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Abstract. We consider a family of elliptic equations introduced in the context of traffic congestion.
They have the form ∇·(∇F(∇u)) = f , where F is a convex function which vanishes inside some convex
set and is elliptic outside. Under some natural assumptions on F and f , we prove that the function
∇F(∇u) is continuous in any dimension, extending a previous result valid only in dimension 2 [14].

Résumé. Dans ce papier, nous considérons une famille d’équations elliptiques introduites dans le
contexte d’un problème de transport congestionné. Ces équations sont de la forme ∇ · (∇F(∇u)) = f ,
où F est une fonction convexe qui vaut zéro sur un ensemble convexe et est uniformément elliptique
au dehors de cet ensemble. Sous des conditions naturelles sur F et f , on démontre que la fonction
∇F(∇u) est continue en toutes dimensions, ce qui étend un résultat précèdent en dimension 2 [14].

1. Introduction

Given a bounded open subset Ω of Rn, a convex function F : Rn → R, and an integrable function
f : Ω → R, we consider a function u : Ω → R which locally minimizes the functional

(1.1)

∫
Ω
F(∇u) + fu.

When ∇2F is uniformly elliptic, namely there exist λ,Λ > 0 such that

λ Id ≤ ∇2F ≤ Λ Id,

the regularity results of u in terms of F and f are well known.
If F degenerates at only one point, then several results are still available. For instance, in the case

of the p-Laplace equation with zero right hand side, that is when F(v) = |v|p and f = 0, the C1,α

regularity of u has been proved by Uraltseva [19], Uhlenbeck [18], and Evans [10] for p ≥ 2, and by
Lewis [13] and Tolksdorff [17] for p > 1 (see also [7, 20]). Notice that in this case the equation is
uniformly elliptic outside the origin.

More in general, one can consider functions whose degeneracy set is a convex set: for example, for
p > 1 one may consider

(1.2) F(v) =
1

p
(|v| − 1)p+ ∀ v ∈ Rn,

so that the degeneracy set is the entire unit ball. There are many Lipschitz results on u in this context
[11, 9, 2], and in general no more regularity than L∞ can be expected on ∇u. Indeed, when F is given
by (1.2) and f is identically 0, every 1-Lipschitz function solves the equation. However, as proved
in [14] in dimension 2, something more can be said about the regularity of ∇F(∇u), since either it
vanishes or we are in the region where the equation is more elliptic.

The problem of minimizing the energy (1.1) with the particular choice of F given in (1.2) arises in
the context of traffic congestion. Indeed, it is equivalent to the problem

(1.3) min

{∫
Ω
|σ|+ 1

p′
|σ|p′ : σ ∈ Lp′(Ω), ∇ · σ = f, σ · ν∂Ω = 0

}
,
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where p′ satisfies 1/p+1/p′ = 1, and σ represents the traffic flow. The particular choice of F , or equiva-
lently of its convex conjugate F∗ which appears in (1.3) as an integrand, satisfies two demands: F∗ has
more than linear growth at infinity (so to avoid “congestion”) and satisfies lim infw→0 |∇F∗(w)| > 0
(which means that moving in an empty street has a nonzero cost). As shown in [3], the unique optimal
minimizer σ̄ turns out to be exactly ∇F(∇u), where F is defined by (1.2).

In this paper we prove that, if F vanishes on some convex set E and is elliptic outside such a set,
then H(∇u) is continuous for any continuous function H : Rn → R which vanishes on E. In particu-
lar, by applying this result with H = ∂iF (i = 1, . . . , n) where F is as in (1.2), our continuity result
implies that σ̄ = ∇F(∇u) (the minimizer of (1.3)) is continuous in the interior of Ω. This result is
important for the following reason: as shown in [5] (see also [3]), one can build a measure on the space
of possible paths starting from σ̄, and this optimal traffic distribution satisfies a Wardrop equilibrium
principle: no traveler wants to change his path, provided all the others keep the same strategy. In other
words, every path which is followed by somebody is a geodesics with respect to the metric g(σ̄(x)) Id
(where g(t) = 1 + tp−1 is the so-called “congestion function”), which is defined in terms of the traffic
distribution itself. Hence, our continuity result shows that the metric is continuous (so, in particu-
lar, well defined at every point), which allows to set and study the geodesic problem in the usual sense.

Since we want to allow any bounded convex set as degeneracy set for F , before stating the result
we introduce the notion of norm associated to a convex set, which is used throughout the paper to
identify the nondegenerate region. Given a bounded closed convex set E ⊆ Rn such that 0 belongs
to Int(E) (the interior of E), and denoting by tE the dilation of E by a factor t with respect to the
origin, we define | · |E as

(1.4) |e|E := inf{t > 0 : e ∈ tE}.

Notice that | · |E is a convex positively 1-homogeneous function. However | · |E is not symmetric unless
E is symmetric with respect to the origin.

The main result of the paper proves that, in the context introduced before, ∇F(∇u) is continuous.

Theorem 1.1. Let n be a positive integer, Ω a bounded open subset of Rn, f ∈ Lq(Ω) for some q > n.
Let E be a bounded, convex set with 0 ∈ Int(E). Let F : Rn → R be a convex nonnegative function
such that F ∈ C2(Rn \ E). Let us assume that for every δ > 0 there exist λδ,Λδ > 0 such that

(1.5) λδI ≤ ∇2F(x) ≤ ΛδI for a.e. x such that 1 + δ ≤ |x|E ≤ 1/δ.

Let u ∈W 1,∞
loc (Ω) be a local minimizer of the functional∫

Ω
F(∇u) + fu.

Then, for any continuous function H : Rn → R such that H = 0 on E, we have

(1.6) H(∇u) ∈ C0(Ω).

More precisely, for every open set Ω′ b Ω there exists a modulus of continuity ω : [0,∞) → [0,∞)
for H(∇u) on Ω′, which depends only on the modulus of continuity of H, on the modulus of continuity
of ∇2F , on the functions δ → λδ,δ → Λδ, and on ‖∇u‖∞ in a neighborhood of Ω′, such that

(1.7) ω(0) = 0 and
∣∣H(∇u(x))−H(∇u(y))

∣∣ ≤ ω(|x− y|) for any x, y ∈ Ω′.

In particular, if F ∈ C1(Rn) then ∇F(∇u) ∈ C0(Ω).
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Remark 1.2. In the hypothesis of Theorem 1.1 the Lipschitz regularity of u is always satisfied under
mild assumptions on F . For instance, if F is uniformly elliptic outside a fixed ball, then u ∈W 1,∞

loc (Ω).
In [2] many other cases are studied. For example, the Lipschitz regularity of u holds true for our model
case (|x| − 1)p+ for every p > 1.

Remark 1.3. The regularity result of Theorem 1.1 is optimal without any further conditions about
the degeneracy of F near E. More precisely, there exist functions F satisfying our assumptions and
H Lipschitz such that H(∇u) is not Hölder continuous for any exponent. Indeed, let us consider the
minimizer of the functional (1.1) with f = n. The minimizer can be explicitly computed from the
Euler equation and turns out to be F∗, where F∗ is the convex conjugate of F . We consider a radial
function F . Let ω be a modulus of strict convexity for F outside E, i.e.,

(1.8)
(
∇F(x)−∇F(y)

)
· (x− y) ≥ ω(|x− y|)|x− y| ∀x, y ∈ Rn \B1, x = ty, t > 0.

Then the function ω−1 is a modulus of continuity of ∇F∗. Hence it suffices to choose F so that ω−1

is not Hölder continuous.
For simplicity, we construct an explicit example in dimension 1, although it can be easily generalized

to any dimension considering a radial function F .
Let

G(t) :=

{
e−1/(|t|−1)2 if |t| > 1,
0 if |t| ≤ 1,

and let F ∈ C∞(R) be a convex function which coincides with G in a (−1− ε, 1 + ε) for some ε > 0.
Then the function u : R → R defined as

u(x) :=

∫ |x|

0
[F ′]−1(s) ds

solves the Euler-Lagrange equation
(
F ′(u′(x)

)′
= 1 (note that the function F ′ : R \ [−1, 1] → R \ {0}

is invertible, so u is well defined), and it is easy to check that, given H(x) := (|x| − 1)+, the function
H(u′) =

(
[F ′]−1 − 1

)
+
is not Hölder continuous at 0.

Theorem 1.1 has been proved in dimension 2 with E = B1(0) by Santambrogio and Vespri in [14].
Their proof is based on a method by Di Benedetto and Vespri [8], which is very specific to the two
dimensional case: using the equation they prove that either the oscillation of the solution is reduced
by a constant factor when passing from a ball Br(0) to a smaller ball Bεr(0), or the Dirichlet energy in
the annulus Br(0)\Bεr(0) is at least a certain value, which is scale invariant in dimension 2. Since the
Dirichlet energy is assumed to be finite in the whole domain, this proves a decay for the oscillation.

In this paper we generalize the result to dimension n and with a general convex set of degeneracy,
using a different method and following some ideas of a paper by Wang [20] in the case of the p-
laplacian. We divide regions where the gradient is degenerate from nondegeneracy regions. The rough
idea is the following: if no partial derivative of u is close to |∇u| in a set of positive measure inside
a ball, then |∇u| is smaller (by a universal factor) in a smaller ball. If u has a nondegenerate partial
derivative in a set of large measure, then its slope in the center of the ball is nondegenerate and the
ellipticity of the equation provides regularity of u.

Theorem 1.1 is obtained from the following result through an approximation argument, which allows
us to deal with smooth functions.

Theorem 1.4. Let E be a bounded, strictly convex set with 0 ∈ Int(E). Let f ∈ C0(B2(0)) and let
q > n. Let F ∈ C∞(Rn) be a convex function, fix δ > 0, and assume that there exist constants λ,Λ > 0
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such that

(1.9) λI ≤ ∇2F(x) ≤ ΛI for every x such that 1 +
δ

2
≤ |x|E .

Let u ∈ C2(B2(0)) be a solution of

(1.10) ∇ · (∇F(∇u)) = f in B2(0).

satisfying ‖∇u‖L∞(B2(0)) ≤M.

Then there exist C > 0 and α ∈ (0, 1), depending only on the modulus of continuity of ∇2F , and
on E, δ,M, q, ‖f‖Lq(B2(0)), λ, and Λ, such that

(1.11) ‖(|∇u|E − (1 + δ))+‖C0,α(B1(0)) ≤ C.

The paper is structured as follows: in Section 2 we prove a compactness result for a class of elliptic
equations which are nondegenerate only in a small neighborhood of the origin. Then, in Section 3, we
provide a way of separating degeneracy points from nondegeneracy points, and in Section 4 we prove
C1,α regularity of u at any point where the equation is nondegenerate. Finally, Section 5 is devoted
to the proof of Theorems 1.4 and 1.1.

Acknowledgements. The authors wish to thank Guido De Philippis for useful discussions. The first
author acknowledges the hospitality of the University of Texas at Austin, where most of this work has
been done. The second author was partially supported by NSF grant DSM-0969962.

2. Compactness result for a degenerate equation

In this section we prove a regularity result for a class of degenerate fully nonlinear elliptic equations.
The argument follows the lines of [15, Corollary 3.3], although there are some main differences: First,
in [15, Corollary 3.3] regularity is proved in the class of fully nonlinear equations with a degeneracy
depending on the hessian of the solution, whereas in our case the degeneracy is in the gradient.
Moreover only right hand sides in L∞ are considered there, while in our context we are allowed to
take them in Ln. Allowing f to be in Ln introduce several additional difficulties, in particular in the
proof of Lemma 2.4. In addition, we would like to notice that the proofs of Lemmas 2.3 and 2.4 do not
seem to easily adapt to the case f ∈ Ln if in addition we allow a degeneracy in the hessian as in [15]
(more precisely, in this latter case neither (2.9) nor (2.19) would allow to deduce that the equation is
uniformly elliptic at the contact points).

We also notice that, with respect to [15], we prove a slightly weaker statement which is however
enough for our purposes: instead of showing the the L∞ norm of u decays geometrically, we only prove
that its oscillation decays. The reason for this is just that the proof of this latter result is slightly
simpler. However, by using the whole argument in the proof of [15, Theorem 1.1] one could replace
oscu with ‖u‖∞ in the statements of Proposition 2.2 and Theorem 2.1.

We keep the notation as similar as possible to the one of [15]. We assume for simplicity that
u ∈ C2 and f continuous, but these regularity assumptions are not needed (though verified for our ap-
plication) and the same proof could be carried out in the context of viscosity solutions (as done in [15]).

Let S ⊆ Rn×n be the space of symmetric matrices in Rn, F : B1(0) × R × Rn × S → R be a
measurable function, and consider the fully nonlinear equation

(2.1) F (x, u(x),∇u(x),∇2u(x)) = f(x).

Let δ > 0. We consider the following assumptions on F .
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(H1) F is elliptic, namely for every x ∈ B1(0), z ∈ R, v ∈ Rn, M,N ∈ S with N ≥ 0

F (x, z, v,M +N) ≥ F (x, z, v,M).

(H2) F is uniformly elliptic in a neighborhood of ∇u = 0 with ellipticity constants 0 < λ ≤ Λ:
namely, for every x ∈ B1(0), z ∈ R, v ∈ Bδ(0), M,N ∈ S with N ≥ 0

Λ‖N‖ ≥ F (x, z, v,M +N)− F (x, z, v,M) ≥ λ‖N‖.
(H3) Small planes are solutions of (2.1), namely for every x ∈ B1(0), z ∈ R, v ∈ Bδ(0),

F (x, z, v, 0) = 0.

Given M ∈ S, let M+ and M− denote its positive and negative part, respectively, so that M =
M+ −M− and M+,M− ≥ 0. Applying (H2) twice and using (H3), we have

(2.2) Λ‖M+‖ − λ‖M−‖ ≥ F (x, z, p,M) ≥ λ‖M+‖ − Λ‖M−‖
for every x ∈ B1(0), z ∈ R, v ∈ Bδ(0), M ∈ S.

In this section we will call universal any positive constant which depends only on n, λ, Λ.

Theorem 2.1. Let δ > 0, F : B1(0) × R × Rn × S → R a measurable function which satisfies (H1),
(H2), and (H3), f ∈ C0(B1(0)), and assume that u ∈ C2(B1(0)) solves (2.1). Then there exist
universal constants ν, ε, κ, ρ ∈ (0, 1) such that if δ′ > 0 and k ∈ N satisfy

(2.3) oscB1(0) u ≤ δ′ ≤ ρ−kκδ, ‖f‖Ln(B1(0)) ≤ εδ′,

then

(2.4) oscBρs (0) u ≤ (1− ν)sδ′ ∀ s = 0, ..., k + 1.

As we will show at the end of this section, Theorem 2.1 follows by an analogous result at scale 1
(stated in the following proposition) and a scaling argument.

Proposition 2.2. Let δ > 0, F : B1(0)×R×Rn×S → R a measurable function which satisfies (H1),
(H2), and (H3), f ∈ C0(B1(0)), and assume that u ∈ C2(B1(0)) solves (2.1).

Then there exist universal constants ν, ε, κ, ρ ∈ (0, 1) such that if δ′ satisfies

(2.5) oscB1(0) u ≤ δ′ ≤ κδ, ‖f‖Ln(B1(0)) ≤ εδ′,

then
oscBρ(0) u ≤ (1− ν)δ′.

Before proving this result, we state and prove three basic lemmas. The first lemma gives an estimate
on the contact set of a family of paraboloids with fixed opening in terms of the measure of the set of
vertices. The proof is a simple variant of the one of [15, Lemma 2.1].

Lemma 2.3. Let δ > 0, F , λ, Λ, f , and u be as in Proposition 2.2. Fix a ∈ (0, δ/2), let K ⊆ B1(0)

be a compact set, and define A ⊆ B1(0) to be the set of contact point of paraboloids with vertices in K

and opening −a, namely the set of points x ∈ B1(0) such that there exists y ∈ K which satisfies

(2.6) inf
z∈B1(0)

{a
2
|y − z|2 + u(z)

}
=
a

2
|y − x|2 + u(x).

Assume that A ⊂ B1(0).
Then there exists a universal constant c0 > 0, such that

(2.7) c0|K| ≤ |A|+
∫
A

|f(x)|n

an
dx.
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Proof. Since by assumption A ⊂ B1(0), for every x ∈ A, given y ∈ K which satisfies (2.6), we have
that

(2.8) ∇u(x) = −a(x− y).

Let T : A→ K be the map which associates to every contact point x the vertex of the paraboloid,
namely

T (x) :=
∇u(x)
a

+ x.

Notice that T ∈ C1(A) and K = T (A). From (2.8) we have that, at each contact point x ∈ A,

|∇u(x)| = a|x− y| ≤ 2a ≤ δ,

hence from (H2) the equation is uniformly elliptic at x. Moreover we have that −a Id ≤ ∇2u(x), so it
follows by (2.2) that

(2.9) −a Id ≤ ∇2u(x) ≤ Λa+ |f(x)|
λ

Id ∀x ∈ A.

In addition, from the change of variable formula we have that

(2.10) |K| = |T (A)| ≤
∫
A
det∇T (x) dx =

∫
A
det

(
∇2u(x)

a
+ Id

)
dx

Since each eigenvalue of the matrix ∇u(x)/a+ Id lies in the interval [0, (1 + Λ/λ) + |f(x)|/(λa)] (see
(2.9), we get

det

(
∇2u(x)

a
+ I

)
≤ C0

[
1 +

|f(x)|n

an

]
for some universal constant C0. Hence, it follows from (2.10) that

|K| ≤ C0|A|+ C0

∫
A

|f(x)|n

an
dx,

which proves (2.7) with c0 = 1/C0. �
Before stating the next lemma we introduce some notation.
Given u as before, for every b > 0 we define Ab be the set of x ∈ B1(0) such that u(x) ≤ b and

the function u can be touched from below at x with a paraboloid of opening −b, namely there exists
y ∈ B1(0) such that

(2.11) inf
z∈B1(0)

{
b

2
|y − z|2 + u(z)

}
=
b

2
|y − x|2 + u(x).

In addition, given g ∈ L1(B1(0)), we denote by M [g] the maximal function associated to g, namely

M [g](x) := sup

{∫
−

Br(z)
g(y) dy : Br(z) ⊆ B1(0), x ∈ Br(z)

}
.

A fundamental property of maximal functions is a weak-L1 estimate (see for instance [16]): there
exists a constant Cn depending only on the dimension such that

(2.12) |{x :M [g](x) > t} ≤
Cn‖g‖L1(B1(0))

t
∀ t > 0, ∀ g ∈ L1(B1(0)).

Given f as before, for every b > 0 we denote by Mb the set

Mb := {x ∈ B1(0) :M [|f |n](x) ≤ bn}.
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Lemma 2.4. Let δ > 0, F , λ,Λ, f and u be as in Proposition 2.2. Let a > 0, B4r(x0) ⊂ B1(0).

Then there exist universal constants C̃ ≥ 2 and c̃, µ > 0, such that if a ≤ δ/C̃, and

Br(x0) ∩Aa ∩Mµa 6= ∅
then

(2.13) |Br/8(x0) ∩AC̃a| ≥ c̃|Br(x0)|.

Proof. Let x1 ∈ Br(x0) ∩ Aa ∩Mµa and y1 ∈ B1(0) be the vertex of the paraboloid which satisfies
(2.11) with x1. Let Py1(x) be the tangent paraboloid, namely

Py1(x) = u(x1) +
a

2
|x1 − y1|2 −

a

2
|x− y1|2.

• Step 1: There exist universal constants C0, C1 > 0 such that if a ≤ δ/C0, then there is z ∈ Br/16(x0)
such that

(2.14) u(z) ≤ Py1(z) + C1ar
2.

Let α > 0 be a large universal constant which we choose later, and define ϕ : Rn → R as

(2.15) ϕ(x) :=


α−1(32α − 1) if |x| < 32−1

α−1(|x|−α − 1) if 32−1 ≤ |x| ≤ 1

0 if 1 < |x|.

Given x3 ∈ Br(x1) ∩Br/32(x0) we consider the function ψ : Rn → R given by

ψ(x) := Py1(x) + ar2ϕ

(
x− x3
r

)
∀x ∈ Rn.

We slide the function ψ from below until it touches the function u. Let x4 be the contact point. Since
the function ϕ is radial and decreasing in the radial direction, from

(2.16) −ar2ϕ
(
x4 − x3

r

)
≤ u(x4)− ψ(x4) ≤ min

x∈B1(0)
{u(x)− ψ(x)} ≤ −ar2ϕ

(
x1 − x3

r

)
we deduce that |x4 − x3| ≤ |x1 − x3| ≤ r. In particular since |x4 − x0| ≤ |x4 − x3| + |x3 − x0| ≤ 2r

and B2r(x0) ⊂ B1(0) (by assumption), the contact point is inside B1(0). We now distinguish two cases:

- Case 1: There exists x3 ∈ Br(x1)∩Br/32(x0) such that the contact point x4 lies inside Br/32(x3).
In this case we have |x4 − x0| ≤ |x4 − x3|+ |x3 − x0| ≤ r/16. In addition, the last two inequalities

in (2.16) give that u(x4)− ψ(x4) ≤ 0. Hence

u(x4) ≤ ψ(x4) = Py1(x4) + ar2ϕ

(
x4 − x3

r

)
≤ Py1(x4) + ar2‖ϕ‖L∞(Rn),

which proves that z = x4 satisfies (2.14) with C1 := ‖ϕ‖L∞(Rn) (without any restriction on a).

- Case 2: For every x3 ∈ Br(x1) ∩Br/32(x0) the contact point x4 satisfies 1/32 < |x4 − x3| < 1.
At the contact point we have that

(2.17) ∇u(x4) = ∇ψ(x4) = −a(x4 − y1) + ar∇ϕ
(
x4 − x3

r

)
.

Hence, if we choose C0 such that C0 ≥ 2 + ‖ϕ‖L∞(Rn) we get

|∇u(x4)| ≤ a|x4 − y1|+ ar‖ϕ‖L∞(Rn) < a(2 + ‖ϕ‖L∞(Rn)) ≤ C0a ≤ δ,
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which shows that the equation (2.1) is uniformly elliptic at x4 thanks to our assumptions on F .
Computing the second derivatives of ψ at x4 we get

∇2ψ(x4) = −aI + a∇2ϕ

(
x4 − x3

r

)
= a

(
−I −

(
r

|x4 − x3|

)2+α

I + (2 + α)
(x4 − x3)⊗ (x4 − x3)

r2

(
r

|x4 − x3|

)4+α
)
,

hence from (H1) and (2.2) applied with M = ∇2ψ(x4) we obtain (since ψ touches u from below at x4,
we have ∇2u(x4) ≥ ∇2ψ(x4))

f(x4) = F (x4, u(x4),∇u(x4),∇2u(x4))

≥ F (x4, u(x4),∇u(x4),∇2ψ(x4))

≥ a

(
−Λ− Λ

(
r

|x4 − x3|

)2+α

+ (2 + α)λ

(
r

|x4 − x3|

)2+α
)

= a

(
−Λ + ((2 + α)λ− Λ)

(
r

|x4 − x3|

)2+α
)
.

Choosing α big enough so that (2 + α)λ− Λ ≥ Λ + 1, and using that |x4 − x3| ≤ r, we obtain

(2.18)
f(x4)

a
≥ −Λ + (Λ + 1)

(
r

|x4 − x3|

)2+α

≥ 1.

In addition,

∇2u(x4) ≥ ∇2ψ(x4) = −aI + a∇2ϕ

(
x4 − x3

r

)
≥ a

(
−1−

(
r

|x4 − x3|

)2+α
)
I ≥ −(1 + 322+α)a Id,

so by applying the second inequality in (2.2) to M = ∇2u(x4), we get

λ‖∇2u(x4)
+‖ ≤ F (x4, u(x4),∇u(x4),∇2u(x4)) + Λ‖∇2u(x4)

−‖ ≤ |f(x4)|+ Λ(1 + 322+α)a,

that is

(2.19)
∇2u(x4)

a
≤ C2

(
1 +

|f(x4)|
a

)
Id,

for some C2 > 0 universal.
Let us consider K the set of contact points x4 as x3 varies in Br/32(x0) (as we observed before,

K ⊆ B2r(x0)), and let T : K → Rn be the map which associates to every contact point x4 the
corresponding x3, which is given by (see (2.17))

T (x) = x− r(∇ϕ)−1

(
∇u(x) + a(x− y1)

ar

)
(note that ∇ϕ is an invertible function in the annulus 1/32 < |x| < 1 and (∇ϕ)−1 can be explicitly
computed). Since T (K) = Br(x1) ∩ Br/32(x0), we deduce that there exists a constant cn, depending
only on the dimension, such that cnr

n ≤ |Br(x1) ∩ Br/32(x0)| = |T (K)|. Therefore, from the area
formula,

(2.20) cnr
n ≤

∫
K
|det∇T (x)| dx
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We now observe that

∇T (x) = Id−
(
∇2ϕ ◦ (∇ϕ)−1

(
∇2u(x) + a(x− y1)

ar

))−1 ∇u(x) + aI

a
,

so from (2.19) and (2.18) we get

‖∇T (x)‖ ≤ 1 + ‖(∇2ϕ)−1‖L∞(B1\B1/32)

(
1 + C2 + C2

|f(x)|
a

)
≤
(
1 + ‖(∇2ϕ)−1‖L∞(B1\B1/32) (1 + 2C2)

) |f(x)|
a

.

Hence, combining this bound with (2.20) we get

cnr
n ≤ C3

∫
K

|f(x)|n

an
dx ≤ C3

∫
B2r(x0)

|f(x)|n

an
dx,

where C3 > 0 is universal. Since B2r(x0) ⊆ B3r(x1) and B3r(x1) ⊂ B1(0) (note B3r(x1) is included in
B4r(x0), which is contained inside B1(0) by assumption), we conclude

(2.21) cnr
n ≤ C3

∫
B3r(x1)

|f(x)|n

an
dx ≤ C3M [|f |n](x1)

|B3r(x1)|
an

.

Recalling that by assumptionM(|f |n)(x1) ≤ µnan, choosing µ small enough so that µn < cn/(C3|B3(0)|2n),
we obtain

C3M(|f |n)(x1)
|B1(0)|2nrn

an
≤ C3µ

n|B1(0)|2nrn < cnr
n,

which contradicts (2.21).

• Step 2: Conclusion of the proof. From now on, we assume that a ≤ δ/C0, so that the conclusion
of Step 1 holds.

Let C4 > 0 be a universal constant which will be fixed later, and for every y ∈ Br/64(z) we consider
the paraboloid

Qy(x) := Py1(x)− C4
a

2
|x− y|2.

It can be easily seen that for every y the function Qy(x) is a paraboloid with opening −(C4 +1)a and
vertex

(2.22)
y1 + C4y

1 + C4
.

Let slide Qy from below until it touches the graph of u. We claim that the contact point x̄ lies inside
Br/16(z) ⊂ Br/8(x0).

Indeed if |x̄− z| ≥ r/16 we have that

|x̄− y| ≥ |x̄− z| − |z − y| ≥ r

16
− r

64
≥ r

32
,

so, thanks to (2.14),

(2.23) min
x∈B1(0)

{
u(x)− Py1(x) + C4

a

2
|x− y|2

}
≤ u(z)− Py1(z) +C4

a

2
|z − y|2 ≤ C1ar

2 +C4
a

2

( r
64

)2
.

On the other hand, since u ≥ Py1 we have

u(x̄)− Py1(x̄) + C4
a

2
|x̄− y|2 ≥ C4

a

2

( r
32

)2
,
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which contradicts (2.23) if we choose C4 sufficiently large. This proves in particular that

(2.24) x̄ ∈ Br/16(z) ⊂ Br/8(x0).

We now show that the contact points satisfy u(x̄) ≤ C4a. Indeed, since by assumption Py1(x1) =
u(x1) ≤ a and all points lie inside B1(0), we have

Py1(x̄) = u(x1) +
a

2
|x1 − y1|2 −

a

2
|x̄− y1|2 ≤ a+ 4a = 5a,

so from (2.23) we obtain

u(x̄) ≤ Py1(x̄)− C4
a

2
|x̄− y|2 + C1ar

2 + C4
a

2

( r
64

)2
≤ 5a+ C1ar

2 + C4
a

2

( r
64

)2
,

which is less than C4a provided that C4 is chosen sufficiently large.
We now observe that, as y varies in Br/64(z), the set of vertices of the paraboloids is a ball around

y1+C4z
1+C4

of radius C4r
64(1+C4)

(see (2.22)). Hence, recalling (2.24) and that u ≤ C4a at the contact points,

it follows from Lemma 2.3 that

c

(
C4r

64(1 + C4)

)n

|B1(0)| ≤ |Br/8(x0) ∩AC4a|+
∫
Br/8(x0)

|f(x)|n

an
dx.

Since the last integral can be estimated with∫
B2r(x1)

|f(x)|n

an
dx ≤M [|f |n](x1)

|B2r(x1)|
an

≤ µnrn|B2(0)|,

we conclude that (2.13) holds with C̃ := max{C0, C4}, provided µ is sufficiently small. �

The following measure covering lemma is proved by Savin in [15, Lemma 2.3] in a slightly different
version.

Lemma 2.5. Let σ, r0 ∈ (0, 1), and let D0, D1 be two closed sets satisfying

∅ 6= D0 ⊆ D1 ⊆ Br0(0).

Assume that whenever x ∈ Br0(0) and r > 0 satisfy

B4r(x) ⊆ B1(0), Br/8(x) ⊆ Br0(0), Br(x) ∩D0 6= ∅

then

|Br/8(x) ∩D1| ≥ σ|Br(x)|.
Then, if r0 > 0 is sufficiently small we get

(2.25) |Br0(0) \D1| ≤ (1− σ)|Br0(0) \D0|.

Although the proof is a minor variant of the argument of Savin in [15, Lemma 2.3], we give the
argument for completeness. As we will see from the proof, a possible choice for r0 is 1/13.

Proof. Given x0 ∈ Br0(0) \D0, set r̄ := dist(x0, D0) ≤ 2r0, and define

x1 := x0 −
r̄

7

x0
|x0|

, r :=
8

7
r̄.

Then it is easy to check that

Br/8(x1) ⊂ Br/4(x0) ∩Br0(0), Br(x1) ∩D0 = ∅.



REGULARITY RESULTS FOR VERY DEGENERATE ELLIPTIC EQUATIONS 11

In addition, since r ≤ 3r0 and |x1| < r0,

B4r(x1) ⊂ B13r0(0) ⊆ B1(0) provided r0 ≤ 1/13.

Hence, using our assumptions we get

|Br/4(x0) ∩Br0(0) ∩D1| ≥ |Br/8(x1) ∩D1| ≥ σ|Br(x1)| = σ|Br(x0)| ≥ σ|Br0(0) ∩Br(x0)|.

Now, for every x ∈ Br0(0) \ D0 we consider the ball centered at x and radius r := dist(x,D0), and
we apply Vitali covering’s Lemma to this family to extract a subfamily {Bri(xi)} such that the balls
Bri/3(xi) (and so in particular also the balls Bri/4(xi)) are disjoint. Hence

σ|Br0(0) \D0| ≤ σ
∑
i

|(Bri(xi) ∩Br0) \D0| ≤
∑
i

|Bri/4(xi)∩Br0(0)∩ (D1 \D0)| ≤ |Br0 ∩ (D1 \D0)|,

from which the result follows easily. �

Proof of Proposition 2.2. Let c0 be the constant from Lemma 2.3, and C̃, c̃, µ the constants given by
Lemma 2.4. Also, we fix r0 > 0 sufficiently small so that Lemma 2.5 applies, and we define r1 := r0/8.

Let ν < 1/2 and N be universal constants (to be chosen later) satisfying Nν � 1, set a := Nνδ′,
m := infB1(0) u and assume by contradiction that there exists x0 ∈ Br0/2(0) such that

(2.26) u(x0)−m < νδ′,

and in addition

(2.27) sup
Br1(0)

u−m > δ′/2.

(Note that if either (2.26) or (2.27) fails, then oscBr1 (0)
u ≤ (1 − ν)δ′, so the statement is true with

ρ = r1).
We define the sets Aa as before but replacing u with the nonnegative function u−m, that is Aa is

the set of points where u −m is bounded by a and can be touched from below with a paraboloid of
opening −a.

• Step 1: The following holds:

(2.28) |Br0(0) ∩Aa| ≥
c0|Br1(0)|

2
, |Mµa| > |B1| −

c0|Br1(0)|
2

.

To prove this, for every y ∈ Br1(0) we consider the paraboloid

Py(x) :=
a

2

(
(r0 − r1)

2 − |x− y|2
)
.

We observe that

Py ≤ 0 for |x| ≥ r0

(because |x − y| ≥ |x| − |y| ≥ r0 − r1), while |x − y| ≤ |x| + |y| ≤ r0/2 + r1 for x ∈ Br0/2(0), which
implies (recall that a = Nνδ′)

(2.29) Py(x) ≥
a

2

(
(r0 − r1)

2 −
(r0
2

+ r1

)2)
> νδ′ ≥ u(x0)−m ∀x ∈ Br0/2(0)

provided N is sufficiently large. Moreover Py(x) ≤ a for every x, y ∈ B1(0).
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Hence, let us slide the paraboloids Py from below until they touch the function u −m. Let A be
the contact set as y varies inside Br1(0). By what said before it follows that the contact points are
contained inside Br0(0). In addition, thanks to (2.26) and (2.29), at any contact point x we have

0 > u(x0)−m− νδ′ ≥ min
z∈B1(0)

{u(z)−m− Py(z)}

= u(x)−m− Py(x) ≥ u(x)−m− a,

which proves that A ⊂ Br0(0) ∩Aa. From Lemma 2.3 applied to K = Br1(0) we obtain

|Br0(0)∩Aa| ≥ |A| ≥ c0|Br1(0)|−
∫
A

|f(x)|n

an
dx ≥ c0|Br1(0)|−

∫
B1(0)

|f(x)|n

an
dx ≥ c0|Br1(0)|−

εn

Nnνn
,

while the maximal estimate (2.12) gives

|B1(0) \Mµa| ≤
Cn‖f‖nLn(B1(0))

(µa)n
≤ Cnε

n

µnNnνn
,

hence (2.28) is satisfied provided ε is sufficiently small.

• Step 2: There exists a constant C̄ > 0, depending only on the dimension, such that

(2.30) |Br0(0) \AC̃ka| ≤ C̄(1− c̃)k provided C̃k+1a ≤ δ.

From (2.28) it follows that

Br0(0) ∩Aa ∩Mµa 6= ∅.

Since the sets Aa and Ma are increasing with respect to k, this implies that

(2.31) Br0(0) ∩AC̃ka ∩MµC̃ka 6= ∅ ∀ k ∈ N,

where C̃ ≥ 2 is as in Lemma 2.4.
Now, for every k ∈ N such that C̃k+1a ≤ δ we apply Lemma 2.5 to the closed sets

D0 := Br0(0) ∩AC̃ka ∩MµC̃ka, D1 := Br0(0) ∩AC̃k+1a.

Since D0 is nonempty (see (2.31)), Lemma 2.4 applied with C̃ka instead of a proves that assumption
of Lemma 2.5 are satisfied with σ = c̃ > 0. Therefore

|Br0(0) \AC̃k+1a| ≤ (1− c̃)|Br0(0) \ (AC̃ka ∩MµC̃ka)|

≤ (1− c̃)
(
|Br0(0) \AC̃ka|+ |Br0(0) \MµC̃ka|

)
.

(2.32)

Applying (2.32) inductively for every positive integer k such that C̃k+1a ≤ δ and using the maximal
estimate (2.12), we obtain

|Br0(0) \AC̃ka| ≤ (1− c̃)k|Br0(0) \Aa|+
k∑

i=1

(1− c̃)i|Br0(0) \MC̃k−ia|

≤ (1− c̃)k|Br0(0)|+
k∑

i=1

(1− c̃)i
Cn‖f‖nLn(B1(0))

µnC̃n(k−i)an
,
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so by (2.5) we get (recall that a = Nνδ′)

|Br0(0) \AC̃ka| ≤ (1− c̃)k

[
|Br0(0)|+

Cnε
n

µnNnνn

k∑
i=1

1

((1− c̃)C̃n)k−i

]

≤ (1− c̃)k

[
|Br0(0)|+

Cnε
n

µnNnνn

∞∑
i=0

1

((1− c̃)C̃n)i

]
.

(2.33)

Assuming without loss of generality that c̃ ≤ 1/2, C̃ ≥ 3, and ε ≤ µNν/C
−1/n
n we have

|Br0(0) \AC̃ka| ≤ (1− c̃)k

[
|Br0(0)|+

∞∑
i=0

(
2

3n

)i
]
,

which proves (2.30).

• Step 3: Let E := {x ∈ Br0(0) : u(x)−m ≥ δ′/4}. Then

(2.34) |E| ≥ c0|Br1(0)|
2

.

For every y ∈ Br1(0) we consider the paraboloid

Qy(x) :=
δ′

(r0 − r1)2
|x− y|2+δ

′

4
,

and we slide it from above (in Step 1 we slided paraboloids from below) until it touches the graph of
u−m inside B1(0). It is easy to check that, since |x− y| ≥ |x| − |y|, we have

Qy(x) > δ′ ≥ u(x)−m for |x| ≥ r0

(recall that y ∈ Br1(0) and u−m ≤ δ′ inside B1(0)), while by (2.27)

(2.35) sup
Br1 (0)

Qy ≤ δ′/2 < sup
Br1 (0)

u−m

(recall that r0 = 8r1), so the contact point lies inside Br0(0). If we denote by A′ the contact set as y
varies inside Br1(0) applying Lemma 2.3 “from above” (namely to the function −u(x) +m touched
from below by the paraboloids −Qy(x)) with a = 2δ′/(r0 − r1)

2 (notice that δ′ ≤ κδ, so a ≤ δ/2 if κ
is sufficiently small) we obtain

(2.36) |A′| ≥ c0|Br1(0)| −
∫
A′

|f(x)|n

an
dx ≥ c0|Br1(0)| −

εn

Nnνn
.

Moreover, it follows by (2.35) thau−m ≥ δ′/4 at every contact point. This implies that the contact
set A′ is contained in E, so the desired estimate follows by (2.36).

• Step 4: Conclusion. Let k0 ∈ N be the largest number such that C̃k0+1a ≤ δ′/4. Since δ′ ≤ δ, by
Step 2 we get

|Br0(0) \AC̃k0a| ≤ C̄(1− c̃)k0 .

On the other hand, since

E ⊂
{
x ∈ Br0(0) : u(x)−m > C̃k0a

}
⊂ Br0(0) \AC̃k0a,
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it follows by Step 3 that
c0|Br1(0)|

2
≤ C̄(1− c̃)k0 .

Since k0 ∼ | logC̃(Nν)| (recall that a = Nνδ′), we get a contradiction by first fixing N large enough
(so that all the previous arguments apply) and then choosing ν sufficiently small. �

Proof of Theorem 2.1. Let ν, ε, κ, ρ ∈ (0, 1) be the constants of Proposition 2.2. Without loss of
generality we assume that ν, ρ ≤ 1/2. We prove (2.4) by induction on s. For s = 0 the result is true

by assumption. We prove the result for s+1 given the one for s. Let F̃ : B1(0)×R×Rn ×S → R be

F̃ (x, z, p,M) := ρsF (x, ρsz, p, ρ−sM),

and consider the function

v(x) := ρ−su(ρsx) ∀x ∈ B1(0).

Then F̃ satisfies the same assumptions (H1), (H2), and (H3) which are satisfied by F with the same
ellipticity constants λ and Λ, and v solves the fully nonlinear equation

F̃ (x, v(x),∇v(x),∇2v(x)) = ρsf(ρsx).

By inductive hypothesis

(2.37) ‖v‖L∞(Bρs (0)) = ρ−s‖u‖L∞(Bρs (0)) ≤ ρ−s(1− ν)sδ′ ≤ ρ−sδ′ ≤ ρk−sκδ ≤ κδ.

Also, by (2.3),

‖ρsf(ρsx)‖Ln(B1(0)) = ‖f‖Ln(Bρs (0)) ≤ ‖f‖Ln(B1(0)) ≤ εδ′ ≤ ερ−s(1− ν)sδ′.

Hence, we apply Proposition 2.2 to v with ρ−s(1− ν)sδ′ instead of δ′, to obtain

ρ−s‖u‖L∞(Bρs+1 (0)) = ‖v‖L∞(Bρ(0)) ≤ ρ−s(1− ν)s+1δ′,

which proves the inductive step.
�

3. Separation between degenerancy and nondegeneracy

First, we introduce some notation regarding the norm induced by a convex set E (see (1.4)).
We denote by E∗ the ball in the dual norm

(3.1) E∗ := {e∗ ∈ Rn : e∗ · e ≤ 1 ∀ e ∈ E}.

It can be easily seen that with this definition

|e|E = sup{e∗ · e : e∗ ∈ E∗} ∀ e ∈ Rn.

We denote by dE (and dE∗ , respectively) the smallest radius such that E ⊆ BdE (0), (E
∗ ⊆ BdE∗ (0),

respectively). Notice that

(3.2) dE = max{|e| : |e|E = 1}

Similarly, we denote by d̃E the biggest radius such that B
d̃E

(0) ⊆ E. It satisfies

(3.3) |e|E ≤ |e|/d̃E ∀ e ∈ Rn.

Moreover, if E is strictly convex, then we can define map ` : ∂E∗ → ∂E, where `e∗ := `(e∗) is the
unique element of ∂E such that |`e∗ |E = e∗ ·`e∗ (in other terms, {x ·e∗ = 1} is a supporting hyperplane
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for E at `e∗). In addition, again by the strict convexity of E, ` is continuous in the following sense:
for every ε0 > 0 there exists η(ε0) > 0 such that

(3.4) e ∈ E, e∗ ∈ ∂E∗, 1− η(ε0) ≤ e∗ · e ≤ 1 ⇒ |e− `e∗ | ≤ ε0.

In the following lemma we prove that, at every scale, if none of the partial derivatives of u is close
to the L∞ norm of |∇u|E in a set of large measure, then |∇u|E decays by a fixed amount on a smaller
ball. As we will see in the next section, if this case does not occur, then the equation is nondegenerate
and we can prove that u is C1,α there.

As we will see below, a key observation being the proof of the next result is the fact that the function
ve∗(x) := (∂e∗u(x)− (1 + δ))+ solves

(3.5) ∂i[∂ijF(∇u(x))∂jve∗(x)] ≥ ∂e∗f(x),

and the equation might be assumed to be uniformly elliptic, since the values of the coefficients
∂ijF(∇u(x)) are not relevant when |∇u(x)| ≤ 1 + δ (since at that points ve∗ = 0).

Lemma 3.1. Fix η > 0, and let δ, F , E, λ, Λ, M , f , and u be as in Theorem 1.4. For every i ∈ N
set

di := sup{(|∇u(x)|E − (1 + δ))+ : x ∈ B2−i(0)},
and assume that there exists k ∈ N such that
(3.6)

sup
e∗∈∂E∗

|{x ∈ B2−2i−1(0) : (∂e∗u(x)− (1 + δ))+ ≥ (1− η)d2i}| ≤ (1− η)|B2−2i−1(0)| ∀ i = 0, ..., k.

Then there exists α ∈ (0, 1) and C0 > 0, depending only on η, M , q, ‖f‖Lq(B1(0)), dE∗,d̃E, δ, λ,
and Λ, such that

(3.7) d2i ≤ C02
−2iα ∀ i = 0, ..., k + 1.

Proof. Given e∗ ∈ ∂E∗, we differentiate (1.10) in the direction of e∗ to obtain

∂i[∂ijF(∇u(x))∂j(∂e∗u(x))] = ∂e∗f(x).

Since the function t 7→ (t−(1+δ))+ is convex, it follows that the function ve∗(x) := (∂e∗u(x)−(1+δ))+
is a subsolution of the above equation, that is (3.5) holds.

Note that, since ve∗(x) is constant where |∇u|E ≤ 1 + δ and F is uniformly elliptic on the set
{|∇u|E ≥ 1 + δ/2} (see (1.9)), we can change the coefficients outside this region to ensure that the
equation is uniformly elliptic everywhere, with constants λ and Λ. Applying [12, Theorem 8.18] to
the function d2i − ve∗(x) (which is a nonnegative supersolution inside B2−2i(0)), we obtain that there
exists a constant c0 := c0(n, λ,Λ) > 0 such that

inf
{
d2i − ve∗(x) : x ∈ B2−2i−2(0)

}
≥ c02

2in

∫
B2−2i−1(0)

(d2i − ve∗(x)) dx − 2−2i(1−n/q)‖fe∗‖Lq(B2−2i (0))

We estimate the integral in the right hand side considering only the set{
x ∈ B2−2i−1(0) : ve∗(x) ≤ (1− η)d2i

}
.

There, the integrand is greater than ηd2i and the measure of the set is greater than η|B2−2i−1(0)| (by
(3.6)), hence

inf
{
d2i − ve∗(x) : x ∈ B2−2i−2(0)

}
≥ c02

2inη2d2i|B2−2i−1(0)| − 2−2i(1−n/q)‖fe∗‖Lq(B1(0))

≥ c0η
2d2i|B1/2(0)| − 2−2i(1−n/q))‖f‖Lq(B1(0))dE∗ .

(3.8)
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We now distinguish two cases, depending whether

(3.9)
c0|B1/2(0)|η2

2
d2i ≥ dE∗2−2i(1−n/q))‖f‖Lq(B1)

holds or not.
- Case 1: (3.9) holds. In this case we obtain from (3.8) that

ve∗(x) ≤

(
1−

c0|B1/2(0)|η2

2

)
d2i ∀x ∈ B2−2i−2(0).

Since e∗ ∈ ∂E∗ is arbitrary and

sup
e∗∈∂E∗

ve∗(x) =

(
sup

e∗∈∂E∗
∂e∗u(x)− (1 + δ)

)
+

= (|∇u(x)|E − (1 + δ))+ ∀x ∈ B1(0),

we get

(|∇u(x)|E − (1 + δ))+ ≤

(
1−

c0|B1/2(0)|η2

2

)
d2i ∀x ∈ B2−2i−2(0),

that is

(3.10) d2(i+1) ≤

(
1−

c0|B1/2(0)|η2

2

)
d2i.

- Case 2: (3.9) fails. In this case we get

(3.11) d2(i+1) ≤ d2i ≤ C ′2−2i(1−n/q).

for some constant C ′ depending only on η, n, λ, Λ, dE∗ , and ‖f‖Lq(B1(0)).

Let us choose α ∈ (0, 1) such that

α ≤ 1− n/q, 1−
c0|B1/2(0)|η2

2
≤ 2−2α,

and C0 := max{M/d̃E , 4C
′} (recall that M is an upper bound for |∇u| inside B2(0)). We prove the

result by induction over i.

Since |∇u(x)|E ≤ |∇u(x)|/d̃E ≤ M/d̃E (see (3.3)), we have that d0 ≤ M/d̃E , so the statement is
true for i = 0.

Assuming the result for i, if (3.9) holds, then from (3.10) and the inductive hypothesis we obtain

d2(i+1) ≤

(
1−

c0|B1/2(0)|η2

2

)
d2i ≤ 2−2α · C02

−2iα,

while if (3.9) fails then (3.11) gives

d2(i+1) ≤ C ′2−2i(1−n/q)) ≤ C ′2−2iα ≤ 4C ′ · 2−2(i+1)α ≤ C02
−2(i+1)α.

This proves the inductive step on d2(i+1), and concludes the proof. �
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4. Regularity at nondegenerate points

In the following lemma we prove that in a neighborhood of a nondegenerate point the function u
is close to a linear function with a nondegenerate slope. In Proposition 4.3 we prove that this implies
C1,α regularity of u at the nondegenerate point. The proof is based on an approximation argument
with solutions of a smooth elliptic operator, which is stated in Lemma 4.2 and whose proof is based
on the compactness result of Section 2.

We recall that E∗ denotes the dual of a convex set E, and | · |E the norm associated to E (see (3.1)
and (1.4)).

Lemma 4.1. Let δ, η, ζ > 0, and let E be a strictly convex set.
Let u : B1(0) → R with u(0) = 0 and |∇u(x)|E ≤ ζ + δ+1 for every x ∈ B1(0). Let us assume that

there exists e∗ ∈ ∂E∗ such that

(4.1)
∣∣{x ∈ B1 : (∂e∗u(x)− (1 + δ))+ ≥ (1− η)ζ

}∣∣ ≥ (1− η)|B1(0)|.
Then for every ε > 0 there exists η depending only on E and n, and constants A ∈ Rn and b ∈ R,

such that

(4.2) |u(x)−A · x− b| ≤ ε(ζ + δ + 1) ∀x ∈ B1(0).

In addition |A|E = ζ + δ + 1 and |b| ≤ C(ζ + δ + 1), where C depends only on E.

Proof. First of all, by standard Sobolev inequalities, there exists a constant C0 such that for every
u ∈W 1,2n(B1(0))

(4.3)

∣∣∣∣∣u(x)−
∫
−

B1(0)
u(y) dy

∣∣∣∣∣ ≤ C0

(∫
−

B1(0)
|∇u(y)|2n dy

)1/(2n)

∀x ∈ B1(0).

Recalling that ` : ∂E∗ → ∂E denotes the duality map, we apply (4.3) to the function u(x) − (ζ +
δ + 1)`e∗ · x. Thus, setting m to be the average of u(x)/(ζ + δ + 1) inside B1(0), we obtain

(4.4)
∣∣u(x)− (ζ + δ + 1)`e∗ · x−m(ζ + δ + 1)

∣∣2n ≤ C2n
0

∫
−

B1(0)
|∇u(y)− (ζ + δ + 1)`e∗ |2n dy

for every x ∈ B1(0). We estimate the integral in (4.4) by splitting it into two sets.
Let ε0 > 0 be a constant that we choose later. Since by assumption |∇u(x)|E ≤ ζ + δ + 1 for every

x ∈ B1(0), and in addition{
x ∈ B1 : ∂e∗u(x) ≥ (1− η)ζ + δ + 1

}
⊆
{
x ∈ B1 : e

∗ · ∇u(x) ≥ (1− η)
(
ζ + δ + 1

)}
,

we apply (3.4) with e = ∇u(x)/(ζ + δ + 1) to deduce that

1

|B1(0)|

∫
{(∂e∗u−(1+δ))+≥(1−η)d}

|∇u(y)− (ζ + δ + 1)`e∗ |2n dy ≤ (ζ + δ + 1)2nε2n0 ,

provided η ≤ η(ε0).
On the other hand, since the complement has measure less than η|B1(0)|, we simply estimate the

integrand there with CE(ζ + δ + 1)2n, where CE is a constant depending only on E.
Hence, by choosing first ε0 so that C2n

0 ε2n0 ≤ ε2n/2, and then η ≤ η(ε0) sufficiently small so that so
that C2n

0 C2n
E η ≤ ε2n/2, from (4.4) we easily obtain (4.2). �

Lemma 4.2. Let δ > 0, and let aij ∈ C0(Rn) be bounded coefficients uniformly elliptic in Bδ(0),
namely there exist λ,Λ > 0 such that

λI ≤ aij(v) ≤ ΛI ∀ v ∈ Bδ(0).
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Then, for every τ > 0 there exist σ(τ) > 0, µ(τ) > 0, which depend only on τ and on the modulus
of continuity of aij, such that the following holds: For every θ ≤ σ(τ), f ∈ C0(B1(0)) such that
‖f‖Ln(B1(0)) ≤ µ(τ), and w ∈ C2(B1(0)) such that ‖w‖L∞(B1(0)) ≤ 1 and

aij(θ∇w)∂ijw = f in B1(0),

there exists v : B1(0) → R such that

(4.5) aij(0)∂ijv = 0 in B1(0)

and

‖v − w‖L∞(B1/2(0)) ≤ τ.

Proof. By contradiction, there exists τ > 0 and sequences θm → 0, µm → 0 and functions wm, fm :
B1(0) → R such that ‖wm‖L∞(B1(0)) ≤ 1, ‖fm‖Ln(B1(0)) ≤ µm,

(4.6) aij(θm∇wm)∂ijwm = fm in B1(0),

but for every function v : B1(0) → R satisfying (4.5) we have that

(4.7) ‖v − wm‖L∞(B1/2(0)) ≥ τ ∀m ∈ N.

We prove that up to subsequence (not relabeled)

(4.8) wm → w∞ locally uniformly in B1(0)

and that w∞ satisfies (4.5), which contradicts (4.7).
Consider Ω b B1(0), let dΩ = dist(Ω,Rn \B1(0)), and for every m ∈ N and x0 ∈ Ω we consider the

function

um(x) :=
θm
dΩ

(
wm(x0 + dΩx)− wm(x0)

)
∀x ∈ B1(0),

which solves

aij(∇um(x))∂ijum(x) = θmdΩfm(dΩx) ∀x ∈ B1(0).

We apply Theorem 2.1 to F (x, z, p,M) = aij(p)Mij (which satisfies all the assumptions) and let
ν, ε, κ, ρ > 0 be the constants introduced in that theorem. Thus, if δ′ > 0 and k ∈ N satisfy

(4.9) oscB1(0) um ≤ δ′ ≤ ρ−kκδ, ‖θmdΩfm(dΩx)‖Ln(B1(0)) ≤ εδ′

then

oscBρs (0) um ≤ (1− ν)sδ′ ∀ s = 0, ..., k + 1.

We want to apply it with δ′ = θm. Hence, define km to be the biggest positive integer such that
θm ≤ 2−kmκδ. Since

‖fm‖Ln(B1(0)) ≤ ε

for m sufficiently large, we get

‖θmdΩfm(dΩx)‖Ln(B1(0)) = ‖θmfm(x)‖Ln(BdΩ
(0)) ≤ θm‖fm(x)‖Ln(B1(0)) ≤ εθm.

Hence (4.9) is satisfied, and we get

oscBρs (0) um ≤ (1− ν)sθm ∀ s = 0, ..., km + 1

which can be rewritten in terms of wm as

(4.10) oscBρs (0)(wm(x0 + dΩx)) ≤ (1− ν)sdΩ ∀ s = 0, ..., km + 1.
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Let α := − logρ(1 − ν). From (4.10) we obtain that, for every m large enough, wm is α-Hölder on

points at distance at least ρ−kmdΩ, namely there exists C independent on m such that for every m
large enough

(4.11) |wm(x)− wm(y)| ≤ C|x− y|α ∀x, y ∈ Ω : |x− y| ≥ 2−kmdΩ.

Since km → ∞ as m → ∞, it can be easily seen, with the same proof as the one of Ascoli-Arzela
theorem, that the family {wm}m∈N of functions satisfying ‖wm‖L∞(B1(0)) ≤ 1 and (4.11) is relatively
compact with respect to the uniform convergence in Ω. Letting Ω vary in a countable family of open
sets compactly supported in B1(0) which cover B1(0), with a diagonal argument we obtain (4.8).

We claim that w∞ solves (4.5) in the viscosity sense. Indeed, assume by contradiction that w∞
is not a supersolution of (4.5) in the viscosity sense. Then there exists a function ϕ ∈ C2(B1(0))
and a point x0 ∈ B1(0) such that ϕ(x0) = w∞(x0), ϕ(x) < w∞(x) for every x ∈ B1(0) \ {x0}, and
aij(0)∂ijϕ(x0) > 0. Since ϕ is C2, there exists r > 0 such that

(4.12) aij(0)∂ijϕ(x) > 0 ∀x ∈ Br(x0).

Since ϕ touches w∞ strictly at x0 and wm → w∞ uniformly, for every m ∈ N large enough there
exist cm ∈ R and xm ∈ Br(x0) such that cm + ϕ(xm) = wm(xm), and cm + ϕ(x) ≤ wm(x) for every
x ∈ Br(x0). In addition, cm → 0 and xm → x0 as m→ ∞.

Let h := inf∂Br/2(x0)(w∞ − ϕ)/2 > 0. Since cm converge to 0 and wm converge to w∞, for every

m large enough h ≤ inf∂Br/2(x0)(wm + cm − ϕ). Let (wm + cm − ϕ− h)− be the negative part of the

function wm + cm − ϕ− h, and let Γm be the convex envelope of (wm + cm − ϕ− h)− in Br(x0).
Since the function wm+ cm−ϕ−h is of class C2, it is a classical fact that Γm is of class C1,1 inside

Br(x0) (see for instance [6]).
For every m let Em be the contact set between wm + cm − ϕ− h and Γm in Br/2(x0), namely

Em := {x ∈ Br/2(x0) : wm(x) + cm − ϕ(x)− h = Γm(x)}.
Recalling (4.12), we see that the function wm + cm − ϕ− h solves

(4.13) aij(θm∇wm)∂ij(wm+ cm−ϕ−h) = fm− aij(θm∇wm)∂ijϕ < fm− [aij(θm∇wm)− aij(0)]∂ijϕ
in Br(x0). In addition, since Γm is convex, has oscillation h and vanishes on ∂Br(x0), it is easy to see
that

|∇Γm(x)| ≤ 2h

r
∀x ∈ Br/2(0).(4.14)

Since at the contact points the gradient of wm − ϕ coincides with the gradient of Γm, it follows that,
for every x ∈ Em,

aij(θm∇wm)− aij(0) = aij(θm(∇ϕ+∇Γm))− aij(0).

Hence the equation (4.13) is uniformly elliptic at the contact points form large enough and in addition
the term aij(θm∇wm)− aij(0) converges uniformly to 0 on Em as m→ ∞.

Hence, applying the Alexandroff-Bakelman-Pucci estimate [4, Theorem 3.2] we obtain

h− cm ≤ sup
Br/2(x0)

(wm + cm − ϕ− h)− ≤ Cr
∥∥(fm + (aij(θm∇wm)− aij(0))∂ijϕ)

+
∥∥
Ln(Em)

≤ Cr
(
‖fm‖Ln(B1(0)) + ‖aij(θm∇wm)− aij(0)‖Ln(Em)‖ϕ‖C2(B1(0))

)
,

(4.15)

where C > 0 depends only on n, λ and Λ, and letting m→ ∞ we get

h ≤ Cr lim inf
m→+∞

[
‖fm‖Ln(B1(0)) + ‖aij(θm∇wm)− aij(0)‖Ln(Em)‖ϕ‖C2(B1(0))

]
= 0,



20 M. COLOMBO AND A. FIGALLI

a contradiction. A symmetric argument proves also that w∞ is a subsolution of (4.5).
Therefore w∞ solves (4.5) in the viscosity sense, and being (4.5) a uniformly elliptic equation with

constant coefficients, w∞ is actually a classical solution. This fact and (4.8) contradict (4.7). �
We prove an improvement of flatness result when the gradient is nondegenerate. In the following

proposition the assumption f ∈ Lq(B1(0)) for some q > n plays a crucial role, and this is the optimal
assumption one can make. Indeed, even for the Laplace equation ∆u = f , the C1,α regularity of the
solution u is false for f ∈ Ln (since W 2,n does not embed into C1,α).

Proposition 4.3. Let δ, F , E, λ, Λ, f , u, and M be as in Theorem 1.4. There exist δ0, µ0 > 0,
depending only on the modulus of continuity of ∇2F , and on δ, λ, and Λ, such that the following
holds:

If ‖f‖Lq(B2(0)) ≤ δ0µ0 and for any x ∈ B1/2(0) there exist Ax ∈ Rn and bx ∈ R such that 1 + δ ≤
|Ax|E ≤M and |u(y)−Ax · y − bx| ≤ δ0 for every y ∈ B1(0), then

(4.16) |u(y)− u(x)−A · (y − x)| ≤ C|y − x|1+α ∀ y ∈ B1(0)

with α := 1− n/q, C depends only on δ, n, λ, and Λ, and A ∈ Rn satisfies

(4.17) |A−A0| ≤
d̃E
4
δ.

In particular u ∈ C1,α(B1/4(0)) (with bounds depending only on the modulus of continuity of ∇2F , on
δ, n, λ, and Λ), and |∇u|E ≥ 1 + δ/2 inside B1/4(0).

Proof. We prove (4.16) for x = 0. Up to a vertical translation, we can assume without loss of generality
that u(0) = 0. It suffices to show that there exists r ∈ (0, 1) such that, for every k ∈ N ∪ {0}, there is
a linear function Lk(y) = Ak · y + bk satisfying

|u(y)− Lk(y)| ≤ δ0r
k(α+1) ∀ y ∈ Brk(0),

(4.18) |Ak −Ak+1| ≤ C ′δ0r
kα |bk − bk+1| ≤ C ′δ0r

k(α+1).

For k = 0 the result is true by assumption.
Now we prove the result for k + 1 assuming it for 0, ..., k. Let us consider the rescaled function

(4.19) w(y) :=
u(rky)− Lk(r

ky)

δ0rk(α+1)
∀ y ∈ B1(0).

Observe that, by the inductive hypothesis, |w| ≤ 1 inside B1(0) and w solves the equation

∂ijF(Ak + δ0r
kα∇w(y))∂ijw(y) =

rk(1−α)

δ0
f(rky) in B1(0).

Recalling that α = 1− n/q, by a change of variable and Hölder inequality we get

(4.20) ‖rkf(rky)‖Ln(B1(0)) = ‖f‖Ln(B
rk

(0)) ≤ |B1(0)|1/qrkα‖f‖Lq(B
rk

(0)) ≤ |B1(0)|1/qrkα‖f‖Lq(B2(0)).

Since ‖f‖Lq(B2(0)) ≤ δ0µ0, we get

(4.21)
rk(1−α)

δ0
‖f(rky)‖Ln(B1(0)) ≤ |B1(0)|1/qµ0.

Recalling (3.3) and (4.18), by the inductive assumption we get

d̃E

k−1∑
i=0

|Ai −Ai+1|E ≤
k−1∑
i=0

|Ai −Ai+1| ≤ C ′δ0

k−1∑
i=0

riα ≤ C ′δ0

∞∑
i=0

riα ≤ d̃E
4
δ,
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provided we choose δ0 small enough. Hence Ak 6∈ E, and more precisely

(4.22) 1 +
3

4
δ ≤ |A0|E −

k−1∑
i=0

|Ai −Ai+1|E ≤ |Ak|E ≤ |A0|E +

k−1∑
i=0

|Ai −Ai+1|E ≤M +
δ

4
.

Define aij : Rn → R as aij(v) := ∂ijF(Ak + v). Then by (3.3) and (4.22) we have

B
d̃Eδ/4

(Ak) ⊆
{
|y −Ak|E ≤ δ

4

}
⊆
{
|y|E ≥ 1 +

δ

2

}
,

so by assumption (1.9) on F we get

λI ≤ ∇2F(v) ≤ ΛI for any v ∈ B
d̃Eδ/4

(Ak),

which implies that the coefficients aij are uniformly elliptic inside B
d̃Eδ/4

(0) with constants λ, Λ.

Let σ and µ be the functions provided by Lemma 4.2. If δ0 is small enough so that δ0r
kα ≤

σ(r1+α/2), and µ0 is small enough so that |B1(0)|1/qµ0 ≤ µ(r1+α/2), Lemma 4.2 applied to w implies
the existence of a function v : B1(0) → R such that

∂ijF(Ak)∂ijv = 0 in B1(0)

and

(4.23) |v(y)− w(y)| ≤ r1+α

2
∀ y ∈ B1/2(0).

In particular, since |v(y)| ≤ |v(y)− w(y)|+ |w(y)| ≤ 3/2 in B1/2(0), and v solves a uniformly elliptic
equation with constant coefficients, there exist C ′ > 0 (depending only on n, λ,Λ) and a linear function
L(y) = A · y + b, such that

|v(y)−A · y − b| ≤ C ′|y|2 ∀ y ∈ B1/4(0).

In particular, if C ′r1−α ≤ 1/2 and r ≤ 1/4, we get

(4.24) |v(y)−A · y − b| ≤ C ′r2 ≤ r1+α

2
∀ y ∈ Br(0).

Hence, first we choose 0 < r < 1/4 such that

C ′r1−α ≤ 1

2
,

then fix δ0 such that

δ0r
kα ≤ σ(r1+α/2) and C ′δ0

∞∑
i=0

riα ≤ d̃E
4
δ,

and finally take µ0 such that

|B1(0)|1/qµ0 ≤ µ(r1+α/2).

Then from (4.23) and (4.24) we get

|w(y)−A · y −B| ≤ |w(y)− v(y)|+ |v(y)−A · y −B| ≤ r1+α ∀ y ∈ Br(0),

which can be rewritten in terms of u as (see (4.19))

|u(y)− Lk+1(y)| ≤ δ0r
(k+1)(α+1) ∀ y ∈ Brk+1(0),

where

Lk+1(y) := Lk(y)− δ0r
k(α+1)L

( y
rk

)
.
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It is easy to check that (4.18) holds for some C ′ large enough independent of δ0 and r, and this
concludes the proof of the inductive step.

Also, it follows from (4.18) and the definition of δ0 that

(4.25) |Ak −A0| ≤
k−1∑
i=0

|Ai −Ai+1| ≤
d̃E
4
δ,

which proves (4.17) in the limit.
Finally, the fact that (4.16) implies that u ∈ C1,α(B1/4(0)) is standard (see for instance [6, Lemma

3.1]). �

5. Proof of Theorems 1.4 and 1.1

Proof of Theorem 1.4. For any x0 ∈ B1(0) and r ∈ (0, 1), we have∫
B1(0)

|rf(x0 + rx)|p dx =

∫
Br(x0)

rp−n|f(x)|p dx ≤ rp−n‖f‖pLp(B2(0))
.

Let µ0 and δ0 be as in Proposition 4.3. Fix r < 1/2 small enough such that r1−n/p‖f‖Lp(B1(0)) ≤ δ0µ0,
so that

(5.1) ‖rf(x0 + rx)‖Lp(B1(0)) ≤ δ0µ0.

Consider now the function w : B1(0) → R given by

w(x) :=
1

r
u(x0 + rx) ∀x ∈ B1(0),

which by (1.10) solves

(5.2) ∂i[∂ijF(∇w(x))∂jw(x))] = rf(x0 + rx).

Our goal is to show that the quantity

(5.3) sup
x∈B2−i (0)

{
|(|∇w(x)|E − 1− δ)+ − (|∇w(0)|E − 1− δ)+|

}
∀ i ∈ N,

decays geometrically.
For every i ∈ N set

di := sup
x∈B2−i (0)

(|∇w(x)|E − (1 + δ))+,

and let k be the smallest value of i ∈ N such that

(5.4) sup
e∗∈∂E∗

∣∣{x ∈ B2−2i−1(0) : (∂e∗w(x)− (1 + δ))+ ≥ (1− η)d2i
}∣∣ ≥ (1− η)|B2−2i−1(0)|

(k = ∞ if there is no such i). By Lemma 3.1 there exists a constant C0 > 0 and α0 ∈ (0, 1) such that

(5.5) d2i ≤ C02
−2iα0 ∀ i = 0, ..., k.

If k = ∞, then there is nothing to prove. Assume then that k is finite.
For every k + 1 ≤ i ≤ 2k we estimate d2i with d2k, and from (5.5) applied to d2k we obtain

(5.6) d2i ≤ d2k ≤ C02
−2kα0 ≤ C02

−iα0 .

We now scale the function w in order to preserve its gradient:

v(x) := 22k+1(w(2−2k−1x)− w(0)) ∀x ∈ B1(0).
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Since ∇v(x) = ∇w(2−2k−1x), from (5.4) we obtain that there exists e∗ ∈ ∂E∗ such that

(5.7)
∣∣{x ∈ B1(0) : (∂e∗v(x)− (1 + δ))+ ≥ (1− η)d2k

}∣∣ ≥ (1− η)|B1(0)|.

Moreover, we have that |∇v(x)|E ≤ d2k + δ + 1 ≤ M/d̃E for every x ∈ B1(0) (recall (3.3)). Hence,

from Lemma 4.1 applied to v with ε = δ0d̃E/M (with δ0 as in Proposition 4.3) and ζ = d2k, there
exist A ∈ Rn with |A|E = d2k+1 + δ + 1 and b ∈ R such that

(5.8) |v(x)−A · x− b| ≤ ε(d2k+1 + δ + 1) ≤ εM/d̃E = δ0 ∀x ∈ B1(0).

From (5.2), (5.1), and (5.8), the hypothesis of Proposition 4.3 are satisfied, so there exists a constant
C1, depending only on δ, n, λ, and Λ, such that

|∇v(x)−∇v(0)| ≤ C1|x|α1 ∀x ∈ B1/4(0),

where α1 := 1− n/q. Since the function x→ (|x| − 1− δ)+ is 1-Lipschitz, we get

|(|∇w(x)| − 1− δ)+ − (|∇w(0)| − 1− δ)+| ≤ |∇w(x)−∇w(0)| = |∇v(22k+1x)−∇v(0)|,
for every x ∈ B2−2k−2(0). In particular, for any i ≥ 2k + 1 and x ∈ B2−2i(0) we have

(5.9) |(|∇w(x)| − 1− δ)+ − (|∇w(0)| − 1− δ)+| ≤ C12
(2k+1)α1 |x|α1 ≤ C12

(2k+1−2i)α1 ≤ C12
−iα1 .

Setting C̄ := 2max{C0, C1} and ᾱ := min{α0, α1}/2, from (5.5), (5.6), and (5.9), we obtain that for
every i ∈ N

sup
x∈B2−2i(0)

{
|(|∇w(x)|E − 1− δ)+ − (|∇w(0)|E − 1− δ)+|

}
≤ C̄2−2iᾱ,

namely
sup

x∈B2−2ir(x0)

{
|(|∇u(x)|E − 1− δ)+ − (|∇u(x0)|E − 1− δ)+|

}
≤ C̄2−2iᾱ,

from which (1.11) follows easily. �
Proof of Theorem 1.1. Let Ω′ b Ω′′ b Ω′′′ b Ω and set M := ‖∇u‖L∞(Ω′′′) (M is finite because u is

locally Lipschitz inside Ω). Recall that F is C2 outside E, so in particular it is C2 for |v| > dE (recall
(3.3)).

We now want to find a functional G ∈ C2(Rn \ E) which coincides with F inside BM (0) (so that
F(∇u) = G(∇u) inside Ω′′′) but G is quadratic at infinity. We follow a construction used in [1].

Let M ′ = sup{F(v) : v ∈ BM+2dE (0)}. Let ψ : [0,∞) → R be a C∞ function such that ψ(t) = t in
[0,M ′ + 1], and ψ(t) = M ′ + 2 in [M ′ + 2,∞]. Since F is coercive, the function ψ(F(v)) is constant
outside a some ball. Hence

N := sup
|v|>M+dE

|∇2[ψ ◦ F ](v)|

is finite. Let φ ∈ C2(Rn) be a convex function such that φ(x) = 0 for every x ∈ BM+dE (0), ∇2φ(x) ≤
(2N + 1) Id for every x ∈ Rn and ∇2φ(x) ≥ (N + 1) Id for every x ∈ Rn \BM+2dE (0). Define

(5.10) G(v) := ψ(F(v)) + φ(v) ∀v ∈ Rn.

Computing the Hessian of G, we obtain that G is convex, that ∇2G(v) ≤ (3N + 1) Id for every
|v| > M + dE and that Id ≤ ∇2G(v) for every |v| > M + 2dE . Since G = F inside B2dE+M (0) and u
solves the Euler-Lagrange equation (1.10) in the sense of distributions, u solves also the Euler-Lagrange
equation for G, and so by convexity of G it is a minimizer for the functional∫

Ω′′′
G(∇u) + fu.
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By (1.5) we have that for every δ > 0 small there exist λ′δ,Λ
′
δ > 0, depending only on λδ/4,Λδ/4, N ,

such that

(5.11) λ′δ Id ≤ ∇2G(v) ≤ Λ′
δ Id for a.e. v such that 1 +

δ

4
≤ |v|E .

Let ρε be a standard mollification kernel whose support is contained in Bε(0) and let

Gε(x) := ρε ∗ G(x) + ε|x|2, fε(x) := ρε ∗ f(x),

uε := argmin

{∫
Ω′′′

Gε(∇u) + fεu : u ∈W 1,2(Ω′′′)

}
.

Note that uε ∈ C∞(Ω′′′) thanks to the regularity of Gε and fε, and thanks to the uniform convexity
of Gε. From (5.11), for every δ small there exist λ′′δ ,Λ

′′
δ > 0, depending only on λ′δ,Λ

′
δ, N , such that,

for ε ≤ δ/(4d̃E),

(5.12) λ′′δ Id ≤ ∇2Gε(v) ≤ Λ′′
δ Id for a.e. v such that 1 +

δ

2
≤ |v|E .

Differentiating the Euler equation solved by uε with respect to ∂e for any e ∈ Sn−1 we obtain that

(5.13) ∂i[∂ijGε(∇uε(x))∂j(∂euε(x))] = ∂efε(x).

Hence the function vε(x) := (|∇uε(x)| − (1 + dE))+ is a subsolution of the equation

∂i[∂ijGε(∇uε(x))∂jv] ≤ ∂ef.

As we already observed in the proof of Lemma 3.1, this equation is uniformly elliptic because the values
of ∂ijGε(∇uε(x)) are not important when |∇uε(x)| ≤ 1+ dE . Hence, we can apply [12, Theorem 8.17]
to obtain
(5.14)
‖(|∇uε(x)| − (1 + dE))+‖L∞(Ω′′) ≤ C ′(1 + ‖(|∇uε(x)| − (1 + dE))+‖L2(Ω′′′)) ≤ C ′(1 + ‖∇uε(x)‖L2(Ω′′′))

for some constant C ′ depending only on n, λδ0 ,Λδ0 ,Ω
′′,Ω′′′ (for some δ0 small).

Since the function Gε has quadratic growth at infinity, we get

(5.15) ‖∇uε(x)‖L2(Ω′′) ≤ C

(
1 +

∫
Ω′′′

Gε(∇uε(x)) dx
)
.

From the boundedness of energies of uε, (5.14), and (5.15), it follows that the functions uε are M ′-
Lipschitz for ε small.

Let Eδ be a strictly convex set such that E ⊆ Eδ ⊆ (1 + δ/2)E. Since{
|v|Eδ

> 1 +
δ

2

}
=

{
v /∈

(
1 +

δ

2

)
Eδ

}
⊆
{
v /∈

(
1 +

δ

2

)
E

}
,

from (5.12) it follows that λ′′δI ≤ ∇2Gε(x) ≤ Λ′′
δ for a.e. x such that 1+ δ

2 ≤ |x|Eδ
. Applying Theorem

1.4 to uε and Eδ, by a covering argument we deduce that there exists a constant Dδ (independent of
ε) such that

(5.16) |(|∇uε(x)|Eδ
− 1− δ)+ − (|∇uε(y)|Eδ

− 1− δ)+| ≤ Dδ|x− y|α ∀x, y ∈ Ω′.

Without loss of generality, up to adding a constant to uε we can assume that uε(0) = 0. Hence,
since |∇uε| ≤M , we obtain that, up to adding a constant a subsequence,

uε → u0 uniformly in Ω′
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and

(5.17) ∇uε ⇀ ∇u0 weakly∗ in L∞(Ω′)

for some Lipschitz function u0. We claim that ∇u0 = ∇u outside E and that

(5.18) (|∇uε(x)|Eδ
− 1− δ)+ → (|∇u(x)|Eδ

− 1− δ)+ strongly in Lp(Ω′)

for every p <∞.
Indeed, from the convergence of the energies on a sequence of local minimizers, and thanks to the

uniform convergence of Gε to G on BM ′(0), we have that

(5.19)

∫
Ω′

G(∇u(x)) dx = lim
ε→0

∫
Ω′

Gε(∇uε(x)) dx = lim
ε→0

∫
Ω′

G(∇uε(x)) dx =

∫
Ω′

G(∇u0(x)) dx,

Since G is strictly convex outside E, it follows by standard results in the calculus of variations that
∇u0 = ∇u outside E and (5.18) holds (a possible way to show these facts, is to consider the Young
measure νx generated by ∇uε, and show that νx = δ∇u(x) for a.e. x such that ∇u(x) 6∈ E).

Hence, thanks to (5.18), we can take the limit as ε → 0 in (5.16) to obtain (|∇u|Eδ
− 1 − δ)+ ∈

C0,α(Ω′). In particular, the set

Aδ :=
{
x ∈ Ω′ : |∇u(x)|Eδ

> 1 + δ
}

is open. Moreover, from the choice of Eδ, it follows easily that

(5.20) Fδ :=
{
x ∈ Ω′ : |∇u(x)|E > 1 + 2δ

}
⊂ Aδ

Since every partial derivative of u solves (5.13) (with ε = 0) which is uniformly elliptic inside Aδ, from

De Giorgi regularity theorem it follows that ∇u ∈ C0,α′
(Fδ), with C

0,α′
norm bounded by a constant

which depends only on α, M , δ, λδ, Λδ, Aδ, and f . By the arbitrariness of δ, we deduce that ∇u is
continuous inside the open set {|∇u|E > 1} with a universal modulus of continuity.

We also note that, since the functions (|v|Eδ
−1− δ)+ converge uniformly to (|v|E −1)+ on BM ′(0),

we get that (|∇u|Eδ
− 1− δ)+ converge uniformly to (|∇u|E − 1)+, so also (|∇u|E − 1)+ is continuous

with a universal modulus of continuity.
Combining this fact with the continuity of ∇u inside {|∇u|E > 1} and the fact that H is continuous

and vanishes on E, it is easy to check that H(∇u) is continuous (again with a universal modulus of
continuity) everywhere inside Ω′.

�
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