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Abstract

The Brunn-Minkowski inequality states that, for bounded measurable sets A and B in R", we have
|A+ B|™ > |A|Y™ + |B|*™. Also, equality holds if and only if A and B are convex and homothetic sets
in R? (less a measure zero set). The stability of this statement is a well-known problem that has attracted
much attention in recent years. This paper gives a conclusive answer by proving the sharp stability result
for the Brunn-Minkowski inequality on arbitrary sets.
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Given bounded measurable sets X,Y C R"™ with positive measure, the Brunn-Minkowski inequality says that

X 4+ Y| > |X|7 +|V]|"

Alternatively, for equal sized measurable sets A, B C R™ and a parameter ¢ € (0, 1), this is equivalent to

[tA+ (1 —t)B| > |Al

with equality for equal convex sets A and B (less a measure zero set). Here, A+ B := {a+b|a € A, and b € B}

is the Minkowski sum, tA = {ta : a € A}, and | - | refers to the outer Lebesgue measure.



The Brunn-Minkowski inequality is part of a vast body of geometric inequalities, such as the isoperimetric
inequality, the Prékopa-Leindler inequality, and the Borell-Brascamb-Lieb inequality. The famous isoperimetric
inequality, which states that for a given volume the body minimizing its surface area is the ball, follows from
Brunn-Minkowski by taking A a ball and letting ¢ tend to zero. The Prékopa-Leindler inequality asserts that
for t € (0,1) and functions f,g,h: R™ — R with the property that h(tz + (1 — t)y) > fi(z)g' ~*(y) for all
z,y € R" and [ f = [g, we have [h > [ f with equality if and only if f(z) = ag(z — z0) is a log-concave
function for some a € Ry and zp € R™. The Prékopa-Leindler inequality implies Brunn-Minkowski by taking
f and g to be the indicator functions of A and B. The Pr’ekopa-Leindler inequality, in turn, is subsumed by
the Borell-Brascamb-Lieb inequality. The study of these inequalities and their stability has sparked a fruitful
field of research in recent years.

The stability of the Brunn-Minkowski inequality says that if we are close to equality, then the sets are close
to being convex and equal (up to translates), and the aim is to quantify the two notions of closeness (see e.g.
[Figl4]). The main folklore conjecture concerning the stability of the Brunn-Minkowski inequality is that if we
are within a factor 14§ from equality, then the distance from A and B to a common convex set is O, (t‘l/ 251/ 2.

Conjecture 1.1. Forn € N, n > 2 and t € (0,1/2) there exist c,,,d,+ > 0 such that the following holds. Let
A and B be measurable sets of equal size with [tA+ (1 —t)B| < (14 0)|A| and § < d,, 1. Then there exists a
convez set K such that, up to translation, K D A, B and

|K\ A] = |K \ B| < ent™ /2642 |A].

Another important conjecture regarding the stability of the Brunn-Minkowski inequality is that the distance
from A and B to their individual convex hulls is linear O, ((d). Figalli and Jerison [FJ21] formulated this
conjecture in the case of equal sets, and van Hintum, Spink, and Tiba [vHSTarb, Section 12] considered this
conjecture for arbitrary sets in the plane.

Conjecture 1.2. Forn € N and t € (0,1/2) there exist ¢y, dp, > 0 such that the following holds. Let A and
B be measurable sets of equal size with [tA+ (1 —t)B| < (14 0)|A| and 6 < dy+. Then

|co(A) \ Al + |co(B) \ B| < ¢, 16|A.

These conjectures have received a lot of attention becoming central problems in convex geometry (see e.g.
[FMP09, [FMP10al [Chr12b, [Chri2al [EK T4 [FI15, [Figlsl FI17, [BI17 [CMI7, 121, RIS T22, K234, MK 235,
vHSTara), vHSTarb]).

The first contribution to the study of inverse problems for sumsets was made by Freiman [Fre59] in dimension
n = 1. Freiman’s celebrated 3k — 4 Theorem [Freh9l [LS95, [Sta96] from additive combinatorics implies the
following strong version of Conjecture If t € (0,1/2] and A, B C R are measurable sets with equal volume
such that [tA + (1 — ¢)B| < (14 §)|A| with § < ¢, then |co(A) \ A| < ¢t716|A| and |co(B) \ B| < (1 —t)~1§|B|.
Simple examples show that this result is optimal.

Stability in higher dimensions is considerably more difficult; in [Chr12bl [Chri2al] Christ showed a qualitative
result: If n € N, ¢ € (0,1/2], and A, B C R™ are measurable sets with equal volume such that [tA+ (1 —¢)B| <
(146)|A| with ¢ sufficiently small in terms of n and ¢, then there exists a convex set K such that, up to translation,
K D> A,Band |[K\ Al = |K\ B| = 0n,,6(1)|A|, where 0,,;,5(1) — 0 as § — 0 for fixed n and ¢. In a cornerstone

result, Figalli and Jerison [FJ17] obtained the first quantitative bounds: |K\A| = |[K\B| < 6/ log(t)[)=* (@™ |Al.
A similar result for the Prékopa-Leindler inequality was recently established by Borocky, Figalli, and Ramos
[BFRar].

The only instance of Conjecture for arbitrary sets was established in two dimensions by van Hintum,
Spink, and Tiba [vHSTarb]. In an independent direction, van Hintum and Keevash [vHK23b] (see also Propo-
sition determined the optimal value d,,; = t" for all n € N and ¢ € (0,1/2], with the same bound on the
distance to a common convex set as in the result of Figalli and Jerison.

Instances of Conjecture for restricted classes of sets A and B have received much attention. These
papers have focused on controlling the weaker “asymmetry” distance inf, |AA(B + z)|, which a priori does
not control the distance to a common convex hull |K \ A| (though Theorem relates the two distances).
In [EMP09, [EMPI0b], Figalli, Maggi, and Pratelli established that given n € N, ¢ € (0,1/2], and A, B C R"
convex sets with equal volume, if [tA+ (1 —¢)B| < (14 9)|A| with § sufficiently small in terms of n and ¢, then,
up to translation, |[AAB| < O4(t~'/26'/2)|A|. Figalli, Maggi, and Mooney [FMMI8] showed the analogous
result when A is a ball and B is arbitrary. Note that this is closely related to the stability of the isoperimetric
inequality. Barchiesi and Julin [BJ17] extended the previous results to A convex and B arbitrary. Despite all
these results supporting Conjecture [I.1] a conclusive answer remained wide open and outside the scope of the
available techniques.



The particular case of equal sets A = B in Conjecture has been thoroughly investigated. Indeed,
after establishing in [FJ15] some quantitative bounds for Conjecture in all dimensions, Figalli and Jerison
[FJ21] resolved Conjecture for A = B in dimensions n = 1,2, 3, and subsequently Van Hintum, Spink, and
Tiba [vHST22] resolved Conjecture for A = B in all dimensions. Moreover, they determined the optimal
dependency on t. Furthermore, van Hintum, Spink, and Tiba [vHSTaral, Theorem 1.1] established the optimal
dependency on d in dimensions d < 4 when A = B is the hypograph of a function over a convex domain.
Another closely related result by van Hintum and Keevash [vHK23a] is that if A C R™ with [434| < (14 6)|A|
with § < 1, then there exists a set A’ C A with |A’| > (1 — §)|A| and |co(4")| = O,,1-5(]4']).

For distinct sets A and B, Conjecture has proved much more difficult. Van Hintum, Spink, and Tiba
in [vHSTara, Theorem 1.5], resolved Conjecture when A and B are hypographs of functions over the same
convex domain. The only instance of Conjecture for arbitrary sets was established by van Hintum, Spink,
and Tiba [vHSTarbl, Section 12] in two dimensions. Despite these determined efforts, for arbitrary sets in higher
dimensions Conjecture remained open.

1.1 Main results.

Our main results resolve the conjectured quadratic stability to a common convex hull and the conjectured linear
stability to the individual convex hulls in the Brunn-Minkowski inequality, concluding a long line of research on
these problems.

Theorem 1.3. For alln € N and t € (0,1/2], there are computable constants @F,d? > 0 such that the
following holds. Assume 6 € [O,CFE?) and let A, B C R™ be measurable sets with equal volume satisfying

[tA+ (1—t)B| = (1+0)|A|.
Then, up to tmnslatiorﬂ there is a conver set K O AU B such that

|K\ Al + |K\ B| < &&=1/251/2| 4]

Theorem 1.4. Forn e Nandt € (0, ] there are constants -2, CFE > 0 such that the following holds. Assume
[O,a%) and assume A, B C R™ are measurable sets of equal volume so that [tA+ (1 —t)B] < (1+9)|A].
Then

|co(A) \ Al + [co(B) \ B < t~""5)4].

The proofs of Theorem [I.3] and Theorem [I.4] are very involved and will be obtained by combining a series
of intermediate results, many of which have their own interest. Moreover, Theorem [I.3] uses Theorem
We prove Theorem by first showing a sharp control of the symmetric difference between A and B.

Theorem 1.5. For alln € N and t € (0,1/2], there are computable constants &F,dﬁ > 0 such that the
following holds. Assume 6 € [O,J%) and assume A, B C R" are measurable sets with equal volume so that
[tA+ (1 —t)B| = (1+9)|A|. Then, up to translation,

|AAB| < &I3p=1/251/2| 4.

The exponents of § and ¢ are optimal as shown by the example A = [0,1 + \/7 X ,1]” Land B =
x [0,14+/6/t] x[0,1]"72. In this case, we find tA+(1—t)B = [0, 1+t\ﬁ [0, 14 (1—1)\/5/t] x [0,1]"72,
S0 that [tA+ (1 — t)B| < (14 0)|A|, while |AAB| > 2\/7|A|.
An important step in proving Theorem is to establish the case where co(A) and co(B) have a bounded
number of vertices.

Theorem 1.6. For all n,v € N and ¢t € (0,1), there are computable constants k%m(v),m,aﬂ,?’? > 0 such that
the following holds. Assume 6 € [O,aﬂﬁ], and assume A, B C R™ are measurable sets of equal volume such that
co(A) has at most v vertices and [tA+ (1 —t)B| = (1 + 9)|A|. Then

lco(A)\ A < BEB(p) min{t, 1 — £}~F"5| 4.

As mentioned above, the volume of the symmetric difference |AAB| is a commonly used parameter to
measure stability in geometric inequalities. Here, instead of controlling |AAB|, we want to improve this notion
of closeness by finding a common convex set K that contains both A and B. The key step to achieve this is
contained in the next general theorem about convex sets, which is of independent interest.

LThat is, there exist #,y € R” so that z + A,y + B C K and |K \ (z 4+ A)| + |K \ (y + B)| < &3—-1/251/2) 4].



Theorem 1.7. There exists a constant ¢, such that given convex sets X,Y C R™, we have

|co(X UY)|

— - —1<c¢ XAV
min{| X[, [Y'[}

- XNy

Remark 1.8. In Theorem[I.3, Theorem[I.]] and Theorem[I.5, we can assume that, for fized n € N, the function
dnt: (0,1/2] — Ry is increasing. Similarly, in Theorem we can assume that for fited n € N, the function
dn ¢ increases in (0,1/2] and decreases in [1/2,1). This follows from the proofs.

1.2 An alternative approach to Theorem [1.5]

While working on this project, we proved the following stability result for almost-convex sets.

Theorem 1.9. For alln € N and t € (0,1/2], there are computable constants CEnEEL aﬂ,;_*’?, IEE? > 0 such that the
following holds. Assume 6 € [O,aﬁ], v E [O,l’%, and assume that A, B C R", are measurable sets with equal
volume so that

[tA+ (1 —t)B| < (1+90)|4] and |co(A)\ Al + |co(B) \ B| < ~]A|.
Then, up to translation,
AnB) < &3 [0 4

This theorem, combined with Theorem has the following important corollary.

Corollary 1.10. For alln € N and t € (0,1/2], there are computable constants cw,aﬂ,;p > 0 such that the
following holds. Assume § € [O,J:Efm] and assume that A, B C R", are measurable sets with equal volume so
that [tA+ (1 —t)B| < (1 +0)|A|. Then, up to translation,

|AAB| < ZI051/2) 4.

Although this corollary provides a sharp stability bound in terms of d, it is weaker than Theorem in that
the dependency on t is suboptimal. Actually, even combining Theorem with the optimal result contained in
Conjecture [[4.1] would not obtain the optimal ¢-dependence provided by Theorem [I.5] For this reason, in this
paper, we develop a completely different approach to prove Theorem that bypasses the use of Theorem

Still, we believe that the proof of Theorem [I.9] brings a lot of value in studying the stability of the Brunn-
Minkowski inequality, as it uses a mass transport approach in a new original way, and we defer its proof to a
forthcoming paper [FvHT].

1.3 Notation and conventions.

Before starting our proofs, it is convenient to briefly explain the notation that we will use throughout the
paper. With ¢ > 0 we shall denote a universal constant independent of the dimension, while ¢, > 0 (and
analogous notations) denote dimensional constants. Saying that the quantity a is controlled by O,,(b) means
that |a| < ¢,b, while notation a = €Q,,(b) means that a > ¢,|b|]. When a constant also depends on ¢, we write
Cn,t. To distinguish the constants that appear in the different statements, c!™ means that the constant c is the
one appearing in Theorem/Proposition/Lemma £.m.

Throughout the paper, we fix n € N with n > 3 and either ¢ € (0,1/2] or ¢t € (0,1); unless otherwise
specified, we assume the former. We use | - | to denote the outer Lebesgue measure in R™.

Given s € R and sets X and Y in R", we define sX = {sz: z € X}, X =R"\ X, and X +Y ={z+y: z €
X,y €Y} Aset X in R” is convex if for all ¢ € [0, 1] we have tX + (1 —¢)X C X. The convex hull co(X) of a
set X in R™ is the intersection of all convex sets containing X. In particular, co(X) is a convex set. Two sets
X and Y of R™ are homothetic if there exist a point z in R™ and a scalar s > 0 such that X = sY + z.

Given a bounded convex set X in R", we define X as the closure of X, which is also a convex set. The
vertices of X, denoted by V(X), represent the set V(X) = {z € X: co(X \ {z}) # co(X)}. It follows that
X = co(V(X)).

Measureable sets X1, ..., Xj in R are said to form an essential partition of R™ if |0, X7| = 0 and | X;, N X, | =
0 for j; # jo. By a basis eg,...,e, in R® we mean an orthogonal set of vectors with unit length. In light of
Proposition we can assume that the sets A and B (as well as all parts into which we subdivide A and B)
are compact.



1.4 Overview of the proofs of the main results

We first prove the linear stability Theorem [I.4] which is a crucial tool at several steps in the proof of the
quadratic stability Theorem The proof of Theorem [1.4] breaks up into two parts: first we show a linear
result for sets A so that co(A) has few vertices (Theorem [L.6), then we use this to prove the result for an
arbitrary number of vertices.

First consider Theorem [.6] i.e., the linear stability to the convex hull for sets with few vertices. The first
step is to reduce to the case where co(A) is a simplex (see Theorem. Assume that A and B are a finite union
of points and boxes, V(co(A)) = {zo, ..., x,}, and assume that |A| = |B| and [tA+ (1 —¢)B| < (1+0)|A|. Our
move now is to pick a point z in A and construct cones Cy, ..., ), where C; has a vertex at x and is generated
by rays xxg,xx1...,TTi—1,TTiy1,-..,TTq—1,2Ty. The cones Cy,...,C, partition A into subsets Ag,..., A,
with the property that co(A4;) is again a simplex. We find a translation y such that the cones y+ Cy, ...,y +C,
partition B into subsets By, ..., B, where |A;| = |B;| (see Proposition . Repeating this move in each part,
we create a partition of A and B into sets Ay,...,A,, and By,..., By, with the property that |A;| = | B;|, the
sets {tA; + (1 — t)B; }1<i<m are all disjoint, and (crucially) CO(A) = L; co(4;). Our aim then becomes to show
Theorem [1.6| for essentially all parts A; and B;, that is, |co(4;) \ A;| < O,4(0;)]A;|. Then, we can combine all
the pieces to get

|co(A) \ A = Z\CO \A\<ZOM )Ai] = On,t(9)]Al.

In this process, we stop further subdividing a part A; when either A; = co(4;) or |4;] < 0.01]co(A;)]. In
Proposition [8:4] we show that we can pick the points in each part sufficiently centrally in such a way as to
guarantee the following two facts:

- First, provided that some part A; satisfies |A;| > 0.01| co(A;)|, then all the n+ 1 parts A;0,...,A4; » in which
we subdivide A; satisfy |A; ;| > Q,(1)] co(4; ;)]

- Second, for any parameter € > 0, there exists k € N such that essentially all parts A; constructed in generation
k are small, in the sense that the total volumes of all large parts A; with diam(A4;) > ¢ in generation £ are at
most €.

To conclude, we choose € > 0 smaller than §%|A|, and sufficiently small so that the boundary of A (recall
that A is a finite union of boxes and points) thickened by e has size at most 62| A|. We run the process up to
generation ¢ and note that all parts fall into four categories. First, there are the parts A; where we stopped
further subdividing because |A;| < 0.01]co(A;)]|; for such A; we also get |A;| > Q,(1)| co(4;)|. Second, there
are the parts A; where we stopped further subdividing because A; = co(4;). Third, are the small parts A; in
generation ¢ with diam(A4;) < ¢ and 0.01]| co(A4;)| < |Ai| < |co(4;)|. As these are neither empty nor full, co(A4;)
must intersect the boundary of A, so that the combined volume of these co(A;)’s is at most §2|A|. Finally, there
are the big parts in generation ¢ with diam(A4;) > ¢, the total volume of which is at most §2|A|.

Now, neglecting the parts in the third and fourth categories, as they contribute very little, it is easy to
check Theorem for the parts in the first and second categories. Indeed, in the first category we can use a
qualitative stability result (see Proposition , and in the second category there is nothing to prove as the set
is already convex.

Having proved Theorem [I.6] we turn our attention to generalizing it to an arbitrary number of vertices of
co(4).

The first step (Proposition [10.3]) is to identify a collection of disjoint convex regions X; C co(4) of small
diameter e that contain a positive proportlon of the missing volume of co(A)\ 4, i.e., > |co(ANX;)\ (ANX;)| =
O, (]co(A) \ A]). To find the regions X; of small diameter, we induct akin to the proof for few vertices. First,
we find as follows a triangulation of co(A) so that all simplices are pretty full. We triangulate dco(A) and
consider the n-simplices formed by a (n — 1)-simplex in dco(A) together with the origin o. Within each of
these simplices, we find a central point in A which partitions the simplex into smaller simplices all of which
preserve the convex hull. We iterate until we find a simplex with low density (between 98% and 99%) or small
diameter. For simplices with low density, finding a convex subregion with smaller diameter containing a positive
proportion of the missing region is a lot simpler (Lemma [10.8)).

A standard reduction (Proposition allows us to assume that

B"(0,Q,(1))C K C A, BC (1+n)K C B"(0,0,(1))

for some convex set K and 7 small in terms of n and t. We consider a simplicial tube U, i.e., a set of the form
T x Rt with T R*~! a regular simplex centered at the origin. We insist that the diameter of U is small in
terms of n but much larger than the diameter ¢ of the regions X;. We take a random rotation of U. As each



X; is completely contained inside U with probability (1), we get that
|co(A)\ Al = O(1) Z [co(ANX)\ (ANX;)|=OM)E|co(ANT)\ (ANU)|.

So it suffices to show that for every rotation of U we have |co(ANU)\ (ANU)| = O,+(0)|A|. After some
reductions, we may assume [ANU| = |[BNU| and [t((ANU)+ (1 —-t)(BNU)|—|ANU| < [tA+ (1 —t)B|—|A|.
Partitioning U into smaller parallel tubes U;, we find that

3 (\t(AﬁUi) Y (=BT —tANU| - (1 —t)|BﬂUi|> <MANU)+(1—)(BNU)| - |ANU],

?

although we might have |ANU;| # |BNU;|. In the direction of the tubes, every fibre of ANU; and BNU; starts
with a long interval, so that extending one of the sets at the bottom does not affect [t((ANT;) + (1 —¢)(BN
U)| —t|ANU;| — (1 —t)|BNU;| (cf. Lemma[10.11)). Extending appropriately (which is always quite little), we
retrieve |ANU;| = |[BNU;|, and by choosing U; appropriately we find that co(ANU;) has few vertices. Applying
Theorem [L6] concludes.

We now turn to the proof of Theorem The first step is to reduce Theorem [1.3] to Theorem that is,
the first step is to switch from showing that A + x and B + y are contained in a common convex set K with
almost the same volume, to show that |(A + z)AB]| is small. This reduction follows quickly from Theorem [1.7]
and Theorem [T.4]

The starting point for the proof of Theorem is inspired by a classical proof of the Brunn-Minkowski
inequality. Assume that the sets A and B are finite unions of boxes and assume that |A| = |B| and |tA + (1 —
t)B| < (14 §)|A]. Our move is to choose a hyperplane H that partitions A into A; and Az, and then to find a
parallel hyperplane G that partitions B into By and Bs such that |A;| = | B;|. Repetition of this move creates
a partition of A and B into sets Ay,...,A,, and By,..., B, with the property that |A;| = |B;| and the sets
{tA; + (1 — t)B; }1<i<m are all disjoint. Hence, if [tA; + (1 —t)B;| = (1 + §;)|A4;|, then >, §;|A;] < §|A|. Our
aim is to show Theorem for each pair of sets A; and B;, that is, |(A; + z;)AB;| < On,t(§i1/2)|Ai|. This is
motivated by the fact that, by cutting with sufficiently many hyperplanes, the sets A; and B; become simple
enough (e.g. boxes). Now, under the “much too optimistic” assumption that all translates x; coincide, we can
put all the pieces together to get

(A+2)AB] =" (A + 2) ABi| €3 O0na(8,%)|Ail < 00 4(5V/?)| Al

%

The main problem with the above plan is that there is no reason to believe that all the translates z; coincide.
In general, given sets Y and Z, it is difficult to grasp the optimal translation x that minimizes |(Y + z)AZ|.
However, for certain classes of sets, which we call cone-like sets, this is possible.

A cone C' is the intersection of a finite family of half-spaces generated by hyperplanes through the origin o.
In particular, the vertex of the cone is at the origin. We always assume that the cone is not too wide, that is,
all angles at o are less than 179°. We say that Y C C is C-like if

C'N B"(0,Q,(1)) CY C C N B"0,0,(1))

Now, fix a cone C and let Y and Z be convex (or approximately convex) subsets of C' that are C-like. For such
sets, if for a translate  we have |(Y +2)AZ| < v/8|Y| then ||z||2 must be small so that also |YAZ| < O,,(V9)|Y].
So, in effect, the essentially optimal translation for cone-like sets is = = o.

Motivated by this idea, the plan is to partition the whole space into cones at origin C,...C,, using hy-
perplane cuts, which induce the partitions of A and B into subsets Aq,...,A,, and By,...,B,,, in order to
reduce Theorem from A and B to A; and B;, which we hope to be simpler to deal with. For this to work,
we must impose that the subsets A; and B; of C; are Cj-like and have the same size. The first condition
turns out to be easy to satisfy, as after an affine transformation we can assume without loss of generality that
B"(0,,(1)) C A, B C B"(0,0,(1)) (see Proposition [2.9)). The second condition is also rather easy to satisfy.

In Theorem .11} we show that we can always find such a partition into cones, each of which is the convex
hull of a set of bounded size of rays through the origin. Moreover, all the rays are clustered arbitrarily close
to a pair of rays. Thus, each cone C; has a bounded number of faces and is arbitrarily narrow in all but one
direction. (In general, one cannot hope for all cones to be arbitrarily narrow in all directions, as one can see
already in the two-dimensional case when A =[0,1 —¢] x [0,1+¢] and B=[0,1+¢] x [0,1 —¢].)



Now, recalling that A and B are finite unions of boxes and insisting that the narrow directions of the cones
are much smaller than the sides of the boxes, we can assume without loss of generality that the subsets A; and
B; of C; are such that each sectional cut in the short directions is either completely full or completely empty.

So far, we have reduced Theorem to rather simple sets A; and B;. So, given such sets A; and B; with
|A;| = |Bi| and [tA; + (1 — t)B;| < (14 6;)|As], we need to show that |A;AB;| < O, (8% /t1/2)|4;].

We proceed akin to the final step for the linear result. It is enough to show that for each large tube U loosely

oriented in the same direction as C; we have [(A4; NU)A(B;NU)| < On(ég/z/t1/2)|AZ—| . After some reductions,
we may assume |4, NU| = |B;NU|. Now by the linear result we know that | co(4;NU)\ (4;NT)| < O, 1(8)| A4
Recall that in A; and B; each sectional cut of C; in the short directions is either completely full or completely
empty. Combining the two facts we get that A; N U and B; N U are essentially one-codimension compressed
sets. For such sets we can prove a sharp quadratic stability and thus conclude.

1.5 Structure of the paper

Given the complexity of our proofs, we kindly encourage the reader to refer to the table of contents as a guide
for navigation and orientation within the paper. We note that:
- The proof of Theorem [T.3] uses Theorem Theorem and Theorem
- The proof of Theorem [I.5] uses Theorem [T.4}
- The proof of Theorem [T.4] uses Theorem [I.6}
- Theorem and Theorem are proved directly.
At the beginning of the sections, we include more detailed overviews of the proofs.

Acknowledgements. AF acknowledges the support of the ERC Grant No.721675 “Reqularity and Stability in
Partial Differential Equations (RSPDE)” and of the Lagrange Mathematics and Computation Research Center.

2 Initial reductions of Theorem [1.4, Theorem [1.5, and Theorem [1.6

We shall deduce some basic allowed additional assumptions for Theorem Theorem [1.4] and Theorem [1.6
but before we do so, we need a few definitions.

2.1 Setup
Definition 2.1. A set X C R"™ is called simple if

X =||zi+[0,1]"

i<k
for some k € N, that is, X is a finite disjoint union of translates of the unit cube.

Definition 2.2. A convex set C C R" is called a cone if there exists a hyperplane H not containing the origin
and a bounded convex set P C H such that
Cc=||tp.

t>0

Definition 2.3. We write SY0 " for the simplex with vertices vy, ...,v,. Assuming that SV " contains
the origin in the interior, construct the family of cones €v0>-vn .= {C; : 0 < i < n}, where

Ci = |_| tCO(’Uo, e Ui—1, V4150 - - 71)”).
t>0

Note that the cones in €Y= form an essential partition of R".

Definition 2.4. Fix vectors eg, ..., e, € R™ such that S ¢ is a regular unit volume simplexr centered at the
origin 0. Denote S = S0 gnd € = E0rCn,

Definition 2.5. A pair of sets X, Y C R"™ is A-bounded if there exists an r > 0 so that
rSC X,Y C ArS.

Observation 2.6. If A, B C R™ are A\-bounded and |A| = |B| = 1, then B(o,(2An)~1) C A, B C B(o,2\n).



Definition 2.7. Given a cone F C C' € €, a pair of sets X, Y C R™ is (A, F)-bounded if there exists an r > 0
so that
r(FNS)Cc X, Y C Ar(FNS).

Definition 2.8. A pair of sets X,Y C RF is called a n-sandwich if there exists a convex set P such that
oePCX,YC(1+n)P.

Given a cone F' and an n-sandwich X,Y C R", the pair X N F,Y N F is also an n-sandwich.

2.2 Proposition
Proposition 2.9. Fizn €N and ¢t € (0,1/2].

o Assume that there exist constants X293 > 2n? and 7}%%' > 0 such that Theorem holds for all simple
)\%_-gl—bounded ﬁ—sandwiches A, B C R™. Then it holds for all measurable sets A, B C R"™.

o Assume that there exist constants Y23 > 2n? and TEL:% > 0 such that Theorem holds for all N22-bounded
T}E?—sandwiches A, B CR"™ so that A is a simple set intersected with co(A) and analogously for B. Then
it holds for all measurable sets A, B C R™.

o Similarly, fixn € N and t € (0,1). If Theorem holds for all X23-bounded @—sandwiches A, BCR"
so that A is a simple set intersected with co(A), then it holds for all measurable sets A, B C R™.

2.3 Auxiliary Lemmas

We first collect some auxiliary results that will be used to prove Proposition [2.9] The proof of such results will
be given in Section [2.5] below.
We recall the following result by Michael Christ.

Theorem 2.10 (Christ 2012, [Chri2a]). For alln € N, t € (0,1) and n > 0, there exist constants AZID >
so that for all measurable X, Y C R™ of equal volume with the property that [tX + (1 —t)Y| < (1 + A'nmn)\XL
then

Unel]%r}l |co(X U (v+Y)) < (1+n)X]|

We also need two lemmas.

Lemma 2.11. Forn € N, t € (0,1/2] and n > 0, there exist constants & and A?E?(n) > 0 so that the
following holds. If X, Y C R™ are measurable sets with |X| = |Y| and tX + (1 — t)Y| = (1 + §)|X| with
d o, AIZ;F], then, up to translation, there exist measurable sets X' Y' C R™ so that

1. X', Y’ is an n-sandwich,
2 X' = [v'| = ||,
3. co(X') = co(X) and co(Y") = co(Y),
4. | X'AX|+ Y AY] < EIy-15| X,
5. X'+ (1 -)Y'| < (1+9)X].
Moreover, if X CY, we additionally find X' C Y.

Lemma 2.12. Forn € N, and nn > 0 the following holds. If X, Y C R" is an n-sandwich, then there exists
v € R™ and there exists a linear transformation 6: R™ — R™ such that O(v+X),0(v+Y) is a (n?+nn)-bounded
nn-sandwich.



2.4 Proof of Proposition [2.9

Proof of Proposition[2.9 Choose n sufficiently small in terms of n, 7}%:5, and )\I%:m- Choose ¢ small in terms of
7, and choose ¢ sufficiently small in terms of ¢ and 7.

Apply Lemma [2.11] with parameter n to A, B to find Ay, By. Apply Lemma [2.12) to Ay, B; to find As, By
which is a (n? + n®n)-bounded nn-sandwich. To additionally get that the sets are simple we use a standard
approximation (see e.g. [vHK23a, Lemma 3.13]). Find compact subset A3 C Ag, so that |42\ As| — 0as ¢ — 0.
We can ensure | co(A3)| — | co(Asz)| as ¢ — 0, by requiring A3 to contain a large finite subset of the vertices of
co(Az) (or all of them if V(co(Asz)) is finite). Analogously define Bs. Note that we may additionally ask that
A3, B3 have the same size and form a (n? 4+ n3n)-bounded nn-sandwich.

From here we consider Theorem Theorem [1.4] and Theorem [I.6]separately. First, consider Theorem
Let

Ay = {l‘ S (fZ)n : (LL' + [0,5]”) N As 7é (Z)} + [0,5]” D Az
and By analogously. Since Aj is compact, |A4 \ As] — 0 as £ — 0. Similarly, as tAs + (1 — ¢)B3 is compact,
[(tAs + (1 —t)By) \ (tAs + (1 —t)Bs)| — 0 as £ — 0. We can construct subsets As and B of Ay and By,
respectively such that As = X +[0,£]™ and Bs =Y + [0,£]™ with X, Y C (£§Z)", |As| = |Bs| = min{|A4|, | Ba|}
and As, Bs is a simple (n? + n3n)-bounded 2nn-sandwich as & — 0. By the above,

lim lim |tA5 + (1 — t)B5|/‘A5| < |tA2 + (1 — t)BQ‘/|A2| <1+46.
¢—0£—0

Choosing 7 sufficiently small, we can apply Theorem [1.5[to find lim¢_,o limg_,q | A5 ABs|/|A5| < LFt—1/25 z (up
to a translation). This implies that, up to a translation, [AsABs|/|As| < 2d3¢~1/263  hence |AAB|/|A| <
3LI~1/253 | as desired.
For Theorem [T.4] and Theorem proceed analogously to the previous paragraph but with
Ay = ({z € (€2)" : (z +[0,€]") N Az # 0} +[0,£]") Nco(As) D A;

and By similarly. O

2.5 Proofs of Auxiliary Lemmas
2.5.1 Proof of Lemma 2.11]

The idea will be to show that a large homothetic copy of co(X UY') is contained in tX 4 (1 —¢)Y’, so that adding
a slightly smaller homothetic copy of co(X UY') to X and Y will not change tX + (1 — ¢)Y.

Proof of Lemma[2.11) Translate X and Y so that |co(X UY)| is minimal. Additionally, taking an affine
transformation if necessary, we may assume that the John ellipsoid E C co(X UY) is a ball centered at the
origin. Note that |E| > n~"|co(X UY)| > n~"|X].

Let ' = tn and £ = min {% ((1T;)n) ,2_"}. Apply Theorem |2.10| with parameters t, n, and ﬂm =¢ to
produce A2 and choose A,, = AZT0 5o that |co(X UY)| < (14 &)[X].

Claim 2.13. (1 —7')co(XUY) CtX + (1 —-¢)Y

Proof of claim. Consider a point p € (1 — ') co(X UY). Find the point p’ € dco(X UY) so that p = \p’ for
some A € [0,1 —7n/]. Let H : R™ — R™ be the homothety of ratio 1 — A > 5’ centered at p’. By convexity
H(E) C H(co(X UY)) C co(X UY) and H(o) =p/, so that co(X UY") contains a set of size

[H(E)| = (1= N"|E| =2 9" |E| = (' /n)"|X]|

symmetric around p. Note that

/

tn

1
[H(E)\ Y| < |co(X UY)\ Y| <&Y| < 2 ((1t)n

" 1
) i< i),
hence |H(E) NY| > 2|H(E)|. Now consider the homothety H' : R" — R" of ratio —t/(1 — t) centered at p.
Consider the set H'(H(E)NY) C H(E) and note that |H'(H(E)NY)| > 2|H'(H(E))|. Similarly as before, we
find

[H'(H(E)NY)\ X| < |co(XUY)\ X| < % ((1“7)”> 1X| < 1|H’(H(E))\ < %|H’(H(E) nY)|.

-t 3
Hence, there exists a point y € H(E) NY, so that H'(y) € X N H'(H(E)). Note that this implies that
tr+ (1 —t)y = p, so that p € tX + (1 —¢t)Y. This concludes the claim. O



Consider the sets X” := X U(1—t"19)co(XUY) and Y :=Y U (1 —t"9)co(X UY). Note that we get

X"+ (1 -t)Y' CcX+A -t U1 —t'n)co(XUY) + (1 —t)co(X UY))
=X+ (1-)Y)U(l—n")co(XUY))=tX +(1-1)Y,

where in the last equality we used the claim. We find |X‘/;(\IX | < ‘CO(X‘;J(T)\Xl < ¢ < 27" Now using the Brunn-

Minkowski inequality, we find (t|X”|% +(1- t)|Y”|%)" <PEX"+ (1 -t =X +(1-0)Y| < (1+9)|X],
which yields

X\ X| YY" X7\ X\ YV
1+t—mm— 1—t)———— <|1t|ll4+ —m— 1-H)(14+ ——— <1496
(* onx] T ) ST TR ) TATO U T <144,

so that | X"\ X|+ [Y”\ Y] <26t~ X]|.

Having gained control over the size of X" and Y, we remove some of it to get the equality in sizes. To
this end choose subsets X’ C X" so that the vertices of co(X) = co(X") are in X’ (so that co(X') = co(X)),
(1—t"')co(X UY) C X’ and |X'| = |X|. Similarly, choose Y’ C Y” and ensure |X’| = |Y’|. Now note that

[ X'AX]+[Y'AY | = [ X7\ X[+ [ X"\ X[+ [Y"\ V][ + Y\ Y| = 2(|X"\ X[+ [Y"\Y]) < 46t7[X],

and X'+ (1 —-)Y'| < X"+ (1 -) Y| =tX+(1-t)Y| < (14+9)X|.
Finally, if X C Y, note that |Y'\ X| = 0. Constructing X’ as before and setting Y’ = X' U (Y \ X) concludes
the proof. O

2.5.2 Proof of Lemma [2.12]
Proof of Lemma[2.13 We begin the proof with the following two claims.

Claim 2.14. Let a,n € (0,1), P C R"™ convezr and X,Y, so thato € P C X, Y C (14+n)P andlet o' € (1—a)P.
Let PP=P—-0,X'=X—-0 andY' =Y —0'. Thenoe P'C X'.Y' C(1+n/a)P'.

Proof. The first and second containment is trivial so we focus on the last containment. By hypothesis, it is
enough to show (14 n)P — o' C (1 4+ n/a)(P — o). This is equivalent to (1 + n)P + (n/a)o’ C (1 + n/a)P.
Because o' € (1 — )P, it is enough to note that (1 +n)P + (n/a)(1 — a)P = (1 4+ n/a)P. This concludes the
proof of the claim. O

Claim 2.15. Assume that o € P is a convex set. Let o' be the center of John ellipsoid E of P. Then
oe(l-1)P.

Proof. John ellipsoid has the following property. (E — o') C (P —0') C n(E — ¢o'). In particular, by symmetry
of E, we have 0o — 0o’ € n(E —0') = —n(E — 0’), which, is equivalent to o’ € n%_loqL gLk . Aso€ Pand EC P,
this implies o' € 15 P. O

We now return to the proof of Lemma Let P C R™ convex 0 € P C X,Y C (14 n)P using that X,Y
is an 7 sandwich. Let o’ be the center of the John ellipsoid Ein P. Let PP =P -0, F'=E—0, X' =X -0
andY' =Y — 0.

By Claim E we get o’ € (1—1)P. By Claimwe get o€ PP C X', Y' C (14 nn)P’. In particular, we
deduce that X', Y’ is a nn-sandwich.

By construction, we get that E’ is the John ellipsoid of P’ and it is centered at o. It has the property that
E' C P’ CnE'. It follows that B/ C X' Y’ C (n+n’n)E’.

As E’ is an ellipsoid centered at the origin o, there exists a linear transformation 6: R™ — R"™ such that
O(E’) is a ball centered at the origin. In particular, we get that 0(E’) C 0(X'),0(Y") C (n + n?n)0(E").

By observing that the John ellipsoid of the regular simplex S is a ball centered at the origin, we immediately
get that rS C (E’) C nrS for some r > 0. Putting together all of the above, we get that

rS C 0(X'),0(Y") C (n® +nn)rsS.

We conclude that (X — o'),0(Y — o') is (n? + n3n)-bounded. As sandwiches are preserved under linear
transformations, we also conclude that 8(X — 0'),0(Y — o') is a ny-sandwich. O
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3 Outline of the proof of the Quadratic Theorem (Theorem |1.5))

In this section, we give an outline of the results contained in the next four sections. We shall assume that
Theorem has been proved.

Thanks to the simple reduction performed in the previous section, see Section [2| and specifically Proposi-
tion[2:9] we can assume that A and B are already pretty convex, are sandwiched between two balls of comparable
sizes, and are the finite union of axis aligned cubes. The strategy is now the following.

1. Moving A and B slightly we can partition R™ into n+ 1 reasonably shaped (not too large or small) convex
cones C € Cy so that [ANC| = |BNC| (see Proposition [5.4)).

2. We will refine this partition into cones using the following procedure. Given a cone C' and a codimension-
two subspace S, we find a hyperplane H O S so that |C' N H* N A| = |C'n H* N B| (see Proposition [5.5)).

3. Choosing the codimension-two subspaces carefully, we obtain a partition into convex cones C' € Cy essen-
tially all of which satisfy the following properties (see Proposition the engine of which is Theorem [4.11]):

e |[ANC|=|BnC|,
e (' is the convex hull of few half-lines through the origin,

e (' is very narrow in all but one direction of an orthogonal basis depending on C.
These imply > oce, [H(ANC)+ (1 =1)(BNO)| < [tA+ (1 —-1)B|.

4. Removing a negligible part of A and B, we may additionally assume that the sections of C' in the narrow
directions are completely contained in or disjoint from AN C and BN C for C € Cy (see Proposition .
In some sense this reduces AN C and B N C to two-dimensional sets, as all information about the sets is
captured by 71(ANC) and 7(B N C), where 7 is the projection along the narrow directions.

5. In Proposition we construct a bounded family U of cylinders. All cylinders have the same simplex
base, which is contained in a face of T' and inside C. Moreover, the cylinders cover a big ball intersected
with C (so, in particular, ANC and BNC'). Furthermore, for U € U, we have [UNANC| = Q,(1)|ANC].

6. In Proposition[6.7] for U € U, we find a matching cylinder V parallel to U such that [UNANC| = [VNBNC)|
and ((UNANC)+ (1 —t)(VNANC)|—|UNANC| <|t(ANC)+ (1 —t)(BNC)| — |ANC|. Moreover,
the distance between U and V is small, namely [(UAV)NSNC| < 0,(1)5/2t1/2|S N C|. This allows
us to assume U =V and further reduce the problem to the sets ANU NC and BNV N C which satisfy
HUNANC)+(1—)(VNANC)=0+8§)UNANC|.

7. By Theorem we find [co(UNANC)\ (UNANC) = O0,(6")|(UNANC)|. We also know that
that the sections of C' in the narrow directions are completely contained in or disjoint from A N C and
BN C. Combining these, we can deduce that U N ANC and VN BNC are essentially one-codimensional
compressed.

8. In Proposition we resolve the problem for one-codimensional (in the long direction) compressed sets.

4 Intermediate results for the Quadratic Theorem (Theorem [1.5):
Part I

4.1 Setup

Definition 4.1. Let K" be the family of convex sets in R" with a finite number of vertices and let S} be the
set of codimension k affine subspaces of R™.

Definition 4.2. Say a function f: K" x S8y — S} is a respectful function if L C f(K,L). A respectful function
f induces functions f~, ft: K" x 8% — K", where f~ (K, L), fT(K, L) are the convez sets the affine hyperplane
f(K, L) essentially partitions K into.

Definition 4.3. Given a respectful function f: K" x & — ST and a convex set P, we say F is a valid
partition of P into convex subsets if there exists a sequence of families {P} = Go,...,G; = F such that if

Gi ={P1, Ps,..., P}, then there exists codimension-two affine subspaces Ly, ..., Ly such that G;11 = U§:1 R;,
where R; = {f*(P;, L;), f~(Pj, L;)} or R; = {P;}.
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We now consider the analogous definitions for cones (cf. Definition [2.2).
Definition 4.4. Let C" be the family of cones in R™ and let 7' be the set of codimension k subspaces of R™.

Definition 4.5. Say a function f: C" x T3* — T{* is a respectful function if L C f(C,L). A respectful function
f induces functions f~, f*:C" x T3* — C™, where f~(C,L), fT(C,L) are the cones the hyperplane f(C,L)
partitions C into.

Definition 4.6. Given a respectful function f: C" x T3* — T{* and a cone C, we say F is a valid partition of
C into cones if there exists a sequence of families {C'} = Gy, ...,G; = F such that if G; = {C1,Cs,...,Ck}, then

there exists codimension-two subspaces L1, . .., Ly such that G;11 = Ule R;, where R; = {f*(C;, L;), f~(C;, L;)}
or R; ={C;}.

Definition 4.7. Given a cone C C R™, define
pn(C) = |C'N S|,
where S is the unit volume simplex from Definition [2.7).

Definition 4.8. A function f : C — K™ from some convex domain C C R™ is linear if f(tx + (1 —t)y) =
tf(z)+ (1 —t)f(y) for all z,y € C.

For example, the function f: Rzzo — K2 given by f(z,y) = [v/2,32/2] x [y, 3y] is linear. Note that given a
linear function f: C'— K™ with C'€ C™ and f(0) = {o}, the set |J, . f(x) x {z} is a cone in C"*".

Definition 4.9. A cone C € C" is (i,¢,)-good if there exists a basis €§, ..., eS and there exists a cone C' € C°

r n

and a linear function f: C' — K"~ such that f(x) has at most { vertices for all x € C',

P lly —zll2 <ellzll2s  and  C=Uzec{f(z) x {z}}.
y,z€f(x

Definition 4.10. When a basis is established, let m; : R™ — R be the projection onto the ith coordinate and let
7« R™ — R? be the projection onto the plane spanned by the ith and jth coordinate.

4.2 Theorem

In this section, we will prove the following theorem. Recall from Definition [2:4] that S is a regular simplex with
unit volume. Let Fy,..., F, be the faces of S defined by F; = C; N 9S where C; € €.

Theorem 4.11. There exist constants éflm(m) such that for every e > 0 the following holds. Given a respectful
f:C" < TS = T and a cone C defined by m lines which is a subcone of some C; € €, there exists a valid
partition F of C' that can be written as F = Fo U F1 U Fs such that

1. ZFe}‘O pin(F) <e.
2. Every cone F € Fy is (1,££(m), £)-good.

3. For every cone F € Fy there exists a sub-cone F' of F with p,(F') > (1 — €)un(F) such that F' is
(2, & (1), £)-good.

n

Furthermore, given H + v the affine hyperplane containing F;, where H is a hyperplane through the origin, we
can insist that for all cones F € F; we have ef € H- and for all F € Fy we have ef € H*.

We note that a slightly more general result holds where we drop .S. The motivation to include S comes from
the way we apply the theorem.

4.3 Propositions

To prove Theorem we first state some propositions and lemmas that will be used in the proofs. All these
results will be proved later below.

Proposition 4.12. There exists a constant @m such that for every e > 0 the following holds. Given a respectful
f: K?x 82 — 82 and convex set P, there exists a valid partition F of P that can be written as F = FolUFy UF
such that
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1Y per, |Fl <e
2. For every F € F; we have |V(F)| < éém and for a basis ey, ea and for i = 1,2 we have that |m;(F)| < e,

3. For every F € Fy we have |V(F)| < 12 there exists a basis (dependent on F) ey, ey such that we have
|m (F)| < e and |mo(F)| > ¢ and m(V(F))) C V(m2(F)) + (—2,€2).
Here m;: R™ — R is the projection onto the i-th coordinate (as in Definition .
Proposition 4.13. There exists a constant é‘;ﬂm(m) such that for every € > 0 the following holds. Given a

respectful f: K" x 8§ — S and convex set P with |V(P)| < m, there exists a valid partition F of P that can
be written as F = Fo U JF1 U Fy such that

1. ZFE]:O |F| <e.
2. For every F € Fy we have |V(F)| < ”leBJ(m) and for a basis eq, ea, ..., e, we have for every i |m(F)| < e.

3. For every F € Fy we have |V (F)| < EI(m) and there exists a basis (dependent on F) ey, es,. .., e, such
that for every i # n we have |m;(F)| <& and |7, (F)| > ¢ and m,(V(F))) C V(m,(F)) + (—&2,2).

4.4 Auxiliary Lemmas

Lemma 4.14. There exist constants /\éLEZI > 0 so that given a convex set P C R™ and an affine subspace
L' € 8%, there exists a translate L € 8§ of L' so that any affine hyperplane H D L essentially partitioning the
space into two parts HT and H™ satisfies

|[HT NP

ETA \ETIN -1

Lemma 4.15. For any convex body P C R? with at least 7 vertices, there exists a point p € P, so that for any
line £ > p essentially partitioning the plane into halfplanes {* and €=, we have that both convex sets £ NP and
£~ N P have fewer vertices than P.

Lemma 4.16. Let P C R? be a convex set with at most C vertices and a respectful function f: K? x R? — S2.
Then there exists a valid partition of P into at most 2°~6 parts so that all parts have at most 6 vertices.

Lemma 4.17. Let P C R™ be a convex set. For any & > 0, there exist {y,nm9 > 0 (depending on P) so that
for any ¢ < (o and n < ng the following holds. Say a line L C R™ is ¢ permissible if for one of the points
x € LN OP, there exists a line L, tangent to P at x with Z/L,L, < (. Let

Qcm = PN U L+ B(o,n),

L:¢ permissible

then Q¢., C OP + B(0,€)

Lemma 4.18. There exists a constant o > 0, so that for any € > 0 the following holds. Given a basis ey, e
in R?, a convexr set P C R? with at most six vertices and a respectful f : K?> x R? — 82, there exists a valid
partition G of P and an element P' € G so that |P'| > «a|P| and

o cither |mo(P)| < |ma(P)| — €2,
o or ma(V(P")) C V(ma(P)) + (—&2,&%).

Furthermore, all convex sets in G have at most 10 vertices.

4.5 Proof of Theorem (4.11]
Theorem can be considered as Proposition coned off at the origin.
Proof of Theorem [f.11. Let E£(m) .= (AIL3(1m))2. Let &M be 1/n + 1 times the radius of the largest ball

n—1
inside T'. Choose 1 > 0 sufficiently small in terms of €.
Let P:= (v+ H)NC € K"~ *. For any subset P’ C v+ H, we define C(P’) := J,5,tP’. Note that if P’
is a bounded convex set in H + v, then C(P’) is a cone. In particular, C = C'(P). Note moreover that for a

codimension 2 affine subspace L of v + H, C(L) is a codimension 2 subspace of R™.
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In the following we will slightly abuse notation to interpret v + H as a copy R®~! to aid the application of
Proposition For instance, we will write K»~! to indicate the convex subsets of v + H.

We construct a respectful function f’: K*~! x Sy~t — Sp~! from f: C" x T3 — T;" as follows. For any
convex subset P’ C P and a codimension 2 affine subspace L of v+ H, define f'(P’, L) = (v+H)Nf(C(P"),C(L)).
Note that indeed

L=w+H)NC(L)C (v+H)Nf(C(P),C(L)) = f(P,L),
so that f” is respectful.

Now apply Proposition to P with respectful function f’ and parameter n (as €), to find valid partition
F' = Fy U F, UFy of P, where all P’ € F; UF} have at most £23(m) vertices. Define F = Fy U F; U Fa by
Fi:={C(P') : P' € F]}. Note that clearly F is a valid partition by the construction of f’, so it remains to
check that it indeed satisfies the conditions on Fy, F1, and Fo.

By definition of H, we find that p, (C(P")) = &I P’|, so that

> m(F) =83 P < &t <,

FeFo PeF,

as &I represents 1/(n 4 1) of the distance from o to F}.

Consider F' € F; and choose a basis e1, . .., e, with e, perpendicular to H. Let P’ € F{, so that F' = C(P’).
To show that F is (1,4,¢)-good, let C’ = R>qe, and g : ¢/ — K" 1 te,, — (tv+ H) N F = tP’, which is clearly
linear. Note that g(te,) is homothetic for all ¢, so always has the same number of vertices (as P’), in particular
at most I3 (1m) < AI(1m). Note

sup [z —ylla = sup [z —ylla <tvn —1n <ellten]2.
z,y€g(ten) z,yEetP’

This concludes that F is (1,4, )-good.

Consider F' € F, and the P’ € Fj, so that F' = C(P’). Let e, be the unit vector orthogonal to H, and
let e1,...,e,—1 be the basis of H so that |m;(P')] < n for i <n—2 and |m,—1(P’)| > n and 7,1 (V(P')) C
V(i 1 (P)) + (—27?). Let

P” = Pl ﬂﬂﬁil (ﬂ-n—l(Pl)\ [V(Trn—l(Pl)) + (7772’772)]) ’

so that by construction m,—1(V(P")) = V(m,—1(P")). By convexity, we have |P’'\ P"| < O,(n|P’|). Now
let F' := C(P") C F, and note that p,(F’) > (1 — &)un(F). Let C" := C(mp_1,n(F')) = mp_1,n(F’), where
Tn—1,n: R — R? is the projection onto the last two coordinates and let

g:C' =K' 2 z—mt (z)NF.

n—1,n
To see that g is linear, consider the auxiliary function
g1 (P") = K" 2 et (x)n P

and note that ¢’ is linear because m,—1(V(P")) = V(m,—1(P")). Let h > 0 be such that 7,(v) = h and note
that 7, 1(th) N F’ = tP", so that for a point (z,y) € T,—1.,(F"), we have g(z,y) = yg'(%) Hence, we get for

" =

(x,9), (2',y") € C’, that

hy (te + (1= t)a' ty + (1= 1)y) = (ty + (1 = 1)y} (M’”‘)

o ! / ty x (1_t)y/ x’
= (fy+ (1~ 1) <g (ty+<1 oy v a0y yh>>

=+ (1= 00) (s (20) + 0 2y (D))

/

= tyg (xh> +(1-t)y'g (x,h>
Yy Yy
= thg(z,y) + (1 — t)hg(z',y),

so that g is linear. Finally, to count the number of vertices of g(x,y), note that it is the intersection between a
homothetic copy of P” and a hyperplane, so that the number of vertices is bounded by the number of edges in

P" which is at most (?—é(m)) < EID(py), O
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4.6 Proof of Propositions
4.6.1 Proof of Proposition [4.12
Note that S3 = R?

Proof of Proposition[f.13. Choose 212 = 10. We first show that we may assume that |7;(P)| < ¢, per the
following claim.

Claim 4.19. The result for convex sets P with | (P)| < € implies the result for general convexr P.

Proof of claim. Tteratively produce a valid partition of P, starting with Gy = {P}. Given G, = {P1,..., P},
by Lemma find points p; € P; and construct

Giv1 = {fT(Pr,p1), [~ (Prop1)s o 7 (Paiypoi), f~ (Pasypai) ).
Now note that by construction max{|P’| : P’ € G;11} < (1 — Ag)max{|P’| : P’ € G;}, where Aa > 0 is the
constant from Lemma Hence, for ig sufficiently large, we find that max{|P’| : P’ € G;,} < %. This implies
that for all P’ € G,, there exists a basis e, ez so that |m1(P’)] < e. Indeed, let E’ be the outer Lowner-John
ellipsoid of P’ and let €1, es be the short and long axis of E’. Hence, |71 (E")|?/2 < |m (E")||m2(E")|/2 < |E'| <
4|P| < % Therefore, |1 (P’)] < |m1(E")|] < e. Now applying the result in each P’ € G,,, we deduce the result
in P. O

Henceforth, assume m(P) < e. We iteratively construct a sequence of valid partitions G; and G/ of P,
starting with Go = {P}.

Given G;, apply Lemma to all elements of G; to find refinement G/ in which all elements have at most 6
vertices. Then apply Lemma to each of the elements of G/ to produce refinement G, ;1. Given this sequence
we will construct a valid partition of P with the desired properties. Consider the uniform probability measure P
on P, so that ) p, g P(P’) =1 for all i. we are going to analyse the change in expected value of the following
parameter. Let fo(P) = |m2(P)|. Given f; : G; — R, construct f;11 : Gi+1 — R as follows.

0 if P' C P" € G; with f;(P") =0, or if m(V(P")) C V(m2(P")) + (—&2,¢?%)
|2 (P")|  otherwise.

fix1(P') = {

Note that if |mo(P’)| < 2¢2, then f;(P’) = 0 by the second clause, so if fi(P’) # 0, then f;(P’) > 2¢2. In terms
of this function, we construct our families F¢, F¢, 74, as follows; F§ = {P}, FY =0, FJ =0, and

o Fitt ={P' €Giy1: fi1(P)) > 0}

o FTt=Fiu{P €Giy1: f(P')=0,|m(P")| <&, and IP" € F}, P’ C P"}

o Fitt = FLu{P € Giy1: f(P')=0,|m(P")| > ¢, and IP" € F}, P’ C P"}
It is easy to see that F* = Fj U Fi U F4 is a valid partition of P. We will show that for i sufficiently large JF*
satisfies the desired the conditions. We use shorthand P (7)) for P (UP/efg P') = ZP/EfS P(P").

Claim 4.20. P (F¢) — 0 as i — oc.

Proof of claim. First note that f; is non-negative and non-increasing, in the sense that if P’ € G; and P” € G;
with P’ C P”, then f;(P") > f;(P’). Partition G; into two parts F} and H; := G;\ F¢ (so that H; is a refinement
of F{ U F}). Consider some P’ € F¢ (i.e., with f;(P’) > 2¢2) and the valid partition {P1,..., P;} C G/ of P'.
Note that by Lemma for every 1 < k < j, we can find P, D P}, € G;11 with P(P]) > oP(Py) and

either |m(P))| < |7r2(Pk)| —e?, or  m(V(P)) C V(m(P})) + (—&2,%).

Either way, we find f;11(P]) < f;(P’") — €%. Hence, if we let G;11(P’) := {P"” € Gi41 : P” C P'}, then
. B(P)fira(P") SB(P)fi(P) — aP(P)e?
P7€Git1(P’)

Summing this over all P’ € F¢ and using induction, we find

i

0< > P(P")fia(P") < Y P(P)fi(P) — 0P (F) < fo(P) — ae® > P (F).

P"eGit P'eg; j=0

This implies P () — 0 as i — 0 and thus the conclusion follows. O
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By t_his claim,.we can find iq so that ]P’(}'éo) < 1py, thus ZP’GFSO |P'| = ]P’(}'éo) |P| < e. Hence, let
Fo = F°, F1 = F°, and Fo = F°. By construction, we have for every F' € Fy, |m1(F)|,|m2(F)| < e and that,
for F' € Fa,

T (F)| <&, |ma(F)| > ¢, and m(V(F)) C V(ma(F)) + (—€2,€?).
Finally, by Lemma all parts in G; have at most 10 vertices, so in particular so do the parts in F; UFy. I

4.6.2 Proof of Proposition [4.13

Proof of Proposition[{.13 Let £ > ¢ > n be chosen sufficiently small in terms of € and n to make various
statements throughout the proof.

We first find a valid partition so that all parts are small in all but one direction.

We iteratively construct a sequence of valid partitions G* for i = 0,...,n, starting with G° = {P}. Each of
the G'’s can be partitioned into two parts Gi, and Gi, so that the following hold

L Ypeg: [FI <in
2. For every F € G}, there exists a basis e1, ..., e, so that |7;(F)| <nforal 1 <j <i.

3. For every F' € Gi UGi, we have that F = PN F’ where F' is the intersection of at most /212 halfspaces,
each of which contains all but two of the basis vectors corresponding to F'.

Assume that G}, Gi have been constructed. Fix a F' € Gi and the corresponding basis ey, ..., e,. Consider
the plane H spanned by e; and e; 1 and the projection m = 7y ;41 onto that plane. Now note that any translate
S of the codimension-two subspace of R™ spanned by es,...,€;,€;12,...,€y,, has that 7(5) is a single point in

R2. Hence, the respectful function f : K" x S — SJ' corresponds to a respectful function f’: K? x 82 — S?.
Indeed, for X € K? and = € 82 = R?, let

F1(X,2) = (f(n~H(X) N F,n~ (@)

Now apply Proposition4.12{to w(F') with respectful function f’ and parameter n-min {1
to find a valid partition H = Ho U H1 U Hs of m(F') so that

1
> max, cp2 |71 (z)NF| } ’

L. ZQEHO |Q| < max, cp2 \?r*l(ac)ﬂFr

2. For every @ € H; there exists a basis e}, e, such that for i = 1,2 we have |7/(Q)] < 7.

3. For every @ € Hs there exists a basis e, €5 such that we have |71(Q)| < 7, |75(Q)| > n and 74(V(Q))) C
V(m5(Q)) + (=%, m%).

4. For every Q € Hi U Ha, we have |[V(Q)| < 12 ie., Q is the intersection of at most £y halfplanes.

Note that 2 and 3, imply the weaker statement that for every @ € H1 U Ha, there exists a basis €/, €5 such that
we have |71 (Q)| <. The partition H naturally corresponds to a valid partition H' = H{UH| UHS, of F, where
H:={r"H Q)N F :Q € H;}. This is a valid partition by construction of f’. The properties of H translate to
the following properties of H'.

L. ZQGH(’) Ql <.

2. For every QQ € Hj UM} there exists a basis €/, ¢j, ; of the plane spanned by e; and e;;1 such that we have
i1 (@) <.

3. For every @ € H} UH,, we have Q = F N Q’, where @’ is the intersection of at most ”éﬁm halfspaces all
of which contain es,...,e;,€;49,...,€,.

Now for @, we choose the basis €], e,...,€i, €}, 1,€i42,...,6,. Given F € G, let H((F), H|(F), and H5(F)
be the sets produced here. We define

Gott=Gou |J MHo(F), and  Git'i= | HI(F) UHL(E).
Fegi Fegi

Note that these satisfy the properties 1, 2 and 3 of QSH gl“ set out above.
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Now consider the elements of Gi'. These can only be ’long’ in at most one direction, viz e;. Now that we
have established this direction, we will repeat essentially the same process to show that the sets are either short
in the e; direction as well, or (most of) the vertices are close to the extremes in the e; direction.

We continue constructing a sequence of valid partitions G" for i = 1,...,n, starting with G° = {P}. Each
of the G"*%’s can be partitioned into three parts gg“, Gy ni g"“ so that the following hold

].. ZFGQSL-H |F| S n?? + ZC.
2. For every F € G, there exists a basis e1, ..., e, so that |m;(F)| < forall j=1,...n

3. For every F € Gy, there exists a basis ey, ..., e, so that |7rj( )\ < for all j =2,...n. Moreover, we
have 71 (V (m1;(F))) C V(m(F)) + (—2¢2, 2{2) for all j =2,.

4. For every F € G UGyt we have that F = PN F’ where F” is the intersection of at most (n + i)E&12
halfspaces, each of which contains all but two of the basis vectors corresponding to F'.

Assume that Qg‘“ g{’“ g”*l have been constructed. Fixa F' € g”*l and the corresponding basis ey, . .., €.
As before, consider the plane spanned by e; and e;41 and the projection m = 71 ;41 onto that plane. Now note
that any translate L of the codimension-two subspace of R™ spanned by es, ..., ¢e;,€;12,...,e,, has that 7w(L)

is a single point in R2. Hence, the respectful function f : K" x S§ — SP' corresponds to a respectful function
K% x 83 — S82. Indeed, for X € K? and z € S5 = R?, let

f(X,2) = a(f(n=H(X) N F,7 ().

Now apply Proposition 4.12|to 7(F') with respectful function f’ and parameter ¢ - min {1
to find a valid partition H = Ho U Hq U Ho of 7(F) so that

1.

1
> max, cp2 |71 (z)NF| } ’

<
ZQE'HO |Q| < max_ g2 [7-1(z)NF|"
2. For every @) € H; there exists a basis €}, 5 such that for ¢ = 1,2 we have |7/(Q)| < .

3. For every Q € JF; there exists a basis e, e such that we have |75(Q)| < ¢, |71(Q)] > ¢ and 71 (V(Q))) C
V(1 (Q)) + (=¢%,¢?).
4. For every Q € Hi UM, we have |V(Q)| < B2 ie., Q is the intersection of at most 12 halfplanes.

Let @ satisfy property 3. Given the information we already have about Q (viz |m2(Q)| < n), we will show that
we can get essentially the same property 3, with basis €], € replaced by ey, es.

Claim 4.21. |m(Q)| < ¢/2, Im(Q)] = ¢/2 and m (V(Q))) C V(m1(Q)) + (—4¢7,4¢?).

Proof of claim. First note that, up to translation, in the ej, ey basis we have Q C [0, |m1(Q)]] x [0, |m(Q)|]-
Hence, we get

(< m@) < Im(Q)] + [m2(Q)] < [ (Q)] +n,

50 |11 (Q) = ¢ — 0 > (/2. Also, [m2(Q)] <1 < ¢/2.

For the last part, it is enough to show that there exists two vertices x,y € V(Q) such that for any other
vertex z € V(Q) we have min(|zz|, |yz|) < 2¢2.

It is easy to see that there exist two vertices x,y € V(Q) such that V(71 (Q)) = {7} (x), 7 (y)}. We
have |zy| > |71 (2)7i(y)| = |71(Q)| > ¢. Moreover, |7 (z)7i(y)| > ¢ and |7)(z)7h(y)| < ¢ implies that
(12, €l)] < sin(45°) = 1/v2,

Fix 2z € V(Q) and assume that 7} (2) € (7} (z) — (%, 7} (z) + ¢?), i.e., |7)(z)7] (2)| < 2. It is enough to show
that |zz| < 2¢%2. Assume for a contradiction that |zz| > 2¢2. Combining the last two inequalities, we deduce

that [(Z22 ¢h)] > sin(60°) = v/3/2.
As |<‘y $|,el>| < sin(45°) and \(lz w|’61>| > sin(60°) we deduce that |(|y i‘, = ﬁ‘>| > sin(15°).
In the triangle co({z,y, z}) the radius r of the inscribed circle has the formula r = MJ% Using the

above, we deduce that

|zy||rz]sin(15°)  sin(15°) < sin(15°)

_ ¢sin(15°)
2]xy| + 2|xz| 4 '

min(|zy|, |xz]) > 5

2 2
ol T Tzl

Hence |m2(Q)| > |m2(co({z,y, z}))| > ¢?sin(15°). This gives the desired result as |m2(Q)| < n < ¢(?sin(15°).
The conclusion follows. O
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As before, we can translate back to a valid partition H' = HUH] UHS of F, where H, .= — 1(Q)NF : Q €
H;}. This is a valid partition by construction of f’. The properties of H translate to the following properties
of H'.

L. ZQGH(’) Q < ¢.

2. For every @ € H/, there exists a basis e}, €], of the plane spanned by e; and e;y; such that we have

M (Q)], Imi 1 (@) < ¢
3. For every Q € H}, we have m1(V (71,:+1(Q))) C V(m1(Q)) + (—4¢2,4¢?).

4. For every Q € H) UH),, we have Q = F N Q’, where Q' is the intersection of at most éém halfspaces all
of which contain es,...,e;,€;49,..., €.

Given F' € G§™*, let H{(F), H{(F), and H5(F) be the sets produced here. We define gn+itl = gi++t
Gt L gntitt as follows:

Gotitti=ggtiu |J mor),  grtthe=grtu | mi), grttt= | HA(R)

Fegy Fegy™ Fegy™

Change the basis to €/, ez,...,€;,€j,1,€i42,...,¢e, for those parts Q € H}(F) for some F € Gyt Tt is easy to
see that this valid partition G"++1 = QS"H‘H L g{l“*l L QS‘H‘H satisfies the properties as set out before.
Consider the valid partition G2" = G2™ U G LU G3™ which has the following properties:

L Y pegen [ <20
2. For every F € G2 there exists a basis ej,...,e, so that |m;(F)| < ( foralli=1,...n.

3. For every F € G3", there exists a basis ey, ...,e, so that |r;(F)| < n for all i = 2,...n. Moreover, we
have 1 (V (m1,:(F))) C V(m1(F)) + (—4¢?,4¢?) for all i = 2,...,n.

4. For every F € G2" U G2", we have that F = P N F’ where F' is the intersection of at most 2n/Z12
halfspaces, each of which contains all but one of the basis vectors es, ..., e, corresponding to F'.

This last property shows that F' is the intersection 2néém + £p halfspaces, where £p < (72) is the number
of halfspaces needed to construct P. Note that a vertex of F arises from n halfspaces, so that |[V(F)| <

Q”THP ) < éflm(m) Hence, what remains is to strengthen property 3, to show that for F' € G3", we have
m(V(F)) C V(mi(F)) + (—4¢%,4¢?). By the above we can partition V(F') into those vertices that are also a
vertex of F’ and those that are not.

First consider a vertex v of I’ that is also a vertex of F’. Note that as each of the defining hyperplanes
of F' contains all but one of es,...,e,, and there are n hyperplanes needed to define a vertex of F’, v must
be defined by at least two planes containing the same n — 2 elements from es,...,e,. Say v is defined by two
planes containing es, ..., €;_1, €41, €y, then we find that m ;(v) € V(m;(F)), so by property 3:

m1(v) = m(m1,i(v) € m(V(mi(F))) C V(m(F)) + (-4¢%,4¢%).

Hence, it remains to deal with vertices that lie on 0P. we will show that if such a vertex lies far from
V(71 (F)), then F is contained very close to the boundary of P.

Note that as we have that |m(F)| < n for all ¢ = 2,...n, we find that up to translation, we have F C
[0, |71 (F)|] x [0,5]"71, so that if we let C :=R x [0,7]""!, then F C C'N P.

Claim 4.22. If Ju,v,w € C NP, so that |m1(u) — m1(v)], |m1(v) — m1(w)], |71 (w) — w1 (w)| > 2¢2, then there
exists a point x in CNIP and a line L, tangent to P at x so that LL,,eq7 <

Proof. Note that by convexity of P, CNOP can have at most two connected components, so we may assume u, v
are in the same connected component. Let 7¢ : R® — R"~! be the projection away from the first coordinate.
Note that |7¢(u) — 7§(v)| < v/n — 1n as 7§(u), 7$(v) € [0,1]" 1. Hence,

1 vn—1n

ié(u—v),el <sin(L(u—wv),e1) < e

1
é 5(7
using that 7 is sufficiently small in terms of (.

Consider the plane H containing w,v and direction e;. Note that again H N C N 0P has at most two
connected components with u and v being in the same component. By the mean value theorem, there exists
a point z € H N C N IP between u and v with a line L, tangent to H N P (and thus to P) parallel to u — v.

Clearly, ZL,,e; = Z(u—v),e; < (. O
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Note that because ' C C' N P, we have the intervals w1 (F) C m1(C N P). Moreover, because C = R x
[0,7]"~1, there exist u,w € C N JP such that m (C N P) = [r1(u), m1(w)]. Assume now v is a vertex of F
that lies on 9P with the property that 7 (v) € V(w1 (F)) + (—=2¢2,2¢?). It immediately follows that 7 (v) &
{m1(u), 7 (w)}+ (=2¢%,2¢?) ie., |m(u) — w1 (v)], |71 (v) — 71 (W)], |71 (W) — 71 (w)| > 2¢2. Hence, this claim shows
that I C L + B(0,+/n - n) for some line L which makes an angle at most { with a tangent line at a point in
LNOP. By Lemma [£.17] this implies ' C 9P + B(0,€).

With this setup, we are ready to conclude. Define F as follows:

Fo:=GU{F €G2": 3w e V(F):m(v) & V(m(F)) + (—2¢2,2¢%)}
Fi =G
Foi={FeG" :YveV(F): m() e V(mF))+(-2¢%2¢}.

Indeed,
> IF[=2n¢+|0P + B(0,§)| <e,
FeFy
where we used that £ is sufficiently small in terms of € and P. O

4.7 Proof of Auxiliary Lemmas
4.7.1 Proof of Lemma [4.14]

Proof of Lemma[f.1]} Let A, = n~" Translate P so that the John ellipsoid E C P C nkE is centred at the
origin. Consider a translate L of L’ that contains the origin. Let H D L be any hyperplane containing L. Note
that as H also contains the centre of F/, we find

1E| |HtNE| _|HTNP| _|H*NnE| inE| _
2 — < < _ 2 =n" =\ 1
inE| |[H-NnE| ~ [H-NP|~ |H- NE| 1E| "

which concludes the proof of the lemma. O

4.7.2 Proof of Lemma [4.15]

Proof of Lemma[f.15 Let vq,...,vx where k > 7 be the vertices of P appearing around dP in that order. For
every i € {1,...k}, consider two vertices v; and v;43 where the indices are considered mod k. The line through
v; and v;43 partitions the plane into two halfplanes. Let H; be the halfplane that contains all vertices except
for v; 11 and v;49.

Claim 4.23. N\_, H; # 0

Proof of Claim. By Helly’s theorem it suffices to show that any three of these halfplanes have non-empty
intersection. Note that |Hf N {v1,..., v} = 2, so for any 7,7, we find

|(H; " Hy 0 Hy) N {wvg, ..ot = or, oo b\ (HFUHS UHS)| > k—6> 1.
Hence, the intersection of all H; is non-empty. O

Choose some p € ﬂle H; and consider any line ¢ containing p. Consider the two intersection points between
¢ and 0P, say they lie on the line segment between v; and v;4+1 and on the line segment between v; and v;41.
Assume for a contradiction one of the sets £© N P and £~ N P has at least k vertices. Then we find that
li — j| <2 (again mod k), say j € {¢ + 1,7+ 2}. However, this implies that p € £N P C Hf, which is clearly a
contradiction. O

4.7.3 Proof of Lemma [4.16

Proof of Lemmal[{.16, Tteratively construct a sequence of valid partitions G; of P, starting with Gy = {P}.
Given G; = {P1,..., P;}, use Lemma to find points p; € P; (in those P; with at least 7 vertices) with the
property that every line through them partitions P; into polygons with fewer vertices than P;. Now let

gi+1 = {f+(P17p1)vf_(P1ap1)a"'af+(Pjapj)af_(Pjvpj)} .

Note that if we let v(G;) be the maximal number of vertices among all parts in G;, then v(G;11) < max{v(G;) —
1,6}. Also, if we let n(G;) be the number of parts of G;, then n(G;) < 2°. Hence, we find v(Go—g) < 6 and
n(G;) < 2¢76. Clearly Go_¢ is a valid partition with the desired properties. O
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4.7.4 Proof of Lemma [4.17

Proof of Lemma[f.17 Let D(P) :=sup, ,cp |z — y|, we will show that Q¢,,, C P + B(0,n + ¢(D(P)). Indeed,
consider a (-permissible line L with the corresponding point z € L N P and tangent line L,. For any point
y € LN P, we have |z —y| < D(P). By the definition of the sin, we have

min |y —y'| = [z — y[sin(£L, L) < D(P)C.
y' €Ly

If we let y' € L, the point realizing miny ¢y, |y — 3’|, then the line segment between y and y’ intersects JP, so
that ming cop [y —¢'| < mingcr, |y —y'| < (D(P). Choosing ¢ and 7 sufficiently small so that n+ (D(P) <&,
the lemma follows. O

4.7.5 Proof of Lemma [4.18]

Proof of Lemma[{.18 Let o = A3, where A is the constant from Lemma
Iteratively produce a valid partition of P, starting with Gy = {P}. Given G; = {P1,..., Py}, by Lemmam
find points p; € P; and construct

Giv1 ={fT(PL,p1), [ (Pr,p1), -, [T (Pai, poi), [~ (Pai, pai) }.

Consider G4, which has 2* = 16 elements. Note that by construction, each P’ € G4 has |P'| > A\3|P| = a|P|.

Consider the set of newly created vertices Jp,cg, V(P') \ V(P). If there is a v € Upicg, V(P') \ V(P) so
that mo(v) & V(m2(P))+ (—e2,€%) (or a line f(P;, pj) through a vertex in V(P)), then consider the line f(P;, p;)
that created this vertex. Note that

min{|me (f (P, )|, w2 (f 7 (P, p))|} < [m2(P)] = €2,

so that at least one element P’ of G4 has |me(P')| < |ma(P)| — 2.
Alternatively, we find that

2 ( U V(P')\V(P)> C V(ma(P)) + (—e*,€%).

P’eg,

As there are at most 4 vertices of P whose projection is not in V(w2 (P)) + (—&2, €2), each of which is in at most

element of G4, and there are 16 sets in Gy, there is an set P’ € G, with V(P') C V(ma(P)) + (—¢2,£?). Note
that
(V(m2(P)) + (=€*,6%)) Nma(P') C V(ma(P)) + (—e?,€%).

Finally, note that every element of G4 has at most 10 vertices. The lemma follows. O

5 Intermediate results for Quadratic Theorem (Theorem [1.5)): Part
IT

5.1 Setup

Definition 5.1. Given a (i,(,£)-good cone C € C" (see Definition [.9), we say a measurable subset X C C is
filled if for all x € C" we have

flx) x {z} € X or (f(z) x {z})Nn X = 0.

Definition 5.2. A pair of sets X, Y C R™ is a (n,~)-approximate sandwich if there exists a convex set P C R™
containing the origin, so that X, Y C (1+n)P and |P\ X|+|P\ Y| <~|P|.

5.2 Theorem

Theorem 5.3. There exists an £ = é’im so that for every &, \,n,v > 0 the following holds. Given A, B C R" a
simple A -bounded n,,-sandwich with the property that for all cones C; € €, we have |[ANC;| = |BNC;|. Then
there exist measurable subsets A" C A and B’ C B and there exists a family of cones G essentially partitioning
R™ refining € and a partition G = Go U Gy U Go such that
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1A =B = (1-¢)4|
Every cone F € Gy has |A'NF|=|B'NF|=0.

Every cone F € G UGy has |A'NF| =|B'NF|.

e

Every cone F € Gy UGy has A’ NF and B' N F are (2)\, F)-bounded (n,~)-approzimate sandwiches inside
F.

o

Every cone F € Gy is (1,¢,00)-good and every cone F € Gy is (2,,00)-good.
6. For every cone F € G1 UGy, AANF and B'NF are filled in F.

7. For every cone F € Gy UGy, if F C C;, we have that eX is perpendicular to the face of S contained in C;.

5.3 Propositions
Again, before proving Theorem we collect a list of results that will be used in the proof.

Proposition 5.4. Let vg,...,v, CR™ be vectors not contained in a halfspace and let A, B C R™ be measurable
sets with equal volume. Then there exists a vector v € R™ such that for every cone C' € €0V ywe have

IANC| = |(B+v)NCl.

Moreover, for every m,\ > 0, there is a computable constant nm > 0 such that the following holds. If
{vo,.--,vn} ={eo,...,en} (asin Deﬁm’tion and if A, B C R™ is a A-bounded n®3-sandwich, then A, B+v
s a 2X\-bounded n-sandwich.

Proposition 5.5. Assume that C C R™ is a cone and assume that A, B C R™ are measurable sets with the
property that
|[ANnC|=|BnNnC|.

Then given a codimension-two subspace L (through the origin), there exists a hyperplane H through L which
essentially partitions the cone
C=CUCy

with the property that
|Aﬂ01|:|Bﬂcl| and |AOC2|:|BQC’2\

Proposition 5.6. There exists an énmso that for every e,A\,n > 0 the following holds. Given A,B C R" a
simple Xy, -bounded n,,-sandwich with the property that for all cones C; € €, we have |[ANC;| = |BNC;|. There
exists a family of cones F essentially partitioning R™ refining € and a partition F = Fo U Fy U Fs such that

1. Every cone F € F has |ANF|=|BNF|.
For every cone F € F, the pair ANF,BNF is a (\, F)-bounded n-sandwich.
ZFG]-'O Nn(F) <e.

Every cone F € Fy is (1,58 £)-good.

AR IR

For every cone F € Fy there exists a sub-cone F' of F with u,(F') > (1 — &)un(F) such that F' is
(2’@75)—g00d,

6. For every cone F € Fy (or F' for F € Fy), if F C Ci, we have that e£ (or eX" ) is perpendicular to the
face of S contained in C;.

Proposition 5.7. For any £,£,\,n,v > 0, and A, B C R™ simple sets with equal volume, there exist £ 0
such that the following holds. Let F be a family of cones essentially partitioning R™ refining € and let F =
Fo U F1 UFy be a partition such that

1. Every cone F € F has |ANF|=|BNF|.
2. For every cone F € F, the pair ANF,BNF is a (\, F)-bounded n-sandwich.
5. Cper, un(F) < &2
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4. Every cone F € Fy is (1,£,é5D)-good.

5. For every cone F € Fy there exists a sub-cone F' of F with u(F') > (1 — &)y, (F) such that F' is
(2,4, 85D -good.

6. For every cone F € Fy (or F' for F € F»), if F C C;, we have that e& (or e,lfl) is perpendicular to the
face of S contained in Cj;.

Then there exist measurable subsets A’ C A and B’ C B and there exists a family of cones G essentially
partitioning R™ refining F and a partition G = Go U G1 U G such that

1A =B = (1-¢)4]

2. Every cone F € Gy has |A'NF|=|B'NF|=0.
3. Every cone F € Gy UGy has |A'NF| = |B'NF|.
4

. Every cone F € G1 UGy has A’NF and B'NF are (2\, F)-bounded (n,~)-approzimate sandwiches inside
F.

o

Every cone F € Gy is (1,¢,00)-good and every cone F € Gy is (2,¢,00)-good.
6. For every cone F € G1 UGy, AANF and B'NF are filled in F.

5.4 Proof of Theorem
5.4.1 Proof of Theorem [5.3|

Proof of Theorem[5.3 Let @%3 = éilm Choose ¢ sufficiently small to be able to apply Proposition Apply
Proposition [5.6] with this € and then apply Proposition [5.7} O

5.5 Proofs of Propositions
5.5.1 Proof of Proposition [5.4

Proof of Proposition[5.]} We begin by proving the first conclusion. Applying an affine transformation if neces-
sary, we may assume SV U = § and €U0 = € = {Cy,...,Cy}. Recall that S is the simplex containing
the origin in its interior with vertices V(S) = {eo, ..., en} (as in Definition[2.4). Denote by F; = co({e;: i # j})
the face of S opposite e;.

First, assume for a contradiction that for all v € R™, there exists ¢ € [0, n] such that |(B—v)NC;| # |[ANGC,].
Note that for any v € R”, we have

S B-w)nGl=|Bl= 4= ¥ [AnCi
1€[0,n] 1€[0,n]
Hence, if we define the closed sets
X, ={veR":|(B-v) ﬂCf(U)‘ > \AﬂOf(v)|}

for i = 0,...,n, then | J, X; = R". Consider 1S, a large blow-up of S, so that A, B C rS. Note that 7S is a
simplex containing the origin with vertices V(rS) = {rvo, ..., rv,}. Moreover, the face of S opposite to vertex
rv; is rF;. It is easy to check that if v € rF;, then |(B —v) N C;| = 0. By the definition of the X;’s, this implies
that v € Uj 4 X;. By the Knaster-Kuratowski-Mazurkiewicz lemma [KKM29], we find a point v € R™, such
that for all i € [0,n], [(B+v)NC;| = |ANC;).

We now prove the second conclusion. Fix v € R™ as above and assume, without loss of generality, v € C; for
somei € {0,...,n}, P C A,B C (149 )P,and S C A, B C AS. It is easy to check that (XNC;)+v C (X+v)NC;.
Also, there exist universal constants ., 8, > 0 such that |(S +v) N C;| > (14 min(o, Bnl|v]|2))]S N C;i|, where
we used that {vg,...,v,} = {eo,...,en}.

From the second and third inclusions and the above inequality, we get that

|(B+v)NCi| 2 [(B\S)+v)NCi| + [(S+v) N C
> [(B\S) N Ci| + (1 + min(an, Bnllv]]2))|S N Cil
= [(B\ S)NCi| + SN Cs| + min(an, Bulv||2)]|S N Cil
> |BNCi| + (n+ 1) min(ay, Ba||v]]2)|S]
> |BNCi| +X"(n+ 1)~  min(au,, Bal|v]]2)| B
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From the first inclusion and the choice of v, we get that
(1+7n'P)\P|>|A\B|>[(ANC)\(BNC;)| > |ANCi| - |BNCi| = |(B+v)NC;i| — |BNCjl.

Finally, from the first inclusion, we also get that ((1 +n')” — 1)|B| > |(1 + n')P \ P|. Combining the last
three inequalities, we get that (1 4+ 7/)" —1 > A="(n + 1)~ ! min(ay, Ba||v]|2). By choosing 7 > 0 such that
(147" = 1)A"(n + 1)a;t < 1, we further get that ||v]|2 < ((1+7/)" — DA (n +1)6; L

Let Z is the unit volume ball centered at the origin, let 7, be its radius and set ¢ = ((1 + ') — 1)A"(n +
1)B, 17,7, The above inequality implies that v € (Z. As S is a unit volume regular simplex and Z is a unit
volume ball, both centered at the origin, we find v € (Z C n(S. Moreover, from the first two inclusions, it easily
follows that S C 2P which implies v € 2n(P.

From the first two inclusions and the last two inclusions, we get

(1-n)SCcB+vCc(A+n)S and (1-2n{)PC B+vC (1+n +2nl)P.

Provided ¢ < 10~'n~!min(1,7), and thus 1’ small, the conclusion follows. Thus, we shall choose 7’ such that
(L+7)" = DA (n+ 1)t <land (1+7)" — DA (n+ )8, 7,1 <107 'n~  min(1, n). O

5.5.2 Proof of Proposition [5.5

Proof of Proposition[5.5. For notational convenience, assume that A, B C C, so that |A| = |B|. Consider any
hyperplane Hy containing L. For 6 € [0, 27], let pg : R™ — R™ be the rotation of the space fixing L by angle
0. Let Hy := pg(Hp) and let H9+ and H, be the halfspaces generated by Hy. Now consider the function
f:[0,7] — R defined by f(0) := |H, N A| —|H, N B|. Note that as A and B are bounded sets, f is continuous.
Note moreover that as H,f = H; , we find:

f(m) = [Hf WA| = |[Hf N B| = [Hy N Al - |Hy N B| = (|A] - |Hy N A]) = (|B| - [Hy N B|]) = —£(0).

By continuity, this implies the existence of a 6, € [0,7] so that f(fp) = 0. Hence, taking H = Hy,, and
Ci:=HtNCand Cy:= H NC, we find

[ANCy|=|BNnCy| and |ANCs| =|BNCy.

This concludes the proof of the lemma. O

5.5.3 Proof of Proposition [5.6

Let £,, := ZI0(p), where EI(p) is the constant from Theorem
For this proposition, we apply Theorem to the context of A and B.

Proof of Proposition[5.6, We will construct a respectful function f : C" x T;* — T;" as follows. Given a cone
C € C,, and a codimension-two subspace L € 75, distinguish two case; either |C' N A| = |C N B| or not. In the
latter case, let f(C, L) be any hyperplane containing L; this will not be a case that is going to affect us. If
|CNA|l=|CnB|let f(C,L) be the hyperplane given by Proposition

Apply Theorem to each of the C; € € with parameter £/(n -+ 1), to find a partitions F¢ = f()c'i I_I]-'lci U
.7:20 Let F; = U, Fit for 7 = 0,1, 2, which then satisfies the conclusions 3, 4, 5, and 6, with the note that
each of the C;’s is defined by n lines. It remains to check the first two conclusions.

For conclusion 1, note that by Proposition a valid partition of C; contains only cones F so that [ANF| =
|B N F|, so the same holds in particular for all F' € F.

For conclusion 2, note that being a A-bounded 7 sandwich is inherited by taking subcones, so in particular
for all F' € F, we have that AN F,BN F is a (A, F)-bounded 7,, sandwich. O

5.5.4 Proof of Proposition

Proof of Proposition[5.7 We first construct G’ = G U G} LU G5. First set G := Fy. For all F € Fp, let F/ C F
be the subcone with p, (F') > (1 — &)un(F), which is (2,4,e)-good. Then let G} := {F’ : F € F2}. For every
F € F, we can partition F'\ F’ into a number of convex cones. Let F(F') be that collection of convex cones.
Let G := Fo UUper, F(F).

Clearly, G’ is a refinement of F. Note that EGE% pn(G) =Y per, bn(F) + X per, bn(F\ F') < 2e.

We construct A D A; D A’ and B D By D B’ with increasingly more structure as follows.
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Let Ay C A and B; C B maximal so that A1 N F and By N F are filled for all F € G U G). To this
end, for a given F € G/ with i = 1,2, consider the cone C' € C* and linear function f : C — K"~% so that
F =U,cc{z} x f(x). Let g,h: C — PR") so that ANF = J,.c{z} x g(x) and BNF = {J,c{x} x h(z).
Define ¢, b’ : C — K"™* by

] otherwise

@) {f(x) if g(2) = f(z)

and h' analogously. Let

ANF:= U {z} xg'(x) and BiNF:= U {z} x W (x).
zeC zeC

For F € G|, remove everything in the interior of F' from A and B, so that A; N F° := @ and B; N F° := .
By A-boundedness, we get

Do IFN(ANAN < Y OullApn(F) < On(elA),

Fego Feg)

and analogously for B. To control |A\ A;| in G{ UGS, we use the fact that the cones F' € Gj UG} are (i, £, £)-good
and that A and B are simple. Find Q4 C Z" so that A =J ., = +[0,1]". Note that if z € F'N (A \ A;) for
some cone F' € G} UG}, then consider the basis el’,... el and write + = 2’ x 2 so that 2 € 2’ x g(2'), with
g:C — K"~ as before. As x ¢ Ay, we find that g(2’) # () and g(z') # f(2'), so that g(z’) contains an element
of DA. As F was (i,/,¢)-good, we find that the radius of f(2’) is at most e||z’||s < O, (g|A|*/™). This implies
that all points 2 in A\ A; must be close to the boundary of A, i.e., F N (A\ A1) C A + B(o, O, (| AY™)).

Hence,

Y IFN(A\ A)| < [0A+ B(0,0u(e|A[V™)| = On(e| AV - [Qal) = On(e] Al TD/™),
FeG1UG,

so that we find

AN A= D IFN(ANAD+ Y0 [FN(A\ A= Ou(elA["HD/m) < &,

Fego FeGi1UgGa

for any &’ by choosing e sufficiently small in terms of €', |A| and n. Let By C B be constructed analogously.
Note that the sets A; and B satisfy conclusions 1, 2, 5, and 6 in the lemma.

We continue to construct As C A; and By C By. We aim to remove part of Ay N F’ or By N F’ (whichever
is larger), outside of %’I‘S , where r is such that S C A, B C ArS, while maintaining the property that the sets
remain filled in the cones. Indeed note that as

A\ A NF' COA+ B(0o,0,(c|AY™) and 7S C A,

we find that choosing e sufficiently small in terms of |A|,r, and n, we have %T’(S N F') C Ay, B;. Hence,
(assuming that A; N F’ is larger than By N F’), there exists a filled subset Ay N F' C A; N F’ so that if we let
ByNF' =By NF', then [A;NF'| = |BoNF'| and 2r(SNF') C Ay NF', BN F'. Let Ay and B, be defined
thus in all F" € G{ U G).

To estimate |Ag\ A1 |+|B1\ Bz|, for every F’ € G;UGs, compare |A1NF’| and |[ByNE’|. Find the F € F;UF
so that I’ C F. Note that |41 N F'|,|B1 N F'| < |F N B| = |FnN A so that we find

S JJANF |- |BinF|[< > |[FNA-|F'NA|+|[FNB|-|F' NB
F'eG|ug) F'eG|ug)

We consider the contribution from A and B independently to find

SOFNA-F'nAl< Y [(F\F)NA+[F'N(A\A)| < |A\ Ayl <¢
F'egiug) F'egGiug)

Hence, we find
A\ A+ B\ Bo| < > |[ANF|—|BiNF| =2
F'egiug)
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Note that Ay and Bs satisfy conclusions 1, 2, 3, 5, and 6 from the lemma. To get conclusion 4 as well, we
construct A’ C Ay and B’ C By as follows. Let H C Gf U G} be the collection of those F’ so that A, N F’ and
By N F' is not a (0, y)-approximate sandwich in F’. If we let F' € F so that F/ C F, then we find that AN F
and BN F is a (n, F) sandwich, so there exists a P so that P C AN F,BNF C (1 + n)P. This immediately
implies that Ao N F',BoNF' C (1+n)PNEF’ soas Ao N F’', By N F' is not (n,7)-approximate sandwich, we
must find |(P N F')\ Az| + [(P N F')\ Bs| > v|P N F’|. Notice that as P C A, B, we find that

—_

(ANF)\ Az| + [(BNF')\ Ba| > 4PN F'| > 7= )" y(l co(F' N Az)| + | co(F' N By)l)
> Qu(|F' N Ag| + |F' N Ba)),

so that, summing over all F’, we find

> IF' N Ag|+|F' N By| =0, ( > |(AmF’)\A2|+|(BﬁF’)\Bg|> < On(|A\ As| + |B\ By|) < O, (&").
F'eH F'eH

Hence, the result follows by choosing Go = GiUH, Gt = Gi \ H, Go = G5\ H, and A’ C Ay and B’ C By
are obtained by removing everything in the interior of the cones in H, ie., A" = Ay \ Upey F° and B' =
By \Upey F°. =

6 Intermediate results for the Quadratic Theorem (Theorem [1.5)):
Part 111

6.1 Setup

Definition 6.1. Lel e1,...,e, be an orthogonal basis. Let ;. ;.0 R" — R7 be the projection onto the j-
dimensional subspace spanned by e1,...,e;;. For a set' Y and x;,,...,x;; € R, let Ywil,...,mij be the fibre of Y
above (Zi,,...,2;;).

Definition 6.2. For a setY let Y =Y Nmy[1/4,1/2].

Definition 6.3. Given a (n— 1)-dimensional simplex X C R™, a cylinder over X is a set of the form X +RTv
for some direction v € S™1.

Definition 6.4. Given p > 0 and a subcone C C R™ of a cone in €, we say a cylinder U over a simplex
TcCOn %85 is p-central if the n + 1 defining hyperplanes Hy, ..., Hp41 (i.e., so that U = ﬂ?_ﬁl H) of the

cylinder have the property that for all choices *; € {+, —}, we have |C' NS N ﬂ?:ll H)| > plCNS]|.

Definition 6.5. Say a set X C R™ is a-almost convez if | co(X) \ X| < a|X]|.

6.2 Propositions

Proposition 6.6. For any w > 1, there exists ¢, ., > 0 such that the following holds. Let T = {o,e1,...,en_1}
be an orthogonal simplex. Let U = T x R. Let T x [0,1] C A,B C T x [0,w]. Assume that A and B are
filled in the sense that Ay, 5, = Uy oz, or Az o, = 0 and similarly By, », = Uy s, 0 By oz, = 0. If
[tA+ (1 —t)B| < (14 8)|A] with 0 < § <t 1, then |A/AB'| < ¢t~ Y/26Y2|A|. Here A" and B’ are as in
Definition[6.3

Proposition 6.7. Let C C R" be a subcone of a cone in €, let U be a p-central cylinder over a simplex
TcCn %BS, and let a-almost convex sets X, Y C C be so that

o [X]= Y],
e SNC CX,Y CAS,
o X+ (1-)Y|<(1+9)X]

Then there exists a cylinder V = (1+ S)U + = so that
o |B] < On, (82712 + q),
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o [(UAV)N S| =0, (6V2t712+a)|CN S|,
o [ XNU|=|YNV]|,
e H(XNU)+(1-t) Y NV)| = | XNU| <X+ (1 -8)Y|—|X|

Proposition 6.8. For alln € N, A > 1, and € > 0, there exists p = dgtlﬁi . > 0 so that the following holds. Let
C C R"” be a subcone of a cone in €. Let f1,..., f, be an orthonormal basis of R™ so that f, is perpendicular
to the face of S intersecting C.

Then there exists a (n—1)-simplex T C Cﬂ%(’?S of radius less than € and a collection U of p-central cylinders
over T so that

[ |Z/{| = On,k,e(l);
e M(CNS\(CNS)CUpeu U,

e one facet of T is parallel to the subspace spanned by f1,..., fn_s.

6.3 Proof of Propositions
6.3.1 Proof of Quadratic Theorem: Proposition

Proof of Proposition[6.6 Let C, D be the sets A, B, respectively, Steiner symmetrized around ey, i.e., Cy,,
D,, are discs with the same size a A,,, B, , respectively.

Claim 6.9. |A'AB'| < |C"AD!| + 0,4(5)|A]

Proof. By Theorem we know that |co(A4) \ A|,|co(B) \ B| < O,,(6)|A|. Therefore, it is enough to show
that
|A'AB'| < |C'AD'| 4 |co(A) \ Al + |co(B) \ B.

For a fixed fiber, we have the elementary inequality

‘Aacl,...,acn,l ABxl,...,xn,J S ||A;c1,...,xn,1‘ - |Bx1,...,xn,1||
+ ‘CO(A),U17,.,’$”71| - |A‘T17~~;$n71| + |CO(B)I17~~,In71| - |B$1;<-~7wn71|'

By the hypothesis that A and B are filled, for fixed z; and varying zs, ..., x,—1, we have |A;, 5, | is constant
and | By, .. .. ,| is constant. Hence, for fixed z1, we get that

.....

/ ||Azl,...,xn_1|Bxl,...,mn_ludxg...dxn_l\ / Aarons| = Boon sz . dns| = || Ass| — B,

therefore,

+ / | CO(A)I1,~.’:IJTL71| - |Az1,~~7mn71 |dxy ... dry

b [ 1e0Blar s | = 1Byl
— [14ns] = Bl |+ (A}, | — [y |+ c0BL, |~ Buy .

Thus, we deduce

|A/AB/| = / |A901,~~~7wn71ABIl,m,Infl |d$1d$2 coedng
T/

1/2
- / o (asl = 1Bl 5 ooz = 4] + | co(B)as| = By o

1/2
= [ 10 = D]+ €0, | = |+ [ 0B | = B,
< |C'AD'| + |co(A) \ A| + |co(B) \ B|.

This concludes the proof of the claim.
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Recall that the sets C and D are Steiner symmetrized around e;. In particular, as [tA+(1—1¢)B| < (1+9)|A],
we deduce [tC + (1 —t)D| < (1 + 9)|C].

Finally, because T'x[0,1] C A, B C T x [0, w], there exists a parameter p such that p(1—xz1)" < |Cy, |, |Da, | <
wp(l — z1)™ for z1 €10,1] .

For a point = € [0, 1] there exists a unique point y,, € [0, 1] such that if we denote by I = [0, z] and J = [0, y],
then ‘C[| = |DJ|
Claim 6.10. The function y,: [0,2/3] — [0,1] is continuous and Lipschitz with parameter ©,, ,(1).

Proof. This follows immediately from the fact that, for an interval I C [0,2/3], we have |Cy|, |D;| = Oy (P)|I]-
O

Claim 6.11. For z € [1/4,1/2], y =y, satisfies |y — x| = Og.,,(t1/25'/2).

Proof. Let I = [0,z] and J = [0,y]. AstCr+(1—t)D; and tCre+(1—t)D je are disjoint, we get |tCr+(1—t)D | <
|Cr| 4 0|C|. Moreover, as |A| = O,(|Ct|), we further get [tCr + (1 —t)Dy| < (1 + Oy, (9))|C1]-

First note the qualitative bound that y < 2/3 (provided ¢ is small). Recall that for every 0 < z < 2/3 we
have |C,|, |D;| = On w(p), and that the sets C; and D are symmetrized. It is easy to see that, by doing d + 1
parallel hyperplane cuts (containing the direction e;), we can construct convex cylinders C'; and D’; inside C;
and D, respectively, such that

C1l = 1D} = Onw()ICr] and  [tC7 + (1= )Dy| = |C7| < [tCr + (1 = )Dy| = |Cyl.

In particular, we get that the convex cylinders C; and D’; have heights |I| and |J| and [¢tC] + (1 — t)D’;| <
(14 0,,,(5))|C7]. By the sharp stability of the Brunn-Minkowski for convex sets, we then deduce |I| =
(1+0(t=126Y/2))|J|. As x € (1/4,1/2) We conclude |y — z| = Oy, ,,(t71/261/2). O

Claim 6.12. For points x € (1/4,1/2), if |y—z| = Oy (t~/26Y/2), then | co(C)z|—| co(C)y| < Oy (t~1/261/2)
and | co(D)y| — | co(D),| < Op (t~1/26Y/2)p,

Proof. 1t is enough to notice that for x € (1/4,2/3), we have |co(C),| is Lipschitz with parameter ©,,.,(p),
which follows from the fact that | co(C),|*/™, | co(D),|*/™ are convex and p(1 —21)" < |Cyl, |Ds| < wp(1l —21)"
for z, € [0, 1]. O

Consider the partitions into very small consecutive intervals [0,1] = IoU---UIy and [0,1] = JoU- - -U.J, such
that Cy, and Dy, are all cylinders with the same volume. Moreover, set [tCr, + (1 —t)Dy, | = (14 0x)|Cr, |- It
is trivial to check that }°, 0x|Cy, | < 6|C|. In particular, 32y 1 (1/41/2) 0k < Onw(6).

Claim 6.13. Fiz k such that Iy, Ji, C [0,2/3]. Forx € I, and y € Ji, we have |Cy| = (1—|—On7w(t’1/25,i/2))|Dy|.

Proof. Because Cp, and D, are convex cylinders, the result follows immediately from the sharp stability of
Brunn-Minkowski inequality for convex sets [FEMPQ9]. O

It is easy to see that the function x — y, is picewise linear and maps the interval Ij linearly into the interval
Ji. Fix x € I, C [1/4,1/2]. We have the elementary bound

|Gzl = |Da|| < [ICal = [Dy, || + [co(D)a \ Dal| + |co(D)y, \ Dy, | + || co(D)o| — [ co(D),y, |-

From Claim we deduce
1Cal = Dy, || = On (17126 *)p.

From Claim [6.11] and Claim we get

|| co(D)z| — |co(D),, || < O (t~1/261/2)p.
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Therefore

1/2
IC'AD'| = / 1Co| = Dalldz = Y Onw(tV28%)p x | Ii] + Onu(t71/26Y2)p x 1/4
1/4 kI C[1/4,1/2)

1/2

+ / (1c0(D)o \ Dal + [ cO(D)y, \ Dy, |)de

1/4

= Z OH,W(t_l/Qéi/z)lclkl + On,w(t_l/Qél/Q)|C[1/4,1/2]|
kil C[1/4,1/2]

+ /1:2 (|CO(D)m \ Dy| + | co(D),, \Dym|)dl'

1/2
gon,w(t—1/251/2)|0\+/ <|co(D)x\Dz|+|co(D)y$ \Dy1|)daz.
1/4

By the linear stability result we have |co(D) \ D| < O,,,(9)|C|, and by Claim we deduce

1/2
/ (1c0(D)a \ Dal + [ c0(D)y, \ Dy, |)do < 01 (9)[C]]
1/4

Therefore, we get |C'AD'| < O, ., (t7/2§'/2)|C|, that together with Claim allows us to conclude that
|A/AB'| < O, (t71/251/2)| A O

6.3.2 Proof of Proposition

Proof of Proposition[6.7 First affinely transform so that the simplex formed by the vertices of T' together with
the origin form a regular simplex.

Write Hj for the hyperplane containing the face of %S intersecting C. Writing H" for the halfspace defined
by Hp not containing the origin, we find that by SN C C X,Y C AS, we have |Hf N X| = |Hf NY]|. Let
X':=Hf NX and Y’ := Hf NY, so that | X’| = |Y’|. By the Brunn-Minkowski inequality, we have

t(Hy NX)+ (1 —t)(Hy NY)| > |[Hy NX].

Since t(Hy, N X)+ (1 —t)(Hy NY) is a subset of tX + (1 —¢)Y disjoint from ¢X' + (1 —¢)Y”, we find that
[(tX' '+ (1-)Y'|—|X|<tX+(1-t)Y]| - |X|

We repeatedly apply this last argument for different hyperplane cuts.

Let Hy,...,H, be the hyperplane cuts defining U. Find parallel hyperplanes Gy,...,G, so that | X' N

' HY =Y Nn_, G| for all j = 0,...,n, which exist by continuity. We will show that the distance

between H; and G; is at most O, (61/225_1/2). We show this for ¢ = 1, the other cases follow analogously by
induction.

Consider the sets X* := X' N Hf and Y+ := Y/ N GE. By the fact that U is central, we know that
| X~ NS| > p|CnNS|. Write H' for the hyperplane 2H, containing the face of S intersecting C. Let

X" =X"nH) =SNHf nH n(H')~

and find a plane G’ parallel to H' so that Y” := Y~ N (G’)~ satisfies | X”| = [Y"”|. By the argument before, we
find that

X"+ (1 =Y = | X" < X'+ (1= )Y'| - | X'| <X + (1 - t)Y| - |X| < 6| X| < p 16| X7).

Note that X" is convex, so by the stability result for the Brunn-Minkowski inequality in [FEMP09] we find that
|X"AY" +2)| < O, (61/2t71/2) | X"| for some translate z € R™.

Consider the component z+ of z perpendicular to Hy. Note that the band between Hy and Hy + z+ of
SNCNH; NGy is completely contained in X”AY”, so as U is central, this implies [|z[|> = O,, (61/2t71/2).
As X" and Y are p~la-almost convex, we find that translating them by 2+ changes the symmetric difference
only little, i.e.,

‘X”A(Y”—I— (l‘—xl)” < |X”A(Y” —|—.%‘)| +0, ((51/2t_1/2 +a> |X”‘ <0, ((51/2t_1/2 —i—a) |X”|.
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It is now easy to see that the translate z with no component perpendicular to Hy minimizing |X"A(Y" + 2)|
is z = 0. Indeed, for z = 0, in every plane P parallel to Hy we have that PN X" and PNY" are nested (which
one is contained in which depends on the relative positions of Hy and H’). Hence, we find

|X”AY”‘ <0, (51/22571/2 —|—04) |X”|.

Finally, akin to the previous argument, we now find that (G1AH;)NSNCNHf NH' - NG~ C X"AY", so
that [(GiAHy) N S| < O, (6Y/2t71/2 + &) |C N S|. This concludes the induction.
Letting V := (i, H;", we find that UAV C J_, G AH!, therefore

(UAVYNS| <O, (51/2t_1/2 + a) icnsl,
and consequently |8| = O, (61/2t71/2 + a). O

6.3.3 Proof of Proposition

Proof of Proposition[6.8 We first show that we may assume C' N %85 is a simplex.

Consider the set P := C'N %BS which lies in a subspace spanned by f1,..., fn_1. Let L be the subspace
spanned by fi,..., fn_2. Let z,2’ € OP so that x + L and z’ + L are the two translates of L tangent to P.
Write o’ := %ﬂ”/ Let P’ be the projection of P onto o’ + L along the direction xz’. Note that PN (o' + L)
contains %. Let T' be the largest simplex contained in that translate of Ol';P/, so that |T'| = Q,(|P’|) and
P’ is contained in some translate of 2nT”. Let T = co(T" U {z}).

This construction gives a set T" so that there exists a translate of 4nT" which contains P. Indeed, for every
point y on the line segment between o’ and O/% we have that L +yNT" is a homothetic copy of T” larger than
1T'. Hence, for all points y on the line segment between 4no’ and 2n(o’ + z) we have that L +y N4nT" is a
homothetic copy of T” larger than 2nT” (which contains a translate of P’). Hence, we can translate 4nT" so
that P C z 4+ 4nT" and |T"| > Q. (| P|).

Let T be the translate of min{e, ;- }7" centred at the barycenter of 7", so that we still have |T| > €, (| P|)
(for notational convenience assume min{e, -} = ;). Note that one of the facets of T is parallel to 77, i.e., to
the subspace spanned by f1,..., fn—2. Since the T is contained in the proper interior of T C z + 4nT" (at a
distance lower bounded in terms of n from 9(z + 4nT")), we find that there exists some o,, so that z + 4nT"
is contained in the translate of ¢, T centred at the barycenter of T. Write p for the barycenter of T, so that
Hy 4, (T)=T"C P C Hp,, (T), where Hy ¢ is the homothety with ratio £ centred at g.

Write S’ for the halfspace containing S defined by the hyperplane which contains the face of S intersecting
C. Note that CNS =CNS'. Write C' := |, 5Hp,0, (T) for the cone generated by the set H,, (T) D P
and write C" := | J . g 8Hp an(T') for the cone generated by the set Hy 4,(T) = T" C P, so that C" c C C C".

We have that

ACNS)\(CNnS)cAC'nS)\(C'NnS).

Up to an affine transformation, we may assume co(T U {o}) is a regular simplex. Note that the problem of
covering A\(C' N S") \ (C’' N S’) with cylinders over T' which are central in the cone C” depends only on n, A,
and € and no longer on the particular C, and f1,..., f,, that we started with. Hence, we can simply choose
any collection U of cylinders (which are {-central for some £ > 0) so that A\(C'N.S")\ (C"NS") C Uy, U and
choose p’ appropriately so that the cylinders are p’-central in C”'. We automatically have [U| = O, (1) and
if a cylinder is p’-central in C” it is also p central in C for some p depending only on A, n, ¢, and p'. O

7 Proof of the Quadratic Symmetric Difference result (Theorem [1.5))
Proof of Theorem[I.5, Choose parameters according to the following hierarchies. First choose
n>Atspses>Nt>wl
so that €, p, \, N, w = 6,,(1). Then choose
e, p, M, w>> A" >n> >0,

where every variable is understood to be chosen sufficiently small in terms of all of the preceding variables.
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By Proposition we may assume that A, B form a simple \/2-bounded 7’-sandwich. By Proposition
we may assume (after translating) that, for C; € €, |C; N A| = |C; N B| at the cost of A, B form a simple
A-bounded n-sandwich.

Now apply Theorem with parameters £ = 0, \,n,7 > 0, to find A’ C A, B’ C B, and a family of cones G
essentially partitioning R™ refining € and a partition G = Gy U G; LI G5 such that:

LA =B = (1 -¢§)|A];

2. For every cone F € Gy it holds |[A'NF| = |B'NF| =0;

3. For every cone F € Gy UG, it holds |[A' N F| = |B'N FJ;

4. For every cone F € G UGs, A’NF and B’ N F are (2), F')-bounded (7, v)-approximate sandwiches inside
F.

5. Every cone F € G; is (1,(‘2;3], o0)-good, and every cone F € Gy is (2,@%3], 00)-good;
6. For every cone F' € G1 UGy, AN F and B’ N F are filled in F;
7. For every cone F € Gy U Gs, if F C C; then e is perpendicular to the face of S contained in Cj.

By our choice of &, it suffices to show |A’AB’| < O, (t=1/2§1/2)|A|, as |[AAB| < |A/AB'|+|A\A'|+|B\B'| <
|A’AB'| + 25| Al.

For every cone F € Gy Ul Gy, write dp =
d0p =0 for ' € Ggy. In terms of this parameter, we find

t(A'NF)+(1—t)(B'NF)|—|A'NF . . .
l£( )+ I A)’(ﬁ 7 il |. For notational convenience, write

> GplANF| =Y HA'NF)+(1-t)(B'NF)|—|A'NF| < [tA'+(1—t)B'|— |A'| < [tA+(1—t)B|—|A'| < 26]A],
Feg Feg

where we used that t(A'NF)+ (1 —¢)(B'NF) are essentially disjoint subsets of tA’ 4+ (1 — t)B’. We also have
the trivial observation that »_ .. [(A"'NF)A(B'NF)| = > peg [(A/AB) N F| = |[A/AB’|. By concavity of
the square root function, it thus suffices to show |(A’ N F)A(B' N F)| < O, (t~Y/2§/2)|A’ N F| for every cone
F € G. Henceforth, fix a cone C € Gy for which we will show this bound on the symmetric difference (the case
that C' € Gy U G follows analogously, though more easily). For notational convenience write X := A’ N C and
Y:=B'nC.

As XY form an (n,7)-approximate sandwich inside C, we find that for sufficiently small n and 7, we have
that d¢ is smaller than A for all C € G. Hence, by Theorem we know that X and Y are O, ,(6)-almost
convex.

Now apply Proposition to the cone C and the basis ef',...,e¢ to find a (n — 1)-simplex T C C'N %85

rn
and a collection U of p-central cylinders over T of radius less than ¢, so that

o (U] =0nx(1) = 0x(1),
e AM(CNS\(CNS) CUUquv

c

e one facet of T is parallel to the subspace spanned by e{, ..., eS_,.

Since A’ N C and B’ N C are A-bounded inside the cone C, we have

XAy cacns)\(cns)c |Ju,
veu
so that
< < < .
|IXAY| < (;4 UN(XAY)| < [U|max [U N (XAY)| < On (glgg U N (XAY)|>

Hence, it suffices to show |[U N (XAY)| < O, (t~1/26'/2)| X|. Because one facet of T is parallel to the subspace
spanned by ef, ..., el 5, we find that X N U filled.

Now apply Proposition to C,U, and the O, ;(d)-almost convex pair X,Y, to find a cylinder V =
(14 B)U + z so that:

o B < Onp (8124712 4 0,,4(8)) = Oy, (87/271/2),
° |(UAV) N S| = On,p (51/215*1/2 + On,t(é)) |C n S| =0, (51/21571/2) |Cﬁ S\,
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o (XNU|=[YNV|
e H(XNU)+ (1 - NV - XNU|<[tX+(1-0)Y|—|X|=0dc|X]|

Note that as V' is homothetic to U, we also have that V NY is filled.

As T lies well within S and has radius less than €, we can apply Lemma [10.10] to find ¢ € (¢/2,2t) and
X'")Y’ that form a tubular X'-bounded n”-sandwich, where A’ = 6,,(\) = 6,,(1) and 7" tend to zero with 7, so
that

X' +(1-)Y|-¢X - Q=Y <HXNU)+ 1 -t)(Y NV)| <dc|X],

and [(X NU)AY NV)| < | X'AY'| 4+ O, (Jéﬂt—lm) |X NU|. Moreover, as we have only taken affine trans-

formations, we find that X’,Y”’ are both filled in their common tube, say W. After affine transformation, we
may assume W = S’ x R for an orthogonal simplex S’ so that S’ x [0,1] € X", Y’ C S’ x [0,w/2] for some
w = On7>\/(1) =0,(1).

Note that by construction ||X'| — [Y'|| < O, ((532#1/2) |X’|. Extend (i.e., append a set of the form

S" x [=¢,0) for an appropriate ¢ < O, ((%/215’1/2) and then translating that set up by () the smaller of the
two sets to find X” O X’ and Y D Y’ with | X”| = |Y"|, so that by Lemma [10.11} we find

X"+ 1 =t)Y'N— X" =tX"+1-¢)Y|-¢IX]-1-)Y|<dc|X]
Moreover, we have | X'AY’| < |X"AY"| + O, (5é/2t_1/2> | X"| and

S x10,1]c X", Y" 8 x[0,w/2+ (] C S x[0,w].

Clearly, X" and Y are still filled.
Recall that as U was p-central, we find that |X”| > 27"|X’| > Q, ,(|X]) = Q,(]X]|). Hence, as dc < A,

we find that 6C||XL”‘\ is sufficiently small in terms of n and ¢ so that we can apply Proposition to find that

|X"AY”| < On7w(t71/2§1/2)|X”| _ On(t71/251/2)|X”|.
O

Remark 7.1. We remark that in the above proof we applied Theorem[5.3 to construct the family G. We never
used the property that cones in Gy and Gy are generated by a bounded number of lines (i.e. in property 5 it would
suffice to have £, = 0o ). However, we believe this property significantly expands the applicability of Theorem
and we shall exploit exploit it in future work.

8 Intermediate results for Linear Theorem with few vertices (The-
orem [1.6))

For notational convenience, consider the following definitions. Given A, B C R"™ with |A| = |B]| and ¢ € (0,1),

let
Dy(A, B
D:(A,B):=tA+ (1—t)B, and 0:(A,B):= It(|A’|)—1.

Throughout this section, we will always consider ¢ € (0,1). We will show the following theorem.

Theorem 8.1. There exists a constants &L such that the following holds. Given A,B C R™ of equal volume
and t € [1,1 — 7] such that co(A) is a simplex, A is the intersection between a simple set and a simplex and
01(A, B) < min{t, (1 — t)}™, then

|co(A) \ Al < min{t, (1 - £)}~"5,(A4, B)|4].

Theorem follows easily from Theorem which is the same result with the stronger assumption that
co(A) is a simplex.
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8.1 Outline of the proof of Theorem 8.1
The proof of Theorem follows the following steps.
1. Writing S = co(zo, ..., Z,), find a point v € A so that the density in each of the subsimplices
CO(LQy -+ vy i1, Uy Tit 1y« -5 Tp)
does not decrease too much (cf Proposition .
2. The doubling of A in each of the subsimplices is subadditive (cf Proposition , i.e., there exists a
matching partition B = (Jg, Bgs with |Bg/| = |[ANS’| so that
tA+ (1 —t)B| = > [#H(ANS')+(1—t)Bgl.
3. Iterating this process, we end up with two types of simplices: those in which A has low density and those
with small radius.

4. For a simplex in which A has a sufficiently low density (but not too low), i.e., |S"NA|/|S’| is small, a recent
result by van Hintum and Keevash [vHHK23b] shows that the doubling is £2,,¢(1) (cf Proposition[8.3)). Since
we can guarantee the density of A inside S’ is O,,4(1), we find that |S’| is controlled by the doubling of
ANS'.

5. Assuming that without loss of generality that A is a finite union of boxes intersected with a simplex (cf
Proposition [2.9)), the combined volume of simplices with small radius that are not completely filled by A
goes to zero with the number of iterations.

6. Therefore, we conclude

[co\AI=) ISVAI< D Oua(HANS)+ (1= 0)Bs| —[ANS )+ > |9

S’ low density S’ small radius S’
=On(tA+ (1 —¢)B| — |A]).
8.2 Auxiliary propositions

A crucial ingredient is the following proposition.

Proposition 8.2. If co(A) is a simplex S" with vertex set {xo,...xn} and x € A is some point in the interior
of co(A), then we partition S’ into simplices

Si = CO(Io, PR 47 Sy [N VPR 17 S l‘n)

For any B C R™ with |B| = |A| there exist sets B; C R™ with |B;| = |[ANS;|, so that

3 'A&'Si 5:(ANS;, B:) < 8,(A, B)

We recall here the following result of van Hintum and Keevash [vHEK23D).

Proposition 8.3 ([VHK23h]). There exists a constant &3 so that if t € (0, 1] and A, B C R™ of equal volume
satisfy | co(A)| + | co(B)| > t_(m"Q\AL then 0;(A, B) > t".

The last crucial ingredient is the following proposition.

Proposition 8.4. For alln € N and o > 0 there exists a constant @L >0 (we can take ﬂ = ci'zlofm”(3 for
some constants &I, &L > 0) 5o that the following holds. Let X C R™ be a set and S’ = co{xo,...,z,} C R
be a simplex with X C S’. If | X| > «|S’|, then there exists a point x € X such that for all0 <i<mn

lco{xo, ., Tiz1, T, Tit1, .., Tn} N X| > E|S'|.
Moreover, there exists a constant ﬂ >0 (we can take ﬁ% = H} such that

maxd(z,z;) < (1 — E) max d(x;, x;),
i i,

A weaker version of Proposition [84] in the dense domain follows later in Lemma [I0.6] which has a simpler
proof.
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8.3 Auxiliary lemmas

Lemma 8.5. For alln € N and « > 0 there exist constants 7%”,@“ > 0 (we can take @n = @n
BTy LB, for some constants cim,cm > 0) so that the following holds. Let X C R™ be a set and S’ =

n

co{zg,...,xn} C R™ be a simplex with X C S'. If |X| > «|S'|, then there exists a subset Y C X with
Y| > @,MSW such that for allx €Y and 1 <i<mn

|co{@o, ...\ Tim1, @, Ty, .. 2} N X| =12 |S].
Lemma 8.6. For alln € N and o« > 0 there exist constants @n,ﬁgm > 0 (we can take them Tﬁn =

2
7@ cmoz@ , for some constants c@ &8 > 0 ) so that the following holds. Let X C Q = [—1,1]". If
2,a,n
|X| > a|Q| then there exists a subset Y C X with Y] > 1@2”|Q| such that for all x € Y and all faces F of
the box Q

lco({z} UF)N X[ > B8 |Ql.
Before the next lemma we need a definition.

Definition 8.7. For o > 0 and 1 < j < n construct the (n — 1)-dimensional box

Qj,a =co ({ZE'L‘GZ‘Z gi € {—a,a} forallie [n]\{j} ande; = 1})

and construct the cone
Cja = U>0tQja-
Moreover, for —n < j < —1let Qjo = —Q—jo and Cj o =—-C_; .
Lemma 8.8. For alln € N and o > 0 there ewist constants ﬂn,@n > 0 (we can take ﬂn = vﬁn =

c@a‘m’ﬂ, for some constants &8 B3 > 0) so that the following holds. Let X C Q = [~1,1]". If | X| > |Q),
then there exists a subset Y C X with |Y] > ﬂnmﬂ such that for allx € Y and all j € [-n,n] \ {0}

(2 + Cja) N X| 2 153 ,1Ql.

Lemma 8.9. For alln € N and a > 0 the following holds. Let P = [0,a1] X --- X [0,a,] + = be a box with
x €R" and a,a?/8 < ay,...,an_1 < ana?/4. Let X be a subset of the box with | X| > «a|P|. Then there exists
a box

Q=1[0,b1] x -~ x[0,by] +y  withy € R™ and by(a/4)?/8 < ba, ..., b, < by(a/4)?/4

such that, if we set’Y = QN X, then the following holds:
QI = o®[P|/27", Y| 20a|Q|/4, and |(y+Cpa)NX|2alP|/4 foralyeY.
We shall need one more lemma, for the proof Theorem [I.6]

Lemma 8.10. Let t € (0,1) and A,B,C C R" so that |A| = |B| and C is convex with a finite number of
vertices, then there exists a subset B’ C B so that |B'| = |ANC| and

[HANC)+ (1 —-t)B|—|ANC| < [tA+ (1 —t)B| — |A|.

8.4 Proof of Theorem [8.1]

Proof of Theorem|8.1] we will consider the case t < 3, the other case follows analogously. Let € = t‘m" Let
&3 be the constant from Proposition Let &3, cﬁ and p = AE the constants from Proposition

Consider the following iterative process. First set 76 = {co(A)} and Sy = (), and note that | co(A)] < 71| A4]
by Proposition At a given stage i with 7;,S;, look at every element S’ € 7; and distinguish two cases:
either |[S' N A| <¢|S’| or |S' N A| > ¢|S|.

For each simplex S’ = co{xg,...,2,} € T; with |S' N A| > ¢|S’| we construct the n + 1 simplices
fo(S"), ..., fn(S) as follows. We apply Proposition to find a central point x € S’ N A and we construct the
simplex fJ(S/) = CO{HZ‘O, ey L1, X, L1y 71‘n}.

Now let

Tig1 = U {fo(S),.. ., fa(S)}  and S :=8U{S €T |8 NA|<elS|}.

S'€Ti: |S'NA|>¢e|S|

Using the fact that A is closed, it follows by induction that for ¢ € N and S’ € T;US; we have co(ANS’) = 5".
Moreover, T; U S; forms an essential partition of co(A).
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Claim 8.11. For all S’ € T; and j € [0,n], we have |f;(S")| > cimsm"6|5/|,
Proof. By Proposition (and our choice of z € §' N A), we have |f;(S")| > |f;(S") N A| > CELEECM”GH’L O
Claim 8.12. For all 8" € §; UT;, we have |S' N A| > cflmecm"6|5’|.

Proof. Every simplex S’ € S; UT; is f;(S”) for some S” with |S” N A| > ¢|S”|. By Proposition (and our
choice of z € S’ N A), we have |S' N A| > &% °|57]. O

Claim 8.13. At stage i there exists a function g; : T, US; — P(R™), so that for all " € T, US;, ¢:(S’) is a
measurable subset of B such that |g;(S")| = |S' N A| and

> JANS]-6(AN S, gi(S") < |A]-6,(A, B).
5'€TUS;
Proof. This follows by induction from Proposition [8:2] O
Claim 8.14. For every i, we have that
1 8
SIS < gt AL 8(A, B).

S’eS;

Proof of Claim. For S’ € S;, we know by construction and by the second claim that cflﬂeé " IS/ < 1S'NA| <
g|S’|. Moreover, co(AN S’) = S’. Hence, by Proposition [8.3] 6;(4 N S’,g;(S")) > t", where g; is the function
from the previous claim. Hence, combining the results from the previous two claims, we find

rorQr
S < e S I8 Al € e Y (s WAL 0()
S'eS; S'eS; " S’eS;

6 1 8
e 4] 5,(A, B) = ﬁﬁmmﬂ “n|A| - §,(A, B),

n

-

which concludes the claim. O
Before we conclude we need one more claim. Given a simplex S’, let radius rad(S’) be the maximal length

among its edges.

Claim 8.15. For all r > 0 the following holds:

Z ISl -0 asi— oo.
S'e€T;rad(T)>r

Proof of Claim. We make the convention |J7; := g/ o 5" Let k = [log(;_(r)]. We can distinguish two types

of elements in 7;. Either S C |J Ti{x(n41) or not. Collect the former in 7;" and the latter in 7;".
For 8’ € T, at least some simplex originating from S’ is in S,y j(n+1). By the first claim, that simplex will

have size at least (cima‘mnﬁ)k(”“)wﬂ. Hence,

> 18] < (1 — (ciﬂgcm’ﬁ)k(wl)) ‘UT/’

S'€Titk(n+1): S'CUTY

For §' € T/, we will find an element S” € Tiip(nt1) with S” C S” and rad(S”) < r. Let S" = SO,
and consider ST = f,(fu_1(... f0(S7)...). Crucially, rad(S’*!) < (1 — p)rad(S?). Indeed, none of the
edges of S’ remain and all of the edges added have length at most (1 — p)rad(S?) by Proposition Hence,
rad(S*) < r-rad(S°) < r. Note that again by the first claim |S*| > (ciﬂscmnﬁ)k(”“)wﬂ.

Combining these two cases gives

> ) < (1- (EFERe) S s

S’ €Ti4k(nt1): Tad(S")>r S’€Ti: rad(S")>r

The conclusion follows. O
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To bound the contribution from the simplices in 7;, we use the assumption that A is the intersection between
a finite union of cubes and a simplex. In particular, this implies that OA has finite (n—1)-dimensional Hausdorff
measure. Hence, [0A + B"(o,7)] — 0 as r — 0. Fix r to be such that |0A + B"(o,7)| < 6;(A, B)?|A|. Using
Claim find an i, so that 3o g 7. uasrysr [ < 0e(4, B)?[A].

Note that for S’ € T;, we have S"NA # 0, so if " ¢ A, we find that S’ NJA # (). We conclude that

DoISNAIS Y SNVAl+ > |15 + > S|

S'eT; S'eT;: S'CA S’€Ti: rad(S")>r S’€Ti: S'NOA#D, rad(S')<r
<0+ 6:(A, B)?|A| +|0A + B"(o,7)| < 25,(A, B)?|A|.

Combining this with the bound on §;, we find
lco(\ A= 3 |5\ Al < EZ-ENER s (4 B)|A| 4 26,(A, B)*|A| < = 6,(A, B)|A|,
S'eS;UT;

and the result follows. O

8.5 Proof of Propositions
8.5.1 Sublinearity of doubling in subsimplices; Proposition

Proposition hinges on a geometric lemma.

Let S; as in the statement of Proposition [8.2] and translate so that x is the origin. Consider the cones
generated by the S;, i.e., €%0rTn,

We will use Proposition [5.4] repeatedly and Proposition [8.2) will follow quickly.

Proof of Proposition[8.4 Apply Proposition find a v so that |[ANS;| = |[ANCy| = |(B —v) Ny for all
C; € ¢ro-*n We will show that the union (J;_, Di(ANS;, BN (v+ C;)) C Dy(A, B) is an essentially disjoint
union. Indeed note that, as C; is a convex set,

Dt(A NnsS;, BN (U + Cl)) C Dt(Ci, v+ CZ) = (1 — t)’U + C;
and [ J,(1—t)v+Cj; is an essentially disjoint union. We can conclude by setting B; = BN (v+C;) and expanding

S TIANS| - 6.(AN S, Bi) =3 IDy(ANS;, BN (v+ Cy))| — [ANSi| < [Dy(A, B)| — |A] < |A] - 8,(A, B),

The proposition follows. O

8.5.2 Proof of Proposition (8.4

Proof of Proposition[8.] Set 7% = min(%m,%’mn). We apply Lemma [8.5 to the set X together with

the special vertex z,. Thus we construct a subset Y C X with |Y] > 7%“8’ | such that for all z € Y and

0<i<n-—1,|co{mo,. ., Ti 1,2, Tit1,--, TpNX|> ﬁn|5’| Now we apply again Lemma [8.5|to the set Y’

together with the special vertex z,_;. Thus we construct a subset Z C Y with |Z| > 7%3 ,18’] such that
2,

foralz e Zand 0<i<n-—2ori=n,

|CO{I0,...,Ii_l,l‘7l’i+17...,zn}ﬁY| > %,HJJS’L

n

Fix z € Z C Y C X. By the above inequalities, we conclude that for 0 < i < n,

|co{zo, ..., Ti1, %, Tix1, ..., Tn} NX| > min (ﬁn,%n) 1| > r%i|,5‘/|.

For the last part, fix 0 < k < mn. Let ¢; be the intersection of the ray zpx with the face opposite xx. On

the one hand, a simple computation gives \szq;,J\ = ‘CO{”‘)"“(‘:’;{;;’x’“;”}}|"“’“}|. From the first part, we know

that leofzor it @ivyan}l @L Combining the last two inequalities, we get 122l > @L ie., 22l <

[co{zo,....zn } B Vekgr] —
1 - ﬂ On the other hand, because the diameter of a simplex is realized between two vertices, we have

|zkgr| < max; j(z;x;). Combining the last two inequalities, we find d(z,z;) < (1 — E) max; ; d(z;, x;), which
concludes the proposition.
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8.6 Proof of Auxiliary Lemmas

8.6.1 Proof of Lemma [R.5]
Proof of Lemma[8.5. Set r)m @awl (%T;:il and ﬁm ﬁmanﬂ (20;:;7:1“ After an affine transfor-

2mynF 1" ’(2 YL
mation, without loss of generality, we can assume that S = co({o,e1,...,e,}). For (A1,...,A,) € S’ construct
the box Q)\l,...,)\n = {(Pl» s apn): )\1 > Y41 > 0, s 7>\n > Pn > 0}

Claim 8.16. There exist Ay > 0,..., A, > 0 with \y + --- + X, = 1 such that Q = Qx,,...
n+1

|X n Q' > (277,)"+1 |S/|

satisfies

n

Proof of Claim[8.16. 1t is enough to prove that for A = (A1,...,\,) € S’ chosen uniformly at random, we have

n+1

ExlX NQ[ > ()7”“|5/|

Note that for 1 > s > 0 we have (1 — )5S’ C S§" and |(1 — $)S’| = (1 — s)™|S’| > (1 — ns)|S’|. Therefore

S’\(k%)s/

> ol S’ — || + (1 - %) 15" = %\s'\.

‘Xﬁ(l—%)s’ >|XNs| -

> alS'| - |9+ ‘(17 %) s’

Fix z = (21,...,2,) € 5 and choose a random A = (A,...\,) € F. We have

H(A1, .o An): Ay > forall i and Ay + -+ A, < 1}
HA1,...An): Ay >0foralldand Ay + -+ + A\, <1}
A, AR) s A >0 foralldand Ay + -+ Ay <1 — (21 4+ 2,) }
B H(A1, .- An): A; >0 foralldand Ay + -+ A, < 1}

= (1= (214 +z)"

Pyr(z € Qx) =

In particular, if € (1 — 5%)S’, we have x1 4+ --- 4+ 2, < 1 — 5= and thus Py\(z € Q) > © ) . Putting all
together, we conclude

E)\lXﬂQ|:/ IP)\(.%‘EQ)\)Z/ P)\(.%‘EQ)\)Z/ a p
zeX TEXN(1—2)8" zexn(1-g)s (2n)
B , a o™ |, antl
=lxn (-39 & @ 2 2@ 2 ey

O

By Claim we find A = (A,...,A,) € 8" and Q = Q) such that [X N Q| > %%\S’L Note that
Q C S'. Hence | X NQ| > (;j;j; 1Q|. Set X' =XNQ.
We apply Lemma W to the set X’. Thus, we construct a subset ¥ C X’ C X with |Y| > ﬁmanﬂ Q|

Y 2n)ynti
such that for all x € Y and all faces F' of the box @, we have |co({z} U F) N X'| = ’igFan_H |Q]. As
? (2m)n+1 ;T
Q> [X NQ| > £y |S], this implies that
an—',—l an-‘,—l
Y| > . 15 d UF)NX|= n ——15'].
Y] > 7}%];”)&1 n(2n)n+l\ | an |co({=} ) | E{L):}rl n(2n)”+1| |

Moreover, note that each face of S’, except the face opposite to o, contains a face of @) inside it. Fix 1 <i<n
and let F' be the face of @ such that F C co(0,e1,...,€;-1,€i11,...,€n). We conclude that for y € Y, we have

n+1

«
co(xgy ..., i Titly--- NX|>|co UFNX >7mn —F|T|.
| ( 0 i—1,Y, Lit1, y L ) | | ({y} ) | 7(20;)i41r1 n (2n)”+1| |
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8.6.2 Proof of Lemma [8.6

Proof of Lemma (8.4, Set 158 = 2_17%/1671 ,and7Bd = 2_1@/1% .- By taking an affine transformation,
without loss of generality, we can assume that Q = [-(14 1%), (14 15)]™

Let Q" = [-1,1]". For 1 <i < n let F; be the face of the box @ in direction e; and for —n <1i < —1 let F;
be the face of the box @ in direction —e_;. So F_,,,..., F_1, F},... F,, are the faces of Q.
Let X’ = X NQ’'. Note that

X2 X1+ Q1 - Q1 z al@l + 1@ - 1@l = (1- (1 =) (1+ 1)) 1Q'1 = S 1@

We apply Lemma with parameter «/16n to the set X’. Thus, we construct a subset Y C X' with |Y] >
ﬁ/wn’nmﬂ such that for all z € Y and all j € [-n,n] \ {0}, we have |(z + C} 4 16n) N X'| > @/16%”@%.
As |Q'] = (1+ 2%)7"|Q| > 3|Q| this implies that

V1227 S pen @ and (@ + Chapion) N X] 2 27T 160,01 Ql-
For € Q" and j € [-n,n]\ {0} it is easy to check that (z + Cj 4 16n) N Q C co({z} U F}) and as X C @, this
implies that (z 4+ Cj a/16n) N X C co({z} U F;) N X. We conclude that for z € Y and j € [-n,n] \ {0}, we have

lco({z} UF) N X| > 2748 o [eo(X)).

O
8.6.3 Proof of Lemma
Proof of Lemma[8.8. Set 7@ 7@ in®+2n=1 /916n’+14n*+11n=5  (Given a number i, let i € [n] be the
unique number such that i =i mod n. Set7=iifi <nmandi=—iifi>n. Our strategy is to apply repeatedly

analogues of Lemma where instead of focusing on the pair of coordinates (n,1), we focus on the pair of
coordinates (7,7 + 1).
By Claim there exists a box Q' C Q,
4 2 4 2
Q' =10,b1] x...x[0,b,] +y where y € R", such that b, = 2 and bn% <by,...,bp1 < bn%,

and such that X N Q' has density | X NQ'| > a|Q’|/4. In particular |Q'| > |Q|a?"—2 /277
By applying Lemma we construct inductively the sequence of pairs (X9, QY),..., (X?", Q") with the
following properties. Define Q° = Q' and X° = X N Q’. Assume that at step i — 1 we have constructed a box

. A . . ) 44)2
Q' =10,a7 " x - x [0,a 42t with ai= 1(04/7) <a'<a _1(a/T) for j € [n]\i—1,

and a subset X1 C Q"1 with density |X;_1| > a|Q""!|/4'. We apply Lemma to the pair (X*~1, Q1)
focusing on the pair of coordinates (i — 1,7) to produce the pair (X Q). More precisely, we obtain a box
Q' c Q! with

. ) . . . 4i+1 4z+1
Qz = [0,0/21] X oo X [0,@;] + xt where 0%% < ; %

We also obtain the set X¢ = X*~NQ!. These have the properties |Q?| > (a/4")?"|Q*"1|/2™, | X?| > a|Q?|/4+L,
and

\ /\

ST

a for j € [n] \ i.

(z+Cx )NXTH 2@+ C ) N X7 > alQ /4 for all z € X*.

Because X2 C --- C X% C X, Q" C --- C Qo and {6,/1\,,2?-\71} = [-n,n] \ {0}, it follows that for
z € X?" and j € [-n,n] \ {0} we have |(z 4+ Cj o) N X| > a|Q?"|/4?". Moreover, | X?"| > a|Q?"|/42"1.
It remains to evaluate |@?"|. Recall that |Q°| > |Q|a?"~2/27"~7. Using the recurrence relation

|Qz| > (a/4i)2n|Qz’—1|/27n > a2"|Qi_1|/28n2+7n7

we get |Q2n| > |Q0|a4n2/216n3+14n2_ These imply ‘Q2n| > a4n2+2n—2|Q|/216n3+14n2+7n—7.
Thus, we conclude that the subset X?" C X satisfies

1X27| > o|Q?"|/427+! > a4n2+2n71|Q‘/216n3+14n2+11n75
and for all z € X" and j € [-n,n]\ {0} we have

|(33 + Cj,a) ﬂX| > a|Q2n|/42n > a4n2+2n—1|Q|/216n3+14n2+11n—7.

1,a/4%

)
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8.6.4 Proof of Lemma [8.9]
Proof of Lemma[8.9.

Claim 8.17. Given a box R =[0,¢1] x -+ - x [0, ¢,] + 2 where z € R™ and given a parameter s < min(cy, ..., cp),
we can construct a partition into boves with disjoint interiors R = UX_| R" where R = [0,c}] x -+ x [0, c}] + 2
such that 2 € R™ and ¢} =1 and s/2 < b, ...,c, <s.

Proof of Claim[8.17 For 2 < j < n partition the interval [0,¢;] into consecutive intervals [0,¢;] = I LU --- U
Ii?o/s] where
J

Il =[(k—1)s/2,ks/2] for1<k<|2¢/s] -1, IfZCj/SJ =[([2¢;/s] — 1)s/2,¢;].

Let [0,¢1] = I+. Finally, for k; = 1,1 < ky < |2¢o/s],,1 < k, < |2¢,/s] construct the box RFtkz:kn =
Iiox X IP + 2.

Note that R = I_Ikl,m’kanl””’“"k" is a partition into boxes with disjoint interiors. Moreover, the box
RFvkzeebn — [l 5o I+ 2 satisfies |I] | = ¢1, and for 2 < j < n we have |I,zj| =s5/2if 1 <k; < |2¢;/s],
and |I{2cj/sj| =¢; — ([2¢;/s] —1)s/2 € [s/2,s]. We conclude that this partition into boxes has the desired
properties. [

Claim 8.18. Given a box R = [0,¢1] X --- X [0,¢,] + 2z where z € R™ and ¢1 < 2min(cy,...,c,) and given
a subset Z C R with density |Z| > «|R|/4, there exist a sub-box of R, @ = [0,b1] X ... x [0,b,] + y where
y € R™ such that by = ¢ and by(a/4)?/8 < ba,...,b, < bi(a/4)?/4, and such that Y := Z N Q has density
Y] > al@l/4.

Proof of Claim[8.78 Set s = c1(a/4)?/4 and note that, because ¢; < 2min(ca, . .., ¢,), we have s < min(cy, ..., ¢,).

By Claim we can construct a partition into boxes with disjoint interiors R = ¥ | R? where R’ =

[0,c8] x -+ x [0,¢%] + 2% such that 2* € R™ and ¢} = ¢1 and ¢;(a/4)?/8 < ¢, ..., ¢!, < c1(a/4)?/4. A simple

averaging argument shows that there exists an index ¢ such that [ZOR] - 1Z0R] _ a/4.

. . ) ) [R:i| = [R]
Set Q=R Y =2ZNQ,by=¢,...,b, =}, and y = z". Tt is easy to check that Q@ = [0,b1] x ... x [0,b,]+ ¥y
where by = ¢1 and by(a/4)?/8 < ba, ..., b, < bi(a/4)?/4 and |Y]| > «|Q|/4. O

Fix 0 < r < a,(1—a/4) with the following property. Consider the partition of P into three box with disjoint
interiors P = Ry U Ry U Rz where Ry = [0,a1] X -+ x [0,7] + 2z, R2 = [0,a1] X -+ X [r,7 + apa/4] +  and
Rs =1[0,a1] x -+ X [r + apa/d,a,] +x. Let Zy = X N Ry, Zo = X N Ry and Z3 = X N R3. We choose r such
that |Z1| = |Z3].

Claim 8.19. a; < 2min(as,...,an—1,7r) and |Z1| = |Z35| > a|P|/4 > a|R:|/4.

Proof of Claim[8:19. By construction |Zs| < |Rs| < «a|P|/4. By hypothesis, |Z1| + |Zz| + |Z2] = |X| > «|P|.
Therefore, |Z1| + |Z5| > 3a|P|/4. As |Z1]| = |Z3], we conclude |Z1| = |Z3| > a|P|/4 > a|R4|/4.
From hypothesis a,a?/8 < ai,...,a,_1 < a,a?/4, it immediately follows that a; < 2min(az,...,a,_1).
For a; < 2r, note that
|R1] | Z1| @ a?

=apT= > Ap—r > Ap— —.
r a"\P\_a"|P|_a"4>a"8

O
Observation 8.20. It follows immediately from the definition of Cy, o and the hypothesis a1, ..., a,_1 < ana?/4
that fory € Ry we have y+C,, o D Rs. In particular, by Claim fory € Zy we have |(y+Chp o)NX| > «|P|/4.
To finish the proof, let recall Ry = [0,a1] x --- x [0,7] + z and Z; = Ry N X. By Claim [8.19] we have
a1 < 2min(as,...,an,,r) and |Z1| > a|R1|/4. By Claim there exist a sub-box of Ry,
Q=10,b1] x ... x[0,b,] +y where y € R", such that b; = a; and by(a/4)?/8 < b, ..., b, < bi(a/4)?/4,

and such that Y := Z; N Q = X N Q has density |Y| > a|Q|/4. AsY C Z;, by Observationfor ally e Y
|(y + Cnyo) N X| > a|P|/4.

It remains to check that |Q| > «*"/437=227=1|P|. This easily follows from the aforementioned fact that
by = a1, a1(a/4)?/4 < b, ..., b, and the fact that a; > 27! max(as,...,a,_2) and a; > a,a?/8 (the last fact
follows from the hypothesis a,a?/8 < ay,...,a,_1 < apa?/4). O
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8.6.5 Proof of Lemma [8.10]

Proof of Lemma[8.10 Let the set Hy,...,H,, C R" be a finite collection of halfspaces so that C = (| H;.
Consider the sequence A4; := AN m§:1 H;. Construct another set of halfspaces H} and subsets B; C B defined
by finding a halfspace H] parallel to H; so that |H] N B;_1| = |4;|. Note that because H; is parallel to H] we
find that tA; + (1 — t)B; is disjoint from ¢(A;_1 \ A4;) + (1 —t)(B;—1 \ B;). By the Brunn-Minkowksi inequality
we find

[tAi1+ (1= t)Bioa| = [Aica| > [tA; + (1 = ) Bi| — [Ai] + [t(Aima \ Ai) + (1 = 8)(Bi—1 \ Bi)| — [Ai—1 \ A
2 [tAi + (1 =) Bi| — |Aq].

The lemma follows by induction. O

9 Proof of the Linear Theorem for few vertices (Theorem |[1.6))

Proof of Theorem[1.6] Let A8 — B ,pd L8 — (Z) Let \,, be anything, and choose 7,, so that (141,)™" = 3.
By Proposition we may assume that A, B form a simple A,-bounded 7,,- sandwich.

Consider the origin 0 € AN B and a triangulation 7" of the boundary of co(A). Note that [77| < (*). Now
consider the triangulation 7 of 9 co(A) obtained by adding o to each of the simplices of 77, i.e.

T :={co(S"U{o}): 5" € T'}.

We will consider | co(A) \ A| inside each of the simplices in 7. Write Ags for AN S’ and note that co(Ag/) = 5.
Using Lemma find Bgs C B so that |As/| = |Bg/| and [tAs + (1 — t)Bg/| < |[tA+ (1 — t)B| < §|A|.
Distinguish two cases; either §|A| < min{¢,1 — ¢}"|Ag/| or 6]A| > min{t,1 — ¢}"|Ag/|. In the former case, we
can apply Theorem to find |co(Ag/) \ Ag/| < min{¢, 1 — t}"mﬂs(ﬂA\. In the latter case we use that A is a
7, sandwich so that » co(Ags) C Ags, which implies

14+n

1
1+n,

[co(As) \ Agr| < |co(Asr) \ co(Ag)| < (1= (1+m)"") [co(As)]

1
S §| CO(AS/)l S ‘AS" S min{t, 1-— t}_nd‘f”

Hence, in both cases we find |co(Ag/) \ Ag/| < min{t, 1 — t}_(m”85|A|. We conclude by adding up the contri-
butions over all $' € T,

lco(A)\ Al = 3 [eo(As) \ Ag| < [T|minft, 1 - 1}~F"5]4] < <Z) min{t,1 — £}~ 5| Al.
S'eT

This concludes the proof of the theorem. O

10 Intermediate results for the Linear Theorem: from Theorem [1.6!
to Theorem [1.4

10.1 Outline of the proof of Theorem 1.4
The proof of Theorem [I.4] follows the following steps.

1. By Proposition we may assume B(0,0.01) C K C A,B C 1.01K C B(0,100) for some convex set K.

2. Find a collection of disjoint convex regions X; with small diameter £ so that }, | co(ANX;)\ (ANX;)| >
(] co(A) \ A]) (Proposition [10.3]) along the following steps.

e Cone off at the origin to find simplices T; so that |JT; = co(A) and co(T; N A) = T;. Note that
|T; N A| > 0.99|T;].

e In each of the T; run the following process: find a point in A centrally in T; and cone off to the
vertices of T; to find smaller simplices with the same properties as T; and not much lower density.

(Lemma [10.6)
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e Iterate until either the diameter is small (in which case we have found our region X;) or the density
has dropped (say between 0.9 and 0.95). (Lemma [10.7)

e For simplices with moderate density, it is easy to find a set of small diameter and a positive proportion
of the missing region. (Lemma [10.8])

3. Consider the tube U = S x Rt where § C R"! is a regular simplex with side length ¢ centered at the
origin. We choose ¢ <« 0.01, so that S falls well within B(0,0.01). On the other hand, we choose € > ¢,
so that a random rotation of U contains a region X; completely with probability €, (1).

4. Note that [co(ANU)\ (ANU)| > > x iy [co(ANX;) \ (AN X;)|, so that it remains to show [co(ANU)\
(ANU)| < Op(|tA+ (1 —t)B| — |A|). (Proposition

5. To this ends find a homothetic tube V =z + (1 4+ 8)U so that |[ANU| = |[BNV]and [t(ANT) + (1 —
H)(BNV)|—|ANU| < [tA+ (1 —t)B]| — |A|, which moreover is very similar to U, so that x and 3 are very
small. (Lemma [10.9))

6. Slightly rescaling ANU and BNV (i.e., taking homotheties with factors very close to 1), we find A’, B’
in a tube over the same simplex W so that 2|co(4’) \ A'| > |[co(ANU)\ (ANU)| and a t' € (3t,2t) so
that [t'A"+ (1 —t)B'| —t'|A| — (1 —¢")|B'| < |tA+ (1 — t)B| — | A]. (Lemma [10.10])

7. Partition the tube W into parallel simplicial tubes U; according to the convex hull of A’, so that [ J, co(A’N
U;) = co(A’) and each of the co(A’ N U;) has exactly 2n vertices. Note that we have

Z (AN +Q—-t)B'nU)|—t'|ANU;|— (1=t |B'nU;| <[ A'+(1—-t")B'|-t'|A"| — (1 —¢)|B|.

8. Consider the fibres in the direction of the tube and note that A" and B’ start with a long interval in each
of these fibres by the virtue of S lying well within B(o,0.01). We might not have |[A’ N U;| = |B' N U;|,
but because of the long interval at the beginning of each fibre, we may extend A’ and B’ without affecting
['(A'NU;)+ 1=t (B NU;)| —t'|ANU;| — (1 —¢)|B' NU;|. (Lemma [10.11])

9. Because K C A, B C 1.01K, we never have to extend much to get |A’ N U;| = |B’ N U;|. Hence, we can
apply Theorem [1.6] to find that

lco(A'NU)\ (A'NU)| < One(JE(ANU)+ QA =)YB' nUy)| —t'|ANU| — (1 =) B NU),

so that summing over U; gives the result.

10.2 Setup

Definition 10.1. A vertical tube with diameter { is a set U of the form U = S x R, where S C R"™! is a
reqular simplex with side length € centered at the origin. A tube with diameter ¢ is a rotated vertical tube with
diameter £.

Definition 10.2. A pair X,Y C R"™ is a tubular A\-bounded n-sandwich if it is the intersection between the

same tube and a A-bounded n-sandwich.

10.3 Propositions

Proposition 10.3. For n € N and £ > 0, there are constants 0 > 0 and n > 0 such that the following hold.
Assume A C R™ is a measurable n-sandwich, then there exist disjoint measurable subsets A1, ..., Ay of A with
the following properties:

1. A; = Anco(Ay),

2. co(Ay),...,co(Ay) are disjoint,

5. Tulco(A)\ Ayl > 6] co(4) \ A],

4. for every i, diam(co(A;)) < Ediam(co(A)).
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Proposition 10.4. Forn € N, A > 1, ¢ > 0 sufficiently small in terms of n and A, and 0 <t < %, there exists
1n > 0 such that the following hold. Assume U C R"™ is a tube with diamater € and assume A, B C R™ form a
A-bounded, n-sandwich of measurable sets of volume 1, then

co(ANU)\ (ANT)| < KB (144 4 (1 - 1) B| — | A]).

Proposition 10.5. Forn € N,\ > 1, € > 0 sufficiently small in terms of n and A\, and t € (0,1), there exists
ﬂ%/\myt, KO8 03 > 0 such that the following holds. Assume W C R™ is a tube or diameter e and assume the
subsets A', B C W form a tubular A-bounded n-sandwich. Then

| co(A') \ A'| < KIS ~F5 (1 47 4 (1 = ¢) B — /| A’ — (1 — )| B)).

10.4 Lemmas

Lemma 10.6. For all n € N there exists « > 0 depending n such that the following holds. If A is a subset of
R™ with co(A) a simplex with vertices V(co(A)) = {zo,...,z,} and if |co(A)| < (14 «)|A|, then there exists a
point x € A such that for all0 <i<mn

o T ; 1
[co{@o, s @it @y 2ig1, - 2 > and  d(x,x;) < ntl max d(xj, k).
[co{xo, ..., Tic1, @i, Tit1,--sTn}| — n+2 n+2 jk

Lemma 10.7. For all n € N and a > 0 sufficiently small in terms of n, there exists an n > 0 so that the
following holds. Given an n-sandwich A there exists an essential partition into conver sets co(A) = PyU---U Py
so that denoting A; = P; N A we have:

1. Pi = CO(AZ‘),
2. |co(A4;) Nco(Aj)| =0 ifi# 7,
3. co(A;) is a simplex,

4. Each A; fall into two categories, i.e., [k] = I U .J so that:

e for alli € I, we have % € (14 a,1+nla),

o D reslco(Ai) \ Ail < afco(A)\ Al

The same conclusion holds if we replace the hypothesis that A is an n-sandwich with the hypothesis that co(A)
is a stimplex with |co(A)| < (14 a)|A|.

Lemma 10.8. For all n € N, a > 0 sufficiently small in terms of n, there exist , 5 > 0 so that the following
holds. Given A C R™ so that co(A) is a simplex and | co(A)| = (1 4+ «)|A|, there exists a subset A C A and
P > (, so that

1. diam(A") < (1 — ¢)diam(A),
2. [co(A")| = (1= 9)*""|co(A),
3. co(A’) is a simplex,

4. [co(A)\ A'] > BlAY|.

Lemma 10.9. Forn € N, A > 1, for all ¢ > 0 sufficiently small in terms of A and n, so that for all 0 <t < %,
a > 0 there exists n > 0 such that the following hold. Assume U C R"™ is a tube with diamater 2¢ and assume
A, B C R™ form a A-bounded, n-sandwich measurable sets of volume 1, then there exists a homothetic tube
V=x+ 1+ p)U with ||z||2 < a and |8] < a such that A° = ANU and B° = BNV satisfy |A°| = |B°| and

[tA° + (1 — £)B°| — |A°| < [tA+ (1 — t)B| — |A.

Lemma 10.10. For allny’ >0, n € N, t € (0,1/2], A\ > 1 and sufficiently small € in terms of n and A, there

exist n,a > 0, so that the following holds. Let t' = ﬁ Assume U C R"™ is a tube of diameter €, V

is a homothetic tube V- = x + (1 + B)U with |B],||z|l2 < a and assume A, B is a A-bounded n-sandwich with
|A| = |B| =1 and A° := ANU and B° :=V N B have equal size. Set W = LU, W' ==LV A" = L A° and

1-t
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B’ = 1=LB°. Then the tube W' = W + 1=Lx has diameter less than 2¢, A’ C W and B’ C W'. Moreover, we

have
A"+ (1—¢)B'|—t|A|— (1 —=t)|B'| <[tA° + (1 —t)B°| — |A°|.

Furthermore, A', B" — lljtt/x form a tubular 2\-bounded 7' -sandwich. Finally, if A°, B® are a-almost conver,

then |A°AB°| < |A'A(B' — 1=La)| + O, (] A°))

1-t

Lemma 10.11. Forn € N, XA > 1, ¢ > 0 sufficiently small in terms of n and A\, and t € (0,1), there exists
n > 0 such that the following holds. Given a conver K C R™ which is A-bounded and a tube U = S x Ry of
radius €. Then for allz € S x R_, we have (1 —t)z +t({UN((1+n)K\K)) C KU(SxR_).

10.5 Proof of Propositions
10.5.1 Proof of Proposition [10.3

Proof of Proposition[10.3 Choose parameters according to the following hierarchy
n,E>a>C(>>0>n.

We create a sequence of families F; of sets which all have properties 1 and 2. They have property 3 with ever
decreasing 6 while the diameter of the sets decreases until property 4 is satisfied. All sets in the families will
have a simplex as their convex hull. Given a family F of subsets of A satisfying properties 1 and 2, write
D(F) := maxxer % and P(F) := W, so that we want to find a family with D(F) < £ and
P(F)>6.

First apply Lemmawith parameter « to find a partition and let Fy be the set of parts so that
(1+ a,1+ nla). Note that Lemma says that P(Fp) > 1 — a.

Consider the following process of obtaining a new family Fo;11 from Fo; and Fo;10 from Fo;y1. All elements
X in F; with diam(X) < édiam(A) remain fixed and stay in all consequent families, we will call them finished.
The idea will be to apply Lemma to all other elements in F3; to reduce the diameter. Then we apply
Lemma to some of the elements in Fa;11 so that the density of the sets in F; in their convex hull always
stays below 1/(1 + «).

All non-finished elements X C A in Fo; have % > «. If we consider the last subset Y € Uj<2i Fj, so

that X C Y and % < nla, then X derives from Y by a sequence of applications of Lemma Hence,

as diam(X) > &diam(Y"), we know that

| co(A4)]
A <

[co(X)\X] _ [co)\ Y] [co(Y)]

nla _3”2.
(o) = Teo)] o) <™

Choosing « sufficiently small in terms of £ and n, we can apply Lemma to all non-finished elements of Fa;
and construct Fo; 1 with D(Fair1) < (1 — ¢)D(Fz;) and P(Fair1) = BP(Fa).

To construct Fa;1o from Fa;y1, apply Lemma to all non-finished elements with |co(A4) \ 4] < «o|A4|.
Note that D(f27;+2) < D(./—"gi_;'_l) and P(]:QH_Q) > (1 — Q)P(f2i+1>.

This construction implies that there exists a ¢ < 101;)(‘%1(2) + 1, so that D(Fa;4+1) < &. For this i, we thus find
P(Faiv1) > BTH1 — «)' > 0, where the last inequality follows from choosing 6 sufficiently small in terms of
n,&, a,C, and 8. Hence, this family satisfies all the conclusions and thus confirms the proposition.

O

10.5.2 Proof of Proposition [10.4

Proof of Proposition[10.] Let ¢ sufficiently small in terms of n and A to apply Lemma[I0.9 Lemma and
Proposition Let n := ﬂlz%le,t so that we can apply Proposition [10.5] Choose a sufficiently small to apply
Lemma et 7 sufficiently small so that we can apply Lemma [[0.9] and Lemma[I0.10} Let A° := U N A.
First use Lemma [10.9) to find V = z + (1 + 8)U with |[z|]s < o and || < a. Let B° = BNV, so that

[tA° + (1 —t)B°| — |[A°| < [tA+ (1 —¢)B| — |A].
As in Lemma |10.10] let ¢/ = Set W = ttf,U, W= =Ly, A = %Ao and B = 1=t B°. By

t
1+8-pt" 1—t 1—t
Lemma [10.10} the tube W' =W + 11__;,:1: has diameter less than 2¢, A’ C W and B’ C W’, and we have

WA + (1 —t)B'| - t|A| — (1 — )| B'| < [tA° + (1 — t)B°| — |A°| < [tA+ (1 — t)B| — |A].
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Furthermore, A’, B’ — ll:tt,m form a tubular 2A\-bounded 7’-sandwich

By Proposition m (applied to A’ and B’ — 1=L ), we find

1—

| co(A')\ A'| < KEES(¢) =T (1 o7 4 (1 = ) BY| — /| A'| — (1 — )| B])
< IS4 /2) =T (114 + (1 — 1) B| — |A)).

By definition of A’, we have:

/

(AN (4n0)] = o)\ 47 = () o)\ 4] £ 2| coa)\ 4,

Hence, we find some constant kEEm = ld§m2”2é LS, so that

lco(AN T\ (ANU)| = KB (144 1 (1 — 4)B| — | A]).

10.5.3 Proof of Proposition [10.5

Proof of Proposition [10.3, Let K03 = (L8(2n) and A03 = L8 [et 5y = fI53 | sufficiently small to apply
Lemma [I0.111 o

As the problem is rotation invariant, we can assume wlog that W = W’ = § x R is a vertical tube.

We can assume wlog that co(A’) has 2n vertices (co(A’) is the intersection of T' with a halfspace). Indeed,
partition S into simplices S = Sy U --- U S, by projecting a triangulation of the upper boundary of co(A’).
Consider the corresponding partition T' = Ty U- - -UT,,, where T; = S; xR, and set A; = A’'NT; and B; = B'NT;.
Note that A" = U;A;, B’ = U;B;, and co(A’) = U; co(A;) are partitions (but co(B’) D U, co(B;) is essentially a
disjoint union). Unlike many other partitions in this paper, we generally do not have |A;| = |B;|. Moreover, as
t'A; + (1 — t')B; are essentially disjoint, we find

S A+ (L —t)Bi| = | Ai| = (1—t)|By| < ['A"+ (1 —t)B'| - /| A| — (1 )| B|.
7

Hence, it is enough to show that
[co(A;) \ A <A+ (1 —t)By| —t'|4;] — (1 —¢)|By].

As A’, B’ form a tubular A-bounded n-sandwich, we deduce that A;, B; form a 2A-bounded 7-sandwich. More-
over, by construction co(A;) has 2n vertices (co(A;) is the intersection of T; = S; x R4 with a half-space). By
taking an affine transformation, we can also assume S; C R™~! is a regular simplex centered at the origin. This
concludes the reduction to the case when co(A’) has 2n vertices.

Now assume wlog co(A’) has 2n vertices and say |A’| < |B’| (the other case is identical). Let o = (|B’| —
|A’])/1S| and note that 0 < a = Oy, A (). Let B > 0 large. Construct the sets A” = A’US x [-a — 3,0) and
B"” = B'US x [-8,0) such that |A”| = |B"|.

By Lemma we find that

A"+ (1—-t)B"=8x[-t'a—B,00U{t’A"+ (1 —-t)B").
Recalling the definition of A” and B” and the fact that |A”| = |B”|, we deduce
A" +(1—-t)B'|—|A"| = [tA+(1-t"B'|-t'|A]| - (1—-t)|B
and |co(A”)\ A”| = |co(A’)\ A’|. Therefore, it is enough to show that

|co(A")\ A”| < KB =55 (14" 4 (1= ) B| - ")),

‘t,A”+(17t,)B”|7|A”|
Al

Moreover, by making 3 arbitrarily large, we can make the ratio arbitrarily close to 0 (as

the numerator is constant but the denominator can be arbitrarily large). As co(A”) = co(A’) has 2n vertices,
this is a simple application of Theorem [1.6 O
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10.6 Proof of Lemmas
10.6.1 Proof of Lemma [10.6]

Proof of Lemma[10.6. By taking an affine transformation, we can assume without loss of generality that S =

co(A) = co{xg,...,xn} is a regular simplex with volume 1 centered at the origin o. Clearly, for all 0 < i <n
[co{xo, ..., Ti1,0,Tit1y. ., Tn}] _ 1
|co{xo, .., Tic1, Tiy Tig1, .2} n+1

By continuity, there exists € > 0 sufficiently small in terms of n such that for all z € €S and 0 < i <n

[co{xo, ..., Ti1,0,Tit1y- ) Tn}] S 1
|co{zo,...,Ti—1,Ti, Tit1,..-, Tn}| — n+2

As |eS| = €™|S], provided o < £™/10 we deduce that there exists © € eS N A and it follows that x has the
desired properties.

For the last part, fix 0 < k < n. Let gx be the intersection of the ray zypx with the face opposite . On
the one hand, a simple computation gives 12| = [eo{2o:@i1@@ir1sZn}ll prom the first part, we know that

( ) leear] [co{zo,....zn}

| co X0y Li—1,T,Li415--,Ln | > 1 L3 : L ‘ka‘ > 1 3 Iwwk‘ < n+1
Teolroa ]| > =5 Combining the last two inequalities, we get onae] = 20T V€ Tarar] S ni2-

On the other hand, because the diameter of a simplex is realized between two vertices, we have |rgqr| <

max; j(z;x;). Combining the last two inequalities, we find d(z,z;) < Z—i‘; max; j d(x;,x;), which concludes the

proposition. O

10.6.2 Proof of Lemma

Proof of Lemma[I0.7 First we argue that we can assume without loss of generality that P := co(A) is a simplex.

Consider the essential partition P = S' LI--- U S"™ into simplices with a vertex at the origin o, obtained by
partitioning the boundary P into (n— 1)-dimensional simplices and conning off at o. Then the sets A7 = ANSJ
are np-sandwiches.

Note that given A is a finite union of boxes, we have V (S7) C 4; i.e., co(47) = S7. In particular, | co(A)\A| =
5, leo(47)\ 47| | |

Now assume that for each j we can find an essential partition into convex sets co(A7) = P{ LI --- U P,gj and
a corresponding partition of indices [k;] = I JU.J7 with the desired properties. Then it is easy to check that the
essential partition into convex sets of co(A4) = Uj<r i<k, Pij and the corresponding partition of indices I = L;I7
and J = L;J7 have the desired properties.

Thus from now on we can assume co(A) to be a simplex. Moreover, from now on we only retain the weaker
hypothesis that % <A+ <l+a.

Given a simplex co(A), consider the following iterative process. First set 7o = {co(A4)} and Sy = 0, and
note that |co(A4)| < (1 + «)|A| by hypothesis. At a given stage ¢ with 7;,S;, look at every element S’ € T; and
distinguish two cases: either |S’| < (1+ «)|S' N A or |S'| > (1 + «)|S" N Al

For each simplex S' = co{xq,...,zn} € T; with |S’| < (1 + @)|S’ N A| we construct the n + 1 simplices
fo(S"), ..., fu(S’) as follows. We apply Lemma to find a central point x € S’ N A and we construct the

simpleX f](S/) = CO{.T(), ey L1, T, L1y 71‘,7,}.
Now let
Tit1 = U {fo(8), -, fu(S))} and Sy =8 U{S €T [S] > (1+a)[S"NA[}.

SETi: |S'|<(14a)|S'NA|

Using the fact that A is closed, it follows by induction that for i € N and S’ € T; US; we have co(ANS’) = 5"
Moreover, T; U S; forms an essential partition of co(A).

Claim 10.12. For all 8" € T; and j € [0,n], we have |f;(S")| > |S’|/n+ 2.
Proof of Claim. By Lemmal[10.6] (and our choice of 2 € 5N A), we have [ f;(S")] > |f;(S")NA| > |S'|/n+2. O

Claim 10.13. For all S" € T;, we have |S'| < (14 (n+3)a)|S'NA| and for all S’ € S; we have (1+a)|S'NA| <
9] < (14 (n+3)a)[S" N Al

Proof of Claim. Every simplex S’ € 8 UT; is f;(S") for some S” with |S'| < (1+ )|S" N A|. By Lemma [10.6]
and the fact that « > 0 is small, we have |S”| < (1 + (n + 3)a)|S” N A|. In addition, by construction of S;, for
all 8" € §; we have (1 + «)|S'NA4| < |5]. O
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Before we conclude we need two more claims. Given a simplex S’; let radius rad(S’) be the maximal length
among its edges.

Claim 10.14. For all v > 0 the following holds
Z IS’ = 0 as i — oo.
S'eTi:rad(T)>r

Proof of Claim. We make the convention (J7; := g/ 5" Let k = [log(;_,(r)]. We can distinguish two types
of elements in 7;. Either S C |J T4 x(n41) or not. Collect the former in 7; and the latter in 7;".

For S € T, at least some simplex originating from S’ is in S,y j(n+1). By the first claim, that simplex will
|S’]. Hence,

! 1 i
Y= (1 ) U7

S"€Tiqr(nt1): S'CUT

have size at least W

For S € T/, we will find an element S” € Tij(n+1) with S” C S and rad(S”) < r. Let §" = S, and
consider S71 := £, (fu_1(... fo(S7)...). Crucially, rad(S7!) < ((n 4+ 1)/(n + 2))rad(S?). Indeed, none of
the edges of S/ remain and all of the edges added have length at most (1 — p)rad(S?) by Lemma Hence,
rad(S*) < r-rad(S°) < r. Note that again by the first claim |S*| > W\S".

Combining these two cases gives

1
Y 12 () 2
S"€Titk(nt+1): Tad(S)>r S’€Ti: rad(S")>r
The conclusion follows. O

Claim 10.15. Assuming A is a finite union of boxes, for every e > 0 there exists r > 0 depending on A and €
such that for all i € N the following holds
> S| <e.

S'eT;:
rad(T)<r and S'¢ A
Proof of Claim. Note that |J S'eT;: S’ C B(o,r) + 0A and hence
rad(T)<r and S'Z A
> S| < |B(o,r) + DA

/

Ti:
rad(T)<r and S'Z A

|B(0,r)+0A]
T

Moreover, we have lim, ¢ = |0A|. Therefore, for r > 0 sufficiently small in terms of A and ¢

> S| <|B(o,r) + dA| < r|0A| < e.

S eT;:
rad(T)<r and S'¢ A

O

Returning to the proof of the Lemma, we can combine Claim [10.14{ and Claim [10.15|to obtain that for some
r sufficiently small and some ¢ sufficiently large (both depending on A, «), we have

Yo I8< > ST+ Y 151 < alco(A) \ Al

S'eT;: S'ET;: S'eT;:
S'gA rad(T)<r and S’ A rad(T)>r

We assumed here that A is not convex as otherwise we are immediately done. We further get that
D IS\ Al < alco(A) \ A

S'eT;

On the other hand, by Claim for all §’ € S;, we have % €1+ a,1+nla).

By construction, 7; U S; gives an essential partition into convex sets co(A) = Py U --- U Py that satisfy
properties 1,2 and 3. Moreover, by the last two centered equations, the partition of the indices [k] = I U J
where I = {j € [k]: P; € §;} and J = {j € [k]: P; € S;} satisfies properties 4 and 5. The conclusion follows. [
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10.6.3 Proof of Lemma [10.8]
Proof of Lemma[10.8 Choose parameters according to the following hierarchy:

n>v>a)>a>>(>n>p.

Here ag > « reflects that « is assumed to be sufficiently small in terms of n. We proceed by contradiction, so
that every subset X C A which satisfies conclusions 1, 2, and 3 has | co(X) \ X| < g|X].

Let vy, . .., v, denote the vertices of T' = co(A) and assume T is centred, i.e., that its barycenter is the origin.
Consider the slightly shrunk simplex (1 — )T with vertices (1 — v)vg, ..., (1 — ¥)v,. Our first step will be to
find points in AN (1 — )T close to each of these vertices. Indeed, consider the simplex S; := T + (1 — 2v)v;
which is a translate of 4T whose i-th vertex coincides with (1 — 7)v;. Note that since |co(A) \ A| = a|A| and
|[vT| = v™|T| > v™|A|, there must be a point u; € S; N A for all s.

We iterate a similar construction to show that in fact we can find points considerably closer to the vertices
v;. Indeed consider the simplex T; := nT + (1 — { — n)v; which is a translate of 7" whose i-th vertex lies on
(1 —¢)v;. Note that for n sufficiently small in terms of ¢, we find that T; C co(ug, ..., Ui—1, Vi, Uit1, ..., Uy) for
any points u; € S;. Hence, if we consider

Ai = AN CO(Uo, ey Ui—1, V55 Ug4 1y - - - ,U,n),

we find that co(A;) = co(ug,...,Ui—1,Vi,Uit1,--.,Us) Is & simplex, diam(A4;) < (1 — v/n)diam(A), and
|co(A;)] > (1= 7)37|co(A)| > (1 —~/n)?""| co(A)|, so by our contradiction assumption, we have that | co(A;) \
A;] < BlA;]. Since

T, C CO(U(), B S T V7 1 P ,un) and ‘Tl| = 77”‘T| > 5|A1|

(assuming that § is sufficiently small in terms of 1), there exists p; € T; N A; C A. Let A’ := ANco(po,.-.,pn)
so that A’ C (1 — ()T and diam(A’) < (1 — {)diam(A). Clearly, co(A’) = co(po,...,pn) is a simplex. In the
limit ¢,n — 0, we have | co(A")] = (1 — o(1))| co(A)|. Hence, for {,n, and 8 sufficiently small in terms of o and

n we find:
|co(A) \ A < [co(A) \ co(A')] + |co(A) \ A| < alA],

a contradiction. This proves the result. O

10.6.4 Proof of Lemma [10.9]
Proof of Lemma[10.9 As A, B form a A-bounded 7-sandwich, consider the convex K C R"™, so that

B(o,(3\n)"") c K ¢ A,B C (1+n)K C B(o,3\n),

where the balls follow from Observation [2.6| combined with 1 +n < 3/2.
We construct V' as follows. Let Hy, ..., H, be the defining hyperplanes of U, and let H z+ be the corresponding
halfspaces so that U = 1, H;L . We construct parallel hyperplanes G; as follows: Given Gy,...,G;_1, find G;

so that [AN;_, H} | = |_B NNj=1 G |. Note that this is possible since, by construction [A N ﬂ;;ll Hf| =
|BN ﬂl ! 1 GT| and [BN;_, G| changes continuously with G;.

We W111 show by induction that the distance between G; and H; tends to zero as n tends to zero. By
induction \(H;FAG;F) N B| — 0 as n— 0 for j < 4. This implies that also

1—1 —1 —
“(BmHj)mﬂHj‘—((BmHj)mﬂGj) ’BmH+ UH+AG+ as 1y — 0.
j=1 j=1 j=1

In the same vein, we have that because A, B is a A-bounded 71 sandwich

’Amnﬂﬂ—wmﬂﬂj g‘(AAB)ﬂﬂHj <|QA+nK\K|—=0 asn—D0.

Jj=1

Hence, using that ’(B NGHN ﬂl ! G+‘ =|AN ﬂ§:1 H|, we find

1—1 1—1
“(BmGj)mﬂGj‘—‘(BmHj)mﬂGj‘ as n — 0.
Jj=1 j=1

) i—1
= “Am N |- |@nmHnMer| -0
j=1 j=1
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On the other hand, we find

“(Bmaj)mhlGj‘—‘(BmHj)mHG;‘ |BN( G+AH+mﬂG+]>]G+AH+)mB (3An)™ mﬂcﬁ]
Jj=1 j=1

Byinduction,wehave’(G;rAH;r)ﬂB(o,(i%/\n) Slalars 1G+’f’(GjAH;’)mB(o,(3>\n) DN H | +o(1),

where o(1) — 0 as n — 0. As e is sufficiently small in terms of A and n, we find that

'(GjAHf) N B(o, (3\n)~ ﬂ Hf| =

(|[(GF AH) N B(o, 3An)~H))).

We conclude that |(G AH;T) N B(o, (3An)~!)| = 0 as  — 0, so that indeed the distance between G; and H;
tends to zero as n — 0.

Let V:=, Gj. Since the G;’s are parallel to the H;’s, we find that V is homothetic to U, i.e., there are
z €R™and B € Rsothat V =z + (1+ 8)U. As the defining hyperplanes tend to each other as n — 0, we find
that for sufficiently small 7, ||z|]2 < o and |5| < a.

For the last part of the theorem, we proceed by induction to show that A; := AN ﬂ;zl H;r and B; :=

BN ﬂ;zl Hj+ satisfy
[tA; + (1 —t)B;| — |A;] < [tA+ (1 —t)B| — |A|.

For i = 0 this is vacuously true. Note that A; = A;_1 N H;" and B; = B;_1 N G;. By construction |A;| = | B;|
and |A;_1] = |B;_1], so that we also have A} := A, 1 \ A; = A,_1 N H; and the analogously defined B] have
the same volume. We find that

tA;+ (1 —t)B; CtH + (1 —t)Gf and tA, + (1 —-t)B, C tH; + (1 - )G},

which are two halfspaces separated by the hyperplane tH; + (1 —t)G;, so that tA; + (1 —t)B; and tA; + (1 —1t)B,
are disjoint subsets of t4;_1 4+ (1 — ¢)B;_1 and thus

|tAZ‘ + (1 — t)Bz| + ‘tA; +(1- t)B;l < |tAi,1 + (1 — t)Bifll.
By the Brunn-Minkowski inequality we know that |[tA; 4+ (1 — ¢)B}| > |A}|, so we can conclude

[tA; + (1 —t)B;| — |Ai| < |tA; + (1 —)B;| — |Ai| + [tA, + (1 — t)B| — |A}] < |tA;—1 + (1 — t)Bi—1| — |4i-1]
< [tA+ (1—1)B| - |4],

where the last inequality follows from induction. Finally, A,, = A° and B,, = B°, so the theorem follows. [

10.6.5 Proof of Lemma [10.10]

Proof of Lemma[I0.10, The first two conclusions are straightforward to checks so we turn our attention to the
third conclusion. Note that by construction t' A’ + (1 —¢')B’ = tA° + (1 — t)B°, so it is enough to show that

YA+ (1— ¢)|B| > |47,
As |A'| = (¢/t')"A°| and |B’'| = ((1 —¢)/(1 —t'))"|B°| and |A°| = |B°|, this is equivalent to
e/t + 1=t (A -t/ -t)" =1,

which is true by the convexity of the function 7 — 7. We turn our attention to the last conclusion.
Recall that K € A, B C (14 n)K for some convex set K. Let K’ = min{ £ }K so that K'NW C A’

t"l t/

and K’ N W' C B'. Similarly, let K" = max{ t }(1 +n)K, so that K" N W > A’ and K" N W' > B

t/? 1 t/
Note that for « sufficiently small in terms of 1, we have ¢t and ¢’ sufficiently similar that K" C (1 + 2n)K’.
To deal with the translation, note that K’ contains a smaller homothetic copy centred at f_’f, z. Indeed, let p

be the intersection of the ray RTz with K’. Since K is A-bounded, K’ is 1.5\-bounded, and so ||p||2 = Q,,(1/).

it
Consider the homothety H centred at p with ratio W =1+ Oy *1). Note that H(0) = +=% .

Let K" := H(K'). Asp’ € K’, we find K" C K'. Hence, K" — 1=ta Cc A’ B' —

1-t/

t’x
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Similarly, let ¢ be the point in the intersection between R~z and 9(1 + 2n)K’, so that ||g|l2 = Q.(1/N).

dot,
Hallat 3=y ll=ll2 1+ On(aX™1), so that H'(0) = 1=Lx and

Consider the homothety H' centred at ¢ with ratio Malls Ty

. _ _ llall2+7=5 ||zl
H((1+2n)K') D (1+ 2n)K' is centred at +=;x. Hence, we find A, B’ — 1=Lx C %(

Combining these two, and taking 1 and « sufficiently small in terms of A\, n, and n’, we find that A’, B’ —
form a tubular 2\-bounded 7’-sandwich.

For the final conclusion on the symmetric difference, first note that for translating does not change the
symmetric difference too much:

|A°A(B° + 2)| < | co(A°) \ A°| + | co(B° + z) \ (B° + z)| + | co(A°) A co(B° + z))|
< 20]A°| + | co(A°)A(co(B°) + )|
< 20]A°%| + Op(|[z[]2) + [ co(A%) A co(B°)]
< 20+ One(|2]]2))]A%] + [ co(A%) A co(B?)]
< One(alA%)) + (Jco(A%) \ A°| + [ co(B°) \ B°| + |A°AB°|)
< O e(alA%)) + |A°AB°).

14 2n)K'.
1-t
v

X

Hence, we may assume & = 0. Similarly we find that the homotheties do not affect the symmetric difference too
much. For simplicity assume § > 0 (the case 5 < 0 follows analogously), so that |A’AB’| < |(1+ 8)B°AA°|.
As above, it suffices to show that |(1 + 3) co(B°)A co(A°)] is small. Because the origin is in both co(A4°) and
co(B°) we find that |co(A°) \ (1 4 8) co(B°)| < |co(A°)\ co(B°)|. For the other term, note that

(14 8)co(B%) \ co(A%)] < |(1 + B) co(B°) \ co(B®)| + [ co(B®) \ co(A%)| < On(B)[A°] + [co(B) \ co(A°)].
Combining these two bounds, we find
[(1+5) co(B®) A co(A®)| = | co(A”)\ (14 ) co(B®) |+ [(145) co(B®) \ co(A%)| < On()|A%|+[co(B?)A co(A?)].
We conclude as above that |(1 4 8)B°AA°| < O, (a)|A°| + | co(B°)A co(A°)|, which finishes the proof. O

10.6.6 Proof of Lemma [10.11]

Proof of Lemma[I0.11} Note that by monotonicity it suffices to show that for points p € (9(1+ n)K) N U and
z € S x {0}, (where S is the regular simplex from Definition [10.1)), we have (1 — )z +tp € K U (S x R_).

Consider the angle between pz and op. Since |oz| < € and |op| > (2An)~! by Observation we find that
for sufficiently small €, the angle between pz and op is less than any o, ».

Let ¢ be the intersection between the line xp and K that lies between x and p. Similarly, let p’ := ﬁp €
op N OK. By the above, we have Zgpp' < ay z.

Now we will show that Zop’q is bounded away from zero in terms of n and A. Let p/, and ¢, denote the
n-th coordinates of p’ and ¢ respectively. Since both points lie in U \ B(0, (2An)~!), we find that p/,,q, >
(2An)~! —e > (3An) 7!, so that the line extending p’q does not intersect B(o, (3\n)~!) inside U. Since, that line
intersects K exactly in the segment p'q, it also does not intersect B(o, (3An)~!) C K outside of K. Now note
that for every line ¢ through any point r € B(o0,2\n) \ B(o, (3A\n)~!) that does not intersect B(o, (3\n)~!), we
find that £¢,or > arcsin((3An)~2) > (3An)~2. Hence, Zop'q > (3An)~2, and thus

Zp'qp = Zop'q — Zapp' > (3An) "% — x> (4An) 72

This implies that [pg] = O, A(|p'p|) = On.a(n]op’]). Note that as p’ € 0K and K C B(o,2\n), we have
lop’| < 2An, so that [pg| = Op A([P'P]) = OnA(n). On the other hand, we have by the triangle inequality that

|xp| > |op| — |ox| > 2An — e > An. Hence, m = Op,(n), so that choosing 1 sufficiently small in terms of n, A,
and ¢, we find that (1 —¢t)x + tp € zp C K. The lemma follows. O

11 Proof of general Linear Theorem (Theorem [1.4)

Proof of Theorem[I4] Let € = €, sufficiently small that we can apply Proposition with A = 2n3. Choose
¢ sufficiently small in terms of n and e. Finally, choose 8 = 6,, and n = 7, ; sufficiently small so that we can
apply Proposition and Proposition Note that the choice for 8 does not depend on t.

By Proposition we may assume that A, B form a 2n3-bounded n-sandwich, by picking d,, ; sufficiently
small. After re-normalization so that |A| = |B| = 1, this implies by Observation that B(o, (4n*)~1) C
A, B C B(o,4n%).

48



we will show the bound for |co(A) \ A|. The bound on |co(B) \ B| follows analogously.

Apply Proposition with parameter ¢ to A to find Ay,..., Ax. Note that as A C B(o,4n*), we have
diam(co(A)) < 8n?, so that diam(co(A;)) < 8nie.

Consider a uniformly random direction v € S™~! and consider the tube U C R" of diameter ¢ in that
direction. Note that a simplex of diameter e contains a ball of diameter ¢/, where ¢ depends only on n as €
depends only on n. Hence, U contains the circular B(o,€’) + Rv. Fix one point a; in each of the co(4;) and
note that if a; € B(o,e — 8n*¢) + Rv then A; C U. Choosing ¢ < € /(16n*), we find that the probability
P(A; C U) > P(a; € B(o,¢ — 8n*¢) + Rv) is lower bounded in terms of n for any a; € A C B(o,4n*). Say
p = pn > 01is so that P(4; C U) > p.

Note that if A; C U, then co(ANU)\ (ANU) D co(A;) \ 4;. Hence, as the co(4;) are disjoint, we find

E||co(U N A)\ (UmA)@ > "eo(Ai) \ Ail - P(A; CU) > p Y | co(Ai) \ Ai| > pb] co(A) \ Al

?

Combining this with the bound we have by Proposition we find

|l co(A) \ A] < pieED co(UmA)\(UmA)@ < ’Ttmsam.

Letting kgLE = ~2— gives the theorem. O
P

12 Proof of Symmetric difference vs Common convex hull result
(Theorem [1.7))

12.1 Propositions

The proof of these results separates into two parts, viz if X, Y very similar, i.e., [ XAY| small, or if X,Y very
dissimilar, i.e., |X NY| small. The former is more difficult.

Proposition 12.1. There exists an absolute constants c,,d, > 0 such that the following holds. Assume
0 €10,d,] and let A, B C R™ be convex sets such that |AN B| > (1 — ¢) max(|A|, |B|). Then

|co(AU B)| < (14 ¢,0) min(|A[, |B]).
Proposition 12.2. There exist constants ¢, so that, given conver sets X, Y C R", we have

X[ - Y]

XUY)| <e, =21
(X UY)| < eo i

12.2 Proofs of Propositions
12.2.1 Proof of Proposition [12.1

For this proof we use a particular case of the main result from [vHST22], which asserts the following.

Theorem 12.3. For all n € N, there are computable constants CEP,CEEZSJ > 0, such that the following holds.
Let X CR™ so that |24X| < (1 + d2Z3)| X |, then

X+X
2

colx)\ X < 88| X5 X\ x].

With this theorem in hand, the proposition follows quickly.

Proof of Proposition[12.1. Let I3 and d23(t) be the output of Theorem Choose ¢, = 1023, Choose
d, <107 dZ3(4)

By standard approximation arguments we can assume that co(A) and co(B) have a finite number of vertices.
Construct the finite set F' = V(co(A)) U V(co(B)) and construct the measurable sets X = (AN B) U F. By
construction co(A U B) = co(X) and | X| < min(|A|,|B]). Therefore, it is enough to prove

|co(X)\ X| < ¢,6/X| = 10235 x|.
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Given that 10§ < au,;ﬂ(%), by Theorem applied to the set X, it suffices to prove that |3(X + X)| <
(14 106)|X|. Recall that by construction

%(X +X)= % ([(A N B)UV(co(A))UV(co(B))]+ [(ANB)UV(co(A))U V(CO(B))])
cs ([(A N B) UV (co(A))] + [4N B]> Us <[(A A B)UV(co(B))] + AN B])
U5 (7ot u VieoB) + [V (col)) UV (co()])
c3 (A + A) Us (B " B) Us ([V(co(A)) UV (co(B))] + [V (co(4)) U V(co(B))])

C AUBU - (V(co(A)) + V(co(B))).

N | =

Therefore, by hypothesis and as |3 (V (co(A)) + V(co(B)))| = 0, we get
1
50X+ 0| < AU ] < 2max(A4] B - |40 Bl < (1-+ 0) max(( A, [B).

Also by hypothesis, we get |X| = |AN B| > (1 — §)max(|A],|B]|). Combining the last two inequalities, we

conclude
1
’2(X+X)’ < (1+9d0)max(|4],|B|) < (1+)(1 - 6)_1|X| < (1+100)|X].

The last inequality follows by noting § < % and (1+2)(1 —2)~t <1+ 10x for x < 1/2.

12.2.2 Proof of Proposition [12.2

We first prove the result for axis aligned boxes and then reduce the general case to that case.
Lemma 12.4. For azis aligned R, T C R™, we have

|R|-|T|

RUT)| <2"———

Proof. Linearly transforming and translating if needed we may assume that R is a translated unit cube and
T =10,t1] x -+ x [0,¢,]. Given this setup we find that |[RNT| <[]}, min{¢;, 1}. On the other hand,

lco(RUT)|[ < [R+T| =[]t +1) < 2" [ [ max{t;, 1}.
i=1 i=1
Combining these bounds with |R| =1 and |T'| = [[;", t;, we get

n

n
t, IR |T|
RUT)| <2"]] tn 1y =2" [ — <on ,
|CO( )| = u maX{ } 41 mln{ti, 1} — |R N T|

which concludes the lemma. O
With this lemma in hand, the proof of Proposition [12.2]is just a quick reduction.
Proof of Proposition[12.2. Let E and F the John ellipsoids of X and Y, respectively, so that
XCE, YCF, |E|I<0,(X]), and |F|<O.(|Y]).

Note that |[ENF| > | X NY|. Affinely transforming if needed we may assume F is a ball. Rotating if necessary,
we may assume the axes of symmetry of F' are the basis vectors e,...,e,. Let R and T be the smallest axis
aligned boxes containing E and F respectively, so that |R| = O, (|E|) = O,(|X]) and |T| = O,(|F]) = O,(|Y)).
Now use co(X UY) C co(RUT) and X NY C RNT, together with Lemma[12.4] to find

ol BT [ XT]-1Y]
< < < .
[co(XUY)| <|co(RUT)| <2 |RﬂT|_On IXNY]
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12.3 Proof of Theorem Theorem

Proof of Theorem [1.7, Let d220 AZT D22 16 the constants from Proposition and Proposition Let
cn = max{d2d L22/ 2 Tet § =1 — &. Consider two cases; elther 5 <dZIlor 5 > a%m In the

n max(|XT[,[YT])
former case, by Proposition we have
|co(X UY)| ( X NY] ) | XAY
leoXUW)l _ memg () <e |
min(| X, [YT) max (| X[, [Y]) XnY|
In the latter case, we use
D soq o X0V XAV

max(|X|, [Y]) ~ max{|X], Y]}’
to find that max{|X|, Y|} < |XAY|/dEZT. Hence, by Proposition [12.2] we find
[coXUY)l _ mrgmax{|X], Y]} _ | [XAY]
min{|X|[,|Y|} = " X NY] - XNy
which concludes the proof. O

13 Putting it all together: Proof of Theorem

Proof of Theorem[I.3 Choose (Pn:? sufficiently small in terms of n and ¢ to make various statements throughout
the proof true, e.g. to allow the applications of Theorem Theorem and Proposition [12.1
By Theorem we find that (after a translation)
|AAB| < &B=1/253| 4|, sothat |ANB|> (1 - EF1/253)|4).
By Theorem [I.4] we find that
8
[co(A)\ Al + [ co(B)\ B < t~"54]

Combining these two bounds and using that am is small, we find |co(A4)A co(B)| < 2dF4~1/252|A|. Hence,
using Proposition and the fact that |A] < mln{| co(A )| | co(B)|}, we have

|co(AU B)| = |co(co(A) Uco(B))| < (1 + LELZDQLEFFU%%) max{|co(A)|,| co(B)|}

< (14 B8 ) (14408 05) 4] < (14 EF1/261/2) |4,

This concludes the proof of the theorem. O

14 Open Problems

It is natural to ask for the t-dependence in Theorem [1.4l To this end we make the following conjecture.

Conjecture 14.1. For alln € N and t € (0,1/2], there are computable constants cm dm > 0 such that the
following holds. Assume § € [0 a‘@], and assume A, B C R™ are measurable sets of equal volume so that

[tA+ (1 —t)B| = (1+9)|A|.
Then
co(4)\ A] < ET1614]  and [co(B)\ B| < T4

If true, in Conjecture the exponents of § and ¢, prioritised in this order, are optimal. Indeed, to bound
|co(A)\ A|, take B = [—1,1]" and A = [-1,1]" U {p}, where p = (1 + h,0,...,0). To bound |co(B) \ B|, take
A=[-1,1]" and B = [-1,1]" U {p}, where p = (1 + h,0,...,0). In both cases h <, ; 1.

It is worth noting that Conjecture was established in dimension two [vHSTarb].

For doubling further from minimal, we recall the following conjecture from [vHEK23a].

Conjecture 14.2. There is an absolute constant A > 0 so that if § < A and A C R™ with }A—;A’ < (1+9)A]
then there is some conver K C R™ with |[KAA| < Os(1)|A|.

Finally, we recall the following conjecture suggested by [BERaz].

Conjecture 14.3. Lett € (0,1) f,g,h: R" — R>( be measurable functions with the property that h(tx + (1 —
t)y) > f(z)'gly)' =" forallz,y e R™" and [ f = [g=1. If [h <1+ 6 with § sufficiently small in terms of
and n, then there exists a log-concave function £: R™ — Rsq so that [ |h— €|+ |f — €|+ |g — €] < O ,(5Y/?).
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