
0, (2M)−1

)
.
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The same holds for B and S, hence

Hn−1
(
S(λ̄)

)
,Hn−1

(
A(λ̄)

)
,Hn−1

(
B(λ̄)

)
∈
[
(2M)−1,M

]
provided δ is small enough. Set ρ := 1/Hn−1

(
A(λ̄)

)1/(n−1) ∈ [1/M1/(n−1), (2M)1/(n−1)], and define

A′ := ρA(λ̄), B′ := ρB(λ̄), S′ := ρS(λ̄).

By (3.17) and (3.16) we get

Hn−1(A′) = 1,
∣∣Hn−1(B′)− 1

∣∣ ≤ Cδη, Hn−1(S′) ≤ 1 + Cδη−ζ .

while, by (1.2),

Hn−1(S′)1/(n−1) ≥ H
n−1(A′)1/(n−1) +Hn−1(B′)1/(n−1)

2
≥ 1− Cδη,

therefore ∣∣Hn−1(A′)− 1
∣∣+
∣∣Hn−1(B′)− 1

∣∣+
∣∣Hn−1(S′)− 1

∣∣ ≤ Cδη−ζ .
Thus, by the inductive hypothesis of Theorem 1.6, up to a translation there exists a (n − 1)-
dimensional convex set Ω′ such that

Ω′ ⊃ A′ ∪B′, Hn−1
(
Ω′ \A′

)
+Hn−1

(
Ω′ \B′

)
≤ Cδ(η−ζ)βn−1 ,

and defining Ω := Ω′/ρ we obtain (recall that 1/ρ ≤M1/(n−1))

Ω ⊃ A(λ̄) ∪ B(λ̄), Hn−1
(
Ω \ A(λ̄)

)
+Hn−1

(
Ω \ B(λ̄)

)
≤ Cδ(η−ζ)βn−1 . (3.19)

Step 2: We apply Theorem 1.2 to the sets Ay and By for most y ∈ A(λ̄) ∩ B(λ̄).

Define C := A(λ̄) ∩ B(λ̄) ⊂ S(λ̄). By (3.18), (3.19), and (2.3), we have

|A \ π−1(C)|+ |B \ π−1(C)| ≤
∣∣A \ π−1

(
A(λ̄)

)∣∣+
∣∣B \ π−1

(
B(λ̄)

)∣∣
+

∫
(A(λ̄))\(B(λ̄))

H1(Ay) dy +

∫
(B(λ̄))\(A(λ̄))

H1(By) dy

≤ C
(
δ2ζ + δη−ζ

)
+M

(
Hn−1

(
Ω \ A(λ̄)

)
+Hn−1

(
Ω \ B(λ̄)

))
≤ C

(
δ2ζ + δη−ζ + δ(η−ζ)βn−1

)
≤ Cδ2ζ

(3.20)

provided we choose

ζ :=
ηβn−1

3
(3.21)

(recall that βn−1 ≤ 1). Hence, by (1.5) and (3.20),∫
C
H1
(
Sy \

Ay +By
2

)
dy ≤

∫
C

[
H1(Sy)−

1

2

(
H1(Ay) +H1(By)

)]
dy

= |S ∩ π−1(C)| − |A ∩ π
−1(C)|+ |B ∩ π−1(C)|

2

≤ |S| − |A|+ |B|
2

+
|A \ π−1(C)|+ |B \ π−1(C)|

2

≤ Cδ2ζ .

(3.22)
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Write C as C1 ∪ C2, where

C1 :=
{
y ∈ C : 2H1(Sy)−H1(Ay)−H1(By) ≤ δζ/2

}
, C2 := C \ C1.

By Chebyshev’s inequality and (3.22),

Hn−1
(
C2

)
≤ Cδζ , (3.23)

while, recalling (3.15),

min
{
H1(Ay),H1(By)

}
≥ λ̄ ≥ 10δζ > δζ/2 ∀ y ∈ C1.

Hence, by Theorem 1.2 applied to Ay, By ⊂ R for y ∈ C1, we deduce that

H1
(
co(Ay) \Ay

)
+H1

(
co(By) \By

)
≤ δζ . (3.24)

Let Ĉ1 ⊂ C1 denote the set of y ∈ C1 such that

H1
(
Sy \

Ay +By
2

)
≤ δζ , (3.25)

and notice that, by (3.22) and Chebyshev’s inequality, Hn−1(C1\Ĉ1) ≤ Cδζ . Then choose a compact
set C′1 ⊂ Ĉ1 such that Hn−1(Ĉ1 \ C′1) ≤ δζ to obtain

Hn−1(C1 \ C′1) ≤ Cδζ . (3.26)

Step 3: We find S̄ ⊂ S so that |S \ S̄| and δ(S̄) are small.

Define the compact set

S̄ :=
⋃
y∈C′1

Ay +By
2

⊂ Rn.

Observe, thanks to (3.20), (3.23), (3.26), (2.3), and (1.5),

2|S̄| ≥
∫
C′1
H1(Ay) dy +

∫
C′1
H1(By) dy

≥ |A|+ |B| − |A \ π−1(C)| − |B \ π−1(C)| −M Hn−1(C \ C′1)

≥ 2|S| − Cδζ .

So, since S̄ ⊂ S,
|S∆S̄| ≤ Cδζ . (3.27)

Now, we want to estimate the measure of 1
2(S̄ + S̄). First of all, since

Sy =
⋃

2y=y′+y′′

Ay′ +By′′

2
, (3.28)

12



by (3.25) we get

H1

(( ⋃
2y=y′+y′′

Ay′ +By′′

2

)
\ Ay +By

2

)
≤ δζ ∀ y ∈ C′1. (3.29)

Also, if we define the characteristic functions

χAy (λ) :=

{
1 if (y, λ) ∈ Ay
0 otherwise,

χA,∗y (λ) :=

{
1 if (y, λ) ∈ co(Ay)
0 otherwise,

and analogously for By, by (3.24) we have the following estimate on their convolutions:

‖χA,∗y′ ∗ χ
B,∗
y′′ − χ

A
y′ ∗ χBy′′‖L∞(R) ≤ ‖χ

B,∗
y′′ − χ

B
y′′‖L1(R) + ‖χA,∗y′ − χ

A
y′‖L1(R)

= H1
(
co(By′′) \By′′

)
+H1

(
co(Ay′) \Ay′

)
≤ δζ < 3δζ ∀ y′, y′′ ∈ C′1.

(3.30)

Recalling that π̄ : Rn → R is the orthogonal projection onto the last component (that is, π̄(y, t) = t),
denote by [a, b] the interval π̄

(
co(Ay′) + co(By′′)

)
, and notice that, since by construction

min{H1(Ay),H1(By)} ≥ λ̄ ≥ 10δζ ∀ y ∈ C′1
(see (3.15)), this interval has length greater than 20δζ . Also, it is easy to check that the function
χA,∗y′ ∗χ

B,∗
y′′ is supported on [a, b], has slope equal to 1 (resp. −1) in [a, a+3δζ ] (resp. [b−3δζ , b]), and

it is greater than 3δζ in [a+3δζ , b−3δζ ]. Hence, since π̄(Ay′+By′′) contains the set {χAy′ ∗χBy′′ > 0},
by (3.30) we deduce that

π̄
(
Ay′ +By′′

)
⊃ [a+ 3δζ , b− 3δζ ], (3.31)

which implies in particular that

H1
(
co(Ay′) + co(By′′)

)
≤ H1

(
Ay′ +By′′

)
+ 6δζ ∀ y′, y′′ ∈ C′1. (3.32)

Also, by the same argument as in [8, Step 2-a], if we denote by

[αy, βy] := π̄
(
co(Ay) + co(By)

)
,

using (3.25) and (3.31) we have

π̄
(
co(Ay′) + co(By′′)

)
⊂ [αy − 16δζ , βy + 16δζ ] ∀ y′, y′′, y =

y′ + y′′

2
∈ C ′1 . (3.33)

(Compare with [8, Equation (3.25)].)
We now estimate the size of

[
1
2(S̄ + S̄)

]
y
. Observe that, for all y ∈ C ′1,

[
1
2(S̄ + S̄)

]
y

=
⋃

2y=y′+y′′, y′,y′′∈C′1

( 1
2

(
Ay′ +By′

)
+ 1

2

(
Ay′′ +By′′

)
2

)

=
⋃

2y=y′+y′′, y′,y′′∈C′1

( 1
2

(
Ay′ +By′′

)
+ 1

2

(
Ay′′ +By′

)
2

)

⊂ 1

2

( ⋃
2y=y′+y′′, y′,y′′∈C′1

1
2

(
Ay′ +By′′

)
+

⋃
2y=y′+y′′, y′,y′′∈C′1

1
2

(
Ay′ +By′′

))
.

13



Hence, by (3.33) we deduce that each of the latter sets is contained inside the convex set {y} ×
[αy − 16δζ , βy + 16δζ ], so also their semi-sum is contained in the same set, and using (3.32) with
y′ = y′′ = y we get

H1
(
[(S̄ + S̄)/2]y

)
≤ H1

(co(Ay) + co(By)

2

)
+ 16δζ

≤ H1
(Ay +By

2

)
+ 22δζ

= H1
(
S̄y
)

+ 22δζ ∀ y ∈ C ′1.

(3.34)

In order to estimate
[

1
2(S̄ + S̄)

]
y

when y ∈ C′1+C′1
2 \ C ′1 we argue as follows: by (3.33) and the

fact that H1
(
co(Ay)

)
and H1

(
co(By)

)
are universally bounded (see (2.3) and (3.24)), the following

holds: if we denote by cA(y) the barycenter of co(Ay) (and analogously for B and S̄), we have∣∣cA(y′) + cB(y′′)− 2cS̄(y)
∣∣ ≤ C ∀ y, y′, y′′ ∈ C′1, y =

y′ + y′′

2

(notice that co(S̄y) = co(Ay) + co(By)). Exchanging the role of A and B and adding up the two
inequalities, we deduce that∣∣cS̄(y′) + cS̄(y′′)− 2cS̄(y)

∣∣ ≤ C ∀ y, y′, y′′ ∈ C′1, y =
y′ + y′′

2
.

As shown in [8, Step 3], this estimate combined with the fact that C′1 is almost of full measure
inside the convex set Ω (see (3.19), (3.23), and (3.26)) proves that, up to an affine transformation
of the form

Rn−1 × R 3 (y, t) 7→ (Ty, t− Ly) + (y0, t0) (3.35)

with T : Rn−1 → Rn−1, L : Rn−1 → R, det(T ) = 1, and (y0, t0) ∈ Rn, the set S̄ is universally
bounded, say S̄ ⊂ BR for some dimensional constant R. This implies that

[
1
2(S̄ + S̄)

]
y
⊂ [−R,R],

so H1
([

1
2(S̄ + S̄)

]
y

)
≤ 2R.

Hence, since 1
2(C′1 + C′1) ⊂ Ω, by (3.34), (3.19), and (3.21),∣∣∣∣ S̄ + S̄

2
\ S̄
∣∣∣∣ =

∫
[ 1
2

(C′1+C′1)]∩C′1
H1
(
[(S̄ + S̄)/2]y

)
−H1

(
S̄y
)
dy

+

∫
[ 1
2

(C′1+C′1)]\C′1
H1
(
[(S̄ + S̄)/2]y

)
dy

≤ 22δζ Hn−1(Ω) + 2RHn−1(Ω \ C′1) ≤ Cδζ ,

that is,
δ(S̄) ≤ Cδζ .

Step 4: Conclusion.

By the previous step we have that δ(S̄) ≤ Cδζ . Hence, applying Theorem 1.4 to S̄ we find a convex
set K̄ such that

|S̄∆K̄| ≤ Cδnαnζ ,
14



so, by (3.27),
|S∆K̄| ≤ Cδnαnζ .

Using this estimate together with Propositions 2.5 and 2.6 we deduce that, up to a translation,
there exists a convex set K convex such that A ∪B ⊂ K and

|K \A|+ |K \B| ≤ Cδαnζ/4n.

Recalling the definition of ζ (see (3.5), (3.14), (3.21)), we see that

βn :=
αnζ

4n
= min

{
1

n− 1
,
1

2

}
α2
n

3 · 26n
βn−1.

Since β1 = 1 (by Theorem 1.2), it is easy to check that

βn =
1

26n−53n−1n!(n− 1)!

n∏
k=1

α2
k ∀n ≥ 2,

concluding the proof.

4 Technical results

As in the previous section, we use C to denote a generic constant depending only on the dimension,
which may change from line to line.

4.1 Proof of Proposition 2.5

Assume that
|S∆K| ≤ Cδα

for some α ∈ (0, 1]. By John’s Lemma [16], after a volume preserving affine transformation, we
can assume that Brn ⊂ K ⊂ Bnrn , with rn = rn(K) > 0 bounded above and below by positive
dimensional constants. Note, however, that with this normalization, we will not be able to assume
that A and B are M -normalized, since we have already chosen a different affine normalization.

We want to prove that
S ⊂ (1 + Cδα/2n)K. (4.1)

Let x̄0 ∈ S \K, and set ρ := dist(x̄0,K) = |x̄0− x̄1| with x̄1 ∈ K. With no loss of generality we
can assume that x̄1 = τen, for some τ > 0, x̄0 = (τ + ρ)en, and K ⊂ {xn ≤ τ}. We need to prove
that ρ ≤ Cδα/2n.

Let us consider the sets A∗, B∗, S∗, K∗ obtained from A, B, S, K performing a Schwarz
symmetrization around the en-axis (see Definition 2.1). Set S′ := 1

2(A∗ +B∗). Since

|S∗∆K∗| ≤ |S∆K| ≤ Cδα,

and, by (1.5) (notice that S′ ⊂ S∗ and that |S′| ≥ 1− Cδ by (1.2)),

|S∗ \ S′| = |S∗| − |S′| = |S| − |S′| ≤ Cδ,
15



we get that |S′∆K∗| ≤ Cδα. In addition, K∗ ⊂ {xn ≤ τ}, x̄1 ∈ K∗, and x̄0 ∈ S∗. Hence, without
loss of generality we can assume from the beginning that A = A∗, B = B∗, S = 1

2(A∗ + B∗), and
K = K∗.

For a compact set E ⊂ Rn, recall the notation E(t) ⊂ Rn−1 × {t} in (2.1), and define E[s] ⊂ R
by

E[s] :=
{
t : Hn−1

(
E(t)

)
≥ s
}

(4.2)

Since S = 1
2(A+B) we have

A(t) +B(t)

2
⊂ S(t) ∀ t ∈ R,

so, by (1.2) we deduce that

S[s] ⊃ A[s] +B[s]

2
∀ s > 0.

Hence
H1
(
A[s]

)
+H1

(
B[s]

)
≤ 2H1

(
S[s]

)
∀ s > 0, (4.3)

and integrating with respect to s, by (1.5) we get

4δ ≥ 2|S| − |A| − |B| =
∫ ∞

0

(
2H1

(
S[s]

)
−H1

(
A[s]

)
−H1

(
B[s]

))
ds. (4.4)

Recall that K = K∗, so that the canonical projection π(K) onto Rn−1 is a ball. We denote it
BR := π(K), and note that R ≤ nrn, with rn = rn(K) given by John’s lemma at the beginning of
this proof. Then, since |S∆K| ≤ Cδα we have

Cδα ≥ |S \ π−1(BR)| =
∫ ∞
Hn−1(BR)

H1
(
S[s]

)
ds,

so, by (4.3),

|A \ π−1(BR)|+ |B \ π−1(BR)| =
∫ ∞
Hn−1(BR)

(
H1
(
A[s]

)
+H1

(
B[s]

))
ds ≤ Cδα. (4.5)

Hence, recalling that |A| and |B| are ≥ 1− δ, we deduce that∫ Hn−1(BR)

0
H1
(
A[s]

)
ds ≥ 1/2,

∫ Hn−1(BR)

0
H1
(
B[s]

)
ds ≥ 1/2,

and since R is universally bounded (being less than nrn) and both functions

s 7→ H1
(
A[s]

)
, s 7→ H1

(
B[s]

)
are decreasing, there exists a small dimensional constant c′ > 0 such that

min
{
H1
(
A[s]

)
,H1

(
B[s]

)}
≥ c′ ∀ s ∈ (0, c′). (4.6)

Also, by (4.4), ∫ c′

0

(
2H1

(
S[s]

)
−H1

(
A[s]

)
−H1

(
B[s]

))
ds ≤ 4δ, (4.7)
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and since |S∆K| ≤ Cδα and K ⊂ {xn ≤ τ}∫ c′

0
H1
(
S[s] \ (−∞, τ ]

)
ds ≤ |S \ {xn ≤ τ}| ≤ Cδα. (4.8)

Hence, thanks to (4.6), (4.7), (4.8), we use Theorem 1.2 and Chebishev’s inequality to find a value

s̄ ∈ [δα/2, 2δα/2] (4.9)

such that
H1
(
co
(
A[s̄]

)
\A[s̄]

)
+H1

(
co
(
B[s̄]

)
\B[s̄]

)
≤ Cδ1−α/2 ≤ Cδα/2

(notice that α ≤ 1) and
H1
(
S[s̄] \ (−∞, τ ]

)
≤ Cδα/2.

Since 1
2(A[s̄] +B[s̄]) ⊂ S[s̄], this implies

co
(
A[s̄]

)
+ co

(
B[s̄]

)
2

⊂ (−∞, τ + Cδα/2].

Hence, after applying opposite translations along the en-axis to A and B, i.e.,

A 7→ A+ `en, B 7→ B − `en,

for some ` ∈ R, we can assume that

co
(
A[s̄]

)
⊂ (−∞, τ + Cδα/2], co

(
B[s̄]

)
⊂ (−∞, τ + Cδα/2].

Since the sets s 7→ A[s], B[s] are decreasing, we deduce that

co
(
A[s]

)
, co
(
B[s]

)
⊂ (−∞, τ + Cδα/2], ∀ s ≥ s̄. (4.10)

We now want to bound sups>0H1
(
A[s]

)
. (Recall that we cannot assume that A and B are

M -normalized, since we already made an affine transformation to ensure that Brn ⊂ K ⊂ Bnrn .)
Since A = A∗, we have sups>0H1

(
A[s]

)
= supy∈Rn−1 H1(Ay), so, by Lemma 2.3,

sup
s>0
H1
(
A[s]

)
≤ M

Hn−1
(
π(B)

) , Hn−1
(
π(A)

)
Hn−1

(
π(B)

) ∈ (M−1,M). (4.11)

In addition, since π(A) and π(B) are (n− 1)-dimensional disks centered on the en-axis, |S∆K| ≤
Cδα, and Brn ⊂ K ⊂ Bnrn , we easily deduce that

π(A) + π(B)

2
= π(S) ⊃ Brn/2, (4.12)

provided δ is small enough. Hence, combining (4.11) and (4.12) we deduce that Hn−1
(
π(B)

)
is

bounded from away from zero by a dimensional constant, thus

sup
s>0
H1
(
A[s]

)
≤ C. (4.13)
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Hence, by (4.5), (4.10), (4.13), and (4.9),

|A \ {xn ≤ τ}| ≤ |A \ π−1(BR)|+ |π−1(BR) ∩ {τ ≤ xn ≤ τ + Cδα/2}|+
∫ s̄

0
H1
(
A[s]

)
ds

≤ Cδα + Cδα/2 + Cs̄ ≤ Cδα/2,
(4.14)

and, analogously,
|B \ {xn ≤ τ}| ≤ Cδα/2. (4.15)

Now, given r ≥ 0, let us define the sets

A′r := A ∩ {xn ≤ τ − r}, B′r := B ∩ {xn ≤ τ − r}, S′r := S ∩ {xn ≤ τ − r}.

By (4.14) and (4.15) we know that

|A′0|, |B′0| ≥ 1− Cδα/2,

and it is immediate to check that

A′0 +B′r
2

⊂ S′r/2,
A′r +B′0

2
⊂ S′r/2.

Also, since K is a convex set satisfying Brn ⊂ K ⊂ Bnrn , there exists a dimensional constant cn > 0
such that

|K ∩ {τ − r/2 ≤ xn ≤ τ}| ≥ cn min
{
rn, 1

}
.

Hence

|S′r/2| ≤ |S| − |S ∩ {τ − r/2 ≤ xn ≤ τ}|

≤ |S|+ |S∆K| − |K ∩ {τ − r/2 ≤ xn ≤ τ}|
≤ 1 + Cδα − cn min

{
rn, 1

}
,

and by (1.2) applied to A′r and B′0 we get

1− Cδα/2 − C|A ∩ {τ − r ≤ xn ≤ τ}| ≤
|A′r|1/n + |B′0|1/n

2
≤ |S′r/2|

1/n

≤ 1 + Cδα − cn min
{
rn, 1

}
,

which gives
C|A ∩ {τ − r ≤ xn ≤ τ}| ≥ cn min

{
rn, 1

}
− Cδα/2. (4.16)

(and analogously for B)
Since the point x̄0 = (τ + ρ)en belongs to S = (A+B)/2, there as to be a point x̄ ∈ A∪B such

that x̄ · en ≥ (τ + ρ). With no loss of generality, assume that x̄ ∈ B. Then, by (4.16) applied with
r = ρ we get

S ∩ {xn ≥ τ} ⊃
x̄+

(
A ∩ {τ − ρ ≤ xn ≤ τ}

)
2

,

so

Cδα ≥ |S ∩ {xn ≥ τ}| ≥
|A ∩ {τ − ρ ≤ xn ≤ τ}|

2n
≥ cn
C

min
{
ρn, 1

}
− Cδα/2,

which implies ρ ≤ Cδα/2n, proving (4.1).
Hence co(S) ⊂ (1 + Cδα/2n)K, from which the result follows immediately.
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4.2 Proof of Proposition 2.6

Since
co(A) + co(B)

2
= co(S),

by (1.2), (2.4), and (1.5) we have

| co(A)|1/n + | co(B)|1/n ≤ | co(A) + co(B)|1/n

= 2| co(S)|1/n ≤ 2|S|1/n + Cδβ

≤ |A|1/n + |B|1/n + Cδβ

≤ | co(A)|1/n + | co(B)|1/n + Cδβ,

from which we deduce that
| co(A) \A|+ | co(B) \B| ≤ Cδβ. (4.17)

Also, by Theorem 1.3 and the fact that
∣∣| co(A)| − | co(B)|

∣∣ ≤ Cδβαn (see (4.17)) we obtain that,
up to a translation,

| co(A)∆ co(B)| ≤ C
(
δβ/2 + δβ

)
≤ Cδβ/2. (4.18)

This estimate combined with (4.17) implies that

|A∆B| ≤ Cδβ/2.

In addition, if we define K := co(A ∪B), then we will conclude our argument by showing that

|K \A|+ |K \B| ≤ Cδβ/2n. (4.19)

Indeed, by John’s Lemma [16], after a volume preserving affine transformation we can assume that
Br ⊂ co(A) ⊂ Bnr for some radius r bounded above and below by positive dimensional constants.
By (4.18) and a simple geometric argument we easily deduce that

co(B) ⊂
(
1 + Cδβ/2n

)
co(A).

Thus
co(A) ∪ co(B) ⊂ K ⊂

(
1 + Cδβ/2n

)
co(A),

and (4.19) follows by (4.17) and (4.18).
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