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Abstract. Given two bounded open subsets Ω, Λ ⊂ R2, and two densities f and g concentrated
on Ω and Λ respectively, we investigate the regularity of the optimal map ∇ϕ sending f onto
g. We show that, if f and g are both bounded away from zero and infinity, then we can find
two open sets Ω′ ⊂ Ω and Λ′ ⊂ Λ such that f and g are concentrated on Ω′ and Λ′ respectively,
and ∇ϕ : Ω′ → Λ′ is a homeomorphism. Moreover, if f and g are smooth, then ∇ϕ is a smooth
diffeomorphism between Ω′ and Λ′. Finally, we give a quite precise description of the singular
set of ϕ, showing that it is a 1-dimensional manifold of class C1 out of a countable set.

1. Introduction

Let Ω and Λ be two bounded open sets in the plane, and let f : R2 → R and g : R2 → R be
two nonnegative functions such that f = 0 in R2 \ Ω, g = 0 in R2 \ Λ, and∫

Ω
f =

∫
Λ

g = 1.

According to Brenier’s Theorem [4, 5], there exists a globally Lipschitz convex function ϕ : R2 →
R such that ∇ϕ#f = g and ∇ϕ(x) ∈ Λ for L 2-a.e. x ∈ R2. This is a weak way to say that ϕ
solves the Monge-Ampère equation

det(D2ϕ) =
f

g ◦ ∇ϕ
in R2, (1.1)

together with the “boundary condition” ∇ϕ(R2) ⊂ Λ, and we call ϕ a Brenier solution. Assum-
ing that there exists some λ > 0 such that λ ≤ f, g ≤ 1/λ inside Ω and Λ respectively, (1.1)
gives

λ2 ≤ det(D2ϕ) ≤ 1
λ2

in Ω (1.2)

in a weak sense. As shown by Caffarelli [9], if Λ is convex, then ϕ is strictly convex, and it solves
the Monge-Ampère equation (1.2) in the Alexandrov sense (see Section 2 for the definition of
Alexandrov solution). Exploiting this fact, one can develop a satisfactory regularity theory with
goes as follows (see [6, 7, 8, 9]):

(a) If λ ≤ f, g ≤ 1/λ for some λ > 0, then ϕ ∈ C
1,α(λ)
loc (Ω).

(b) If |f − 1|, |g − 1| ≤ ε = ε(p), then ϕ ∈ W 2,p
loc (Ω) (p ∈ [1,∞)).

(c) If f ∈ Ck,α
loc (Ω) and g ∈ Ck,α

loc (Λ), with f, g > 0, then ϕ ∈ Ck+2,α
loc (Ω) (k ≥ 0, α ∈ (0, 1)).

However, if Λ is not convex, one cannot expect for a regularity theory: there exist f and g
smooth such that ϕ 6∈ C1(Ω) (see [9]). The aim of this paper is to understand what can be
said about the regularity of ϕ in this case, and to study the set of singularities of ϕ in terms
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of the geometry of Λ. This problem has been already investigated in [14] and [11, Section 5]
under the assumption that Ω is convex, and under stronger hypotheses on Λ. Let us remark
that the assumption that Ω is convex considerably simplifies the situation: indeed, in that case,
one can apply Caffarelli’s regularity theory to ∇ϕ∗ (ϕ∗ being the Legendre transform of ϕ)
to deduce that ∇ϕ∗(Λ) is an open set of full measure inside Ω, and that ϕ is C1 and strictly
convex inside ∇ϕ∗(Λ). Moreover the geometric hypotheses on Λ assumed by the authors allow
to exclude some of the possible structures which could appear in the singular set (see Figure 3.3).

Here, under some weak assumptions on Ω and Λ, we can prove that there exist two open sets
Ω′ ⊂ Ω and Λ′ ⊂ Λ, with L 2(Ω \ Ω′) = L 2(Λ \ Λ′) = 0, such that ϕ is C1 and strictly convex
inside Ω′, and ∇ϕ is a homeomorphism between Ω′ and Λ′. In particular ϕ is an Alexandrov
solution of (1.2) inside Ω′, and (a)-(b)-(c) above hold with Ω′ in place of Ω (see Theorem 3.1).

We then study the geometry of the set Sing ⊂ Ω where ϕ is not differentiable. Although it
is well-known that the singular set of a convex function is 1-rectifiable, we can prove a more
refined result, showing that each connected component is a C1-manifold out of a countable set
(Theorem 3.4), and giving a bound on the numbers of its connected components which do not
touch ∂Ω in terms of the geometry of Λ (Proposition 3.5). Moreover, as a corollary of the
regularity of ϕ inside Ω′, we also have L 2

(
Sing ∩ Ω

)
= 0. These results generalize and improve

the ones in [14] and [11, Section 5].
The structure of the paper is the following: first, in Section 2 we introduce some notation,

and we recall some useful facts about convex functions. Then in Section 3 we prove the results
described above.

Acknowledgements: My interest on the regularity properties of optimal maps when the do-
mains are not convex was stimulated by Gilles Lebeau. I wish to thank him for this. I am also
thankful to Young-Heon Kim and Ludovic Rifford for fruitful discussions on this subject.

2. Notation and preliminaries

For any real number s ∈ (0, n], we denote by H s(B) the s-dimensional Hausdorff measure of
a Borel set B ⊂ Rn, defined by

H s(B) := sup
δ>0

inf
{ ∞∑

i=1

[diam(Bi)]s

2s
| B ⊂

∞∪
i=1

Bi, diam(Bi) ≤ δ

}
.

With this definition, H n coincides up to a constant factor with the Lebesgue measure L n.

Given two points y0, y1 ∈ Rn, we will denote by [y0, y1] the segment joining them, i.e. the set
of points of the form ty0 + (1 − t)y1, t ∈ [0, 1].

Let ϕ : Rn → R be a convex function. Its subdifferential at a point x is defined by

∂ϕ(x) :=
{
y ∈ Rn | ϕ(z) ≥ ϕ(x) + y · (z − x) ∀ z ∈ Rn

}
.

It is well-known that the map x 7→ ∂ϕ(x) is upper semicontinuous, i.e.

xk → x, yk → y, yk ∈ ∂ϕ(xk) ⇒ y ∈ ∂ϕ(x)
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(see [2, Proposition 2.1]). This implies in particular that x 7→ ∇ϕ(x) is continuous on the set
where ϕ is differentiable. Moreover, ϕ is differentiable at a point x if and only if ∂ϕ(x) is a
singleton. Hence, one can decompose the set of non-differentiability points according to the
dimension of the singular set:

Σk(ϕ) :=
{
x ∈ Rn | dim(∂ϕ(x)) = k

}
, k = 0, . . . , n.

For any k = 0, . . . , n, the set Σk(ϕ) is (n − k)-rectifiable, i.e. can be covered by a countable
union of Lipschitz submanifolds of dimension n− k (see [2, Theorem 4.1]). One also defines the
set of reachable subgradients at x as

∇∗ϕ(x) :=
{

lim
k→+∞

∇ϕ(xk) | xk ∈ Σ0, xk → x
}

.

It is known (see for instance [12]) that co(∇∗ϕ(x)), the convex hull of ∇∗ϕ(x), coincides with
∂ϕ(x). One key property that we will use to study of the structure of the singular set of Brenier
solutions of the Monge-Ampère equation is that, whenever the set ∇∗ϕ(x) is strictly contained
inside the boundary of ∂ϕ(x), then singularities propagate (see Theorem 3.4 below).

We finally recall the definition of Alexandrov solution to the Monge-Ampère equation: a
convex function ϕ : Ω ⊂ Rn → R solves the Monge-Ampère equation (1.2) in the Alexandrov
sense if, for any Borel set B ⊂ Ω,

λ2L n(B) ≤ L n
(
∂ϕ(B)

)
≤ 1

λ2
L n(B),

where ∂ϕ(B) := ∪x∈B∂ϕ(x).

3. Regularity results and structure of the singular set

Let ϕ : R2 → R be a Brenier solution of the Monge-Ampère equation (1.1). We want to study
the regularity of ϕ and the structure of its singular set.

3.1. Regularity of ϕ. To prove the regularity of ϕ out of a set of measure zero, we will assume
that ∂Ω and ∂Λ are continuous. This last condition means that, for any x ∈ ∂Ω (resp. y ∈ ∂Λ),
there exists r > 0 such that, up to a change of coordinates, Ω ∩ Br(x) (resp. Λ ∩ Br(y))
coincides with the epigraph of a continuous function. Observe that we do not even supposed
that L 2(∂Ω) = L 2(∂Λ) = 0 (but we assumed that f and g have no mass outside Ω and Λ
respectively, so that in particular

∫
∂Ω f =

∫
∂Λ g = 0).

Theorem 3.1. Assume that there exists λ > 0 such that

λ ≤ f ≤ 1
λ

in Ω , λ ≤ g ≤ 1
λ

in Λ,

and that ∂Ω and ∂Λ are continuous. Then ϕ is strictly convex inside Ω. Moreover there exist
two open sets Ω′ ⊂ Ω and Λ′ ⊂ Λ, with L 2(Ω \ Ω′) = L 2(Λ \ Λ′) = 0, such that ϕ ∈ C1(Ω′),
∇ϕ is a homeomorphism between Ω′ and Λ′, and ϕ is an Alexandrov solution of (1.2) inside
Ω′. In particular, Caffarelli’s regularity theory for strictly convex Alexandrov solutions of the
Monge-Ampère equations applies to ϕ inside Ω′.
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The proof of the above theorem is divided into some preliminary results. First of all we define
the set of regular points as

Reg := Σ0(ϕ) ∪
{
x ∈ R2 | ∂ϕ(x) ∩ Λ contains a segment

}
.

The first goal is to prove that ϕ is C1 at regular points. Let us remark that, for the proof of
this result, we only need an upper bound on f and a lower bound on g, and we do not assume
that f vanishes outside Ω:

Proposition 3.2. Assume that there exists λ > 0 such that

f ≤ 1
λ

in R2 , λ ≤ g in Λ,

and that ∂Λ is continuous. If x0 ∈ Reg, then ∂ϕ(x0) is a singleton.

Proof. Suppose that the statement is false. Then, as x0 ∈ Reg, we can find y0, y1 ∈ ∂ϕ(x0), with
y0 6= y1, such that [y0, y1] ⊂ Λ. We will show that in this case the graph of ϕ contains a suitably
chosen half-line, and this will be impossible.

Since [y0, y1] ⊂ Λ and ∂Λ is continuous, there exist v ∈ R2 a unit vector orthogonal to y1−y0,
and ε > 0 small, such that ty0 + (1− t)y1 + εv ∈ Λ for all t ∈ [1/4, 3/4]. Up to an affine change
of coordinates, and by subtracting from ϕ an affine function, we can assume that x0 = (0, 0),
ϕ(0, 0) = 0, y0 = −e1, y1 = e1, and v = e2. Hence

ϕ(x1, x2) ≥ |x1|, ϕ(0, 0) = 0,

te1 + εe2 ∈ Λ for all t ∈ [−1/2, 1/2], for some ε > 0. (3.1)
We remark that, since ∇ϕ(x) ∈ Λ for L 2-a.e. x and Λ is bounded, there exists R > 0 such
that ϕ is R-Lipschitz. We will show that ϕ(0, x2) = 0 for all x2 ≥ 0. For this, we assume by
contradiction that there exist h ∈ (0, 1] and δ > 0 such that ϕ(0, δ) = h. Then, thanks to [13,
Lemma 2.3], we have

Sh,δ ⊂ ∂ϕ(Rh,δ), (3.2)
where

Sh,δ := [−1/2, 1/2] ×
[
0,

h

2δ(1 + R)

]
, Rh,δ := [−h, h] × [0, (1 + R)δ].

Let α := 1
3 min

{
ε, h

2δ(1+R)

}
, and define

Th,δ := [−1/4, 1/4] × [α, 2α] ⊂ Λ.

By (3.1), (3.2) and an easy geometric argument exploiting the convexity of ϕ, it is easily seen
that (∇ϕ)−1(y) ⊂ Rh,δ for any y ∈ Th,δ, or equivalently all the mass sent by ∇ϕ inside Th,δ

comes from Rh,δ. However, since g ≥ λ inside Λ, and f ≤ 1/λ on R2, we get

λα

2
= λL 2 (Th,δ) ≤

L 2 (Rh,δ)
λ

=
2(1 + R)hδ

λ
,

which is impossible for δ ≤ δ0 := min
{

λ2ε
13(1+R) ,

λ
5(1+R)

}
. This proves that ϕ(0, x2) = 0 for all

x2 ∈ [0, δ0], and iterating this argument we deduce that ϕ(0, x2) = 0 for all x2 ≥ 0.
Claim: Λ ⊂ {(y1, y2) | y2 ≤ 0}.
We observe that the claim contradicts (3.1), and this concludes the proof of the proposition.

Thus we are left with proving the claim.
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Let y ∈ ϕ(x) for some x ∈ R2. We have

0 = ϕ(te2) ≥ ϕ(x) + y · (te2 − x) ∀ t ≥ 0.

Letting t → +∞ we deduce y2 = y · e2 ≤ 0, so that ∂ϕ(R2) ⊂ {(y1, y2) | y2 ≤ 0}. On the other
hand, since L 2-a.e. y ∈ Λ belong to the image of ∇ϕ, we have ∂ϕ(R2) ⊃ Λ, and the claim
follows. �

As a corollary, we immediately deduce a well-known result on the strict convexity of solutions
of (1.2), see for instance [10]:

Corollary 3.3. Assume that there exists λ > 0 such that

λ ≤ f in Ω , g ≤ 1
λ

in R2,

and that ∂Ω is continuous. Then ϕ is strictly convex inside Ω.

Proof. Suppose by contradiction that there exist x0, x1 ∈ Ω such that y0 ∈ ∂ϕ(x0)∩∂ϕ(x1), and
let us consider the function ϕ∗ given by

ϕ∗(y) := sup
x∈Ω

{
x · y − ϕ(x)

}
, ∀ y ∈ R2. (3.3)

Then ϕ∗ : R2 → R is a globally Lipschitz convex function such that (∇ϕ∗)#g = f , and ∇ϕ∗(y) ∈
Ω for L 2-a.e. y ∈ R2 (see for instance [15, Chapter 2]). Since x0, x1 ∈ ∂ϕ∗(y0), by applying
Proposition 3.2 with ϕ∗ in place of ϕ, we deduce that ∂ϕ∗(y) is a singleton for every y ∈ Reg∗,
where

Reg∗ := Σ0(ϕ∗) ∪
{
y ∈ R2 | ∂ϕ∗(y) ∩ Ω contains a segment

}
.

As x0, x1 ∈ ∂ϕ∗(y0) ∩ Ω, ∂ϕ∗(y0) ∩ Ω contains a segment, and therefore y0 ∈ Reg∗, absurd. �
Proof of Theorem 3.1. Let us define the open sets

Ω′ := {x ∈ Ω | ∂ϕ(x) ⊂ Λ}, Λ′ := {x ∈ Λ | ∂ϕ∗(x) ⊂ Ω}. (3.4)

Since all the mass of g is contained inside Λ, ∇ϕ(x) exists and belongs to Λ for L 2-a.e. x ∈ Ω.
This implies that L 2(Ω \ Ω′) = 0, and analogously L 2(Λ \ Λ′) = 0. Moreover, since Ω′ ⊂ Reg
and Λ′ ⊂ Reg∗, by Proposition 3.2 applied to both ϕ and ϕ∗ we get ϕ ∈ C1(Ω′) and ϕ∗ ∈ C1(Λ′).
Recalling the identities

∇ϕ∗(∇ϕ(x)) = x L 2-a.e. in Ω and ∇ϕ(∇ϕ∗(y)) = y L 2-a.e. in Λ

and the fact that ϕ and ϕ∗ are differentiable inside Reg and Reg∗ respectively, we immediately
obtain that ∇ϕ(x) ∈ Λ′ for any x ∈ Ω′, ∇ϕ∗(y) ∈ Ω′ for any y ∈ Λ′, and ∇ϕ : Ω′ → Λ′ is
a homeomorphism. Finally, the fact that ϕ is C1 and strictly convex inside Ω′ (cfr. Corollary
3.3) implies easily that ϕ is an Alexandrov solution of (1.2) in Ω′. Indeed, by the definition of
push-forward, we know that∫

A
g(y) dy =

∫
(∇ϕ)−1(A)

f(x) dx for all A ⊂ Λ′ Borel,

which is equivalent to∫
∇ϕ(B)

g(y) dy =
∫

B
f(x) dx for all B ⊂ Ω′ Borel.

Hence, being differentiable inside Ω′, ϕ solves (1.2) in the Alexandrov sense, as desired. �
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Ω

Figure 3.1. With our definition, also an annulus inside Λ is considered as a hole.
Observe that if a connected component of the singular set does not touch ∂Ω, then its
image through ∂ϕ has to fill a hole (indeed, if not, we could continue to propagate the
singularity, see Proposition 3.5). Moreover, the number of connected components of Λ
bound the number of closed injective curves in Sing. In the above figure, the connected
components of Λ are 3, and the number of closed injective curves is 2 = 3 − 1. Observe
also that the images of the two curve through ∂ϕ fill the annuli in different ways (in one
case the subdifferentials are almost parallel, while in the other case they turn around
along the annulus).

3.2. The structure of Sing. We now want to study the singular set of ϕ in Ω, i.e. the set of
points x ∈ Ω where ϕ is not differentiable, in terms of the geometry of Λ. In all this paragraph,
we assume that the hypotheses of Theorem 3.1 hold.

Let us define a hole in Λ as a connected open set O such that O ∩ Λ = ∅ and ∂O ⊂ ∂Λ.
Thanks to Proposition 3.2, it is clear that the singular set of ϕ, which we denote by Sing, coin-
cides with Ω \ Reg. We will show that all but at most m connected components of Sing touch
∂Ω, where m ≥ 0 is the number of holes in Λ (see Figure 3.1). Moreover we will give a quite
precise description of the connected components of Sing, showing that they are C1-manifolds
outside a countable set.

First of all we observe that Sing is a 1-rectifiable set, and in particular it has σ-finite H 1-
measure. Moreover, thanks to Theorem 3.1, we also have L 2

(
Sing ∩ Ω

)
= 0 (a property which

is false for a general convex function, see also Remark 3.6). Since ∇ϕ(x) ∈ Λ for L 2-a.e. x ∈ R2

and x 7→ ∇ϕ(x) is continuous on its domain of definition, we get that ∇ϕ(x) ∈ Λ at every point
where ϕ is differentiable. Hence, by the definition of Reg and the identity co(∇∗ϕ(x)) = ∂ϕ(x),
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we easily obtain the following characterization:

Sing =
{
x ∈ Ω | ∂ϕ(x) ∩ Λ = ∅, ∇∗ϕ(x) ⊂ ∂Λ, ∂ϕ(x) 6⊂ ∂Λ

}
. (3.5)

Let us write it as the disjoint union of its connected components:

Sing :=
∪
i

Si.

We remark that, thanks to Corollary 3.3, we have

∂ϕ(Si) ∩ ∂ϕ(S`) = ∅ if i 6= `. (3.6)

The following structure theorem for the singular set generalizes the ones in [14, Theorem 1.1],
[11, Theorem 5.1]:

Theorem 3.4. The number of connected components of Sing is at most countable. Moreover:
(1) either Si coincides with an isolated point {xi} for some xi ∈ Ω, and in this case the

boundary of ∂ϕ(xi) is enterely contained inside ∂Λ (so that ∂ϕ(xi) completely fills a hole
in Λ, see Figure 3.2);

(2) or Si can be written as a disjoint union as follows:

Si =
∪
j∈N

γij , (3.7)

where γij : Iij → Sing are embedded Lipschitz curves parameterized by arc-length, with
Iij = [0, tij) or Iij = (0, tij), depending whether they are periodic curves or not (see
Figure 3.2).

Furthermore, in case (2), if {tijk }k ⊂ Iij is the (at most countable) set of times such that
∂ϕ

(
γij(t

ij
k )

)
∈ Σ2(ϕ), and we define Jij := Iij \

(
∪k{tijk }

)
, then:

(2,a) γij(t) ∈ Σ1(ϕ) for every t ∈ Jij, and there exist two injective curves Jij 3 t 7→
yij
0 (t), yij

1 (t) ⊂ ∂Λ such that ∂ϕ(γij(t)) = [yij
0 (t), yij

1 (t)] for any t ∈ Jij, and

Jij 3 t 7→ yij
1 (t) − yij

0 (t)

|yij
1 (t) − yij

0 (t)|
is continuous.

(2,b) γij is right and left differentiable at every t ∈ Jij, and the right and left derivatives γ̇±
ij

coincide up to a countable sets of times {t̄ij` }` where γ̇+
ij (t̄

ij
` ) = −γ̇−

ij (t̄
ij
` ). The set of

times when these discontinuities in the derivative may happen, can be characterized as
the set of t ∈ Jij where the segment [yij

0 (t), yij
1 (t)] = ∂ϕ(γij(t)) intersects ∂Λ in at least

three points (see Figure 3.3). Moreover, the map Jij \ {t̄ij` }` 3 t 7→ γ̇ij(t) is continuous,

γ̇±
ij (t) · (y

ij
1 (t) − yij

0 (t)) = 0 ∀ t ∈ Jij .

(2,c) The curves γij can be chosen so that, as t → 0+ and as t → t−ij, one of the following
happens:

- dist(γij(t), ∂Ω) → 0;
- |yij

0 (t) − yij
1 (t)| → 0;

- there exist ` ∈ N and t0 ∈ Ii` such that γij(t) → γi`(t0) (that is, at the point γi`(t0)
there is a bifurcation, see Figure 3.2).
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Figure 3.2. The subdfferential of ϕ at the point x0 is two-dimensional. This generates
a Lipschitz bifurcation in Sing at x0. At the point x1, ∂ϕ(x1) completely fills a hole in
Λ, and x1 is an isolated singularity.

(2,d) for every t ∈ {tijk }k, for any yik
0 , yik

1 ∈ ∇∗ϕ(γij(t
ij
k )) such that [yik

0 , yik
1 ]∩ ∂Λ = {yik

0 , yik
1 },

we have
∂ϕ(γij(t)) → [yik

0 , yik
1 ] and γ̇±

ij (t) · (y
ik
1 − yik

0 ) → 0

either as t → (tijk )+ or as t → (tijk )−.
Finally, if Λ has n connected components, then the number of closed injective curves inside Sing
is bounded by n − 1 (see Figure 3.1).

Proof. Since Sing has σ-finite H 1-measure, the fact that the number of connected components
of Sing is countable follows easily from points (1) and (2). Let us prove them.

Proof of (1) and (2). Let x ∈ Si. Then (3.5) implies that ∂ϕ(x) is a convex set contained
in co(Λ) \ Λ such that ∇∗ϕ(x) ⊂ ∂Λ. This gives

∂ϕ(x) \ ∇∗ϕ(x) = ∂ϕ(x) ∩
(
co(Λ) \ Λ

)
6= ∅.

We now distinguish two cases: dim(∂ϕ(x)) = 2, or dim(∂ϕ(x)) = 1.
In the first case, two possibilities arise:

(i) ∇∗ϕ(x) coincides with the boundary of ∂ϕ(x).
(ii) ∇∗ϕ(x) is strictly contained in the boundary of ∂ϕ(x).

In case (i), since ∂ϕ(x) ⊂ co(Λ) \ Λ and ∇∗ϕ(x) ⊂ ∂Λ, the boundary of ∂ϕ(x) is contained
inside ∂Λ, and so ∂ϕ(x) coincides with a hole inside Λ. Moreover, the upper semicontinuity of
∂ϕ implies that ∂ϕ(z) ∩Λ 6= ∅ for z near x, which means that any point near x belongs to Reg.
Hence Si = {x} (see Figure 3.2).
In case (ii), let us consider any couple of vectors y0, y1 ∈ ∇∗ϕ(x) such that [y0, y1]∩∂Λ = {y0, y1},
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x0

γ1

Ω

Λ

Figure 3.3. The subdifferential of ϕ at x0 touches ∂Λ at three different points. This
generates a C1-bifurcation in Sing, and it may be possible that the curve γ1 that we have
selected in the partition of Sing consists of the two arcs to the left of x0, so its derivative
change direction at x0 (of course, if the number of bifurcations as the one above is finite,
then we can always choose the curves γi is such a way to avoid such discontinuities, so
that they are all of class C1).

and [y0, y1] is contained in the boundary of ∂ϕ(x) (recall that ∂ϕ(x) = co(∇∗ϕ(x))). Then,
thanks to [1, Theorem 4.2], there exists a Lipschitz curve γ : [0, ρ] → Ω with γ(0) = x, a vector
v 6= 0 orthogonal to y1 − y0, and a positive number δ > 0, such that

lim
t→0+

γ(t) − γ(0)
t

= v, diam
(
∂ϕ(γ(t))

)
≥ δ ∀ t ∈ [0, ρ].

This implies that there is a curve of singular points leaving from x.
In the case dim(∂ϕ(x)) = 1, we can write ∂ϕ(x) = [y0, y1] for some y0, y1 ∈ ∂Λ. Then,

applying again [1, Theorem 4.2] (and in particular its proof, see also the proof of Proposition
3.5 below), we deduce that there exists a Lipschitz curve γ : [−ρ, ρ] → Ω with γ(0) = x, a vector
v 6= 0 orthogonal to y1 − y0, and a positive number δ > 0, such that

lim
t→0

γ(t) − γ(0)
t

= v, diam
(
∂ϕ(γ(t))

)
≥ δ ∀ t ∈ [−ρ, ρ]

(see also [11, Theorem 4.2]). Hence, if Si is not an isolated point, to decompose it as in (3.7)
we proceed as follows: we start from any point in Si and we use the results above to propagate
our singularity as long as we can, that is either up to the moment when the diameter of the
subdifferential goes to 0, or the singular curve γi1 hit ∂Ω, or the curve closes onto itself (observe
that in general there could be more than one possibility to propagate the singularity, and we
just choose one of them). Then we remove the curve γi1 constructed in this way from Si, and
we iterate the procedure, but now we stop also in case γi2 hit γi1. Going on in this way, and
reparameterizing all the curves γij by arc-length, we finally get (3.7). (The procedure necessarily
ends after countably many iterations, as every Si has σ-finite H 1-measure.) This completes the
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proof of (1) and (2).

Proof of (2, a) and (2, b). To study the differentiability of γij , we observe that for any
t ∈ Jij there exist yij

0 (t), yij
1 (t) ∈ ∂Λ such that ∂ϕ(γij(t)) = [yij

0 (t), yij
1 (t)]. Thanks to the upper

semicontinuity of the subdifferential and the fact that ∂Λ is (uniformly) continuous, we see that
if tn ∈ Jij and tn → t∞, then both yij

0 (tn) and yij
1 (tn) converge, and

[lim
n

yij
0 (tn), lim

n
yij
1 (tn)] ⊂ [yij

0 (t∞), yij
1 (t∞)]. (3.8)

Let us remark that, if the above inclusion is strict, then there exists a point y 6= yij
0 (t∞), yij

1 (t∞)
such that y ∈ [yij

0 (t∞), yij
1 (t∞)] ∩ ∂Λ (see Figure 3.3).

Thanks to (3.8) and the fact that ∂Λ is (uniformly) continuous, we deduce that we can always

exchange y0(t) with y1(t) for t ∈ Jij , so that the map Jij 3 t 7→ yij
1 (t)−yij

0 (t)

|yij
1 (t)−yij

0 (t)|
is continuous1. Let

us recall that, if u : [0, 1] → R is a function which admits at every point both left and right limit,
then at any discontinuity point it can only jumps, and the number of its jumps is countable.
Combining this fact with (3.8), we get that the function

Jij 3 t 7→ |yij
1 (t) − yij

1 (t)|

is continuous up to a countable sets of times {t̄ij` }` where it may jump, and at any t ∈ {t̄ij` }` it
always admits a limit from the left and one from the right.

This fact, together with the strict convexity of ϕ (cfr. Corollary 3.3), implies that the curves

Jij 3 t 7→ yij
0 (t) ⊂ ∂Λ, Jij 3 t 7→ yij

1 (t) ⊂ ∂Λ,

are injective, they are continuous up to a countable number of times {t̄ij` }`, and at any time
t ∈ {t̄ij` }` they both admit a left and a right limit.

We now apply [2, Proposition 2.2] and [3, Theorem 2.3] to obtain that, for any t0 ∈ Jij , if
v±(t0) is a limit point of γij(t)−γij(t0)

|γij(t)−γij(t0)| as t → t±0 , then

v±(t0) · (yij
1 (t0) − yij

0 (t0)) = 0. (3.9)

We distinguish two cases, depending whether t0 belongs to {t̄ij` }` or not.
If t0 6∈ {t̄ij` }`, we know that the (injective) curves Jij 3 t 7→ yij

0 (t), yij
1 (t) are continuous at

t0. Let w(t) := [yij
1 (t) − yij

0 (t)]⊥, where [yij
1 (t) − yij

0 (t)]⊥ denotes the clockwise rotation of π/2.
Then, thanks to the continuity of

Jij 3 t 7→ [yij
0 (t), yij

1 (t)]

1Indeed, for every t ∈ Jij , thanks to (3.8) and the fact that y0(t) 6= y1(t) we can find a small open interval
Jt ⊂ Jij containing t where diam(∂ϕ(γij(t))) is bounded away from zero. Then, since ∂Λ is continuous, using

again (3.8) we can define two continuous functions yt
0, y

t
1 : Jt → ∂Λ such that ∂ϕ(γij(t)) = [yt

0(t), y
t
1(t)] on Jt. We

observe that for every t ∈ Jt1
∩Jt2

, either yt1
0 (t) = yt2

0 (t) and yt1
1 (t) = yt2

1 (t), or yt1
0 (t) = yt2

1 (t) and yt1
1 (t) = yt2

0 (t).
Hence, thanks to the local compactness of Jij , we can find a locally finite covering of Jij made by intervals of the

form Jtn
, and on any of these intervals we can define y0, y1 : Jij → Λ in a coherent way by setting either y0 := ytn

0

and y1 := ytn
1 , or y0 := ytn

1 and y1 := ytn
0 , in such a way that y0 and y1 are both continuous on the whole Jij .
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at t = t0, the line

s 7→ yij
0 (t) + yij

0 (t0)
2

+ sw(t0)

intersects transversally any of the segments [yij
0 (t), yij

1 (t)] for t ∈ Jij close to t0. Denoting by
y(t) ∈ ∂ϕ(γ(t)) such intersection points, by the monotonicity of the subdifferential we have

γij(t) − γij(t0)
|γij(t) − γij(t0)

· w(t0)
|w(t0)|

=
γij(t) − γij(t0)
|γij(t) − γij(t0)|

· y(t) − y(t0)
|y(t) − y(t0)|

≥ 0,

so that letting t → t0 we obtain

v±(t0) · [yij
1 (t0) − yij

0 (t0)]⊥ ≥ 0. (3.10)

Combinining (3.9) and (3.10), we see that the directions of v±(t0) are uniquely determined and
vary continuously on Jij \ {t̄ij` }`. Therefore, since |v±(t0)| = 1, v±(t0) are unique and they
coincide. Hence, since γij is parameterized by arc-length, we get that γ̇ij(t) = v(t) exists and it
is continuous for every t ∈ Jij \ {t̄ij` }` (see also [14, Proposition 2.7] and [11, Theorem 5.1]).

We now have to consider the case t0 ∈ {t̄ij` }`. As we already observed, the (multivalued) map

Jij 3 t 7→ [yij
0 (t), yij

1 (t)],

always admits a limit from the left and from the right at every t ∈ Jij . Hence the argument
used above shows that

v±(t0) · [yij
1 (t±0 ) − yij

0 (t±0 )]⊥ ≥ 0, (3.11)

where yij
0 (t±0 ), yij

1 (t±0 ) denote the limits of yij
0 (t), yij

1 (t) as t → t±0 . In this case, since a priori the
directions of yij

1 (t+0 )−yij
0 (t+0 ) and yij

1 (t−0 )−yij
0 (t−0 ) may be opposite to the other, we obtain that

γ̇±
ij (t0) both exist, they are continuous at t0, and they are either equal or opposite to each other

(see Figure 3.3). This proves (2,a) and (2,b)

Proof of (2, c) and (2, d). The properties stated in (2,c) are an easy consequence of the
way the curves γij were constructed. Concerning (2,d), it follows from the result on propagation
of singularities described above, and from the argument we used to prove the right and left
differentiability of γij .

Finally, let us estimate the number of closed injective curves inside Sing. If γ ⊂ Sing is a
closed injective curve, then by definition it is a Jordan curve, and so there exists an open set
O inside Ω such that ∂O = γ. We claim that ∂

(
∇ϕ(O ∩ Ω′)

)
∩ Λ = ∅, where Ω′ was defined in

(3.4).
Indeed, assume by contradiction that there is a point y ∈ ∂

(
∇ϕ(O ∩ Ω′)

)
∩ Λ. Then we can

find a sequence {xk}k∈N ⊂ O ∩ Ω′ such that ∇ϕ(xk) → y. Let x ∈ O be any limit point of
{xk}k∈N. By the upper semicontinuity of the subdifferential we have y ∈ ∂ϕ(x), and since y ∈ Λ
we get x ∈ Reg. Hence ∂ϕ(x) is a singleton, and x ∈ Ω′. Combining this with the fact that
∂O = γ ⊂ Sing, we obtain x ∈ O ∩ Ω′. Recalling that ∇ϕ is an homeomorphism between Ω′

and its image, we have that the set ∇ϕ(O ∩Ω′) is open and y = ∇ϕ(x) belongs to ∇ϕ(O ∩Ω′),
contradiction.

Thanks to the claim and the fact that ∇ϕ(O ∩Ω′) is open, ∇ϕ(O ∩Ω′) contains at least one
connected component of Λ. This implies that the number of periodic curves is bounded by n.
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To get the right estimate (i.e., with n − 1), let γ1, . . . , γs, with s ≤ n, be the periodic curves
inside Sing. For k = 1, . . . , s, let Ok denote the open set inside Λ such that ∂Ok = γk, and
define Os+1 := Λ \

(
∪s

k=1Ok

)
. Then, for any k = 1, . . . , s + 1, ∇ϕ(Ok ∩Ω′) contains at least one

connected component of Λ, and since the sets ∇ϕ(Ok∩Ω′) are disjoint this implies s ≤ n−1. �

We now estimate the number of components Si which do not touch ∂Ω in terms of the holes
in Λ:

Proposition 3.5. The number of connected components Si such that Si ∩ ∂Ω = ∅ is bounded
by the number of holes inside Λ

Proof. Let Si be such that Si ∩ ∂Ω = ∅. We recall that ∂ϕ(Si) is a connected set, and we want
to show that ∂ϕ(Si) necessarily fills a hole of Λ.

Assume not. Then, since ∂ϕ(Si) is a closed set strictly contained in co(Λ) \ Λ, we can find a
small open ball Br(ȳ) outside Λ such that Br(ȳ)∩ ∂ϕ(Si) = ∅, Br(ȳ)∩ ∂ϕ(Si) 3 yi, and yi 6∈ Λ.
Let xi ∈ Si be any point such that yi ∈ ∂ϕ(xi). Then, since yi 6∈ Λ, Proposition 3.2 implies that
xi ∈ Sing, so that xi ∈ Si.

Let v := ȳ−yi

|ȳ−yi| . We can observe that, since Br(ȳ) touches the convex set ∂ϕ(xi) at yi, v is
orthogonal to a segment [y0, y1] ⊂ ∂ϕ(xi), with y0, y1 ∈ ∂Λ. We now apply [1, Theorem 4.2]
(and in particular its proof) to deduce the existence of a Lipschitz curve γ : [0, ρ] → Ω with
γ(0) = xi, and a positive number δ > 0, such that

lim
t→0

γ(t) − γ(0)
t

= v, diam
(
∂ϕ(γ(t))

)
≥ δ ∀ t ∈ [−ρ, ρ].

Moreover, according to [1, Lemma 4.5, Equations (4.10) and (4.11)], the curve γ can be con-
structed so that there exists a continuous path [0, ρ] 3 t 7→ y(t) ∈ ∂ϕ(γ(t)) such that y(0) = yi.
Hence, exploiting the monotonicity of the subdifferential and the strict convexity of ϕ, we get(

y(t) − y
)
·
(
γ(t) − γ(0)

)
> 0 ∀ y ∈ [y0, y1], t > 0 small,

which combined with γ(t) = γ(0) + tv + o(t) implies(
y(t) − y(0)

)
· v > 0 ∀ t > 0 small.

Since y(t) ∈ ∂ϕ(γ(t)), the curve t 7→ y(t) is continuous, and ∂ϕ(γ(t)) = co(∇∗ϕ(γ(t))) with
∇∗ϕ(γ(t)) ⊂ ∂Λ, we easily deduce that Br(ȳ) ∩ ∂ϕ(γ(t)) 6= ∅ for some t > 0 close to 0, a
contradiction. �

Remark 3.6. As we already observed before, L 2
(
Sing ∩ Ω

)
= 0. However, thanks to the

description of Sing given above, one would be tempted to conjecture that a better result is true,
that is H 1

(
Sing \ Sing

)
= 0. A first step in this direction would be to prove that, for any

K ⊂⊂ Ω, there exist only a finite number of connected components Si such that Si ∩ K 6= ∅
(indeed, it is well-known that if a set A has locally finite H 1-measure, and the number of its
connected components is locally finite, then H 1

(
A \ A

)
= 0). However, we believe that this

local bound on the number of connected components is false if ∂Λ is merely continuous: one can
imagine to construct a boundary with strong oscillations (something like [0, ε] 3 s 7→

√
s
ε sin

(
1
εs

)
,

repeated countably many times, at different places of ∂Λ, with different values of ε), which can
produce a countable number of connected components Si which intersect a fixed compact set
in Ω. On the other hand, thanks to the fact that ϕ is strictly convex and the description of
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Sing given in Theorem 3.4, we do believe that the result should be true if ∂Λ is Lipschitz, and
actually it is not difficult (although tedious) to prove it when ∂Λ is a smooth closed curve whose
curvature changes sign only a finite number times.

Nevertheless, also assuming that one is able to bound the number of connected components,
it is still not clear whether one can hope that H 1

(
Sing \ Sing

)
= 0. Indeed, let us consider the

following example: let u : R2 → R be a compactly supported semi-convex function such that its
singular set is given by [−1, 1] × {0}, and outside this set u is C∞. Set u⊥(x1, x2) := u(x2, x1),
so that its singular set is {0} × [−1, 1]. Define now

ϕ(x) :=
|x|2

2
+ α

[∑
i∈N

γi u
(x − yi

δi

)
+

∑
i∈N

εi u
⊥
(x − zi

ηi

)]
,

where γi, δi, εi, ηi ∈ (0, 1) are small numbers such that∑
i∈N

γi

δ2
i

+
∑
i∈N

εi

η2
i

≤ 1, (3.12)

α > 0 is sufficiently small so that

α
(

inf
x∈R2

D2u(x)
)
≥ −1

2
Id,

and yi, zi ∈ R2 are points chosen in such a way that the singular set of ϕ,

Sing =
∪
i∈N

[(
[−δi, δi] × {0} + yi

)
∪

(
{0} × [−ηi, ηi] + zi

)]
,

is path-connected. Moreover, δi, ηi, y
i, zi can be chosen such that Sing ⊂ B2(0).

Hence ϕ is a uniformly convex function, of class C2 outside its singular set, and the push-
forward of det(D2ϕ)χB3(0) under ∇ϕ is given by the characteristic function of a set Λ with only
one hole inside (if desired, by replacing ϕ with ϕ + εu⊥(2(· − e2)) for some ε > 0 small, one can
even remove the hole in Λ, so that Λ will be simply connected).

We now observe that H 1(Sing) = 2
∑

i

(
δi + ηi

)
. Thus, if δi, ηi are small enough so that

H 1(Sing) < +∞, since Sing is connected one can prove that H 1
(
Sing

)
< +∞ too. On the

other hand, it is possible to choose δi, ηi, y
i, zi in such a way that H 1(Sing) = +∞ and Sing has

not σ-finite H 1-measure (observe that, after this choice of δi, ηi, y
i, zi is done, one can always

choose γi and εi sufficiently small so that (3.12) holds).
We further remark that δi, ηi, y

i, zi can even be chosen such that Sing is dense inside B1(0),
which would give L 2

(
Sing ∩ Ω

)
> 0. Thanks to Theorem 3.1, we deduce that in this case Λ

cannot be an open set with continuous boundary. Therefore we see that the geometric assump-
tions on Λ allow to prevent Sing to be too much nasty. However, it is not clear how to exploit
these informations to prevent Sing from having zero Lebesgue measure but Hausdorff dimension
greater than 1.
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