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Abstract. In this note we establish some rigidity and stability results for Caffarelli’s log-concave
perturbation theorem. As an application we show that if a 1-log-concave measure has almost the
same Poincaré constant as the Gaussian measure, then it almost splits off a Gaussian factor.

1. Introduction

Let γn denote the centered Gaussian measure in Rn, i.e., γn = (2π)−n/2e−|x|
2/2dx, and let µ be

a probability measure on Rn. By a classical theorem of Brenier [2], there exists a convex function
ϕ : Rn → R such that T = ∇ϕ : Rn → Rn transports γn onto µ, i.e., T]γn = µ, or equivalently∫

h ◦ T dγn =

∫
h dµ for all continuous and bounded functions h ∈ Cb(Rn).

In the sequel we will refer to T as the Brenier map from γn to µ.
In [4, 5] Caffarelli proved that if µ is “more log-concave” than γn, then T is 1-Lipschitz, that is,

all the eigenvalues of D2ϕ are bounded from above by 1. Here is the exact statement:

Theorem 1.1 (Caffarelli). Let γn be the Gaussian measure in Rn, and let µ = e−V dx be a proba-
bility measure satisfying D2V ≥ Idn. Consider the Brenier map T = ∇ϕ from γn to µ. Then T is
1-Lipschitz. Equivalently, 0 ≤ D2ϕ(x) ≤ Idn for a.e. x.

This theorem allows one to show that optimal constants in several functional inequalities are
extremized by the Gaussian measure. More precisely, let F,G,H,L, J be continuous functions on
R and assume that F,G,H, J are nonnegative, and that H and J are increasing. For ` ∈ R+ let

(1.1) λ(µ, `) := inf

{
H
( ∫

J(|∇u|) dµ
)

F
( ∫

G(u) dµ
) : u ∈ Lip(Rn) ,

∫
L(u) dµ = `

}
.

Then

(1.2) λ(γn, `) ≤ λ(µ, `).

Indeed, given a function u admissible in the variational formulation for µ, we set v := u ◦ T and
note that, since T]γn = µ,∫

K(v) dγn =

∫
K(u ◦ T ) dγn =

∫
K(u) dµ for K = G,L.

In particular, this implies that v is admissible in the variational formulation for γn. Also, thanks
to Caffarelli’s Theorem,

|∇v| ≤ |∇u| ◦ T |∇T | ≤ |∇u| ◦ T,
1
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therefore

H
(∫

J(|∇v|) dγn
)
≤ H

(∫
J(|∇u|) ◦ T dγn

)
= H

(∫
J(|∇u|) dµ

)
.

Thanks to these formulas, (1.2) follows easily.
Note that the classical Poincaré and Log-Sobolev inequalities fall in the above general framework.

For instance, choosing H(t) = F (t) = L(t) = t, ` = 0, and J(t) = F (t) = |t|p with p ≥ 1, we deduce
that

(1.3) inf

{∫
|∇u|p dµ∫
|u|p dµ

: u ∈ Lip(Rn) ,

∫
u dµ = 0

}

≥ inf

{∫
|∇u|p dγn∫
|u|p dγn

: u ∈ Lip(Rn) ,

∫
u dγn = 0

}
.

Two questions that naturally arise from the above considerations are:

- Rigidity : What can be said about µ when λ(µ, `) = λ(γn, `)?
- Stability : What can be said about µ when λ(µ, `) ≈ λ(γn, `)?

Looking at the above proof, these two questions can usually be reduced to the study of the corre-
sponding ones concerning the optimal map T in Theorem 1.1 (here |A| denotes the operator norm
of a matrix A):

- Rigidity : What can be said about µ when |∇T (x)| = 1 for a.e. x ?
- Stability : What can be said about µ when |∇T (x)| ≈ 1 (in suitable sense)?

Our first main result state that if |∇T (x)| = 1 for a.e. x then µ “splits off” a Gaussian factor.
More precisely, it splits off as many Gaussian factors as the number of eigenvalues of ∇T = D2ϕ
that are equal to 1. In the following statement and in the sequel, given p ∈ Rk we denote by γp,k
the Gaussian measure in Rk with barycenter p, that is, γp,k = (2π)−k/2e−|x−p|

2/2dx.

Theorem 1.2 (Rigidity). Let γn be the Gaussian measure in Rn, and let µ = e−V dx be a probability
measure with D2V ≥ Idn. Consider the Brenier map T = ∇ϕ from γn to µ, and let

0 ≤ λ1(D2ϕ(x)) ≤ · · · ≤ λn(D2ϕ(x)) ≤ 1

be the eigenvalues of the matrix D2ϕ(x). If λn−k+1(D2ϕ(x)) = 1 for a.e. x then µ = γp,k ⊗
e−W (x′)dx′, where W : Rn−k → R satisfies D2W ≥ Idn−k.

Our second main result is a quantitative version of the above theorem. Before stating it let us
recall that, given two probability measures µ, ν ∈ P(Rn), the 1-Wasserstein distance between them
is defined as

W1(µ, ν) := inf
{∫
|x− y| dσ(x, y) : σ ∈ P(Rn × Rn) such that (pr1)]σ = µ, (pr2)]σ = ν

}
,

where pr1 (resp. pr2) is the projection of Rn×Rn onto the first (resp. second) factor. Our stability
result is formulated in terms of the W1-distance between probability measure as this distance
natural comes out from our strategy of proof. Our result could also be proved with other notions
of distances meterizing the weak topology (for instance, any Wasserstein distance Wp), as well as
stronger notion of distances (such as the total variation), but we shall not investigate this here.
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Theorem 1.3 (Stability). Let γn be the Gaussian measure in Rnand let µ = e−V dx be a probability
measure with D2V ≥ Idn. Consider the Brenier map T = ∇ϕ from γn to µ, and let

0 ≤ λ1(D2ϕ(x)) ≤ · · · ≤ λn(D2ϕ(x)) ≤ 1

be the eigenvalues of D2ϕ(x). Let ε ∈ (0, 1) and assume that

(1.4) 1− ε ≤
∫
λn−k+1(D2ϕ(x)) dγn(x) ≤ 1 .

Then there exists a probability measure ν = γp,k ⊗ e−W (x′)dx′, with W : Rn−k → R satisying
D2W ≥ Idn−k, such that

(1.5) W1(µ, ν) .
1

| log ε|1/4−
.

In the above statement, and in the rest of the note, we are employing the following notation:

X . Y β− if X ≤ C(n, α)Y α for all α < β.

Analogously,

X & Y β− if C(n, α)X ≥ Y α for all α < β.

Remark 1.4. We do not expect the stability estimate in the previous theorem to be sharp. In
particular, in dimension 1 an elementary argument (but completely specific to the one dimensional
case) gives a linear control in ε. Indeed, assuming (up to translating µ) that

(1.6)

∫
x dµ = 0,

set ψ(x) := x2/2− ϕ(x). Then, since ψ′′ = (x− T )′ > 0, our assumption can be rewritten as∫
|(x− T )′| dγ1 =

∫
ψ′′ dγ1 ≤ ε.

Also, since T#γ1 = µ, (1.6) yields ∫
T (x) dγ1 = 0 =

∫
x dγ1.

Hence, by the L1-Poincaré inequality for the Gaussian measure we obtain

W1(µ, γ1) ≤
∫
|x− y| dσT (x, y) =

∫
|x− T (x)| dγ1 ≤ C

∫
|(x− T )′| dγ1 ≤ C ε,

where σT := (Id×T )#γ1.

As explained above, Theorems 1.2 and 1.3 can be applied to study the structure of 1-log-concave
measures (i.e., measures of the form e−V dx with D2V ≥ Idn) that almost achieve equality in
(1.2). To simplify the presentation and emphasize the main ideas, we limit ourselves to a particular
instance of (1.1), namely the optimal constant in the L2-Poincaré inequality for µ:

λµ := inf

{∫
|∇u|2 dµ∫
u2 dµ

: u ∈ Lip(Rn) ,

∫
u dµ = 0

}
.
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It is well-known that λγn = 1 and that {ui(x) = xi}1≤i≤n are the corresponding minimizers. In
particular it follows by (1.3) that, for every 1-log-concave measure µ,

(1.7)

∫
u2 dµ ≤

∫
|∇u|2 dµ for all u ∈ Lip(Rn) with

∫
u dµ = 0.

As a consequence of Theorems 1.2 and 1.3 we have:

Theorem 1.5. Let µ = e−V dx be a probability measure with D2V ≥ Idn, and assume there exist
k functions {ui}1≤i≤k ⊂W 1,2(Rn, µ), k ≤ n, such that∫

ui dµ = 0,

∫
u2
i dµ = 1,

∫
∇ui · ∇uj dµ = 0 ∀ i 6= j,

and ∫
|∇ui|2 dµ ≤ 1 + ε

for some ε > 0. Then there exists a probability measure ν = γp,k ⊗ e−W (x′)dx′, with W : Rn−k → R
satisfying D2W ≥ Idn−k, such that

W1(µ, ν) .
1

| log ε|1/4−
.

In particular, if there exist n orthogonal functions {ui}1≤i≤n that attain the equality in (1.7) then
µ = γn,p.

We conclude this introduction recalling that the rigidity version of the above theorem (i.e., the
case ε = 0) has already been proved by Cheng and Zho in [6, Theorem 2] with completely different
techniques.

2. Proof of Theorem 1.2

To prove Theorem 1.2, we first recall the following classical estimate due to Alexandrov (see for
instance [8, Theorem 2.2.4 and Example 2.1.2(1)] for a proof):

Lemma 2.1. Let Ω be an open bounded convex set, and let u : Ω → R be a C1,1 convex function
such that u = 0 on ∂Ω. Then there exists a dimensional constant Cn > 0 such that

|u(x)|n ≤ Cn diam(Ω)n−1 dist(x, ∂Ω)

∫
Ω

detD2u ∀x ∈ Ω.

Proof of Theorem 1.2. Set ψ(x) := |x|2/2− ϕ(x) and note that, as a consequence of Theorem 1.1,
ψ : Rn → R is a C1,1 convex function with 0 ≤ D2ψ ≤ Id. Also, our assumption implies that

(2.1) λ1(D2ψ(x)) = . . . = λk(D
2ψ(x)) = 0 for a.e. x ∈ Rd.

We are going to show that ψ depends only on n − k variables. As we shall show later, this will
immediately imply the desired conclusion. In order to prove the above claim, we note it is enough
to prove it for k = 1, since then one can argue recursively on Rn−1 and so on.

Note that (2.1) implies that

(2.2) detD2ψ ≡ 0.

Up to translate µ we can subtract a linear function to ψ and assume without loss of generality that
ψ(x) ≥ ψ(0) = 0.
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Consider the convex set Σ := {ψ = 0}. We claim that Σ contains a line. Indeed, if not, this
set would contain an exposed point x̄. Up to a rotation, we can assume that x̄ = a e1 with a ≥ 0.
Also, since x̄ is an exposed point,

Σ ⊂ {x1 ≤ a} and Σ ∩ {x1 = a} = {x̄}.

Hence, by convexity of Σ, the set Σ ∩ {x1 ≥ −1} is compact.
Consider the affine function

`η(x) := η(x1 + 1), η > 0 small,

and define Ση := {ψ ≤ `η}. Note that, as η → 0, the sets Ση converge in the Hausdorff distance
to the compact set Σ ∩ {x1 ≥ −1}. In particular, this implies that Ση is bounded for η sufficiently
small.

We now apply Lemma 2.1 to the convex function ψ − `η inside Ση, and it follows by (2.2) that
(note that D2`η ≡ 0)

|ψ(x)− `η(x)|n ≤ Cn
(
diam(Ση)

)n ∫
Ση

detD2ψ = 0 ∀x ∈ Ση.

In particular this implies that ψ(0) = `η(0) = η, a contradiction to the fact that ψ(0) = 0.
Hence, we proved that {ψ = 0} contains a line, say Re1. Consider now a point x ∈ Rn. Then,

by convexity of ψ,

ψ(x) +∇ψ(x) · (se1 − x) ≤ ψ(se1) = 0 ∀ s ∈ R,
and by letting s→ ±∞ we deduce that ∂1ψ(x) = ∇ψ(x) ·e1 = 0. Since x was arbitrary, this means
that ∂1ψ ≡ 0, hence ψ(x) = ψ(0, x′), x′ ∈ Rn−1.

Going back to ϕ, this proves that

T (x) = (x1, x
′ −∇ψ(x′)),

and because µ = T#γn we immediately deduce that µ = γ1 ⊗ µ1 where µ1 := (Idn−1−∇ψ)#γn−1.

Finally, to deduce that µ1 = e−Wdx′ with D2W ≥ Idn−1 we observe that µ1 = (π′)#µ where
π′ : Rn → Rn−1 is the projection given by π′(x1, x

′) := x′. Hence, the result is a consequence of the
fact that 1-log-concavity is preserved when taking marginals, see [1, Theorem 4.3] or [9, Theorem
3.8]. �

3. Proof of Theorem 1.3

To prove Theorem 1.3, we first recall a basic properties of convex sets (see for instance [3, Lemma
2] for a proof).

Lemma 3.1. Given S an open bounded convex set in Rn with barycenter at 0, let E denote an
ellipsoid of minimal volume with center 0 and containing S. Then there exists a dimensional
constant κn > 0 such that κnE ⊂ S.

Thanks to this result, we can prove the following simple geometric lemma:

Lemma 3.2. Let κn be as in Lemma 3.1, set cn := κn/2, and consider S ⊂ Rn an open convex
set with barycenter at 0. Assume that S ⊂ BR and ∂S ∩ ∂BR 6= ∅. Then there exists a unit vector
v ∈ Sn−1 such that ±cnRv ∈ S.



6 G. DE PHILIPPIS AND A. FIGALLI

Proof. By scaling we can assume that R = 1.
Let v ∈ ∂S ∩ ∂B1, and consider the ellipsoid E provided by Lemma 3.1. Since v ∈ E and E is

symmetric with respect to the origin, also −v ∈ E . Hence

±cnv ∈ cnE ⊂ κnE ⊂ S,

as desired. �

In order to complete the proof of Theorem 1.3 we recall the following geometric result, see [3,
Lemma 1].

Lemma 3.3. Let ψ : Rn → R ∪ {+∞} be a nonnegative convex function with ψ(0) = 0. Assume
that ψ is finite in a neighbourhood of 0 and that the graph of ψ does not contains lines. Then there
exists p ∈ Rn such that the open convex set

S1 := {x : ψ(x) ≤ p · x+ 1}

is nonempty, bounded, and with barycenter at 0.

Proof of Theorem 1.3. As in the proof of Theorem 1.2 we set ψ := |x|2/2 − ϕ. Then, inequality
(1.4) gives

(3.1)

∫
λk(D

2ψ) dγn ≤ ε.

Up to subtract a linear function (i.e., substituting µ with one of its translation, which does not affect
the conlclusion of the theorem) we can assume that ψ(x) ≥ ψ(0) = 0, therefore∇ψ(0) = ∇ϕ(0) = 0.
Since (∇ϕ)#γn = µ and ‖D2ϕ‖∞ ≤ 1, these conditions imply that∫

|x| dµ(x) =

∫
|∇ϕ(x)| dγn(x) =

∫
|∇ϕ(x)−∇ϕ(0)| dγn(x) ≤

∫
|x| dγn(x) ≤ Cn.

In particular

W1(µ, γ) ≤W1(µ, δ0) +W1(δ0, γ) ≤ Cn.
This proves that (1.5) holds true with ν = γn and with a constant C ≈ | log ε0|1/4 whenever ε ≥ ε0.
Hence, when showing the validity of (1.5), we can safely assume that ε ≤ ε0(n)� 1. Furthermore,
we can assume that the graph of ψ does not contain lines (otherwise, by the proof of Theorem
1.2, we would deduce that µ splits a Gaussian factor, and we could simply repeat the argument in
Rn−1).

Thus we can apply Lemma 3.3 to deduce the existence of a slope p ∈ Rn such that

S1 = {x ∈ Rn : ψ(x) < p · x+ 1}

is nonempty, bounded, and with barycenter at 0. Applying Lemma 2.1 to the convex function
ψ̃(x) := ψ(x)− p · x− 1 inside the set S1, we get (note that D2ψ̃ = D2ψ)

(3.2) 1 ≤
(
−min

S1

ψ̃
)n
≤ Cn

(
diam(S1)

)n ∫
S1

detD2ψ.

Consider now the smallest radius R > 0 such that S1 ⊂ BR (note that R < +∞ since S1 is

bounded). Since γn ≥ cne−R
2/2 in BR and λi(D

2ψ) ≤ 1 for all i = 1, . . . , n, (3.1) implies that∫
BR

detD2ψ ≤ CneR
2/2ε.
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Hence, using (3.2), since diam(S1) ≤ 2R we get

1 ≤ CnRneR
2/2ε

which yields

(3.3) R & | log ε|1/2+ .
Now, up to a rotation and by Lemma 3.2, we can assume that

±cnRe1 ∈ S1.

Consider 1 � ρ � R1/2 to be chosen. Since S1 ⊂ BR and ψ ≥ 0 we get that |p| ≤ 1/R, therefore
ψ ≤ 2 on S1 ⊂ BR. Hence

2 ≥ ψ(z) ≥ ψ(x) + 〈∇ψ(x), z − x〉 ≥ 〈∇ψ(x), z − x〉 ∀ z ∈ S1, x ∈ Bρ.
Thus, since |∇ψ| ≤ ρ in Bρ (by ‖D2ψ‖L∞(Rn) ≤ 1 and |∇ψ(0)| = 0), choosing z = ±cnRe1 we get

(3.4) |∂1ψ| ≤
Cnρ

2

R
inside Bρ.

Consider now x̄1 ∈ [−1, 1] (to be fixed later) and define ψ1(x′) := ψ(x̄1, x
′) with x′ ∈ Rn−1.

Integrating (3.4) with respect to x1 inside Bρ/2, we get

|ψ − ψ1| ≤ Cn
ρ3

R
inside Bρ/2.

Thus, using the interpolation inequality

‖∇ψ −∇ψ1‖2L∞(Bρ/4) ≤ Cn‖ψ − ψ1‖L∞(Bρ/2)‖D2ψ −D2ψ1‖L∞(Bρ/2)

and recalling that ‖D2ψ‖L∞(Rn) ≤ 1 (hence ‖D2ψ1‖L∞(Rn−1) ≤ 1), we get

|∇ψ −∇ψ1| ≤ Cn
ρ3/2

R1/2
inside Bρ/4.

If k = 1 we stop here, otherwise we notice that (3.1) implies that∫
R
dγ1(x1)

∫
Rn−1

detD2
x′x′ψ(x1, x

′) dγn−1(x′) ≤
∫
R
dγ1(x1)

∫
Rn−1

λ2(D2ψ)(x1, x
′) dγn−1(x′) ≤ ε,

where we used that1

λ1

(
D2ψ|{0}×Rn−1

)
≤ λ2(D2ψ)

and that (since 0 ≤ D2ψ ≤ Idn)

detD2
x′x′ψ(x1, x

′) ≤ λ1

(
D2ψ|{0}×Rn−1

)
.

Hence, by Fubini’s Theorem, there exists x̄1 ∈ [−1, 1] such that ψ1(x′) = ψ(x̄1, x
′) satisfies∫

Rn−1

detD2ψ1 dγn−1(x) ≤ Cnε.

1This inequality follows from the general fact that, given A ∈ Rn×n symmetric matrix and W ⊂ Rn a k-dimensional
vector space,

λ1

(
A
∣∣
W

)
= min
v∈W

Av · v
|v|2 ≤ max

v∈W ′⊂Rn

W ′ k-dim

min
W ′

Av · v
|v|2 = λn−k+1(A).
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This allows us to repeat the argument above in Rn−1 with

ψ̃1(x′) := ψ1(x′)−∇x′ψ1(0) · x′ − ψ1(0)

in place of ψ, and up to a rotation we deduce that

|∇ψ̃1 −∇ψ2| ≤ Cn
ρ3/2

R1/2
inside Bρ/4.

where ψ2(x′′) := ψ1(x̄2, x
′′), where x̄2 ∈ [−1, 1] is arbitrary. By triangle inequality, this yields

|∇ψ + p′ −∇ψ2| ≤ Cn
ρ3/2

R1/2
inside Bρ/4,

where p′ = −(0,∇x′ψ(x̄1, 0)). Note that, since |x̄1| ≤ 1, ∇ψ(0) = 0, and ‖D2ψ‖∞ ≤ 1, we have
|p| ≤ 1. Iterating this argument k times, we conclude that

|∇ψ + p̄−∇ψk| ≤ Cn
ρ3/2

R1/2
inside Bρ/4

where p̄ = (p, p′′) ∈ Rk × Rn−k = Rn with |p̄| ≤ Cn,

ψk(y) := ψ(x̄1, . . . , x̄k, y), y ∈ Rn−k,

and x̄i ∈ [−1, 1]. Recalling that ∇ϕ = x−∇ψ, we have proved that

T (x) = ∇ϕ(x) = (x1 + p1, . . . , xk + pk, S(y) + p′′) +Q(x),

where Q := −(∇ψ −∇ψk + p̄) satisfies

‖Q‖L∞(Bρ) ≤ Cn
ρ3/2

R1/2
and |Q(x)| ≤ Cn(1 + |x|)

(in the second bound we used that T (0) = ∇ϕ(0) = 0, |p| ≤ Cn, and T is 1-Lipschitz). Hence, if
we set ν := (S + p′′)#γn−k, we have

W1(µ, γp,k ⊗ ν) ≤
∫
|Q| dγn ≤ Cn

ρ3/2

R1/2
+ Cn

∫
Rn\Bρ

|x| dγn = Cn
ρ3/2

R1/2
+ Cnρ

ne−ρ
2/2,

so, by choosing ρ := (logR)1/2, we get

W1(µ, γp,k ⊗ ν) .
1

R1/2−
.

Consider now πk : Rn → Rn and π̄n−k : Rn → Rn−k the orthogonal projection onto the first k and
the last n − k coordinates, respectively. Define µ1 := (πk)#(e−V dx), µ2 := (π̄n−k)#(e−V dx), and

note that these are 1-log-concave measures in Rk and Rn−k respectively (see [1, Theorem 4.3] or [9,
Theorem 3.8]). In particular µ2 = e−W with D2W ≥ Idn−k. Moreover, since W1 decreases under
orthogonal projection,

W1(µ2, ν) = W1

(
(π̄n−k)#µ, (π̄n−k)#(γp,k ⊗ ν)

)
≤W1(µ, γp,k ⊗ ν) .

1

R1/2−
,

thus

W1(µ, γp,k ⊗ µ2) ≤W1(µ, γp,k ⊗ ν) +W1(γp,k ⊗ ν, γp,k ⊗ µ2)

≤W1(µ, γp,k ⊗ ν) +W1(ν, µ2) .
1

R1/2−
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where we used the elementary fact that W1(γp,k ⊗ ν, γp,k ⊗ µ2) ≤ W1(ν, µ2). Recalling (3.3), this
proves that

W1(µ, γp,k ⊗ µ2) .
1

| log ε|1/4−
,

concluding the proof. �

4. Proof of Theorem 1.5

Proof of Theorem 1.5. As in the proof of Theorem 1.3, it is enough to prove the result when
ε ≤ ε0 � 1.

Let {ui}1≤i≤k be as in the statement, and set vi := ui ◦ T , where T = ∇ϕ : Rn → Rn is the
Brenier map from γn to µ. Note that since T#γn = µ,∫

vi dγn =

∫
ui ◦ T dγn =

∫
ui dµ = 0.

Also, since |∇T | ≤ 1 and by our assumption on ui,∫
|∇vi|2 dγn ≤

∫
|∇ui|2 ◦ T dγn =

∫
|∇ui|2 dµ

≤ (1 + ε)

∫
u2
i dµ = (1 + ε)

∫
v2
i dγn ≤ (1 + ε)

∫
|∇vi|2 dγn,

where the last inequality follows from the Poincaré inequality for γn applied to vi. Since∫
|∇ui|2 dµ ≤ 1 + ε,

this proves that

(4.1) 0 ≤
∫ (
|∇ui|2 ◦ T − |∇vi|2

)
dγn ≤ ε

∫
|∇vi|2 dµ ≤ ε(1 + ε).

Moreover, by Theorem 1.1, ∇T = D2ϕ is a symmetric matrix satisfying 0 ≤ ∇T ≤ Idn, therefore
(Id−∇T )2 ≤ Id−(∇T )2. Hence, since ∇vi = ∇T · ∇ui ◦ T , it follows by (4.1) that

(4.2)

∫
|∇ui ◦ T −∇vi|2 dγn =

∫
|(Idn−∇T ) · ∇ui ◦ T |2 dγn

=

∫
(Idn−(∇T ))2[∇ui ◦ T,∇ui ◦ T ] dγn

≤
∫

(Idn−(∇T )2)[∇ui ◦ T,∇ui ◦ T ] dγn

=

∫ (
|∇ui|2 ◦ T − |∇vi|2

)
dγn ≤ 2ε,

where, given a matrix A and a vector v, we have used the notation A[v, v] for Av · v. In particular,
recalling the orthogonality constraint

∫
∇ui · ∇uj dµ = 0, we deduce that

(4.3)

∫
∇vi · ∇vj dγn = O(

√
ε).

In addition, if we set

fi(x) :=
∇ui ◦ T (x)

|∇ui ◦ T (x)|
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then, using again that |∇T | ≤ 1,

(4.4)

∫
|∇(ui ◦ T )|2

(
1− |∇T · fi|2

)
dγ ≤

∫
|∇ui|2 ◦ T

(
1− |∇T · fi|2

)
dγn ≤ 2ε.

Now, for j ∈ N, let Hj : R→ R be the one dimensional Hermite polynomial of degree j:

Hj(t) =
(−1)j√
j!
et

2/2

(
d

dt

)j
e−t

2/2

see [7, Section 9.2]. It is well known (see for instance [7, Theorem 9.7]) that for J = (j1, . . . , jn) ∈ Nn
the functions

HJ(x1, . . . , xn) := Hj1(x1)Hj2(x2) · · · · ·Hjn(xn)

form a Hilbert basis of L2(Rn, γn). Hence, since αi0 =
∫
vi dγn = 0, we can write

vi =
∑

J∈Nn\{0}

αiJHJ .

By elementary computations (see for instance [7, Proposition 9.3]), we get

1 =

∫
v2
i dγn =

∑
J∈Nn\{0}

(
αiJ
)2
,

∫
|∇vi|2dγn =

∑
J∈Nn\{0}

|J |
(
αiJ
)2
,

where |J | =
∑n

m=1 jm. Hence, combining the above equations with the bound
∫
|∇vi|2dγn ≤ (1+ε),

we obtain

ε ≥
∫
|∇vi|2dγn −

∫
v2
i dγn =

∑
J∈Nn ,|J |≥2

(|J | − 1)
(
αiJ
)2 ≥ 1

2

∑
J∈Nn ,|J |≥2

|J |
(
αiJ
)2
.

Recalling that the first Hermite polynomials are just linear functions (since H1(t) = t), using the
notation

αij := αiJ with J = ej ∈ Nn

we deduce that

vi(x) =
n∑
j=1

αijxj + z(x), with ‖z‖2W 1,2(Rn,γn) = O(ε).

In particular, if we define the vector

Vi :=
n∑
j=1

αijej ∈ Rn,

and we recall that
∫
|∇vi|2 dγn = 1 + O(ε) and the almost orthogonality relation (4.3), we infer

that |Vi| = 1 +O(ε) and |Vi · Vl| = O(
√
ε) for all i 6= l ∈ {1, . . . , k}.

Hence, up to a rotation, we can assume that |Vi − ei| = O(
√
ε) for all i = 1, . . . , k, and (4.2)

yields

(4.5)

∫
|∇(ui ◦ T )− ei|2 dγn ≤ C ε.

Since 0 ≤ 1− |∇T · fi|2 ≤ 1, it follows by (4.4) and (4.5) that

(4.6)

∫ (
1− |∇T · fi|2

)
dγn ≤ 2

∫ (
|∇(ui ◦ T )|2 + |∇(ui ◦ T )− ei|2

)(
1− |∇T · fi|2

)
dγn ≤ Cε.
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Set wi := ∇ui ◦ T so that fi = wi
|wi| . We note that, since all the eigenvalues of ∇T = D2ϕ are

bounded by 1, given δ � 1 the following holds: whenever

|∇T · wi − ei| ≤ δ and |∇T · fi| ≥ 1− δ

then |wi| = 1 +O(δ). In particular,

|∇T · fi − ei| ≤ Cδ.

Hence, if δ ≤ δ0 where δ0 is a small geometric constant, this implies that the vectors fi are a basis
of Rk, and

∇T |span(f1,...,fk) ≥ (1− C0δ) Idk

for some dimensional constant C0. Defining ψ(x) := |x|2/2− ϕ(x), this proves that

(4.7)

{
x :

k∑
i=1

[
|∇T (x) ·wi(x)−ei|+

(
1−|∇T (x) ·fi(x)|

)]
≤ δ
}
⊂
{
x : λn−k+1(D2ψ(x)) ≤ C0δ

}
for all 0 < δ ≤ δ0. Hence, by the layer-cake formula, (4.5), and (4.6),∫

{λn−k+1(D2ψ)≤C0δ0}
λn−k+1(D2ψ) dγn = C0

∫ δ0

0
γn
(
{λn−k+1(D2ψ) > C0s}

)
ds

≤ C0

∫ δ0

0
γn

({ k∑
i=1

[
|∇T (x) · wi(x)− ei|+

(
1− |∇T (x) · fi(x)|

)]
> s

})
ds

≤ C0

k∑
i=1

∫ (
|∇T · wi − ei|+

(
1− |∇T · fi|

))
dγn ≤ C

√
ε.

(4.8)

On the other hand, it follows by (4.7) that{
x : λn−k+1(D2ψ(x)) > C0δ

}
⊂

k⋃
i=1

[{
x : |∇T (x) · wi(x)− ei| >

δ

2k

}
∪
{
x :

(
1− |∇T (x) · fi(x)|

)
>

δ

2k

}]
.

Thus, (4.5), (4.6), and Chebishev’s inequality yield

(4.9) γn
(
{λn−k+1(D2ψ) > C0δ0}

)
≤

k∑
i=1

γn

({
|∇T · wi − ei| >

δ0

2k

})

+

k∑
i=1

γn

({
1− |∇T · fi| >

δ0

2k

})
≤ C ε

δ2
0

.

Hence, since δ0 is a small but fixed geometric constant, combining (4.8) and (4.9), and recalling
that λn−k+1(D2ψ) ≤ 1, we obtain ∫

λn−k+1(D2ψ) dγn ≤ C
√
ε.

This implies that (1.4) holds with C
√
ε in place of ε, and the result follows by Theorem 1.3. �
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