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Abstract. Despite significant recent advances in the regularity theory for obstacle problems with
integro-differential operators, some fundamental questions remained open. On the one hand, there
was a lack of understanding of parabolic problems with critical scaling, such as the obstacle problem
for ∂t +

√
−∆. No regularity result for free boundaries was known for parabolic problems with such

scaling. On the other hand, optimal regularity estimates for solutions (to both parabolic and elliptic
problems) relied strongly on monotonicity formulas and, therefore, were known only in some specific
cases. In this paper, we present a novel and unified approach to answer these open questions and, at
the same time, to treat very general operators, recovering as particular cases most previously known
regularity results on nonlocal obstacle problems.

1. Introduction and results

Free boundary problems appear in several areas of pure and applied mathematics, and have been a
central line of research in elliptic and parabolic PDE’s during the last fifty years. The most important
and challenging question in this context is to understand the regularity of free boundaries. The
development of the regularity theory for free boundaries started in the late seventies with the works
of Caffarelli [Caf77], and since then several ideas and techniques have been developed; see for example
the books [Fri82, CS05, PSU12, FR22].

During the last decade, starting with the works [ACS08, Sil07, CSS08], an abundance of new results
has been obtained, understanding for the first time thin and nonlocal free boundary problems.

The motivation for studying such type of problems comes from elasticity (the classical Signorini
problem); probability and finance (optimal stopping for jump processes, pricing of options); control
problems (boundary heat control); fluid dynamics in biology (osmosis, semipermeable membranes);
or interacting energies in physical, biological, and material sciences. We refer to the classical book of
Duvaut and Lions [DL76], as well as to [PS06, Mer76, CT04] and [CDM16, Ser18], for a description
of these models.

The above-mentioned works [ACS08, Sil07, CSS08] established for the first time:
- the optimal regularity of solutions, and
- regularity of free boundaries near regular points

both in the thin obstacle problem, and in the obstacle problem for the fractional Laplacian. After these
results, new methods and techniques have been introduced in [GP09, CF13, KPS15, DS16, DGPT17,
CRS17, JN17, ACM18, FS18, BFR18, ACM19, CSV20, AbR20, CSV20b, FJ21, Kuk21, SY23, RT24,
Kuk22], studying various questions such as singular free boundary points, higher regularity of free
boundaries, more general nonlocal operators, and the parabolic versions of these problems. However,
despite such significant developments in the last years, some central questions remained open.

On the one hand, there was a lack of understanding of parabolic problems with critical scaling,
such as the obstacle problem for ∂t +

√
−∆: no regularity result for free boundaries was known for
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any parabolic problem with such scaling. We note that the case ∂t +
√
−∆ is particularly interest-

ing, because the problem is equivalent to a thin obstacle problem in Rn+1
+ with dynamic boundary

conditions, i.e.,

∂xn+1u = ∂tu on {xn+1 = 0} ∩ {u > φ}.
Free boundary problems with dynamic boundary conditions are discussed in [DL76] and [ERV17] (see
also [AC10, ACM18, ACM19]), and no regularity result for free boundaries was known for any problem
of this type. The main difficulty comes from the critical scaling of the equation, since the equation and
free boundary have the same “hyperbolic” scaling in time and space. Because of the traveling wave
solutions constructed in [CF13], the structure of the free boundary in such a setting was expected to
be much more complicated and rich than in previously known parabolic obstacle problems.

On the other hand, a second important open question was to establish optimal regularity esti-
mates for solutions to nonlocal (parabolic and elliptic) obstacle problems. Indeed, optimal regularity
estimates relied strongly on monotonicity formulas, and therefore were only known in very specific
situations. In the elliptic setting, they were only known for the fractional Laplacian, but not for
more general nonlocal operators.1 In the parabolic setting, for the fractional Laplacian the optimal
regularity of solutions in space was established in [CF13], but even in such case the optimal regularity
in time (or in space-time) was open. It is important to notice that the results in [CRS17, BFR18]
establish regularity results for free boundaries in these problems, but these are qualitative results, and
do not yield in any case optimal regularity estimates for solutions. Furthermore, still in the parabolic
setting, all known results2 are for the fractional Laplacian, and used monotonicity formulas [CF13] or
the extension problem for the fractional Laplacian [BFR18]. Extending these results to more general
nonlocal operators was an open problem, too.

The aim of this paper is to develop a unified approach to the regularity theory of such problems
that allow us to answer all these open questions at the same time. Note that, in addition to giving
an answer to the open problems mentioned above, we can also recover, as particular cases, all the
previously known regularity results on nonlocal obstacle problems from [ACS08, CSS08, CF13, CRS17,
BFR18, FR18].

We consider nonlocal operators of the form

Lu(x) = p.v.

∫
Rn

(
u(x+ y)− u(x)

)
K(y) dy, (1.1)

with

K(y) = K(−y) and
λ

|y|n+2s
≤ K(y) ≤ Λ

|y|n+2s
. (1.2)

The constants 0 < λ ≤ Λ are called ellipticity constants, and s ∈ (0, 1). This is the most typical and
natural class of operators of order 2s; see [BL02, CS09, Ros16]. (Notice that some of the results of
the paper hold for more general classes of operators, as considered in Definition 2.1.)

1.1. Main result. Given L of the form (1.1)-(1.2), and given an obstacle φ in Rn, we consider the
parabolic obstacle problem

min
{
ut − Lu, u− φ

}
= 0 in Rn × (0, T ),

u(0) = φ in Rn.
(1.3)

1The results in [CRS17] establish the regularity of free boundaries and local C1+s estimates near regular points, but
not a global nor uniform C1+s estimate for solutions.

2The only known result in this direction is the recent work [RT24], in which the second author and Torres-Latorre
studied the supercritical case s < 1

2
. Such case turns out to be completely different, since the time derivative ∂t dominates;

see Remark 1.2 below.
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The solution u(x, t) of (1.3) can be constructed as the smallest supersolution lying above the obstacle φ;
see [CF13, RT24]. We will always assume

∥φ∥C4(Rn) ≤ C◦. (1.4)

Throughout the paper, we will denote

Qr := Br × (−r2s, r2s).

To understand the regularity of solutions and to the free boundary for (1.4), we shall first prove a
very general result about almost-convex solutions to the obstacle problem with zero obstacle and a
small right hand side. This result reads as follows:

Theorem 1.1 (Quantitative estimate). Let s ∈ [12 , 1), L as in (1.1)-(1.2), with K homogeneous. Fix
δ > 0, and given η > 0 small, assume that u ∈ Lip(Rn × (−1/η, 1/η)) satisfies:

• u is nonnegative, monotone, and almost-convex:

u ≥ 0, ∂tu ≥ 0, and D2
x,tu ≥ −η Id in Q1/η,

with (0, 0) ∈ ∂{u > 0}.
• u solves the obstacle problem with zero obstacle and a small right hand side:

∂tu− Lu = f in {u > 0} ∩ Q1/η and ∂tu− Lu ≥ f in Q1/η,

with |∇f |+ |∂tf | ≤ η.

• u has a controlled growth at infinity:

R∥∇u∥L∞(QR∩{|t|<1/η}) +R2s∥∂tu∥L∞(QR∩{|t|<1/η}) ≤ R2−δ for all R ≥ 1.

Then, there exists a 1D solution of the form

u◦(x, t) =

 κ(x · e+ vt)1+γ+ if s = 1
2

κ(x · e)1+s+ if s > 1
2 ,

(1.5)

with κ > 0, e ∈ Sn−1, v ≥ 0, and γ = γ(L, v, e) ≥ 1
2 , such that

∥u− u◦∥Lip(Q1) ≤ ε(η),

where ε(η) is a modulus of continuity3 depending only on n, s, δ, λ, Λ.
Moreover, for any given κ◦ > 0 there exist ε◦ > 0 such that if ε(η) < ε◦ and κ ≥ κ◦ > 0, then the

free boundary ∂{u > 0} is a C1,τ graph in Q1/2 for some τ > 0, and we have the bound

|∇u|+ |∂tu| ≤ C
(
|x|s + |t|s

)
for (x, t) ∈ Q1. The constants ε◦, C, and τ , depend only on n, s, δ, λ, Λ, and κ◦.

While the previous theorem holds for s ∈ [12 , 1), in the elliptic setting, i.e.

min
{
−Lu, u− φ

}
= 0 in Rn, (1.6)

the analogous result is valid for all s ∈ (0, 1); see Theorem 2.2.

3That is, ε : (0,∞) → (0,∞) is nondecreasing function with limη↓0 ε(η) = 0.
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Remark 1.2 (On the assumption s ≥ 1
2). Notice that, in the parabolic setting, the case s < 1

2 needs to
be excluded if we look for a unified theory for both elliptic and parabolic nonlocal obstacle problems.
Indeed, the case s < 1

2 turns out to be completely different, both in terms of the results and the

methods to study it. It was proved very recently in [RT24] that, when s < 1
2 , non-stationary solutions

are automatically C1,1 in space and time, independently of the parameter s. Moreover, the proof of
such result is independent from the ones in the stationary setting (and from the case s ≥ 1

2), since it
uses very strongly the fact that ∂t is the dominating term in the equation.

1.2. Regularity of free boundaries. Iterating our main result above and combining it with the
explicit 1D profiles in the case L =

√
−∆, we get the following.

Corollary 1.3 (Regularity of the free boundary, s = 1
2). Let L =

√
−∆, φ an obstacle satisfying

(1.4), and u the solution to (1.3). Then, at each free boundary point (x◦, t◦) ∈ ∂{u > φ} we have the
following dichotomy:

(i) either

0 < c r1+γ(x◦,t◦) ≤ sup
Qr(x◦,t◦)

(u− φ) ≤ Cr1+γ(x◦,t◦), for some γ(x◦, t◦) ∈ [12 , 1),

(ii) or 0 ≤ sup
Qr(x◦,t◦)

(u− φ) ≤ Cεr
2−ε for all ε > 0.

In addition, the set of points (x◦, t◦) satisfying (i) is an open subset of the free boundary and it is a
C1,α submanifold in space-time of codimension 1.

Moreover, if we denote by ν = (νx, νt) the normal vector4 to the free boundary at (x◦, t◦), then the
exponent γ(x◦, t◦) is given by

γ(x◦, t◦) :=
1

2
+

1

π
arctan(v◦),

where v◦ := νt/|νx| ≥ 0 is the speed of the free boundary at (x◦, t◦).

As said above, this is the first result concerning the regularity of the free boundary for a critical
operator such as ∂t +

√
−∆. Prior to our result, the “subcritical” case s > 1

2 was understood in

[BFR18], while the “supercritical” case s < 1
2 was treated in [RT24] (cf. Remark 1.2).

In the case s > 1
2 , our new approach allows us to extend the results in [BFR18] to much more

general kernels, and the results of [CRS17] to the parabolic setting.

Corollary 1.4 (Regularity of the free boundary, s > 1
2). Let L be of the form (1.1)-(1.2) with K

homogeneous5, φ be an obstacle satisfying (1.4), and u be the solution to (1.3). Then, at each free
boundary point (x◦, t◦) ∈ ∂{u > φ} we have the following dichotomy:

(i) either
0 < c r1+s ≤ sup

Qr(x◦,t◦)
(u− φ) ≤ Cr1+s,

(ii) or 0 ≤ sup
Qr(x◦,t◦)

(u− φ) ≤ Cεr
2−ε for all ε > 0.

In addition, the set of points (x◦, t◦) satisfying (i) is an open subset of the free boundary and it is C1,α

in space-time.

4More precisely, ν is the normal vector to ∂{u > φ} pointing towards {u > φ}. Notice that since ut ≥ 0 then we
always have νt ≥ 0.

5The assumption of the kernel K being homogeneous is needed in order to ensure that 1D solutions are homogeneous;
see [RS16, CRS17].
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This result reads exactly as the one in [BFR18] for the fractional Laplacian (−∆)s, s > 1
2 . Still, as

we will see next, the results of the present paper are quantitative in nature (thanks to Theorem 1.1),
while the ones in [BFR18] (as well as [CRS17]) were qualitative. Thanks to this fact, we can establish
several new regularity estimates for solutions, both in the parabolic and elliptic setting.

1.3. Optimal regularity estimates. We present here some consequences of our main result, Theo-
rem 1.1 and its elliptic counterpart (see Theorem 2.2 below), in terms of optimal regularity estimates
for solutions. In the elliptic case, we answer an open question left in [CRS17]:

Corollary 1.5 (C1+s elliptic estimates). Let L be of the form (1.1)-(1.2) with K homogeneous, φ be
an obstacle satisfying (1.4), and u be the solution to (1.6). Then u ∈ C1+s(Rn) and

∥∇u∥Cs(Rn) ≤ CC◦,

with C depending only on n, s, λ, and Λ.

In the parabolic critical case ∂t +
√
−∆, we establish the optimal C3/2-regularity of solutions in

space-time, answering a question left open in [CF13].

Corollary 1.6 (C
3/2
x,t estimates for s = 1

2). Let L be of the form (1.1)-(1.2) with K homogeneous, φ

be an obstacle satisfying (1.4), and u be the solution to (1.3). Then, u ∈ C
3/2
x,t (Rn × (0, T )) and for

any [t1, t2] ⊂ (0, T ] we have

∥∇u∥C1/2(Rn×[t1,t2])
+ ∥∂tu∥C1/2(Rn×[t1,t2])

≤ CC◦,

with C depending only on n, s, λ, Λ, and t1.

In case s > 1
2 , the results in [CF13] imply that solutions u are C1+s in space and C

1+s
2s

−ε in time,
for all ε > 0. Here, we improve the regularity in time to the optimal scaling. Notice that our results
hold for the general class of kernels considered in [CRS17], but they are new even for the fractional
Laplacian.

Corollary 1.7 (Further regularity in time, s > 1/2). Let L be of the form (1.1)-(1.2) with K homo-
geneous, φ be an obstacle satisfying (1.4), and u be the solution to (1.3).

• If s ∈ (12 ,
√
5−1
2 ) then u ∈ C1+s

x,t (Rn × (0, T )) and for any [t1, t2] ⊂ (0, T ] we have

∥∇u∥Cs(Rn×[t1,t2]) + ∥∂tu∥Cs(Rn×[t1,t2]) ≤ CC◦,

with C depending only on n, s, λ, Λ, and t1.

• If s ∈ [
√
5−1
2 , 1) then u ∈ C1+s

x ∩ C
1
s
−ε

t (Rn × (0, T )) for any ε > 0, and for any [t1, t2] ⊂ (0, T ]
we have

∥∂tu∥
C

1
s−1−ε

t (Rn×[t1,t2])
≤ CεC◦,

with Cε depending only on n, s, λ, Λ, ε, and t1.

The regularity estimate for s <
√
5−1
2 is clearly optimal (in view of the description of solutions in

Theorem 1.4), and we expect the regularity estimate for s >
√
5−1
2 to be almost-optimal.

We thus find a new threshold at which the regularity of solutions changes and, curiously, this
threshold is at exactly the golden ratio

s =
√
5−1
2 ≈ 0.61803.

The reason for this is that, when looking at the regularity of solutions in t, the “worst points” for
s < 1

2(
√
5 − 1) (case (i) above) are the regular ones, while for s ≥ 1

2(
√
5 − 1) (case (ii) above) the

“worst regularity” happens at singular points.
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1.4. Nonsymmetric operators. The new quantitative methods developed in this paper are very
flexible. For instance, the symmetry assumption on the kernels in (1.1) is not needed for some of our
results to hold, and we can establish new regularity results for solutions and free boundaries in the
non-symmetric case.

As a model case, we consider the elliptic problem for the fractional Laplacian with critical drift
(s = 1

2) and establish the optimal regularity of solutions, thus answering an open question from
[FR18].

Corollary 1.8. Let L =
√
−∆+ b · ∇ with b ∈ Rn, φ an obstacle satisfying (1.4), and u the solution

to (1.3). Then u ∈ C1+γb(Rn), with

γb :=
1

2
− 1

π
arctan |b| and ∥u∥C1+γb (Rn) ≤ CC◦,

with C depending only on n and |b|.

Notice that γb ∈ (0, 12) and γb → 1
2 as b → 0. The expression of γb comes from an explicit

computation of 1D solutions; see [FR18, DRSV22] for more details.
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der the Grant Agreement No 721675. XR has been supported by the European Research Council
(ERC) under the Grant Agreement No 801867, by the AEI project PID2021-125021NA-I00 (Spain),
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and by the SpanishAEI through the Maŕıa de Maeztu Program for Centers and Units of Excellence
in R&D CEX2020-001084-M. JS has been supported by Swiss NSF Ambizione Grant PZ00P2 180042
and by the European Research Council (ERC) under the Grant Agreement No 948029.

1.6. Organization of the paper. The paper is organized as follows. In Section 2 we prove all our
results in the elliptic setting, deducing in particular Corollaries 1.5 and 1.8. In Section 3 we establish
a new parabolic boundary Harnack inequality, which plays a crucial role in the proof of our main
results in the parabolic setting. In Section 4 we prove Theorem 1.1. Finally, in Section 5 we deduce
Corollaries 1.3, 1.4, 1.6, and 1.7

2. The elliptic case

In this section we prove the analogue of Theorem 1.1 in the stationary case. We start from this
case because, in this setting, the arguments are simpler and are valid for every s ∈ (0, 1). In addition,
the proofs are shorter, since we can rely on several known results from [CRS17, RS19].

Actually, thanks to the recent (elliptic) results from [DRSV22], we can establish our results also for
non-symmetric operators. The general class of operators that we consider in the elliptic case is the
following.

Definition 2.1. Throughout this Section, we consider operators L of the form

Lu(x) =
∫
Rn

(
u(x+ y)− u(x)

)
K(y) dy if s ∈ (0, 12),

Lu(x) = p.v.

∫
Rn

(
u(x+ y)− u(x)

)
K(y) dy + b · ∇u(x) if s = 1

2 ,

Lu(x) =
∫
Rn

(
u(x+ y)− u(x)−∇u(x) · y

)
K(y) dy if s ∈ (12 , 1),

with b ∈ Rn satisfying |b| ≤ Λ, and

λ

|y|n+2s
≤ K(y) ≤ Λ

|y|n+2s
.
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If s = 1
2 we must add the standard “zero-moment assumption”

∫
R2r\Br

yK(y)dy = 0 for all r > 0, so

that the principal value integral defining L is well-defined.

We refer to [DRSV22] for some basic interior and boundary regularity estimates for such class of
operators. This is basically the most general scale-invariant class of linear operators of order 2s for
which we have both interior and boundary Harnack.

2.1. Main elliptic result. The main result of this section is the following quantitative estimate.

Theorem 2.2. Let s ∈ (0, 1), L as in Definition 2.1, and α◦ ∈ (0, s) ∩ (0, 1− s).
Let η > 0 and suppose that u ∈ Lip(Rn) satisfies:

• u is nonnegative and almost-convex in a large ball:

u ≥ 0 and D2u ≥ −η Id in B1/η, with 0 ∈ ∂{u > 0}.

• u solves the obstacle problem with a small right hand side:

Lu = f in {u > 0} ∩B1/η and Lu ≤ f in B1/η, with |∇f | ≤ η.

• u has a controlled growth at infinity:

∥∇u∥L∞(BR) ≤ Rs+α◦ for all R ≥ 1.

Then:

(i) There exist e ∈ Sn−1 and a nonnegative convex 1D solution u◦(x) = U(x · e), satisfying

L(∇u◦) = 0 in {x · e > 0}
u◦ = 0 in {x · e ≤ 0}

∥∇u◦∥L∞(BR) ≤ Rs+α◦ for all R ≥ 1,

(2.1)

such that

∥u− u◦∥Lip(B1) ≤ ε(η),

where ε(η) is a modulus of continuity depending only on n, s, α◦, λ, and Λ.
(ii) Moreover, given κ◦ > 0 exists ε > 0 such that if ∥u◦∥Lip(B1) ≥ κ◦ > 0 and ε(η) < ε◦, then the

free boundary ∂{u > 0} is a C1,τ graph in B1/2, for some τ > 0.
(iii) If in addition the kernel K of the operator L is homogeneous, then u◦ is homogeneous of degree

γ = γ(L, e) ∈ (0, 2s) ∩ (2s− 1, 1) and we have the expansion

|u− u◦| ≤ C|x|1+γ+τ and |∇u−∇u◦| ≤ C|x|γ+τ for x ∈ B1.

Furthermore, if K is symmetric, then γ ≡ s for all e ∈ Sn−1.

Here, the constants C, ε◦, and τ depend only on n, s, α◦, λ, Λ, and κ◦.

Part (i) of this quantitative result is basically equivalent to showing that all blow-ups are 1D (at
nondegenerate points). Part (ii) is essentially the regularity of the free boundary near regular points,
and is somewhat independent from (i). Still, such combined quantitative versions can be iterated and
will give us some more information, as we will show later.

Remark 2.3. Once e ∈ Sn−1 is fixed, the 1D profile u◦ is uniquely determined, up to a multiplicative
constant (see Proposition 2.7). Moreover, when the kernel K is homogeneous then u◦ can be computed
explicitly, and if K is in addition symmetric then u◦(x) = c(x · e)1+s+ , as in [CRS17].
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2.2. Proof of the main elliptic result. To prove the result we will need several ingredients. The
first one is the (elliptic) boundary Harnack for such class of operators.

Theorem 2.4 ([RS19, DRSV22]). Let s ∈ (0, 1) and L as in Definition 2.1. Let Ω ⊂ Rn be a Lipschitz
graph in B1, with 0 ∈ ∂Ω. Then, there exist positive constants η, C, and τ depending only on n, s, λ,
Λ, and the Lipschitz norm of ∂Ω in B1, such that the following holds.

Let v1, v2 be weak (or viscosity) solutions of∣∣Lvi∣∣ ≤ η in Ω ∩B1, vi ≡ 0 in Ωc ∩B1,

satisfying

vi ≥ 0 in Rn and

∫
Rn

|vi(x)|
1 + |x|n+2s

dx = 1.

Then, there exists τ > 0 such that ∥∥∥∥v1v2
∥∥∥∥
Cτ (Ω∩B1/2)

≤ C.

We will also need the following:

Lemma 2.5. Let s ∈ (0, 1), L as in Definition 2.1, and e ∈ Sn−1. Then, there exists θ > 0 such that

ϕ(x) := exp
(
− |x · e|1−θ

)
satisfies

Lϕ ≤ C in Rn.
The constants C and θ depend only on n, s, and the ellipticity constants.

Proof. We prove it for e = en. LetM−
s,λ,Λ be the extremal operator associated to our class of operators,

i.e., M−
s,λ,Λw := infL Lw, where the infimum is taken among all operators L as in Definition 2.1

(with fixed s, λ, Λ). Then, the operator M−
s,λ,Λ is scale invariant of order 2s, and in particular

M−
s,λ,Λ|xn|

β = cβ|xn|β−2s for β ∈ (0, 2s) (see [RS16, Section 2]). Moreover, it is easy to see that

cβ → +∞ as β → 2s, and in addition cβ > 0 for s ≥ 1
2 (by convexity). Hence, since cβ is continuous

with respect to β, for any s ∈ (0, 1) there is θ > 0 such that s < 1− θ < 2s and c1−θ > 0.
This implies that for any operator L as in Definition 2.1 we have

L|xn|1−θ ≥ c1−θ|xn|1−θ−2s ≥ 0 in Rn,
with c1−θ > 0. In particular, since the function ϕ(x) + |xn|1−θ is of class C2(1−θ) ⊂ C2s+δ for some
δ > 0, we conclude that the function ϕ satisfies Lϕ ≤ C in Rn, as wanted. □

As a consequence of the previous supersolution, we find:

Lemma 2.6. Let s ∈ (0, 1), L as in Definition 2.1, e ∈ Sn−1, and Γ ⊂ {x · e = 0}. Assume that
w ∈ Liploc(Rn) is a viscosity solution of

Lw = 0 in Rn \ Γ.
Then Lw = 0 in Rn.

Proof. For any ε > 0 we consider the function wε := w − εϕ, where ϕ is given by Lemma 2.5.
Assume now that a test function η ∈ C2 touches wε from above at x◦ ∈ Rn. Since w is Lipschitz,

then by definition of ϕ we have that wε has a “downwards cusp” on {x · e = 0}, and therefore
x◦ /∈ {x · e = 0}. Thus Lη(x◦) = Lw(x◦) − εLϕ(x◦) ≥ −Cε. Since this holds for every test function
η ∈ C2, we deduce that Lwε ≥ −Cε in Rn in the viscosity sense. Since w = supε>0wε, we conclude
that Lw ≥ 0 in Rn.

Repeating the same argument with −w instead of w, we find Lw = 0 in Rn, as desired. □
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Thanks to the previous results, we can prove the classification of blow-ups.

Proposition 2.7. Let s ∈ (0, 1), L as in Definition 2.1, and α◦ ∈ (0, s) ∩ (0, 1− s).
Let u◦ ∈ Lip(Rn) be a function satisfying:

• u◦ is nonnegative and convex in Rn:

u◦ ≥ 0 and D2u ≥ 0 in Rn, with u◦(0) = |∇u◦(0)| = 0.

• for any given h ∈ Rn, u◦ solves

L(Dhu◦) ≥ 0 in {u◦ > 0},

where

Dhu◦(x) =
u◦(x)−u◦(x−h)

|h| .

• u◦ has a controlled growth at infinity:

∥∇u◦∥L∞(BR) ≤ Rs+α◦ for all R ≥ 1. (2.2)

Then u◦ is a 1D function, i.e., there exists e ∈ Sn−1 such that u◦(x) = U(x · e).
Moreover, for each e ∈ Sn−1, the function u◦ is unique (up to multiplicative constant) and, if the

kernel K of the operator L is homogeneous, then u◦ is homogeneous, too.

Remark 2.8. In the sequel, we will implicitly use the following simple observation: if u is a locally
Lipschitz function satisfying L(Dhu) ≥ 0 inside {u > 0} for all h ∈ Rn, then

L(∇u) = 0 in {u > 0}.

Indeed, given k ∈ {1, . . . , n} we can choose h = ϵek to obtain

L(∂ku) = lim
ϵ→0+

L(Dϵeku) ≥ 0 and L(∂ku) = lim
ϵ→0−

L(Dϵeku) ≤ 0 in {u > 0}.

The same observation applies also to the parabolic case.

In the proof of Proposition 2.7 (and also later on in the paper) we will need the following simple
barrier.

Lemma 2.9. Let s ∈ (0, 1) and L as in Definition 2.1. Given η > 0 there exists θ > 0 such that

Φ(x) :=

(
x · e+ η|x|

(
1− (x · e)2

|x|2

))θ
+

,

with e ∈ Sn−1, satisfies

LΦ ≤ −c < 0 in Cη ∩B2,

where Cη is the cone {
x
|x| · e ≥ −η

(
1−

(
x
|x| · e

)2)}
.

The constants c and θ depend only on n, s, the ellipticity constants, and η.

Proof. It is a variation (with almost identical proof) of Lemma 4.1 in [RS17]. See [AuR20, Lemma 4.1]
for more details. □

Remark 2.10. Notice that, given any ω ∈ (0, 1) (small), the inclusion

Cη ⊂
{
x
|x| · e ≤ −1 + ω

}
holds provided η = η(ω) is taken sufficiently large.
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Proof of Proposition 2.7 . We follow and simplify the ideas in [CRS17, Section 4].
First, notice that the set {u◦ = 0} is closed and convex. Then, we separate the proof into two cases:

Case 1. Assume that the convex set {u◦ = 0} contains a closed convex cone Σ ∋ 0 with nonempty
interior. Then, we can find n independent directions ei ∈ Sn−1, i = 1, ..., n, such that −ei ∈ Σ ⊂
{u◦ = 0}, and by convexity of u◦ we deduce that

vi := ∂eiu◦ ≥ 0 in Rn.

Moreover, since u◦ ̸≡ 0, at least one of them is not identically zero, say vn ̸≡ 0.
We first claim that vi are continuous functions. Indeed, since {u◦ = 0} is a convex set containing

the cone Σ, all the points of its boundary can be touched by the vertex of a translation of the cone Σ
which is contained in {u◦ = 0}.

Hence, given any vector h ∈ Rn \ {0}, the function (Dhu◦)+ is a continuous subsolution vanishing
on {u◦ = 0} and with growth as in (2.2). Now, given R > 2, let ψR ∈ C∞

c (B2R) be a smooth cut-off
function such that ψR ≡ 1 in B3R/2, and consider the bounded function (Dhu◦)+ψR. Thanks to the
growth assumption (2.2) it follows that L((Dhu◦)+ψR) ≥ −CR in Rn. Hence, using a large multiple of
the supersolution in Lemma 2.9 as barrier (see Remark 2.10) we deduce that, for all z ∈ ∂{u◦ > 0}∩BR
and r ∈ (0, 1), we have

sup
Br(z)

(Dhu◦)+ = sup
Br(z)

(Dhu◦)+ψR ≤ C ′
Rr

θ.

Since h is arbitrary, letting h→ 0 we obtain (u◦ is smooth in the interior of {u◦ > 0})

sup
Br(z)

|∇u◦| ≤ C ′
Rr

θ for all z ∈ ∂{u◦ > 0} ∩BR, r ∈ (0, 1).

Noticing that the gradient of u is smooth in the interior of {u◦ > 0} (all partial derivatives satisfy a
translation invariant elliptic equation), we conclude that ∇u◦ is continuous, as claimed.

Hence, recalling (2.2), we can apply the boundary Harnack (Theorem 2.4 above) to the functions
vi(2Rx) to deduce that [vi/vn]Cτ (BR) ≤ CR−τ , with C independent of R ≥ 1. Then, letting R → ∞,
we conclude the existence of constants κi ∈ R such that

vi ≡ κivn, for i = 1, ..., n− 1.

This means that u◦ is a 1D function, as desired.
Moreover, assuming that both u◦,1(x) = U1(e ·x) and u◦,2(x) = U2(e ·x) satisfy all the assumptions

of u◦, then applying boundary Harnack to ∂eu◦,1 and ∂eu◦,2 we deduce that ∂eu◦,1 ≡ κ∂eu◦,2 for some
constant κ ∈ R. This proves that u◦ is unique, up to multiplicative constant.

Case 2. Assume that the convex set {u◦ = 0} does not contain any convex cone with nonempty
interior. Then, exactly as in [CRS17] (see Lemma 4.5 below, written in the parabolic setting, for a
detailed argument), we can find a sequence Rm → ∞ such that

um(x) :=
u◦(Rmx)

Rm∥∇u◦∥L∞(BRm )

satisfies

∥∇um∥L∞(B1) = 1, ∥∇um∥L∞(BR) ≤ 2Rs+α◦ for R ≥ 1, L(Dhum) = 0 in {um > 0}.

By convexity, the nonnegative functions um converge (up to a subsequence) locally uniformly to a
nonnegative function u∞ that satisfies

∥∇u∞∥L∞(B2) ≥ 1 and ∥∇u∞∥L∞(BR) ≤ 2Rs+α◦ for all R ≥ 1.
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Also, since by assumption the convex set {u◦ = 0} does not contain any cone with nonempty interior,
its “blow-down” sequence {um > 0} = 1

Rm
{u◦ = 0} converges to a convex set Γ that is contained in a

hyperplane. In particular
L(Dhu∞) = 0 in Rn \ Γ,

and since Dhu∞ ∈ Liploc(Rn) it follows by Lemma 2.6 that L(Dhu∞) = 0 in Rn. Hence, letting h→ 0,
we conclude that

L(∇u∞) = 0 in Rn.
Thanks to the growth assumption (2.2), it follows by Liouville Theorem that u∞(x) = a · x + b.
However, this contradicts the fact that u∞ ≥ 0 and ∥∇u∞∥L∞(B2) ≥ 1. Thus, Case 2 cannot happen,
and the proposition is proved. □

Once we have the classification of blow-ups, we can show the almost-optimal regularity of solutions.
However, we first need the following:

Lemma 2.11. Let s ∈ (0, 1), L as in Definition 2.1, and e ∈ Sn−1. Then there exists γ ∈
(0,min{2s, 1}), depending only on n, s, and the ellipticity constants, such that

L(x · e)γ+ ≤ 0 in {x · e > 0}.
Moreover, when the kernel of the operator L is even and homogeneous, we may take γ = s.

Proof. When the kernel of the operator L is even and homogeneous, the result is proved in [RS16,
Section 2]. Hence, it suffices to prove the result in the case of general operators as in Definition 2.1.

After a rotation, we may assume e = en. Let M−
s,λ,Λ be the extremal operator associated to our

class of operators, i.e., M−
s,λ,Λw := infL Lw, where the infimum is taken among all operators L as in

Definition 2.1 (with fixed s, λ, Λ). Then, the operator M−
s,λ,Λ is scale invariant of order 2s, and in

particular M−
s,λ,Λ(xn)

γ
+ = cγx

γ−2s
n in {xn > 0} for γ ∈ [0, 2s). Moreover, it is immediate to check

that c0 < 0, and therefore we have cγ < 0 for γ > 0 small; see [RS16, Section 2]. Also, since (xn)
γ
+ is

convex for γ ≥ 1, it follows that cγ > 0 for γ ≥ 1. Hence, we proved that L(xn)γ+ ≤ cγx
γ−2s
n < 0 in

{xn > 0} for some γ ∈ (0,min{2s, 1}), as desired. □

We also need the following:

Lemma 2.12. Assume wk ∈ L∞(B1) satisfy

sup
k

∥wk∥L∞(B1) <∞ and sup
k

sup
r∈(0,1)

∥wk∥L∞(Br)

rµ
= ∞

for some µ ≥ 0. Then, there are subsequences wkm and rm → 0 such that ∥wkm∥L∞(Brm ) ≥ rµm and
for which the rescaled functions

w̃m(x) :=
wkm(rmx)

∥wkm∥L∞(Brm )

satisfy ∣∣w̃m(x)∣∣ ≤ 2
(
1 + |x|µ

)
in B1/rm .

Proof. For every m ∈ N, let km ∈ N and rm ∈ ( 1
m , 1) be such that

r−µm ∥wkm∥L∞(Brm ) ≥
1

2
sup
k

sup
r∈( 1

m
,1)

r−µ∥wk∥L∞(Br) ≥
1

2
sup
k

sup
r∈(rm,1)

r−µ∥wk∥L∞(Br).

Note that, since supk ∥wk∥L∞(B1) <∞ but

sup
k

sup
r∈( 1

m
,1)

r−µ∥wk∥L∞(Br) → ∞ as m→ ∞,
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necessarily rm → 0 as m→ ∞. Also, by construction of rm and km, we have

r−µm ∥wkm∥L∞(Brm ) ≥
1

2
r−µ∥wk∥L∞(Br) for all r ≥ rm, k ∈ N.

In particular, for any R ∈ (1, r−1
m ) we have

∥w̃m∥L∞(BR) =
∥wkm∥L∞(BRrm )

∥wkm∥L∞(Brm )
≤ 2Rµ.

Since ∥w̃m∥L∞(B1) = 1, the result follows. □

We can now establish the almost-optimal regularity of solutions.

Corollary 2.13. Let s ∈ (0, 1) and L as in Definition 2.1. Let α◦ ∈ (0, s) ∩ (0, 1 − s), γ ∈
(0,min{2s, 1}) given by Lemma 2.11, and u ∈ Liploc(Rn), with

∥∇u∥L∞(BR) ≤ Rs+α◦ for all R ≥ 1,

satisfy

u ≥ 0 and D2u ≥ −Id in B2, Lu = f in {u > 0} ∩B2, and Lu ≤ f in B2, with |∇f | ≤ 1.

Then, for any ε > 0 we have

∥∇u∥C0,γ−ε(B1) ≤ Cε,

with Cε depending only on n, s, ε, and the ellipticity constants.

Proof. Let µ := γ − ε. Since γ ∈ (0,min{2s, 1}), up to enlarging α◦ we can assume that s+ α◦ ≥ µ.
We will prove the existence of a constant C > 0 such that, at every free boundary point x◦ ∈ ∂{u >

0} ∩B1, we have

|∇u(x)| ≤ C|x− x◦|µ.
This, combined with interior regularity estimates (see for instance [CS09, DRSV22]), yields the desired
result.

Assume by contradiction that such estimate fails. Then, we can find sequences uk, Lk, and fk,
satisfying the assumptions, with 0 ∈ ∂{uk > 0}, such that

sup
k

sup
r∈(0,1)

∥∇uk∥L∞(Br)

rµ
= ∞.

Note that, by the uniform semiconvexity estimate D2uk ≥ −Id in B2, the functions uk are uniformly
Lipschitz inside B1. Hence, thanks to Lemma 2.12, there exists sequences km and rm → 0 such that
∥∇ukm∥L∞(Brm ) ≥ rµm and the functions

ũm(x) :=
ukm(rmx)

rm∥∇ukm∥L∞(Brm )
, ∇ũm(x) :=

∇ukm(rmx)
∥∇ukm∥L∞(Brm )

,

satisfy ∥∇ũm∥L∞(B1) = 1 and

|∇ũm(x)| ≤ 2(1 + |x|µ) in B1/rm .

Moreover, we also have

D2ũm ≥ −r1−µm Id −→ 0 in B2/rm , (2.3)

∥∇ũm∥L∞(BR) ≤ rs+α◦−µ
m Rs+α◦ ≤ Rs+α◦ for all R ≥ r−1

m ,

(recall that s+ α◦ ≥ µ) and

Lkm ũm = fm in {um > 0} ∩B2/rm , Lkm ũm ≤ fm in B2/rm , with |∇fm| ≤ r2s−µm → 0.
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In particular, the last two conditions imply that Lkm(Dhũm) ≥ 0 in {ũm > 0} ∩B1/rm , where

Dhũm(x) =
ũm(x)−ũm(x−h)

|h| .

Hence, thanks to (2.3), up to a subsequence the functions ũm will converge locally uniformly in Rn to
a limiting convex function ũ◦ satisfying

∥∇ũ◦∥L∞(B2) ≥ 1, ∥∇ũ◦∥L∞(BR) ≤ 3Rµ for all R ≥ 1.

Moreover, using for instance [DRSV22, Lemma 3.2] to take the limit in the equations, we see that u◦
will satisfy the hypotheses of Proposition 2.7, and therefore it must be a 1D function, say ũ◦(x) =
U(x · e).

Hence, if we consider the 1D function w := U ′ ≥ 0, we see that

Lw = 0 in (0,∞) and w = 0 in (−∞, 0), for some 1D operator L as in Definition 2.1.

Also, since w(t) ≤ C(1+ t+)
µ, for any δ > 0 small we see that w(t) ≤ δ(t+)

γ for t ≥ Cδ−1/ε. Recalling
that L(t+)γ ≥ 0 in (0,∞) (see Lemma 2.11), we can apply the comparison principle in [DRSV22,
Lemma 4.1] to deduce that w ≤ δ(t+)

γ on the whole R. Since δ > 0 is arbitrary, this implies that
w ≤ 0, and hence w ≡ 0 in R. However, this means that U ≡ 0 in R and therefore ũ◦ ≡ 0 in Rn, a
contradiction. □

The next step consists in showing that the free boundary is C1,τ near nondegenerate points. To
prove this result, we need the following result:

Lemma 2.14. Let s ∈ (0, 1), L as in Definition 2.1, α◦ ∈ (0, s), and c◦ > 0. Then there exist R◦ ≥ 1
large and ε◦ > 0 small, depending only on n, s, λ, Λ, c◦, and α◦, such that the following holds.

Assume that E ⊂ Rn is closed, and v ∈ C(Rn) satisfies (in the viscosity sense)

Lv ≤ ε in BR◦ \ E, v ≡ 0 in BR0 ∩ E,∫
BR◦

v+ ≥ c◦ > 0, v ≥ −ε◦ in BR◦ , and |v(x)| ≤ |x|s+α◦ in Rn \BR◦ .

Then v ≥ 0 in BR◦/2.

Proof. The proof is the same as that of [CRS17, Lemma 6.2]. □

We can now show the C1,τ regularity of free boundaries.

Lemma 2.15. Let s, L, α◦, and u, be as in Theorem 2.2. There, for any given κ◦ > 0, there exist
R◦ > 1 large and ε◦ > 0 small for which the following holds.

Let u◦(x) = U(x · e), e ∈ Sn−1, be a nonnegative, convex, 1D solution of (2.1). Assume that
∥u◦∥Lip(B1) ≥ κ◦ > 0 and ∥u− u◦∥Lip(BR◦ )

≤ ε◦. Then the free boundary ∂{u > 0} is a C1,τ graph in

B1/2. The constants R◦, ε◦ and the bounds on the C1,τ norm depend only on n, s, α◦, λ, Λ, and κ◦.

Proof. By assumption, for any direction e′ ∈ Sn−1 such that e′ · e ≥ 1
2 we have

|∂e′u− ∂e′u◦| ≤ ε in BR◦ .

Also,

∂e′u◦ ≥ 0 in Rn and ∂e′u◦ ≥ c1κ◦ in {x · e ≥ 1
2}.

Thus, if ε◦ is sufficiently small, we have that v := ∂e′u and E := {u = 0} satisfy:

|Lv| ≤ η in BR◦ \ E, v ≡ 0 in BR◦ ∩ E,

v ≥ c2κ◦ in {x · e ≥ 1
2} ∩BR◦ , v ≥ −ε◦ in BR◦ , and |v(x)| ≤ |x|s+α◦ in Rn \BR◦ .
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Hence, choosing R◦ large enough, it follows from Lemma 2.14 that v ≥ 0 in BR◦/2, i.e.,

∂e′u ≥ 0 in BR◦/2 for all e′ ∈ Sn−1 such that e′ · e ≥ 1

2
.

This means that the free boundary ∂{u > 0} is a Lipschitz graph in BR◦/2, with Lipschitz constant
bounded by 1, which allows us to apply Theorem 2.4 to the functions (∂e′u)+ and (∂eu)+ to deduce
that ∥∥∥∥∂e′u∂eu

∥∥∥∥
Cτ (B1/2)

≤ C.

Choosing e = en and e′ = en + ei for i = 1, ..., n− 1, we conclude that the free boundary ∂{u > 0} is
a C1,τ graph in B1/2, as wanted. □

Finally, we need the following expansion for solutions to elliptic equations in C1,τ domain (recall
Proposition 2.7 for the uniqueness of 1D solutions).

Lemma 2.16. Let s, L, α◦, and u, be as in Theorem 2.2. Suppose in addition that the kernel K of
the operator L is homogeneous.

Assume that ∂{u > 0} is a C1,τ graph in B1/2, with ν(0) = e, and let u◦ be the unique nonnegative,
convex 1D solution satisfying (2.1). Then u◦ is homogeneous of degree 1+γ, with γ ∈ (0, 2s)∩(2s−1, 1)
depending only on L and e. Moreover

|∇u−∇u◦| ≤ C|x|γ+τ ′ for x ∈ B1/4,

with C and τ ′ > 0 depending only on n, s, α◦, λ, Λ, τ , and the C1,τ norm of the graph.

Proof. The uniqueness and homogeneity of u◦ follow from Proposition 2.7, while the explicit expres-
sion of γ is proved in [DRSV22, Corollary 4.6]. The expansion for ∇u then follows from [DRSV22,
Theorem 1.2]. □

Combining the previous results, we can finally prove Theorem 2.2.

Proof of Theorem 2.2. Let us first prove that, given any R◦ ≥ 1 and ε > 0, for η > 0 small enough,
we have that

∥u− u◦∥Lip(BR◦ )
≤ ε, (2.4)

for some nonnegative, convex, 1D function u◦ satisfying (2.1).
Indeed, assuming by contradiction that this is false, we can find sequences ηk → 0, operators Lk,

and solutions uk, such that uk satisfy the hypotheses of the statement but

∥uk − u◦∥Lip(BR◦ )
≥ ε (2.5)

for any e ∈ Sn−1 and any solution u◦ of (2.1). But then, by Corollary 2.13 and [DRSV22, Lemma 3.2],
up to a subsequence the functions uk converges in C1 norm in compact sets to a limiting function u∞
that satisfies the same conditions with η = 0. Then, Proposition 2.7 implies that u∞ is a 1D function
satisfying (2.1), which means that we can take u◦ = u∞ in (2.5), a contradiction. Hence, (2.4) is
proved.

Thanks to (2.4), the C1,τ regularity of the free boundary follows from Lemma 2.15, while the
expansion for ∇u (and hence u) at 0 follow from Lemma 2.16 (taking τ smaller, if necessary). □
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2.3. Iteration and optimal regularity of solutions. We now show how to use Theorem 2.2 to
establish optimal regularity estimates for solutions, namely Corollary 1.5. We will actually prove a
finer result, which gives a uniform estimate of order 1 + s+ α◦ at all free boundary points.

Corollary 2.17. Let L be an operator of the form (1.1)-(1.2) with K homogeneous, and let α◦ ∈
(0, s) ∩ (0, 1− s). Let φ be an obstacle satisfying (1.4), and u be the solution to (1.6).

Then, for every free boundary point x◦ ∈ {u > φ}, there exist c◦ ≥ 0 and e ∈ Sn−1 such that∣∣∣u(x)− φ(x)− c◦
(
(x− x◦) · e

)1+s
+

∣∣∣ ≤ CC◦|x− x◦|1+s+α◦ for x ∈ B1(x◦),

with C depending only on n, s, λ, Λ, and α◦.
Moreover, if c◦ > 0, then the free boundary is a C1,α◦ graph in a ball Bρ◦(x◦), with Cρ

α◦
◦ ≥ c◦ and

C depending only on n, s, λ, Λ, and α◦.
Finally, we have u ∈ C1+s(Rn) and

∥∇u∥Cs(Rn) ≤ CC◦,

with C depending only on n, s, λ, and Λ.

Remark 2.18. The result above provides a uniform estimate at all free boundary points, which in turn
yields a quantitative (and sharp) relation between the constant c◦ (quantitative nondegeneracy) and
the radius of the ball where the free boundary is smooth (quantitative regularity of the free boundary).
Furthermore, the above expansion for u can be used to prove in addition that

∥(u− φ)/d1+s∥Cα◦ (Rn) + ∥∇(u− φ)/ds∥Cα◦ (Rn) ≤ CC◦,

where d is the distance to the free boundary. We leave the details to the interested reader.

Proof of Corollary 2.17. Dividing the solution and the obstacle by a constant, if necessary, and up to
a translation, we may assume C◦ = 1 and x◦ = 0. Moreover, exactly as in [CRS17], we may consider
u 7→ u− φ, so that u now satisfies:

u ≥ 0, D2u ≥ −C1Id in Rn, ∥∇u∥L∞(Rn) ≤ C1, u(0) = |∇u(0)| = 0,

Lu = f in {u > 0} and Lu ≤ f in Rn, with |∇f | ≤ C1.
(2.6)

We now want to apply Theorem 2.2 iteratively in order to get the desired estimate.
Consider κ◦ > 0 to be chosen later, and let ε◦ > 0 be the constant given by Theorem 2.2. For η > 0

small, define the functions

wk(x) :=
η

C1

u(2−kx)

(2−k)1+s+α◦
, k = 0, 1, 2, . . .

Since 1 + s+ α◦ < 2 and s+ α◦ < 2s, it follows that all functions wk satisfy

wk ≥ 0 and D2wk ≥ −ηId in Rn, with wk(0) = |∇wk(0)| = 0,

Lwk = fk in {wk > 0} and Lwk ≤ fk in Rn, with |∇fk| ≤ η.
(2.7)

Moreover, when k = 0 we have ∥∇w0∥L∞(Rn) ≤ 1.
In other words, all the assumptions of Theorem 2.2, possibly except for the growth control on

∥∇wk∥L∞(BR) (that holds at least for k = 0), are satisfied by wk. We then have two possibilities:

Case 1. Assume that functions wk satisfy

∥∇wk∥L∞(BR) ≤ Rs+α◦ for R ≥ 1, for all k ≥ 0.

Then, we have

∥∇u∥L∞(B
2−k ) = C1η

−1(2−k)s+α◦∥∇wk∥L∞(B1) ≤ C(2−k)s+α◦ ,
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and therefore
|∇u(x)| ≤ C|x|s+α◦ for x ∈ B1.

This, in turn, implies that
|u(x)| ≤ C|x|1+s+α◦ for x ∈ B1,

as wanted.

Case 2. If we are not in Case 1, then there is a maximal number k◦ ∈ N such that

∥∇wk∥L∞(BR) ≤ Rs+α◦ for R ≥ 1, for all k ≤ k◦. (2.8)

In particular, in terms of u, this implies that

|u(x)| ≤ C|x|1+s+α◦ for all x ∈ B1 \B2−k◦ . (2.9)

We now observe that, thanks to (2.8), choosing η sufficiently small Theorem 2.2 implies that

∥wk◦ − u◦∥Lip(B1) ≤ ε := min{ε◦, 1/6},

where u0 is a multiple of (x · e)1+s+ , that is

|∇u◦(x)| = κ(x · e)s+, for some 0 ≤ κ ≤ 2.

We consider two subcases:
(i) If κ ≤ 1

3 , then by triangle inequality

∥∇wk◦∥L∞(B1) ≤ ∥∇u◦∥L∞(B1) + ε ≤ 1
3 + ε ≤ 1

2
< 2−s−α◦ .

Since ∇wk◦+1(x) = 2s+α◦∇wk◦(x2 ), this implies that

∥∇wk◦+1∥L∞(B2) ≤ 1.

Since
∥∇wk◦+1∥L∞(BR) = 2s+α◦∥∇wk◦∥L∞(BR/2) ≤ Rs+α◦ for R ≥ 2,

then wk◦+1 still satisfies the growth condition (2.8), a contradiction to the definition of k◦.
(ii) If instead κ ≥ 1

3 , it follows from Theorem 2.2 that the free boundary ∂{wk◦ > 0} is a C1,τ graph
in B1 and

|∇wk◦(x)−∇u◦(x)| ≤ C|x|s+τ for all x ∈ B1. (2.10)

Furthermore, as in [CRS17], we can apply the boundary Harnack estimate in C1 domains from [RS17]
to deduce that the regularity of the free boundary can be improved to C1,α◦ . Hence, applying the
corresponding estimates in C1,α◦ domains from [RS17], we finally obtain that (2.10) holds with τ = α◦.
This, in turn, implies ∣∣wk◦(x)− κ

1+s(x · e)1+s+

∣∣ ≤ C|x|1+s+α◦ for all x ∈ B1,

and rescaling back to u we find∣∣u(x)− c◦(x · e)1+s+

∣∣ ≤ C|x|1+s+α◦ for all x ∈ B2−k◦ , with c◦ =
C1κ

η(1 + s)
2−α◦k◦ , (2.11)

and that the free boundary ∂{u > 0} is C1,α◦ in a ball of radius 2−k◦ . Note that, since

|c◦(x · e)1+s+ | ≤ c◦|x|1+s =
C1κ

η(1 + s)
2−α◦k◦ |x|1+s ≤ C|x|1+s+α◦ for |x| ≥ 2−k◦ ,

it follows from (2.9) and (2.11) that∣∣u(x)− c◦(x · e)1+s+

∣∣ ≤ C|x|1+s+α◦ for all x ∈ B1,

proving the result also in Case 2(ii).
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Finally, to conclude the proof, it suffices to observe that in all cases we have

|∇u(x)| ≤ C|x|s for x ∈ B1,

and this implies the uniform C1+s estimate for u. □

We now show that the same argument as above can be adapted to the case of non-symmetric
operators. In this case we establish directly the optimal regularity of solutions, without passing
through the expansion for u in terms of u◦. We recall that, when L is as in Definition 2.1 with K
homogeneous, then it has a Fourier symbol A(ξ) + iB(ξ) associated to it. We refer to [DRSV22,
(2.6)-(2.7)] for the explicit expression of A and B.

Corollary 2.19. Let s ∈ (0, 1) and L as in Definition 2.1, with K homogeneous. Let φ be an obstacle
satisfying (1.4), and u be the solution of (1.6). Let A(ξ) + iB(ξ) be the Fourier symbol of L, and
define

γL := min
e∈Sn−1

γL,e, where γL,e := s− 1

π
arctan

(
B(e)
A(e)

)
.

Then u ∈ C1+γL(Rn) with
∥u∥C1+γL (Rn) ≤ CC◦,

with C depending only on n, s, λ, and Λ.

Proof of Corollary 2.19. As in the proof of Corollary 2.17, we may assume C◦ = 1 and 0 ∈ ∂{u > 0}.
Also we may consider u 7→ u− φ so that (2.6) holds.

We now want to apply Theorem 2.2 iteratively in order to prove

|u(x)| ≤ C|x|1+γL for x ∈ B1.

Notice that, in the current setting, for any e ∈ Sn−1 the solution u◦ to (2.1) is a multiple of (x ·e)1+γL,e

+ ,
where the explicit expression for γL,e is given by [DRSV22, Corollary 4.6]. In particular, by definition
of γL, we have γL,e ≥ γL for all e ∈ Sn−1.

Let κ > 0 to be chosen later, and let η > 0 be the constant given by Theorem 2.2. We define the
functions

wk(x) :=
η

C1

u(2−kx)

(2−k)1+γL
,

for k = 0, 1, 2, ...,. Notice that, since γL < min{1, 2s}, the functions wk satisfy (2.7). Moreover, when
k = 0 we have ∥∇w0∥L∞(Rn) ≤ 1.

Now, as in the proof of Corollary 2.17, we consider two cases: if

∥∇wk∥L∞(BR) ≤ RγL for all k ≥ 0,

then in terms of u this implies that |∇u(x)| ≤ C|x|γL in B1, hence

|u(x)| ≤ C|x|1+γL for x ∈ B1,

as desired.
Alternatively, assume there is a maximal number k◦ ∈ N such that

∥∇wk∥L∞(BR) ≤ RγL for all k ≤ k◦. (2.12)

In particular, in terms of u, this implies that

|u(x)| ≤ C|x|1+γL for all x ∈ B1 \B2−k◦ . (2.13)

Also, by Theorem 2.2, choosing η sufficiently small we find

∥wk◦ − u◦∥Lip(B1) ≤ ε≪ 1, |∇u◦(x)| = A(x · e)γL,e

+ , 0 ≤ A ≤ 2.
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We then have two possibilities:
(i) If A ≤ 1

3 , then by triangle inequality

∥∇wk◦∥L∞(B1) ≤ ∥∇u◦∥L∞(B1) + ε ≤ 1
3 + ε ≤ 1

2
< 2−γL ,

which implies ∥∇wk◦+1∥L∞(B2) ≤ 1. Hence wk◦+1 satisfies the growth condition (2.12), contradicting
the definition of k◦.
(ii) If A ≥ 1

3 , then by Theorem 2.2 we have that the free boundary ∂{wk◦ > 0} is a C1,τ graph in B1

and

|∇wk◦(x)−∇u◦(x)| ≤ C|x|γL,e+τ for x ∈ B1.

In particular |∇wk◦(x)| ≤ C|x|γL in B1, that rescaled back yields

|∇u(x)| ≤ C|x|γL for x ∈ B2−k◦ .

Recalling (2.13), this concludes the proof. □

Thanks to the previous result, we finally deduce the validity of Corollaries 1.5 and 1.8.

Proof of Corollaries 1.5 and 1.8. Both results are particular cases of Corollary 2.19. □

3. A parabolic boundary Harnack inequality

In this section we prove a parabolic boundary Harnack inequality in Lipschitz (and also more
general) domains. More precisely, we consider domains satisfying the following definition:

Definition 3.1. We say that a domain Ω ⊂ Rn×(−∞, 0) satisfies the interior cone condition at (0, 0)
with opening θ and speed ω if for some direction e ∈ Sn−1 there is a “traveling cone” of the form:

Σt = {|x · e| > cos θ|x|} − ωte,

with opening angle θ ∈ (0, π/2) and speed ω > 0, such that (Σt ∩B1)× {t} ⊂ Ω all t < 0 (i.e., for all
t ∈ (−1/ω, 0)).

We say that Ω satisfies the interior cone condition with opening θ and speed ω in Q ⊂ Rn × R if,
for all (x◦, t◦) ∈ Ω ∩Q, the translation Ω− (x◦, t◦) satisfies the previous condition.

A key result in this paper is the following parabolic boundary Harnack.

Theorem 3.2. For any given n ≥ 1, s ∈ [12 , 1), and positive constants λ ≤ Λ (ellipticity), θ ∈ (0, π/2)
and ω > 0 (opening and speed of traveling cone), t◦ > 0, and γ◦ ∈ (0, 2s), there exist positive constants
R, ε, α ∈ (0, 1), and C, such that the following statement holds.

Suppose that L is as in (1.1)-(1.2) and let A ⊂ Rn × [−2t◦, 0] be a closed set such that Ac ∩ Q1

satisfies the interior cone condition (with opening θ and speed ω). Let vi, i = 1, 2, be two viscosity
solutions of∣∣(∂t − L)vi

∣∣ ≤ ε in Ac ∩
(
BR × (−2t◦, 0)

)
, vi ≡ 0 in A ∩

(
BR × (−2t◦, 0)

)
,

satisfying

vi ≥ −ε in BR × (−2t◦, 0), |vi(x, t)| ≤ C◦(1 + |x|)2s−γ◦ in Rn × (−2t◦, 0), vi(en, 0) = 1.

Then, setting Q1 := B1 × (−t◦, 0), we have

vi > 0 in Ac ∩Q1,

[
v1
v2

]
Cα(Ac∩Q1)

+

[
v2
v1

]
Cα(Ac∩Q1)

≤ C.

To prove it, we will need several ingredients. The main step will be the following.
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Proposition 3.3. For any given n ≥ 1, s ∈ [12 , 1), and positive constants λ ≤ Λ (ellipticity), γ◦ ∈
(0, 2s), C◦, and t◦, there exist positive constants R, ε, and C such that the following statement holds.

Suppose that L is as in (1.1)-(1.2) and let A ⊂ Rn × R be a closed set satisfying

B2δ(en)× (−2t◦, 0) ⊂ Ac

for some δ > 0. Let ρ ≥ R, and let vi, i = 1, 2, be two viscosity solutions of∣∣(∂t − L)vi
∣∣ ≤ ρ−γ◦ in Ac ∩

(
Bρ × (−2t◦, 0)

)
, vi ≡ 0 in A ∩

(
Bρ × (−2t◦, 0)

)
satisfying

vi ≥ −ε(1 + |x|2)
2s−γ◦

2 in Bρ × (−2t◦, 0), |vi(x, t)| ≤ (1 + |x|2)
2s−γ◦

2 in (Rn \Bρ)× (−2t◦, 0),

and vi(en, 0) = c◦ > 0. Then

1

C
≤ vi in Q∗ := Bδ(en)× (−5t◦/4, 0), 0 ≤ vi ≤ C in Q1

and
0 < v1 ≤ Cv2, 0 < v2 ≤ Cv1 in Q1,

where Q1 := B1 × (−t◦, 0).

To prove Proposition 3.3 we need the following auxiliary results:

Lemma 3.4 (Supersolution). Let s ∈ [12 , 1), L as in (1.1)-(1.2), and γ◦ ∈ (0, 2s). Given R ≥ 1, there

exists a solution S1 of
(∂t − L)S1 = R−γ◦ in BR × (−1, 0)

satisfying
S1(x, t) ≤ CR−γ◦ in BR/4 × (−1, 0), S1(x, t) ≥ c|x|2s−γ◦χRn\BR

(x),

for some positive constants c, C depending only on n, s, λ, Λ, and γ◦.

Proof. We take S1(x, t) := h(x, t) +R−γ◦(t+ 1), where h solves

(∂t − L)h = 0 in Rn × (−1, 0)

with initial condition h(x,−1) = |x|2s−γ◦χRn\BR/2
in Rn. Since the heat kernel H of the operator L

satisfies
1

C
≤ H(z, t)

t
n
2s + t−1|z|n+2s

≤ C (3.1)

(see for instance [BL02, KKK21]), for x ∈ BR/4 and t ∈ (−1, 0) we obtain

h(x, t) =

∫
Rn\BR/2

H(x− y, t)|y|2s−γ◦dy ≤ C

∫
Rn\BR/2

|y|2s−γ◦
t−1|y|n+2s

dy ≤ CtR−γ◦ ,

therefore S1(x, t) ≤ CR−γ◦ inside BR/4.
The lower bound follows from a similar argument, concluding the proof. □

We will also need the following result from [CD14, Corollary 4.3].

Proposition 3.5 (half Harnack, [CD14]). Let s ∈ [12 , 1) and L as in (1.1)-(1.2). Let t◦ > 0, and let
w be a viscosity supersolution of

(∂t − L)w ≥ −ε in B1 × (−2t◦, 0), with w ≥ 0 in Rn.
Then

inf
B1×(−t◦,0)

w ≥ −ε+ c

∫ −3t◦/2

−2t◦

dt

∫
Rn

dx
w(x, t)

1 + |x|n+2s
,

for some c > 0 depending only on n, s, λ, Λ, and t◦.
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We also need the following:

Lemma 3.6. Let s ∈ [12 , 1) and L as in (1.1)-(1.2). Given t◦ > 0, there exists C > 0 depending only
on n, s, λ, Λ, and t◦, such that the following holds.

Let ρ ≥ 1, A ⊂ Rn × R be a closed set, and w a viscosity solution of{
(∂t − L)w = 0 in Ac ∩

(
Bρ × (−2t◦, 0)

)
w ≡ 0 in

(
(A ∩Bρ) ∪ (Rn \Bρ)

)
× (−2t◦, 0).

Then

sup
B2×(−t◦,0)

w ≤ C

∫
Rn

w+(x,−t1)
(1 + |x|)n+2s

dx for all −t1 ∈ [−2t◦,−3t◦/2].

Proof. Observe that (∂t − L)w+ ≤ 0 in Rn × (−2t◦, 0). As a consequence we obtain

w+(x,−t1 + t) ≤
∫
Rn

w+(y,−t1)H(x− y, t)dy for t ∈ [−t1, 0].

Using the heat kernel bounds (3.1) we obtain

sup
(x,t)∈B2×(−t◦,0)

w(x, t) ≤ sup
(x,t)∈B2×(−t◦,0)

∫
Rn

w+(y,−t1)H(x− y, t− t1)dy ≤ C

∫
Rn

w+(y,−t1)
(1 + |y|)n+σ

dx,

where we used that, for t ∈ (−t◦, 0) and t1 ∈ [3t◦/2, 2t◦], we have t◦/2 ≤ t1 − t ≤ 2t◦. The lemma
follows. □

We can now give the:

Proof of Proposition 3.3. We divide the proof into three steps.

- Step 1. Fix ε > 0 small to be chosen later and let R = Rε := ε−2/γ◦ . We claim that if ρ ≥ Rε and
i ∈ {1, 2}, then

inf
Q∗
vi ≥ −Cε+ c

∫ −3t◦/2

−2t◦

dt

∫
Rn

dx
v+i (x, t)

(1 + |x|)n+2s
(3.2)

for some constants c > 0 small and C > 0 large (recall Q∗ := Bδ(en)× (−5t◦/4, 0) ⊂ Ac).
Indeed, it suffices to apply Proposition 3.5 (rescalled) to the function

w(x, t) := vi(x, t) + ε(1 + |x|2)
1
2
(2s−γ◦/2),

which is nonnegative6 in all of Rn × (−2t◦, 0), to get

inf
Q∗
w ≥ −ε+ c

∫ −3t◦/2

−2t◦

dt

∫
Rn

dx
w(x, t)

(1 + |x|)n+2s
.

This implies that

inf
Q∗
vi ≥ −Cε+ c

∫ −3t◦/2

−2t◦

dt

∫
Rn

dx
vi(x, t)

(1 + |x|)n+2s
.

Also, noticing that

|vi−v+i | ≤ ε(1+ |x|2)
2s−γ◦

2 in Bρ× (−2t◦, 0), |vi−v+i | ≤ (1+ |x|2)
2s−γ◦

2 in (Rn \Bρ)× (−2t◦, 0),

we easily get that∣∣∣∣ ∫ −3t◦/2

−2t◦

dt

∫
Rn

dx
vi(x, t)

(1 + |x|)n+2s
−
∫ −3t◦/2

−2t◦

dt

∫
Rn

dx
v+i (x, t)

(1 + |x|)n+2s

∣∣∣∣ ≤ Cε.

6Notice ε(1 + |x|2)
1
2
(2s−γ◦/2) ≥ εR

γ◦/2
◦ (1 + |x|2)

1
2
(2s−γ◦) = (1 + |x|2)

1
2
(2s−γ◦) for |x| ≥ R◦.
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so (3.2) follows.

- Step 2. We prove that

1 ≤ sup
B2×(−3t◦/2,0)

vi ≤ C1

(
inf
Q∗
vi + ε

)
≤ 2C1. (3.3)

To this aim, choose t1 ∈ (3t◦/2, 2t◦) such that∫ −3t◦/2

−2t◦

dt

∫
Rn

dx
v+i (x, t)

(1 + |x|)n+2s
≥ t◦

2

∫
Rn

dx
v+i (x,−t1)
(1 + |x|)n+2s

(3.4)

and decompose

vi = vmain
i + verrori ,

where vmain
i is the solution of

(∂t − L)vmain
i = 0 in (Bρ \A)× (−t1, 0)

vmain
i = 0 in

(
A ∪ (Rn \Bρ)

)
× (−t1, 0)

vmain
i = vi in Bρ × {−t1}

and verrori satisfies 
∣∣(∂t − L)verrori

∣∣ ≤ ε in (Bρ \A)× (−t1, 0)
|verrori | ≤ C◦(1 + |x|)2s−γ◦ in

(
A ∪ (Rn \Bρ)

)
× (−t1, 0)

verrori = 0 in Bρ × {−t1}.

Note that, since vi = 0 inside
(
A ∪ (Rn \ Bρ)

)
× (−t1, 0), then also verrori vanished inside this set.

Hence, choosing as barrier a rescaling of the function S provided by Lemma 3.4, if ρ ≥ Rε = ε−1/γ◦

we get

sup
B2×(−3t◦/2,0)

∣∣verrori

∣∣ ≤ Cε.

On the other hand, by Lemma 3.6 we have

sup
B2×(−3t◦/2,0)

vmain
i ≤ C

∫
Rn

dx
v+i (x,−t1)
(1 + |x|)n+2s

.

Combining this with (3.4) and (3.2), we conclude that

sup
B2×(−3t◦/2,0)

vi ≤
∫ −3t◦/2

−2t◦

dt

∫
Rn

dx
v+i (x, t)

(1 + |x|)n+2s
≤ C1

(
inf
Q∗
vi + ε

)
.

Recalling that vi(en, 0) = 1 and ε ∈ (0, 1), we obtain (3.3).

- Step 3. Finally, we want to prove that

v1 ≤ Cv2 in Q1 = B1 × (−t◦, 0)

Let η ∈ C∞
c (B3/2 × (−5

4 t◦, 0]) be nonnegative cutoff function with η = 1 in B1 × [−t◦, 0], and define

w(x, t) := v1(x, t)χB2(x) + (2C1 + 1)(η(x, t)− 1),

where C1 is the constant in (3.3). Since v1(x, t) ≤ 2C1 in B2 × (−3t◦/2, 0), we have

w(x, t) ≤ −1 in
(
Bc

3/2 × (−5
4 , 0)

)
∪ Rn × {−5

4 t◦}.

In addition,

(∂t − L)w ≤ (∂t − L)v1 + C ≤ ε+ C ≤ C in Ac ∩
(
B3/2 × (−2t◦, 0)

)
.
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Let ξ(x, t) = ξ(x) := χBδ(en)(x). Since (∂t − L)ξ(x, t) ≤ −c < 0 for (x, t) ∈ (B1 \ Bδ(en))× R, for C2

large enough we have

(∂t − L)
(
w + C2ξ

)
≤ −1 in (B1 \Bδ(en))× R.

Furthermore, by (3.3) we see that infQ∗ vi ≥ 1
2C1

provided ε is sufficiently small. In particular, we can
choose C3 large enough so that

w + C2ξ ≤ C3v2 in Q∗ = Bδ(en)× (−5
4 t◦, 0)

Combining all these estimates together, this proves that

V (x, t) := C3v2(t, x)χB2(x)−w(x, t)−C2ξ(x, t) ≥ 0 in
(
(Bc

3/2∪Bδ(en))×(−5
4 t◦, 0)

)
∪(Rn×{−5

4 t◦}),

provided ε is sufficiently small. Hence, since

(∂t − L)
(
C3v2 − w − C2ξ

)
≥ 1− C3ε in

(
B3/2 \Bδ(en)

)
× (−5

4 t◦, 0),

it follows that

(∂t − L)V ≥ 1− C3ε− C3

∣∣(∂t − L)
(
v2χBc

2
)
∣∣ ≥ 1− C4ε in

(
B3/2 \Bδ(en)

)
× (−5

4 t◦, 0).

Taking ε small so that 1− C4ε > 0, it follows from the maximum principle that

C3v2 − w − Cξ ≥ 0 in B3/2 × (−5
4 t◦, 0).

In particular,

v1 = w ≤ w + Cξ ≤ C3v2 in Q1,

as desired.
Finally, notice that the exact same argument with w(x, t) = η(x, t)− 1 (i.e., replacing both v1 by 0

and 2C1 by 1 in the previous argument) shows that v2 ≥ 0 in Q1, and then v2 > 0 in Q1 \ A by the
strong maximum principle (since, by assumption, v2 is nonzero). □

We now construct a subsolution to prove a nondegeneracy property in moving Lipschitz domains.

Lemma 3.7 (Subsolution supported in a traveling cone). Let s ∈ [12 , 1) and L as in (1.1)-(1.2). Given

ω◦ ≥ 0, e◦ ∈ Sn−1, and θ◦ ∈ (0, π), there are positive constants γ and c, depending only on n, s, λ, Λ,
ω◦, and θ◦, such that the following statement holds.

Consider the traveling cone

Σt :=
{
x ∈ Rn : ∠(e◦, x|x|) ≤ θ◦

}
− ω◦te◦

and fix a smooth 1-homogeneous function ψ : Σ0 → (0,∞) such that:
- ψ(x) = dist(x,Rn \ Σ0) for all x ∈ { 9

10θ◦ ≤ ∠(e◦, x|x|) ≤ θ◦};
- ∇ψ · e◦ > 0 in Σ0.

Then the “traveling wave” φ = φγ given by φ(x, t) :=
(
ψ(x+ ω◦te◦)

)2s−γ
+

satisfies

(∂t − L)φ ≤ −c < 0 (3.5)

in B1 × (−1, 0).

Proof. By translation invariance in t we just need to show (3.5) in B1+ω◦ × {0}. Then, by scaling,
it is enough to prove (3.5) just in B1 × {0} (up to changing c and the ellipticity constants). Since
(∂t − L)φ ≤ −c < 0 in (B1 \ Σ0)× {0} (note that φ ≥ 0 vanishes at those points and L is nonlocal),
it suffices to prove (3.5) for (x, 0) ∈ (Σ0 ∩B1)× {0}.

We claim that it suffices to show that

(∂t − L)φ(x◦, 0) < −1 for all x◦ ∈ Σ0 with ψ(x◦) =M := max
B1

ψ.
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Indeed, given (x, 0) ∈ (Σ0 ∩ B1) × {0} we have ψ(x) ∈ (0,M ], hence —by homogeneity— there is
x◦ ∈ Σ0 ∩ {ψ = M} and r ∈ (0, 1) such that x = rx◦. Therefore, defining φ̃(x, t) = φ(rx, rt) and
noticing that (again by homogeneity of ψ and using the definition of φ) φ̃(x, t) = r2s−γφ(x, t) we
obtain

(∂t − L)φ(x◦, 0) = rγ−2s(∂t − L)φ̃(x◦, 0) == rγ−2s(r∂t − r2sL)φ(x, 0) ≥ rγ(∂t − L)φ(x, 0),

where we used ∂tφ ≥ 0 (since e◦ · ∇ψ > 0) and 2s ≥ 1. Thus

(∂t − L)φ(x, 0) ≤ r−γ(∂t − L)φ(x◦, 0),
and therefore it suffices to show (∂t − L)φ(x◦, 0) ≤ −1, as claimed.

To show that (∂t − L)φ(x◦, 0) ≤ −1 for γ > 0 small enough, it is useful to think of the following
dichotomy (although they are treated almost identically):
- either x◦ belongs to a compact subset of Σ◦;
- or |x◦| is very large and therefore, since ψ(x◦) = M , x◦belongs to the cone { 9

10θ◦ ≤ ∠(e◦, x|x|) ≤ θ◦}
where ψ = dist( · ,Rn \ Σ0). In particular, dist(x◦,Rn \ Σ0) =M.
In both cases it is simple to show that there exists ρ◦ = ρ◦(θ◦,M) > 0 such that

|∂tφ(x◦, 0)|+ ∥φ(x◦ + · , 0)∥C2(B′) ≤ C in B′ :=
{
|x| ≤ ρ◦

}
,

with C independent of x◦ and γ. In addition, keeping again in mind the previous dichotomy, in both
cases we have

min
x◦∈{ψ=M}

∫
Rn\B′

φ(x◦ + y, 0)

|y|n+2s
dy → +∞ as γ ↓ 0.

Then the lemma follows from the following simple bound, choosing γ sufficiently small:

(∂t − L)φ(x◦, 0) ≤ |∂tφ(x◦, 0)| −
∫
Rn

(φ(x◦ + y, 0) + φ(x◦ − y, 0)− 2φ(x◦, 0))K(y)

≤ C + C

∫
B′

|y|2 Λ

|y|n+2s
dy +

∫
Rn\B′

2φ(x◦, 0)
Λ

|y|n+2s
dy −

∫
Rn\B′

φ(x◦ + y, 0)
λ

|y|n+2s
dy.

□

We can now prove our parabolic boundary Harnack.

Proof of Theorem 3.2. First we note that v1 and v2 play symmetric roles in the theorem. Also, as a
consequence of Proposition 3.3, vi > 0 in Ac ∩ Q1 provided ε > 0 is small enough. Our goal will be
to prove that, in parabolic cylinders centered at (0, 0), the quotient v1/v2 decays geometrically. More
precisely, setting

Qr := Br ∩ (−r2st◦, 0)
we shall prove that

oscAc∩Qr

(
v1
v2

)
≤ rα

′
for r ∈ (0, r̄), (3.6)

provided that R is chosen large enough, and ε, α′, and r̄ are small positive constants. Since (0, 0)
can be replaced by any other point in Ac ∩Q1, (3.6) will hold at every point in Ac ∩Q1 with uniform
constants, implying the theorem.

To prove (3.6) we use the subsolution φ from Lemma 3.7, and we then rescale and iterate Proposition
3.3 along a sequence of geometric scales, as explained next. We split the argument into three steps.

- Step 1. We first show that

vi(ren, 0) ≥ c1r
2s−γ for r ∈ (0, 1/2), (3.7)

where c1 and γ are positive constants.
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Recall that, by assumption, Ac satisfies the interior cone property at (0, 0), where e◦, θ, and ω refer
to the traveling cone’s direction, opening, and speed, respectively. Assume without loss of generality
that ω ≥ 2

t◦
and e◦ = en. Setting Cδ := ∪r>0χBrδ(ren), for δ > 0 small (comparable with θ) we have

that (B2 ∩ (Cδ − e◦ωt))× {t} ⊂ Ac for all t ∈ [−2t◦, t◦].
Let φ be a subsolution as in Lemma 3.7, with φ(0, t) supported in the (spatial) cone Cδ and

traveling in the −e◦ direction at speed ω◦ = ω. Recall that the subsolutions φ(·, 0) is a spatially
(2s− γ)-homogeneous function, and that φ( · , t) ≡ 0 in B2 for t ≤ −t◦.

Now let η ∈ C∞
c (B3/2) be a nonnegative spatial cut-off function such that η = 1 in B1, and define

w(x, t) :=
(
φ(x, t)χB2(x) + (η(x)− 1)

(
max
B2

φ( · , 0)
))

+
+ C2χBδ/4(en)(x).

For C2 large enough, we have

(∂t − L)w ≥ 1 in (B3/2 \Bδ/2(en))× (−t◦, 0).

On the other hand, by construction, w = 0 on B3/2 × {t◦} and inside (Rn \ B3/2) × [−t◦, 0] . Also,

by Proposition 3.3, we have 1
C′ ≤ vi in Q∗ = Bδ(en) × (−5t◦/4, 0). Using that (∂t − L)vi ≤ ε

in B1 × (−t◦, 0) \ A and that the support of w is contained in the complement of A, applying the
maximum principle to w and C ′C2vi, if ε <

1
C′C2

we obtain

w(x, t) ≤ Cvi(x) for (x, t) ∈ B1 × (−t◦, 0).

Evaluating at (ren, 0), this proves (3.7).
From now on, fixed γ as in (3.7), we assume without loss of generality that γ◦ < γ.7

- Step 2. We now show that there exists C > 0 such that, for all r > 0 small and R ≤ 1/r, we have

sup
BRr

vi ≤ Cvi(ren, 0)R
2s−γ . (3.8)

Indeed, consider the functions

v̄i(x, t) :=
vi(r̄x, r̄

2st)

vi(r̄en, 0)
.

Since γ◦ < γ, combining the assumption |vi(x, t)| ≤ C◦(1 + |x|)2s−γ◦ with (3.7) it follows that, if
r̄ ∈ (0, 1), then the functions v̄i(x, t) satisfy the assumptions of Proposition 3.3 with ρ = r̄−1R and
with uniform constants (i.e., not degenerating as r̄ goes to zero).8 Hence, applying Proposition 3.3 we
deduce that 1

C′ ≤ v̄i in Q
∗ and 0 ≤ v̄i ≤ C ′ in Q1. This allows us to repeat the subsolution argument

of Step 1 with vi replaced by v̄i, so to obtain

v̄i(en/R, 0) ≥ c1v̄i(en, 0)(1/R)
2s−γ for all R ≥ 1. (3.9)

Choosing R such that Rr = r̄, this yields

supQRr
vi

vi(r̄en, 0)
= sup

Q1

v̄i ≤ C ′ = C ′v̄i(en, 0) ≤
C ′

c1
R2s−γ v̄i(en/R, 0) =

C ′

c1
R2s−γ vi(ren, 0)

vi(r̄en, 0)
,

proving (3.8).

- Step 3. We obtain the geometrically improving “sandwich-type” estimates

mjv1 ≤ v2 ≤Mjv1 in Qρ−j , j ≥ 1 (3.10)

7Note that if the assumptions of the theorem are satisfied for some γ◦, then they are also satisfied with γ◦ smaller.
8Notice that here we are using 2s ≥ 1: indeed, the set where v̄i vanishes is the rescaling of the set A, namely

{(x/r̄, t/r̄2s) : (x, t) ∈ A}. Such a set satisfies the interior cone with opening angle and speed independent r̄ ∈ (0, 1) if
and only if 2s ≥ 1.
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where
0 ≤Mj −mj = C3(1− η)j (3.11)

for some positive constants ϱ, C3 (both large) and η (small).
Indeed, thanks to Proposition 3.3, both (3.10) and (3.11) are satisfied for j = 1 (provided ρ ≥ 2),

for some positive constants M1, m1, and C3. We now proceed by induction: assume that (3.10) and
(3.11) hold for 1 ≤ j ≤ k, and let us prove that they also hold for j = k + 1.

We first show the validity of (3.10) in Qρ−k−1 . We consider two cases:
- if

(v2 −mkv1)(ρ
−k−1en, 0) ≥ (Mkv1 − v2)(ρ

−k−1en, 0) (3.12)

then we prove that (3.10) holds j = k + 1 for mk+1 = mk + η(1− η)k and Mk+1 =Mk;
- if

(v2 −mkv1)(ρ
−k−1en, 0) < (Mkv1 − v2)(ρ

−k−1en, 0) (3.13)

then we prove that (3.10) holds j = k + 1 for mk+1 = mk and Mk+1 =Mk − η(1− η)k.
Assume that we are in the first case. We begin by noticing that, as a consequence of (3.12), we

have

(v2 −mkv1)(ρ
−k−1en, 0) + (v2 −mkv1)(ρ

−k−1en, 0)

≥ (v2 −mkv1)(ρ
−k−1en, 0) + (Mkv1 − v2)(ρ

−k−1en, 0) = (Mk −mk)v1(ρ
−k−1en, 0),

that is,

(v2 −mkv1)(ρ
−k−1en, 0) ≥

1

2
(Mk −mk)v1(ρ

−k−1en, 0).

Hence, since γ◦ ∈ (0, γ), then (3.11) and (3.7) yield

(v2 −mkv1)(ρ
−k−1en, 0) ≥

1

2
C3(1− η)kc1ρ

−(k+1)(2s−γ) ≥ ρ−(k+1)(2s−γ◦), (3.14)

provided that ρ is chosen large enough. Also, using again (3.7),

v1(ρ
−k−1en, 0) ≥ c1ρ

−(k+1)(2s−γ) ≥ ρ−(k+1)(2s−γ◦). (3.15)

Let us consider the functions

ṽ1(x, t) :=
v1(ρ

−(k+1)x, ρ−2s(k+1)t)

v1(ρ−k−1en, 0)
, ṽ2(x, t) :=

(v2 −mkv1)(ρ
−(k+1)x, ρ−2s(k+1)t)

(v2 −mkv1)(ρ−k−1en, 0)
,

and show that they satisfy the assumptions of Proposition 3.3 (with c◦ = 1) if η > 0 is small enough.
Indeed we already argued in Step 2 that, since 2s ≥ 1, parabolic rescaling preserves the interior

cone condition. Also, by construction and by (3.8) we have ṽi(en, 0) = 1 and

ṽ1(x) ≤ C(1 + |x|)2s−γ ≤ (1 + |x|)2s−γ◦ in (Rn \Bρ)× (−2t◦, 0),

provided ϱ is chosen large enough (here we use again γ◦ < γ).
We want now to obtain a similar bound for v2(x, t), and this is slightly more subtle. We note that,

thanks to (3.12), we have

(v2 −mkv1)(ρ
−k−1en, 0) ≥ (Mk −mk)v1(ρ

−k−1en, 0)

Also, by induction hypothesis, mjv1 ≤ v2 ≤Mjv1 in Qρ−j for all j ≤ k. Thus

|v2 −mkv1| ≤ (Mj −mk)v1 ≤ (Mj −mj)v1 = (1− η)j−k(Mk −mk)v1 in Qρ−j .

Now, given (x, t), select the maximal j such that (x, t) ∈ Qρ−j . Hence, we obtain

(v2 −mkv1)(x, t) ≤ Cv1(x, t)(Mk −mk)

(
1 +

|x|+ |t|1/2s

ρ−k

)δ
,



26 ALESSIO FIGALLI, XAVIER ROS-OTON, AND JOAQUIM SERRA

where δ = δ(η) ↓ 0 as η ↓ 0. Hence, using again (3.8), we obtain

ṽ2(x, t) =
(v2 −mkv1)(ρ

−(k+1)x, ρ−2s(k+1)t)

(v2 −mkv1)(ρ−k−1en, 0)
≤
Cv1(ρ

−(k+1)x, ρ−2s(k+1)t)
(
1 + |x|+ |t|1/2s

)δ
v1(ρ−k−1en, 0)

≤ C(1 + |x|)2s−γ+δ ≤ (1 + |x|)2s−γ◦ in (Rn \Bρ)× (−2t◦, 0),

where we choose δ < γ − γ◦ and ρ large enough to absorb the constant C in the last inequality.
Finally, as a consequence of the inductive hypothesis —namely that (3.10) holds for j = k— the

functions ṽ1 and ṽ2 are both nonnegative in Bρ × (−2t◦, 0).
Having verified that ṽ1 and ṽ2 satisfy the assumptions of Proposition 3.3 we conclude that 1

C ṽ1 ≤ ṽ2
in Q1, that is

1

C

v1(ρ
−(k+1)x, ρ−2s(k+1)t)

v1(ρ−k−1en, 0)
≤ (v2 −mkv1)(ρ

−(k+1)x, ρ−2s(k+1)t)

(v2 −mkv1)(ρ−k−1en, 0)

≤ (v2 −mkv1)(ρ
−(k+1)x, ρ−2s(k+1)t)

1
2(Mk −mk)v1(ρ−k−1en, 0)

in Q1,

or equivalently
1

2C
(Mk −mk)v1 ≤ v2 −mkv1 in Qρ−k−1 ,

as desired.
This proves the validity of the inductive step in the case (3.12). The case (3.13) can be proved

similarly and is left to the interested reader. □

4. Main parabolic result

The goal of this Section is to prove Theorem 1.1. The proof will require several steps.

4.1. Classification of blow-ups for s = 1
2 . Our first main goal will be to classify blow-ups in the

critical case s = 1
2 . For this, the new parabolic boundary Harnack from Theorem 3.2 will be crucial

to establish the following:

Proposition 4.1. Let s = 1
2 and L as in (1.1)-(1.2), with K homogeneous.

Let Σ ⊂ Rn × R− be any closed convex cone with nonempty interior, and with vertex at (0, 0). Let
w1, w2 ∈ C(Rn × R−) be positive solutions of

∂twi − Lwi = 0 in Σc, with wi ≡ 0 in Σ.

Then w1 ≡ κw2 in Rn × R− for some constant κ.

Proof. The result follows from the parabolic boundary Harnack we that we proved in Theorem 3.2.
Indeed, by convexity the set Σc ⊂ Rn×R− satisfies the interior cone condition9. Thus, for every R ≥ 1

we can apply Theorem 3.2 to the functions wi(2Rx, 2Rt)/C
(i)
R , with C

(i)
R := wi(2Ren, 0), to deduce

that [
w1

w2

]
Cτ (QR∩Σc)

≤ CR−τ C
(1)
R

C
(2)
R

, (4.1)

with C independent of R ≥ 1. Moreover, by Proposition 3.3 we also know that
w2

C
(2)
R

≤ C
w1

C
(1)
R

in QR,

9Here, it is very important that our boundary Harnack is not only for Lipschitz domains, but for general domains
satisfying the interior cone condition. For example, it might happen that Σ is a very degenerate cone for t = 0, but the
boundary Harnack still holds.
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and therefore, evaluating this inequality at some arbitrary point in Q1∩Σc, we deduce that C(1)
R /C

(2)
R is

uniformly bounded with respect to R ≥ 1. Thus, letting R→ ∞ in (4.1), we deduce that
[
w1
w2

]
Cτ (Σc)

=

0. Since both functions vanish outside Σc, we conclude that

w1 ≡ κw2 in Rn × R−

for some κ ∈ R. □

We now prove a collection of technical lemmas (still for the case s = 1
2) that will be needed later.

Lemma 4.2. Let s = 1
2 and L as in (1.1)-(1.2), with K homogeneous. Let e ∈ Sn−1 and v ∈ [0, v◦]

for some constant v◦ > 0. Then, there exists θ > 0 such that

ψ(x, t) := exp
(
− |x · e+ vt|1−θ

)
satisfies

∂tψ − Lψ ≥ −C in Rn × R.
The constants C and θ depend only on n, s, v◦, and the ellipticity constants.

Proof. We prove it for e = en. Let M−
λ,Λ be the extremal operator associated to our class of operators,

i.e., M−
λ,Λw := infL Lw, where the infimum is taken among all operators L as in Definition 2.1 (with

fixed s = 1
2 , λ, Λ). Then, the operator ∂t −M−

λ,Λ is scale invariant of order 1, and

(∂t −M−
λ,Λ)|xn + vt|β = −(cβ − v sign(xn + vt))|xn + vt|β−1

for β ∈ (0, 1). Moreover, it is easy to see that cβ → +∞ as β → 1, uniformly in v ∈ [0, v◦]. Hence,
there exists θ > 0 small such that c1−θ > 1+ v◦. This implies that, for any operator L as in Definition
2.1, we have

(∂t − L)|xn + vt|1−θ ≤ −|xn + vt|−θ ≤ 0 in Rn.

In particular, since ψ is bounded and the difference between ψ(x, t) and −|xn+vt|1−θ is of class C1,1/2

for 0 < θ ≤ 1/4, then the function ψ satisfies (∂t − L)ψ ≥ −C in Rn, as wanted. □

We next show the following.

Lemma 4.3. Let s = 1
2 and L as in (1.1)-(1.2), with K homogeneous. Let e ∈ Sn−1, v ≥ 0, and

Γ ⊂ {x · e+ vt = 0} ⊂ Rn × (−∞, 0). Assume w ∈ Liploc(Rn × (−T, 0)) is a viscosity solution of

∂tw − Lw ≤ 0 in
(
Rn × (−T, 0)

)
\ Γ.

Then ∂tw − Lw ≤ 0 in Rn × (−T, 0).

Proof. Let ψ(x, t) be given by Lemma 4.2, and for any ε > 0 consider the function wε := w − εψ.
Assume now that a test function η ∈ C2 touches wε from above at (x◦, t◦) ∈ Rn × (−T, 0). Since

w is Lipschitz, it follows from the definition of ψ (which has a Hölder cusp along {x · e + vt = 0})
that the point (x◦, t◦) cannot belong to the set {x · e+ vt = 0}. Hence, thanks to our assumption and
Lemma 4.2,

(∂t − L)η(x◦, t◦) = (∂t − L)w(x◦, t◦)− ε(∂t − L)ψ(x◦, t◦) ≤ Cε.

This implies that (∂t − L)wε ≤ Cε in Rn × (−T, 0) in the viscosity sense. Since w = supε>0wε, we
conclude that (∂t − L)w ≤ 0 in Rn × (−T, 0) in the viscosity sense. □

We will also need the following 1D computation.



28 ALESSIO FIGALLI, XAVIER ROS-OTON, AND JOAQUIM SERRA

Lemma 4.4. Let s = 1
2 and L as in (1.1)-(1.2), with K homogeneous. Let e ∈ Sn−1, v ≥ 0, and

assume that the function

u◦(x, t) = (x · e+ vt)1+γ+

solves ∂tu◦ − Lu◦ = 0 in {x · e+ vt > 0}, for some γ ∈ (0, 1). Then the exponent γ is given by

γ(L, e, v) = 1

2
+

1

π
arctan

(
v

A(e)

)
, (4.2)

where A(ξ) is the Fourier symbol of the operator −L.

Proof. Notice that for such function u◦ we have ∂tu◦(x, 0) = v(e · ∇u◦)(x, 0), hence the function
w(x) := u◦(x, 0) solves −Lw + ve · ∇w = 0 in {x · e > 0}. Since the Fourier symbol of the operator
−L+ve·∇ is given byA(ξ)+ve·ξ, the value of the exponent γ follows from [DRSV22, Corollary 4.6]. □

We will also use the following:

Lemma 4.5. Let s, µ > 0, and let w ∈ Liploc(Q∞) be such that

R∥∇w∥L∞(QR) +R2s∥∂tw∥L∞(QR) ≤ CRµ for all R ≥ 1.

Then there is a sequence Rm → ∞ for which the rescaled functions

w̃m(x, t) :=
w(Rmx,R

2s
m t)

Rm∥∇w∥L∞(QRm ) +R2s
m∥∂tw∥L∞(QRm )

satisfy10

R∥∇w̃m∥L∞(QR) +R2s∥∂tw̃m∥L∞(QR) ≤ 2Rµ for all R ≥ 1.

Proof. For R ≥ 1 consider the quantity

θ(R) := sup
ρ≥R

ρ∥∇w∥L∞(Qρ) + ρ2s∥∂tw∥L∞(Qρ)

ρµ
<∞.

By definition of θ, for all all m ∈ N there is Rm ≥ m such that

Rm∥∇w∥L∞(QRm ) +R2s
m∥∂tw∥L∞(QRm )

Rµm
≥ 1

2
θ(m).

Then, since θ is nonincreasing, such sequence Rm satisfies

R∥∇w̃m∥L∞(QR) +R2s∥∂tw̃m∥L∞(QR) =
RmR∥∇w∥L∞(QRmR) + (RmR)

2s∥∂tw∥L∞(QRmR)

Rm∥∇w∥L∞(QRm ) +R2s
m∥∂tw∥L∞(QRm )

≤ (RmR)
µθ(RmR)

1
2R

µ
mθ(m)

≤ 2Rµ for all R ≥ 1,

as wanted. □

We can now prove the following classification result for blow-ups, which is new even in the special
case of ∂t +

√
−∆.

Proposition 4.6. Let s = 1
2 and L as in (1.1)-(1.2), with K homogeneous.

Let u◦ ∈ Liploc(Rn × R) be a function satisfying:

• u◦ is nonnegative, monotone, and convex:

u◦ ≥ 0, ∂tu◦ ≥ 0, and D2
x,tu◦ ≥ 0 in Rn × R,

with (0, 0) ∈ ∂{u◦ > 0}.
10Notice that, by construction, the functions w̃m satisfy ∥∇w̃m∥L∞(Q1) + ∥∂tw̃m∥L∞(Q1) = 1.
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• u◦ solves
(∂t − L)(Dh,τu◦) ≤ 0 in {u◦ > 0}

for all h ∈ Rn and τ ∈ R, where

Dh,τu◦(x, t) =
u◦(x,t)−u◦(x−h,t−τ)

|h|+|τ | .

• u◦ has a controlled growth at infinity: there exists δ > 0 such that

∥∇u◦∥L∞(QR) + ∥∂tu◦∥L∞(QR) ≤ R1−δ for all R ≥ 1.

Then, up to a translation,

u◦(x, t) = κ(x · e+ vt)1+γ+

for some e ∈ Sn−1, v ≥ 0, κ ∈ [0, 1], and with γ ∈ [12 , 1) given by (4.2).

Proof. First, notice that the set {u◦ = 0} ∋ 0 is a convex subset of Rn × R. Then, we consider a
“blow-down” u∞ of our function u◦, as follows.

By Lemma 4.5, we can find a sequence Rm → ∞ such that

um(x) :=
u◦(Rmx,Rmt)

Rm∥∇u◦∥L∞(QRm ) +Rm∥∂tu◦∥L∞(QRm )

satisfies
∥∇um∥L∞(Q1) + ∥∂tum∥L∞(Q1) = 1,

∥∇um∥L∞(QR) + ∥∂tum∥L∞(QR) ≤ 2R1−δ for all R ≥ 1,

and (∂t −L)(Dh,τum) = 0 in {um > 0} = 1
Rm

{u◦ > 0}. Moreover, by convexity, the nondegeneracy of
the gradient implies

∥um∥L∞(Q2) ≥ 1.

Also, still by convexity, the functions um converge (up to a subsequence) locally uniformly in Rn ×R
to a function u∞(x, t) that satisfies

∥u∞∥L∞(Q2) ≥ 1 and ∥∇u∞∥L∞(QR) + ∥∂tu∞∥L∞(QR) ≤ 2R1−δ for all R ≥ 1.

Moreover, the “blow-down” sequence 1
Rm

{u◦ = 0} converges to a closed convex cone Σ = {u∞ = 0}
with vertex at the origin. Furthermore, since ∂tu∞ ≥ 0, then Σ satisfies a monotonicity property in
time, too.

We now separate the proof into two cases:

Case 1. Assume that the convex cone Σ has nonempty interior. Then there exist n + 1 independent
directions ωi ∈ Sn, i = 1, ..., n+ 1, such that −ωi ∈ Σ̊. Thus, by convexity of u∞,

vi := ∂ωiu∞ ≥ 0 in Rn × R.
Moreover, at least one of them is not identically zero, say vn ̸≡ 0.

We first claim that the functions vi are continuous functions. Indeed, fix t◦ < 0 and let K◦ := {x ∈
Rn : u(x, t◦) = 0}. Since ∂tu◦ ≥ 0 and u◦ ≥ 0, the zero set (as a subset of space-time) {u◦ = 0}
contains the cylinder K◦ × (−∞, t◦]. Also, the functions (Dh,τu◦)+ are continuous subsolutions that

vanish on K◦ × (−∞, t◦]. Hence, by standard barrier arguments,11 for every R > 0 we obtain

(Dh,0u◦)+(x, t) ≤ C ′dθK◦(x) for |x| ≤ R and t ≤ t◦ < 0

where dK◦ is the distance to the convex set K◦, and the constants C ′ and θ > 0 possibly depend on
R and t◦. Since the partial derivatives of u◦ are smooth inside {u◦ > 0} (they satisfy a parabolic

11For instance, one may use a constant-in-time barrier obtained by truncating the elliptic homogeneous supersolution
from Lemma 2.9; see e.g. the proof of Theorem 4.1 in [AuR20] for a very similar argument.
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translation invariant equation, recall Remark 2.8), letting |h| → 0 and h/|h| → ±ωi, thanks to
the arbitrariness of R and t◦ we deduce that the functions vi vanish continuously on the boundary
∂{u◦ > 0}, and the claim follows.

Second, since vn is not identically zero, we can apply Proposition 4.1 to deduce that

vi ≡ κivn in Rn × (−∞, 0], for i = 1, ..., n.

This means that u∞ is a 1D function for t ≤ 0, i.e., u∞(x, t) = U(x · e + vt) in Rn × (−∞, 0].
Therefore, given (h, τ) ∈ Rn × R parallel to the hyperplane {x · e + vt = 0}, consider the function
w := (h, τ) · (∇u∞, ∂tu∞). Then ∂tw − Lw = 0 in Rn × (0,∞) (cp. Remark 2.8) and w ≡ 0 in
Rn × {t = 0}. By uniqueness of solutions to such initial value problem, we deduce that w ≡ 0 in
Rn × R. Since (h, τ) ∈ Rn × R is an arbitrary vector tangent to {x · e + vt = 0}, this proves that
u∞(x, t) = U(x · e+ vt) in Rn × R and {u∞ = 0} ⊃ {x · e+ vt ≤ 0}.

As a consequence, since 0 ∈ ∂{u◦ > 0}, it follows by convexity that {u◦ = 0} ⊃ {um = 0} for every
m ≥ 1, therefore

{u◦ = 0} ⊃ {um = 0} → {u∞ = 0} ⊃ {x · e+ vt ≤ 0}.
Hence {u◦ = 0} ⊃ {x · e+ vt = 0}, and by the convexity of u◦ we deduce that u◦ is a 1D function for
the form u◦(x, t) = U◦(x · e+ vt) (see [FR22, Lemma 5.28]).

Finally, thanks to Lemma 4.4 we find that u◦(x, t) = κ(x · e+ vt)1+γ+ with γ ∈ [12 , 1), as desired.

Case 2. Assume that the cone Σ has empty interior. Since by convexity it is contained in a hyperplane
Γ ⊂ Rn × R, it follows that

(∂t − L)(Dh,τu∞) ≤ 0 in (Rn × R) \ Γ.

Hence, since Dh,τu∞ ∈ Liploc(Rn×R), Lemma 4.3 implies (∂t−L)(Dh,τu∞) ≤ 0 in Rn×R, and hence

(∂t − L)(∇x,tu∞) = 0 in Rn × R

(cp. Remark 2.8). Thanks to the growth control on ∇x,tu∞, the Liouville theorem for nonlocal
parabolic equations implies that u∞ is affine. However, this contradicts the fact that u∞(0) = 0,
u◦ ≥ 0, and ∥u∞∥L∞(Q2) ≥ 1. Thus, Case 2 cannot happen and the proposition is proved. □

4.2. Classification of blow-ups for s > 1
2 . We next establish the classification of blow-ups for

s > 1
2 . In this case, the scaling is subcritical.

We first need the following (simpler) version of Lemma 4.3.

Lemma 4.7. Let s ∈ (12 , 1) and L as in (1.1)-(1.2), with K homogeneous. Let e ∈ Sn−1, and
Γ ⊂ {x · e = 0} ⊂ Rn. Assume w ∈ Liploc(Rn × R) is a viscosity solution of

∂tw − Lw = 0 in
(
Rn \ Γ

)
× R.

Then ∂tw − Lw = 0 in Rn × R.

Proof. The proof is analogous to the one of Lemma 2.6. □

The classification of blow-ups for s > 1
2 is contained in the following result.

Proposition 4.8. Let s ∈ (12 , 1) and L as in (1.1)-(1.2), with K homogeneous.
Let u◦ ∈ Lip(Rn × (−∞, 0)) be a function satisfying:

• u◦ is nonnegative, monotone, and convex:

u◦ ≥ 0, ∂tu◦ ≥ 0, and D2
x,tu◦ ≥ 0 in Rn × (−∞, 0),

with (0, 0) ∈ ∂{u◦ > 0}.



REGULARITY FOR NONLOCAL OBSTACLE PROBLEMS 31

• u◦ solves

(∂t − L)(Dh,τu◦) ≤ 0 in {u◦ > 0}
for all h ∈ Rn and τ ∈ R, where

Dh,τu◦(x, t) =
u◦(x,t)−u◦(x−h,t−τ)

|h|+|τ | .

• u◦ has a controlled growth at infinity: there exists δ > 0 such that

R∥∇u◦∥L∞(BR×(−R2s,R2s)) +R2s∥∂tu◦∥L∞(BR×(−R2s,R2s)) ≤ R2−δ for all R ≥ 1.

Then, up to a translation,

u◦(x, t) = κ(x · e)1+s+

for some e ∈ Sn−1 and κ ∈ [0, 1].

This result was known only for the fractional Laplacian [BFR18], and the proof in such a case used
crucially in some steps the extension property for the fractional Laplacian, as well as the regularity of
solutions obtained in [CF13]. Here, instead, we establish the result by combining ideas from [BFR18]
with the ones used in the proof of Proposition 4.6.

Proof of Proposition 4.8. First, the set {u◦ = 0} ∋ (0, 0) is a convex subset of Rn × R.
If such set contains the whole line {x1 = . . . = xn = 0}, then it follows by convexity (see, e.g. [FR22,

Lemma 5.28]) that the function u◦ is independent of t, so the result is a consequence of Proposition 2.7.
Otherwise, if the convex set {u◦ = 0} does not contain the line {x1 = . . . = xn = 0}, then there

exist v,M > 0 such that

{u◦ = 0} ⊆ {x · e+ vt ≤M}. (4.3)

Let us now consider the blow-down sequence ũm given by Lemma 4.5, with Rm → ∞. Such a sequence
satisfies the same assumptions as u◦. Also, it follows from (4.3) that

{ũm = 0} = {(x, t) : u◦(Rmx,R2s
m t) = 0} ⊆ {R1−2s

m x · e+ vt ≤MR−2s
m }.

By convexity of the functions ũm, up to a subsequence we have that ũm → u∞ locally uniformly in
Rn × R, where u∞ satisfies the same assumptions as u◦ and, in addition,

{u∞ = 0} ⊂ {t ≤ 0}.

Furthermore, by the construction of ũm in Lemma 4.5, we deduce that ∥u∞∥L∞(Q2) ≥ 1. We now
separate the proof into two cases:

Case 1. Assume first that u∞ is not identically zero for t ≤ 0. In this case, since the set {u∞ =
0} ∩ {t ≤ 0} is the blow-down (with a parabolic scaling) of a convex set, it follows that {u∞ = 0} is
a cone of the form Σ × R−, where Σ ⊂ Rn is a convex cone with vertex at the origin. Therefore we
can apply the boundary Harnack Theorem 3.2, which exactly as in the proof of Proposition 4.6 yields
u∞(x, t) = U(x · e) for t ≤ 0.

Thus, we proved that ∂tu∞ ≡ 0 for t ≤ 0. Also, since u∞ never vanishes for positive times,

(∂t − L)(∂tu∞) = 0 in Rn × R+

(cp. Remark 2.8). Hence, by uniqueness of solutions to the initial value problem, we deduce ∂tu∞ ≡ 0
in Rn × R, a contradiction to the fact that u∞ > 0 for t > 0.

Case 2. Assume that u∞ ≡ 0 for all t ≤ 0. Then ∂tu∞ ≡ 0 for t ≤ 0, and we conclude as at the end
of Case 1. □
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4.3. Almost-optimal regularity estimates. Once we have the classification of blow-ups we can
show the almost-optimal regularity of solutions. For this, we first need the following result, which is
a simple variant of Lemma 2.12.

Lemma 4.9. Let s, µ > 0, and let Qr := Br×(−r2s, r2s). Let wk ∈ Lip(Q1) be a sequence of functions
such that

sup
k

∥∇wk∥L∞(Q1) + ∥∂twk∥L∞(Q1) <∞ (4.4)

but

sup
k

sup
r∈(0,1)

r∥∇wk∥L∞(Qr) + r2s∥∂twk∥L∞(Qr)

rµ
= ∞.

Then, there are subsequences wkm and rm → 0 such that

r1−µm ∥∇wkm∥L∞(Qrm ) + r2s−µm ∥∂twkm∥L∞(Qrm ) ≥ 1

and for which the rescaled functions

w̃m(x, t) :=
wkm(rmx, r

2s
m t)

rm∥∇wkm∥L∞(Qrm ) + r2sm∥∂twkm∥L∞(Qrm )

satisfy12

R∥∇w̃m∥L∞(QR) +R2s∥∂tw̃m∥L∞(QR) ≤ 2Rµ for all R ∈ (1, r−1
m ).

Proof. For every m ∈ N let km and rm ≥ 1
m be such that

r1−µm ∥∇wkm∥L∞(Qrm ) + r2s−µm ∥∂twkm∥L∞(Qrm ) ≥

≥ 1

2
sup
k

sup
r∈( 1

m
,1)

(
r1−µ∥∇wk∥L∞(Qr) + r2s−µ∥∂twk∥L∞(Qr)

)
≥ 1

2
sup
k

sup
r∈(rm,1)

(
r1−µ∥∇wk∥L∞(Qr) + r2s−µ∥∂twk∥L∞(Qr)

)
.

As in the proof of Lemma 2.12, it follows from (4.4) that rm → 0 as m → ∞. Also, by construction
of rm and km,

r1−µm ∥∇wkm∥L∞(Qrm ) + r2s−µm ∥∂twkm∥L∞(Qrm ) ≥

≥ 1

2

(
r1−µ∥∇wk∥L∞(Qr) + r2s−µ∥∂twk∥L∞(Qr)

)
for all r ∈ (rm, 1) and for all k. Thus, for any R ∈ (1, r−1

m ) we have

R∥∇w̃m∥L∞(QR) +R2s∥∂tw̃m∥L∞(QR) =

=
rmR∥∇wkm∥L∞(QRrm ) + (rmR)

2s∥∂twkm∥L∞(QRrm )

rm∥∇wkm∥L∞(Qrm ) + r2sm∥∂twkm∥L∞(Qrm )
≤ 2Rµ,

and we are done. □

We can now establish the almost-optimal regularity of solutions. We first recall the notion of the
parabolic Hölder seminorm: given β ∈ (0, 1),

∥w∥
Cβ

par(K)
:= sup

(x,t),(y,τ)∈K

|w(x, t)− w(y, τ)|
|x− y|β + |t− τ |

β
2s

. (4.5)

12Notice that, by construction, the functions w̃m satisfy ∥∇w̃m∥L∞(Q1) + ∥∂tw̃m∥L∞(Q1) = 1.
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Corollary 4.10. Let s ∈ [12 , 1) and L as in (1.1)-(1.2), with K homogeneous. Let δ > 0, and let
u ∈ Liploc(Rn × (−2, 2)), with

R∥∇u∥L∞(QR∩{|t|<2}) +R2s∥∂tu∥L∞(QR∩{|t|<2}) ≤ R2−δ for all R ≥ 1, (4.6)

satisfy u ≥ 0, ∂tu ≥ 0, and D2
x,tu ≥ −Id in Q2, ∂tu−Lu = f in {u > 0}∩Q2 and ut−Lu ≥ f in Q2,

with |∇f |+ |∂tf | ≤ 1. Then, for any ε > 0 we have

∥u∥C1+s−ε
par (Q1)

:= ∥∇u∥Cs−ε
par (Q1)

+ ∥∂tu∥C1−s−ε
par (Q1)

≤ Cε,

with C depending only on n, s, ε, and the ellipticity constants.

Proof. Let µ := 1+s−ε. Up to reducing δ, we can assume that 1−δ ≥ s (in particular, 1−δ ≥ µ−1).

- Step 1. We first prove that, at every free boundary point (x◦, t◦) ∈ ∂{u > 0} ∩ Q1, we have

r∥∇u∥L∞(Qr(x◦,t◦)) + r2s∥∂tu∥L∞(Qr(x◦,t◦)) ≤ Crµ, (4.7)

for r ∈ (0, 1), with C depending only on n, s, ε, λ, and Λ.
The proof is very similar to the one of Corollary 2.13. Indeed, assume by contradiction that (4.7)

fails. Then, we can find sequences uk, Lk, and fk, satisfying the assumptions, with 0 ∈ ∂{uk > 0},
and such that

sup
k

sup
r∈(0,1)

r∥∇uk∥L∞(Qr) + r2s∥∂tuk∥L∞(Qr)

rµ
= ∞.

Also, the uniform semiconvexity assumption D2
x,tuk ≥ −Id implies that the functions uk are uniformly

Lipschitz in Q1. Hence, thanks to Lemma 4.9, there exist sequences km and rm → 0 such that the
functions ũm(x, t) satisfy ∥∇ũm∥L∞(Q1) + ∥∂tũm∥L∞(Q1) = 1 and

R∥∇ũm∥L∞(QR) +R2s∥∂tũm∥L∞(QR) ≤ CRµ for all R ∈ (1, r−1
m ).

Moreover

D2
x,tũm ≥ −r2−µm Id −→ 0 in Q2/rm ,

R∥∇u∥L∞(QR∩{|t|<r−2s
m }) +R2s∥∂tu∥L∞(QR∩{|t|<r−2s

m }) ≤ R2−δ for all R ≥ r−1
m ,

(∂t − Lkm)ũm = fm in {um > 0} ∩ Q2/rm , (∂t − Lkm)ũm ≥ fm in Q2/rm ,

|∇fm| ≤ r1+2s−µ
m → 0, and |∂tfm| ≤ r4s−µm → 0.

These last two conditions imply that (∂t −Lkm)(Dh,τ ũm) ≤ r1+2s−µ
m → 0 in {ũm > 0} ∩Q1/rm , where

Dh,τ ũm(x, t) =
ũm(x,t)−ũm(x−h,t−τ)

|h|+|τ | .

Hence, by semi-convexity, a subsequence of the functions ũm will converge locally uniformly in Rn×R
to a limiting convex function ũ◦ satisfying

R∥∇ũ◦∥L∞(QR) +R2s∥∂tũ◦∥L∞(QR) ≤ CRµ for all R ∈≥ 1.

Using Lemma 4.13 we see that ũ◦ satisfies the hypotheses of Proposition 4.6 or 4.8, so it follows from
the classification of blow-ups and the growth assumption above that ũ◦ ≡ 0.

On the other hand, by convexity we see that ∥∇ũ◦∥L∞(Q2)+∥∂tũ◦∥L∞(Q2) ≥ 1, a contradiction that
proves (4.7).

- Step 2. We now combine (4.7) with interior regularity estimates to establish the result. While in
the elliptic case this is rather standard, here the argument is slightly more delicate and we provided
all details.
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Let (x1, t1) be any point in {u > 0} ∩ Q1, and let r > 0 be largest number for which Qr(x1, t1) ⊂
{u > 0}. Let (x◦, t◦) ∈ ∂{u > 0} ∩ ∂Qr(x1, t1). Then, since (∂t − L)(∇u) = ∇f in Qr, by interior
regularity estimates for nonlocal parabolic equations (see for instance [CD14]) we have

r∥D2
xu∥L∞(Qr/2(x1,t1)) ≤ C

(
r2s∥∇f∥L∞ + sup

R≥1
Rε−2s∥∇u∥L∞(QrR(x1,t1)∩{|t|<2})

)
,

and analogous estimates hold for ∇∂tu and ∂ttu. By (4.7), it follows that for R ∈ (1, r−1) we have

∥∇u∥L∞(QrR(x1,t1)) ≤ C(rR)µ−1,

that combined with (4.6) gives (without loss of generality, we can assume that ε ≤ δ)

sup
R≥1

Rε−2s∥∇u∥L∞(QrR(x1,t1)∩{|t|<2}) ≤ rµ−1.

Since ∥∇f∥L∞ ≤ 1, this yields

∥D2
xu∥L∞(Qr/2(x1,t1)) ≤ Crµ−2.

Moreover, with the exact same argument (using the regularity estimates for∇∂tu and ∂ttu), we find

∥∇∂tu∥L∞(Qr/2(x1,t1)) ≤ Crµ−1−2s and ∥∂ttu∥L∞(Qr/2(x1,t1)) ≤ Crµ−4s.

Since these bounds hold at all points (x1, t1) ∈ {u > 0} ∩ Q1, we conclude that

∥∇u∥
Cµ−1

par (Q1)
+ ∥∂tu∥Cµ−2s

par (Q1)
≤ C,

as wanted. □

4.4. Regularity of the free boundary. The next step is to show that the free boundary is C1,τ

near nondegenerate points. Recall that QR = BR × (−R2s, R2s).

Proposition 4.11. Let s, L, δ, u, u◦, and κ be as in Theorem 1.1, and let ρ◦ ≥ 1. Assume that
κ ≥ κ◦ > 0 and

∥u− u◦∥Lip(QR◦ )
≤ ε,

with ε > 0 small enough. Then, if R◦ is large enough, the free boundary ∂{u > 0} is a C1,τ graph in
Qρ◦, with constants depending only on n, s, δ, λ, Λ, ρ◦, and κ◦.

Proof. By assumption, we have

|∂tu− ∂tu◦|+ |∇u−∇u◦| ≤ ε in QR◦ .

In particular, for any direction e′ ∈ Sn−1 such that e′ · e ≥ 1
2 we have

|∂e′u− ∂e′u◦| ≤ ε in QR◦ ,

∂e′u◦ ≥ 0 in Rn+1, and ∂e′u◦ ≥ c1κ in {x · e+ vt ≥ 1
2}.

Recall also that v ≤ v◦, with v◦ depending only on δ, λ, and Λ.
Thus, if ε is small, we have that v := ∂e′u and E := {u = 0} ∩ QR◦ satisfy

|∂tv − Lv| ≤ η in QR◦ \ E, v ≡ 0 in E,

v ≥ c2κ > 0 in {x · e+ vt ≥ 1
2} ∩ QR◦ , v ≥ −ε in QR◦ ,

and
|v(x, t)| ≤ |x|1−δ + |t|

1−δ
2s in Rn+1 \ QR◦ .

This means that, given any ρ◦ > 1, if η is small enough we can apply Proposition 3.3 to the (same)
functions vi(x, t) := v(ρ◦x, ρ

2s
◦ t), i = 1, 2, to deduce that v ≥ 0 in Qρ◦/2. That is,

∂e′u ≥ 0 in Qρ◦/2
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for all e′ ∈ Sn−1 such that e′ · e ≥ 1
2 . Since we also have ∂tu ≥ 0, this means that the free boundary

∂{u > 0} is a Lipschitz graph in Qρ◦/2.
Finally, taking ρ◦ > 1 large enough, we can apply the boundary Harnack (Theorem 3.2) to the

functions ∂e′u and ∂eu, and to ∂tu and ∂eu, to deduce that∥∥∥∥∂e′u∂eu

∥∥∥∥
Cτ (Q1/2)

+

∥∥∥∥∂tu∂eu
∥∥∥∥
Cτ (Q1/2)

≤ C.

This yields that the free boundary ∂{u > 0} is a C1,τ graph in Q1/2, as wanted. □

Finally, we will need the following bound for solutions to parabolic equations in C1,τ domains.

Lemma 4.12. Let s, L, δ, and u, be as in Theorem 1.1. Assume that ∂{u > 0} is a C1,τ graph in
Q1/2. Then

|∇u|+ |∂tu| ≤ C
(
|x|s + |t|s

)
for (x, t) ∈ Q1/4,

with C depending only on n, s, δ, λ, Λ, τ , and the C1,τ norm of the graph.

Proof. Notice that all derivatives of u are solutions to a linear equation inside the domain Ω = {u > 0},
and they vanish in Ωc.

Since Ω is monotone nondecreasing in time, we can use a supersolution for cylindrical (i.e., constant
in time) domains to prove the bound for t ≤ 0. In case of C1,1 domains this was done in [FR17,
Lemma 4.3], and the exact same argument works in C1,τ domains by using [RS17, Proposition 1.1].

Once we have the bound for t ≤ 0, since the domain is C1,τ (in particular Lipschitz), we can use
the same argument at any boundary point to deduce the validity of the desired estimate inside Q1/2,
as wanted. □

4.5. Proof of the main result. Combining the previous results, we are essentially ready to prove
our main parabolic theorem. We just need a simple stability result contained in the next lemma.

Lemma 4.13. Let s ∈ (0, 1), and let λ and Λ be fixed positive constants. Let {Lk}k≥1 be any sequence
of operators of the form (1.1)-(1.2). Then, a subsequence of {Lk} converges weakly to an operator L
of the same form.

Moreover, let (uk) and (fk) be sequences of functions satisfying, in the weak sense,

∂tuk − Lkuk = fk in Ω× (t1, t2)

for a given bounded domain Ω ⊂ Rn, and suppose that:

(1) uk → u uniformly in compact sets of Rn × (t1, t2);
(2) fk → f uniformly in Ω× (t1, t2);
(3) |uk(x, t)| ≤M

(
1 + |x|2s−ϵ

)
for all x ∈ Rn and t ∈ (t1, t2), for some M, ϵ > 0.

Then u satisfies

∂tu− Lu = f in Ω× (t1, t2)

in the weak sense.

Proof. The proof is very similar to that of [FR17, Lemma 3.1] and [DRSV22, Lemma 3.2], so we leave
the details to the interested reader. □

Proof of Theorem 1.1. We first prove that, given R◦ ≥ 1 and ε > 0, for η > 0 small enough we have

∥u− u◦∥Lip(QR◦ )
≤ ε, (4.8)

for some u◦ as in Theorem 1.1.
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Indeed, assume by contradiction that there is no η > 0 for which (4.8) holds. Then, we have a
sequence ηk → 0, and sequences of operators Lk and solutions uk, such that

∥uk − u◦∥Lip(QR◦ )
≥ ε

for any e ∈ Sn−1 and any u◦ as in Theorem 1.1. Then, by Corollary 4.10 and Lemma 4.13, up to a
subsequence the functions uk converges in C1

loc to a limiting solution u, with operator L as in (1.1)-

(1.2), that satisfies the assumptions of the theorem with η = 0. However, by Proposition 4.6 (if s = 1
2)

or Proposition 4.8 (if s > 1
2), it follows that u is a 1D function satisfying (2.1). This means that we

can take u◦ = u in (4.8), a contradiction. Hence, (4.8) is proved.
Thanks to (4.8), the C1,τ regularity of the free boundary follows from Lemma 4.11, and the bounds

for ∇u and ∂tu at 0 follow from Lemma 4.12. □

5. Optimal regularity of solutions

We now prove Corollaries 1.3 and 1.4, as well as the optimal regularity estimates from Corollaries
1.6 and 1.7.

Proof of Corollaries 1.3 and 1.4. We begin by replacing u with u− φ, so that u now satisfies

u ≥ 0, ∂tu ≥ 0 and D2
x,tu ≥ −C1C◦Id in Rn × (−1, 1),

∂tu− Lu = f(x) in {u > 0} and ∂t − Lu ≥ f in Rn × (−1, 1), with |∇f | ≤ C1C◦,

∥∇u∥L∞(Rn×(−1,1)) + ∥∂tu∥L∞(Rn×(−1,1)) ≤ C1.

(Note that the semiconvexity of solutions follows from [BFR18, Lemma 2.1] or [RT24, Proposition 2.4].)
We will prove at the same time Corollaries 1.3 and 1.4, and in addition that, for every free boundary

point (x◦, t◦), we have

|∇u| ≤ C
(
|x− x◦|s + |t− t◦|min{s, 1−δ

2s })
|∂tu| ≤ C

(
|x− x◦|min{s, 2−2s−δ} + |t− t◦|min{s, 2−2s−δ

2s }), (5.1)

with C depending only on n, s, δ > 0, and the ellipticity constants.
Dividing by a constant if necessary, and up to a translation, we may assume C◦ = 1 and (x◦, t◦) =

(0, 0). We now want to apply Theorem 1.1 iteratively in order to get the desired estimate.
Let κ > 0 to be chosen later, and let η > 0 be the constant given by Theorem 1.1. We fix k◦ ∈ N

and define the functions

wk(x, t) :=
η

2k◦C1

u(2−kx, 2−2skt)

(2−k)2−δ
, k ∈ N.

Note that, if k is large enough, then wk satisfies

wk ≥ 0, ∂twk ≥ 0 and D2
x,twk ≥ −ηId in Rn × (−22sk, 22sk),

∂twk − Lwk = fk in {wk > 0} and ∂twk − Lwk ≥ fk in Rn × (−22sk, 22sk),

with |∇fk| ≤ η. Moreover,

∥∇wk◦∥L∞(Rn×(−22sk◦ ,22sk◦ )) + ∥∂twk◦∥L∞(Rn×(−22sk◦ ,22sk◦ )) ≤ 1.

In other words, for k ≥ k◦ ≫ 1, all the assumptions of Theorem 1.1, except possibly for the growth
control on ∇wk and ∂twk (which holds at least for k = k◦), are satisfied by wk.

We then have two possibilities:

Case 1. Assume that the functions wk satisfy

R∥∇wk∥L∞(QR) +R2s∥∂twk∥L∞(QR) ≤ R2−δ for all R ≥ 1, k ≥ k◦.
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Then
∥∇u∥L∞(Q

2−k ) = 2k◦C1η
−1(2−k)1−δ∥∇wk∥L∞(Q1) ≤ C(2−k)1−δ,

and
∥∂tu∥L∞(Q

2−k ) = 2k◦C1η
−1(2−k)2−2s−δ∥∇wk∥L∞(Q1) ≤ C(2−k)2−2s−δ.

Therefore
|∇u| ≤ C

(
|x|1−δ + |t|

1−δ
2s

)
and |∂tu| ≤ C

(
|x|2−2s−δ + |t|

2−2s−δ
2s

)
,

so (5.1) follows. Moreover, this implies

u(x, t) ≤ C
(
|x|2−δ + |t|

2−δ
2s

)
for (x, t) ∈ Q1,

and thus we have a non-regular point ((ii) in Corollaries 1.3 or 1.4).

Case 2. If we are not in Case 1, then there is a maximal number k1 ≥ k◦ such that

R∥∇wk∥L∞(QR) +R2s∥∂twk∥L∞(QR) ≤ R2−δ for all R ≥ 1, k◦ ≤ k ≤ k1. (5.2)

Then, by Theorem 1.1, we find
∥wk1 − u◦∥Lip(Q1) ≤ ε.

Moreover, u◦ is a multiple of (x · e+ vt)1+γ+ with ∥u◦∥Lip(Q1) ≤ 1, and therefore we have

|∇u◦(x, t)|+ |∂tu◦(x, t)| = A(x · e+ vt)γ+, with 0 ≤ A ≤ 1.

We claim that A ≥ 1
5 . Indeed, if not, then by triangle inequality

∥∇wk1∥L∞(Q1) + ∥∂twk1∥L∞(Q1) ≤ ∥∇u◦∥L∞(Q1) + ∥∂tu◦∥L∞(Q1) + ε ≤ 1
5 + ε ≤ 1

4 .

Since ∇wk1+1(x) = 21−δ∇wk1(x2 ) and ∂twk1+1(x) = 22−2s−δ∂twk1(
x
2 ), this implies that

2∥∇wk1+1∥L∞(Q2) + 22s∥∂twk1+1∥L∞(Q2) ≤ 1.

Since

R∥∇wk1+1∥L∞(QR) +R2s∥∂twk1+1∥L∞(QR) =

= 22−δ
{
(R/2)∥∇wk1∥L∞(QR/2) + (R/2)2s∥∂twk1∥L∞(QR/2)

}
≤ R2−δ for R ≥ 2,

then wk1+1 still satisfies the growth condition (5.2), a contradiction to the definition of k1.
Thanks to the claim (i.e., A ≥ 1

5) we can apply Theorem 1.1 to deduce that the free boundary

∂{wk1 > 0} is a C1,τ graph in Q1, and

|∇wk1 |+ |∂twk1 | ≤ C
(
|x|s + |t|s

)
for (x, t) ∈ Q1.

Since
u(x, t) = C2R

δ−2wk1(Rx,R
2st),

with R = 2k1 , we deduce that

|∇u| ≤ CRδ−1
(
|Rx|s + |R2st|s

)
≤ CRδ−1

(
|Rx|s + |R2st|min{s, 1−δ

2s
}) ≤ C

(
|x|s + |t|min{s, 1−δ

2s
}),

for all (Rx,R2st) ∈ Q1. Similarly, we get

|∂tu| ≤ CRδ+2s−2
(
|Rx|s + |R2st|s

)
,

and (5.1) follows.
Finally, since the free boundary ∂{u > 0} is C1,τ in a neighborhood of the origin, and thanks to a

standard barrier argument (see Lemma A.3 for the construction of the sub- and supersolutions in the
critical case s = 1

2) we deduce that

0 < crγ◦ ≤ sup
Qr

u ≤ Crγ◦
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for r > 0 small, where γ◦ := γ
(
L, νx|νx| ,

νt
|νx|

)
is given by (4.2), and ν = (νx, νt) is the inward unit normal

to the free boundary. This means that we have a regular point ((i) in Corollaries 1.3 or 1.4), and we
are done. □

Finally, we prove the optimal regularity of solutions.

Proof of Corollary 1.6. As in the previous proof, we replace u with u − φ. Since s = 1
2 , then (5.1)

holds at every free boundary point. Hence, combining it with interior regularity estimates for linear

parabolic equations, the desired C
3/2
x,t estimate follows. □

Notice that the previous proof does not work when s > 1
2 . Indeed, the reason for this is the parabolic

scaling: even if we had (5.1) at every free boundary point, then by interior regularity estimates we

would only get that derivatives of u are Cspar (i.e., C
s
x and C

1/2
t , recall 4.5), which is not the optimal

regularity in t when s > 1
2 . Because of this, some extra ideas are needed.

Proof of Corollary 1.7. As before, we replace u with u− φ. Let µ := min{s, 1/s− 1− ε}, with ε > 0.
We want to prove that ∂tu ∈ Cµt (Rn × [t1, t2]).

For this, let ρ = ρ(t1) > 0 be such that Q2ρ(x1, t1) ⊂ Rn × (0, T ] for any x1 ∈ Rn. We consider a
cutoff function ψ ∈ C∞

c (Q2ρ(x1, t1)) with ψ ≡ 1 in Qρ(x1, t1). By the semiconvexity of solutions we
know that ∂ttu ≥ −C. Thus

0 ≤
∫
Q2ρ(x1,t1)

(
∂ttu+ C

)
ψ =

∫
Q2ρ(x1,t1)

(
u∂ttψ + Cψ

)
≤ C1,

and thus ∫
Qρ(x1,t1)

|∂ttu| ≤ C2,

with C2 independent of x1. Then, we define

w(x, t) :=
∂tu(x, t+ h)− ∂tu(x, t)

|h|µ
=

1

|h|µ

∫ h

0
∂ttu(x, t+ ζ) dζ,

and notice that ∫
Qρ/2(x1,t1)

|w| ≤ C3,

as long as |h| < ρ/2. In particular, this yields∫ t2+ρ2s

t1−ρ2s

∫
Rn

|w(x, t)|
1 + |x|n+2s

dx dt ≤ C4. (5.3)

On the other hand, thanks to (5.1) we have that w is uniformly bounded on the contact set, namely

|w(x, t)| = ∂tu(x, t+ h)

|h|µ
≤ C5 for (x, t) ∈ {u = 0}. (5.4)

Furthermore, since w satisfies

|(∂t − L)w| ≤ C6 in {u > 0},
the function w̃ := max{w,C5} satisfies

(∂t − L)w ≤ C7 in Rn × (0, T ).

In other words w is a subsolution, so it follows from (5.3) and [RT24, Lemma A.3] that

sup
B1×[t1,t2]

w ≤ C(C4 + C7) =: C8.
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Applying the same argument with any ball B1(z) instead of B1, recalling the definition of w we deduce
that ∣∣∂tu(x, t+ h)− ∂tu(x, t)

∣∣ ≤ C8|h|µ,
which gives the desired regularity in t.

When s <
√
5−1
2 we can repeat the exact same argument used above for any spacial second derivative

∂ξξu with ξ ∈ Sn, and we obtain C1+s regularity in all directions.

Instead, when s ≥
√
5−1
2 , we combine (5.1) with interior regularity estimates to get

∥∇u∥Cs
par(Rn×[t1,t2]) + ∥∂tu∥Cmin{s,2−2s−ε}

par (Rn×[t1,t2])
≤ C,

where Cβpar is defined in (4.5). □

Appendix A. Barriers in moving domains

The aim of this appendix is to construct sub- and supersolutions for linear parabolic equations in
moving domains in case s = 1

2 . We start with the following simple result.

Lemma A.1. Let Ω ⊂ Rn × R be a bounded C1,τ domain with (0, 0) ∈ ∂Ω, and let d(x, t) =
dist((x, t),Ωc). Let ρ be a regularized distance function, satisfying

C−1
Ω d ≤ ρ ≤ CΩd, ∥ρ∥C1,α(Ω) ≤ CΩ, |D2ρ| ≤ CΩd

α−1 and |D3ρ| ≤ CΩd
α−2.

Let L be any operator of the form (1.1)-(1.2), with s = 1
2 , let ν = (νx, νt) be the inward unit normal

to ∂Ω, let γL,ν := γ
(
L, νx|νx| ,

νt
|νx|

)
be given by (4.2), and let γ◦ := γL,ν(0).

Then, for any ε > 0, we have

(∂t − L)(ργ◦−ε) ≥ c0d
γ◦−ε−2s > 0 in {0 < d(x, t) ≤ δ} ∩ Qδ

and

(∂t − L)(ργ◦+ε) ≤ −c0dγ◦−ε−2s < 0 in {0 < d(x, t) ≤ δ} ∩ Qδ

The constants c0 > 0 and δ > 0 depend only on Ω, ε, and the ellipticity constants.

Proof. The proof is a minor modification of the one in [DRSV22, Proposition 4.8]. □

We will also need the following:

Proposition A.2 (Approximate solution). Let Ω ⊂ Rn×R be a bounded C1,τ domain with (0, 0) ∈ ∂Ω.
Let d, ρ, L, ν, γL,ν , and γ◦ be as in Proposition A.1.

Let Γ̄(x, t) be a function that coincides with γL,ν(x,t) on ∂Ω and satisfies |D2Γ̄(x, t)| ≤ Cdτ−2 inside

Ω. Assume in addition that Γ̄ ≥ γ◦ − ε/2 in Ω ∩Q1.

Let ϕ be a function that coincides with ρΓ̄ in a neighborhood of ∂Ω, and such that ∥ϕ∥Cγ◦−δ ≤ C.
Then ∣∣(∂t − L)ϕ(x, t)

∣∣ ≤ Cdγ◦+τ−ε−2s for (x, t) ∈ Ω, (A.1)

as long as the exponent above is negative.
The constants C depend only on ε, Ω, and the ellipticity constants.

Proof. The proof is a minor modification of the one in [DRSV22, Proposition 4.10]. □

As a consequence of the previous Lemmas, we can now construct exact sub- and supersolutions in
moving C1,τ domains.
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Lemma A.3 (Sub- and Supersolutions). Let Ω ⊂ Rn × R be a bounded C1,τ domain, let d(x, t) =
dist((x, t),Ωc), and let L, ν, γ◦, and Γ̄ be as in Proposition A.2.

Then there exist δ◦ > 0 and two functions Φ1, Φ2 satisfying

(∂t − L)Φ1 ≤ −1 in Qδ◦ , (∂t − L)Φ2 ≥ 1 in Qδ◦ ,

and

C−1dΓ̄ ≤ Φi ≤ CdΓ̄ in Q1.

In particular, we have

C−1rγ◦ ≤ sup
Qr

Φi ≤ Crγ◦

for r > 0 small.

Proof. It suffices to take

Φ1 :=Mϕ− ργ◦+ε and Φ2 :=Mϕ+ ργ◦+ε,

with M > 0 large enough, ε > 0 small enough, and ϕ, ρ given by Lemmas A.2 and A.1. □
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