
Sharp quantitative stability of the Brunn-Minkowski inequality

Alessio Figalli, Peter van Hintum, Marius Tiba

March 5, 2024

Abstract

The Brunn-Minkowski inequality states that, for bounded measurable sets A and B in Rn, we have
|A + B|1/n ≥ |A|1/n + |B|1/n. Also, equality holds if and only if A and B are convex and homothetic sets
in Rd (less a measure zero set). The stability of this statement is a well-known problem that has attracted
much attention in recent years. This paper gives a conclusive answer by proving the sharp stability result
for the Brunn-Minkowski inequality on arbitrary sets.
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1 Introduction

Given bounded measurable sets X,Y ⊂ Rn with positive measure, the Brunn-Minkowski inequality says that

|X + Y | 1
n ≥ |X| 1

n + |Y | 1
n .

Alternatively, for equal sized measurable sets A,B ⊂ Rn and a parameter t ∈ (0, 1), this is equivalent to

|tA+ (1 − t)B| ≥ |A|,

with equality for equal convex sets A and B (less a measure zero set). Here, A+B := {a+b | a ∈ A, and b ∈ B}
is the Minkowski sum, tA := {ta : a ∈ A}, and | · | refers to the outer Lebesgue measure.
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The Brunn-Minkowski inequality is part of a vast body of geometric inequalities, such as the isoperimetric
inequality, the Prékopa-Leindler inequality, and the Borell-Brascamb-Lieb inequality. The famous isoperimetric
inequality, which states that for a given volume the body minimizing its surface area is the ball, follows from
Brunn-Minkowski by taking A a ball and letting t tend to zero. The Prékopa-Leindler inequality asserts that
for t ∈ (0, 1) and functions f, g, h : Rn → R≥0 with the property that h(tx + (1 − t)y) ≥ f t(x)g1−t(y) for all
x, y ∈ Rn and

∫
f =

∫
g, we have

∫
h ≥

∫
f with equality if and only if f(x) = ag(x − x0) is a log-concave

function for some a ∈ R>0 and x0 ∈ Rn. The Prékopa-Leindler inequality implies Brunn-Minkowski by taking
f and g to be the indicator functions of A and B. The Pr’ekopa-Leindler inequality, in turn, is subsumed by
the Borell-Brascamb-Lieb inequality. The study of these inequalities and their stability has sparked a fruitful
field of research in recent years.

The stability of the Brunn-Minkowski inequality says that if we are close to equality, then the sets are close
to being convex and equal (up to translates), and the aim is to quantify the two notions of closeness (see e.g.
[Fig14]). The main folklore conjecture concerning the stability of the Brunn-Minkowski inequality is that if we
are within a factor 1+δ from equality, then the distance from A and B to a common convex set is On(t−1/2δ1/2).

Conjecture 1.1. For n ∈ N, n ≥ 2 and t ∈ (0, 1/2) there exist cn, dn,t > 0 such that the following holds. Let
A and B be measurable sets of equal size with |tA + (1 − t)B| ≤ (1 + δ)|A| and δ < dn,t. Then there exists a
convex set K such that, up to translation, K ⊃ A,B and

|K \A| = |K \B| ≤ cnt
−1/2δ1/2|A|.

Another important conjecture regarding the stability of the Brunn-Minkowski inequality is that the distance
from A and B to their individual convex hulls is linear On,t(δ). Figalli and Jerison [FJ21] formulated this
conjecture in the case of equal sets, and van Hintum, Spink, and Tiba [vHSTarb, Section 12] considered this
conjecture for arbitrary sets in the plane.

Conjecture 1.2. For n ∈ N and t ∈ (0, 1/2) there exist cn, dn,t > 0 such that the following holds. Let A and
B be measurable sets of equal size with |tA+ (1 − t)B| ≤ (1 + δ)|A| and δ < dn,t. Then

| co(A) \A| + | co(B) \B| ≤ cn,tδ|A|.

These conjectures have received a lot of attention becoming central problems in convex geometry (see e.g.
[FMP09, FMP10a, Chr12b, Chr12a, EK14, FJ15, Fig15, FJ17, BJ17, CM17, FJ21, vHST22, vHK23a, vHK23b,
vHSTara, vHSTarb]).

The first contribution to the study of inverse problems for sumsets was made by Freiman [Fre59] in dimension
n = 1. Freiman’s celebrated 3k − 4 Theorem [Fre59, LS95, Sta96] from additive combinatorics implies the
following strong version of Conjecture 1.2: If t ∈ (0, 1/2] and A,B ⊂ R are measurable sets with equal volume
such that |tA+ (1 − t)B| ≤ (1 + δ)|A| with δ < t, then | co(A) \A| ≤ t−1δ|A| and | co(B) \B| ≤ (1 − t)−1δ|B|.
Simple examples show that this result is optimal.

Stability in higher dimensions is considerably more difficult; in [Chr12b, Chr12a] Christ showed a qualitative
result: If n ∈ N, t ∈ (0, 1/2], and A,B ⊂ Rn are measurable sets with equal volume such that |tA+ (1− t)B| ≤
(1+δ)|A| with δ sufficiently small in terms of n and t, then there exists a convex setK such that, up to translation,
K ⊃ A,B and |K \A| = |K \B| = on,t,δ(1)|A|, where on,t,δ(1) → 0 as δ → 0 for fixed n and t. In a cornerstone

result, Figalli and Jerison [FJ17] obtained the first quantitative bounds: |K\A| = |K\B| ≤ δ(t/| log(t)|)
exp(O(n)) |A|.

A similar result for the Prékopa-Leindler inequality was recently established by Böröcky, Figalli, and Ramos
[BFRar].

The only instance of Conjecture 1.1 for arbitrary sets was established in two dimensions by van Hintum,
Spink, and Tiba [vHSTarb]. In an independent direction, van Hintum and Keevash [vHK23b] (see also Propo-
sition 8.3) determined the optimal value dn,t = tn for all n ∈ N and t ∈ (0, 1/2], with the same bound on the
distance to a common convex set as in the result of Figalli and Jerison.

Instances of Conjecture 1.1 for restricted classes of sets A and B have received much attention. These
papers have focused on controlling the weaker “asymmetry” distance infx |A△(B + x)|, which a priori does
not control the distance to a common convex hull |K \ A| (though Theorem 1.7 relates the two distances).
In [FMP09, FMP10b], Figalli, Maggi, and Pratelli established that given n ∈ N, t ∈ (0, 1/2], and A,B ⊂ Rn

convex sets with equal volume, if |tA+ (1− t)B| ≤ (1 + δ)|A| with δ sufficiently small in terms of n and t, then,
up to translation, |A△B| ≤ Od(t−1/2δ1/2)|A|. Figalli, Maggi, and Mooney [FMM18] showed the analogous
result when A is a ball and B is arbitrary. Note that this is closely related to the stability of the isoperimetric
inequality. Barchiesi and Julin [BJ17] extended the previous results to A convex and B arbitrary. Despite all
these results supporting Conjecture 1.1, a conclusive answer remained wide open and outside the scope of the
available techniques.
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The particular case of equal sets A = B in Conjecture 1.2 has been thoroughly investigated. Indeed,
after establishing in [FJ15] some quantitative bounds for Conjecture 1.2 in all dimensions, Figalli and Jerison
[FJ21] resolved Conjecture 1.2 for A = B in dimensions n = 1, 2, 3, and subsequently Van Hintum, Spink, and
Tiba [vHST22] resolved Conjecture 1.2 for A = B in all dimensions. Moreover, they determined the optimal
dependency on t. Furthermore, van Hintum, Spink, and Tiba [vHSTara, Theorem 1.1] established the optimal
dependency on d in dimensions d ≤ 4 when A = B is the hypograph of a function over a convex domain.
Another closely related result by van Hintum and Keevash [vHK23a] is that if A ⊂ Rn with |A+A

2 | ≤ (1 + δ)|A|
with δ < 1, then there exists a set A′ ⊂ A with |A′| ≥ (1 − δ)|A| and | co(A′)| = On,1−δ(|A′|).

For distinct sets A and B, Conjecture 1.2 has proved much more difficult. Van Hintum, Spink, and Tiba
in [vHSTara, Theorem 1.5], resolved Conjecture 1.2, when A and B are hypographs of functions over the same
convex domain. The only instance of Conjecture 1.2 for arbitrary sets was established by van Hintum, Spink,
and Tiba [vHSTarb, Section 12] in two dimensions. Despite these determined efforts, for arbitrary sets in higher
dimensions Conjecture 1.2 remained open.

1.1 Main results.

Our main results resolve the conjectured quadratic stability to a common convex hull and the conjectured linear
stability to the individual convex hulls in the Brunn-Minkowski inequality, concluding a long line of research on
these problems.

Theorem 1.3. For all n ∈ N and t ∈ (0, 1/2], there are computable constants c1.3n , d1.3n,t > 0 such that the
following holds. Assume δ ∈ [0, d1.3n,t) and let A,B ⊂ Rn be measurable sets with equal volume satisfying

|tA+ (1 − t)B| = (1 + δ)|A|.

Then, up to translation1, there is a convex set K ⊃ A ∪B such that

|K \A| + |K \B| ≤ c1.3n t−1/2δ1/2|A|.

Theorem 1.4. For n ∈ N and t ∈ (0, 12 ], there are constants c1.4, d1.4n,t > 0 such that the following holds. Assume
δ ∈ [0, d1.4n,t), and assume A,B ⊂ Rn are measurable sets of equal volume so that |tA + (1 − t)B| ≤ (1 + δ)|A|.
Then

| co(A) \A| + | co(B) \B| ≤ t−c1.4n8

δ|A|.

The proofs of Theorem 1.3 and Theorem 1.4 are very involved and will be obtained by combining a series
of intermediate results, many of which have their own interest. Moreover, Theorem 1.3 uses Theorem 1.4.

We prove Theorem 1.3 by first showing a sharp control of the symmetric difference between A and B.

Theorem 1.5. For all n ∈ N and t ∈ (0, 1/2], there are computable constants c1.5n , d1.5n,t > 0 such that the
following holds. Assume δ ∈ [0, d1.5n,t) and assume A,B ⊂ Rn are measurable sets with equal volume so that
|tA+ (1 − t)B| = (1 + δ)|A|. Then, up to translation,

|A△B| ≤ c1.5n t−1/2δ1/2|A|.

The exponents of δ and t are optimal as shown by the example A = [0, 1 +
√
δ/t] × [0, 1]n−1 and B =

[0, 1]× [0, 1+
√
δ/t]× [0, 1]n−2. In this case, we find tA+(1−t)B = [0, 1+t

√
δ/t]× [0, 1+(1−t)

√
δ/t]× [0, 1]n−2,

so that |tA+ (1 − t)B| ≤ (1 + δ)|A|, while |A△B| ≥ 2
√
δ/t|A|.

An important step in proving Theorem 1.4 is to establish the case where co(A) and co(B) have a bounded
number of vertices.

Theorem 1.6. For all n, v ∈ N and t ∈ (0, 1), there are computable constants k1.6n (v), c1.6, d1.6n,t > 0 such that
the following holds. Assume δ ∈ [0, d1.6n,t], and assume A,B ⊂ Rn are measurable sets of equal volume such that
co(A) has at most v vertices and |tA+ (1 − t)B| = (1 + δ)|A|. Then

| co(A) \A| ≤ k1.6n (v) min{t, 1 − t}−c1.6n8

δ|A|.

As mentioned above, the volume of the symmetric difference |A△B| is a commonly used parameter to
measure stability in geometric inequalities. Here, instead of controlling |A△B|, we want to improve this notion
of closeness by finding a common convex set K that contains both A and B. The key step to achieve this is
contained in the next general theorem about convex sets, which is of independent interest.

1That is, there exist x, y ∈ Rn so that x+A, y +B ⊂ K and |K \ (x+A)|+ |K \ (y +B)| ≤ c1.3n t−1/2δ1/2|A|.
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Theorem 1.7. There exists a constant cn such that given convex sets X,Y ⊂ Rn, we have

| co(X ∪ Y )|
min{|X|, |Y |}

− 1 ≤ cn
|X△Y |
|X ∩ Y |

.

Remark 1.8. In Theorem 1.3, Theorem 1.4 and Theorem 1.5, we can assume that, for fixed n ∈ N, the function
dn,t : (0, 1/2] → R+ is increasing. Similarly, in Theorem 1.6, we can assume that for fixed n ∈ N, the function
dn,t increases in (0, 1/2] and decreases in [1/2, 1). This follows from the proofs.

1.2 An alternative approach to Theorem 1.5.

While working on this project, we proved the following stability result for almost-convex sets.

Theorem 1.9. For all n ∈ N and t ∈ (0, 1/2], there are computable constants c1.9n , d1.9n,t,Γ
1.9
n,t > 0 such that the

following holds. Assume δ ∈ [0, d1.9n,t], γ ∈ [0,Γ1.9
n,t], and assume that A,B ⊂ Rn, are measurable sets with equal

volume so that

|tA+ (1 − t)B| ≤ (1 + δ)|A| and | co(A) \A| + | co(B) \B| ≤ γ|A|.

Then, up to translation,

|A△B| ≤ c1.9n

√
δ + γ

t
|A|.

This theorem, combined with Theorem 1.4, has the following important corollary.

Corollary 1.10. For all n ∈ N and t ∈ (0, 1/2], there are computable constants c1.10n,t , d
1.10
n,t > 0 such that the

following holds. Assume δ ∈ [0, d1.10n,t ] and assume that A,B ⊂ Rn, are measurable sets with equal volume so
that |tA+ (1 − t)B| ≤ (1 + δ)|A|. Then, up to translation,

|A△B| ≤ c1.10n,t δ
1/2|A|.

Although this corollary provides a sharp stability bound in terms of δ, it is weaker than Theorem 1.5 in that
the dependency on t is suboptimal. Actually, even combining Theorem 1.9 with the optimal result contained in
Conjecture 14.1 would not obtain the optimal t-dependence provided by Theorem 1.5. For this reason, in this
paper, we develop a completely different approach to prove Theorem 1.5 that bypasses the use of Theorem 1.9.

Still, we believe that the proof of Theorem 1.9 brings a lot of value in studying the stability of the Brunn-
Minkowski inequality, as it uses a mass transport approach in a new original way, and we defer its proof to a
forthcoming paper [FvHT].

1.3 Notation and conventions.

Before starting our proofs, it is convenient to briefly explain the notation that we will use throughout the
paper. With c > 0 we shall denote a universal constant independent of the dimension, while cn > 0 (and
analogous notations) denote dimensional constants. Saying that the quantity a is controlled by On(b) means
that |a| ≤ cnb, while notation a = Ωn(b) means that a ≥ cn|b|. When a constant also depends on t, we write
cn,t. To distinguish the constants that appear in the different statements, cℓ.m means that the constant c is the
one appearing in Theorem/Proposition/Lemma ℓ.m.

Throughout the paper, we fix n ∈ N with n ≥ 3 and either t ∈ (0, 1/2] or t ∈ (0, 1); unless otherwise
specified, we assume the former. We use | · | to denote the outer Lebesgue measure in Rn.

Given s ∈ R and sets X and Y in Rn, we define sX = {sx : x ∈ X}, Xc = Rn \X, and X +Y = {x+ y : x ∈
X, y ∈ Y }. A set X in Rn is convex if for all t ∈ [0, 1] we have tX + (1 − t)X ⊂ X. The convex hull co(X) of a
set X in Rn is the intersection of all convex sets containing X. In particular, co(X) is a convex set. Two sets
X and Y of Rn are homothetic if there exist a point z in Rn and a scalar s > 0 such that X = sY + z.

Given a bounded convex set X in Rn, we define X as the closure of X, which is also a convex set. The
vertices of X, denoted by V (X), represent the set V (X) = {x ∈ X : co(X \ {x}) ̸= co(X)}. It follows that
X = co(V (X)).

Measureable setsX1, . . . , Xk in Rn are said to form an essential partition of Rn if |∩iX
c
i | = 0 and |Xj1∩Xj2 | =

0 for j1 ̸= j2. By a basis e1, . . . , en in Rn, we mean an orthogonal set of vectors with unit length. In light of
Proposition 2.9, we can assume that the sets A and B (as well as all parts into which we subdivide A and B)
are compact.
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1.4 Overview of the proofs of the main results

We first prove the linear stability Theorem 1.4, which is a crucial tool at several steps in the proof of the
quadratic stability Theorem 1.3. The proof of Theorem 1.4 breaks up into two parts: first we show a linear
result for sets A so that co(A) has few vertices (Theorem 1.6), then we use this to prove the result for an
arbitrary number of vertices.

First consider Theorem 1.6, i.e., the linear stability to the convex hull for sets with few vertices. The first
step is to reduce to the case where co(A) is a simplex (see Theorem 8.1). Assume that A and B are a finite union
of points and boxes, V (co(A)) = {x0, . . . , xn}, and assume that |A| = |B| and |tA+ (1− t)B| ≤ (1 + δ)|A|. Our
move now is to pick a point x in A and construct cones C0, . . . , Cn where Ci has a vertex at x and is generated
by rays xx0, xx1 . . . , xxi−1, xxi+1, . . . , xxd−1, xxn. The cones C0, . . . , Cn partition A into subsets A0, . . . , An

with the property that co(Ai) is again a simplex. We find a translation y such that the cones y+C0, . . . , y+Cn

partition B into subsets B0, . . . , Bn where |Ai| = |Bi| (see Proposition 5.4). Repeating this move in each part,
we create a partition of A and B into sets A1, . . . , Am and B1, . . . , Bm with the property that |Ai| = |Bi|, the
sets {tAi + (1 − t)Bi}1≤i≤m are all disjoint, and (crucially) co(A) = ⊔i co(Ai). Our aim then becomes to show
Theorem 1.6 for essentially all parts Ai and Bi, that is, | co(Ai) \Ai| ≤ On,t(δi)|Ai|. Then, we can combine all
the pieces to get

| co(A) \A| =
∑
i

| co(Ai) \Ai| ≤
∑
i

On,t(δi)|Ai| = On,t(δ)|A|.

In this process, we stop further subdividing a part Ai when either Ai = co(Ai) or |Ai| ≤ 0.01| co(Ai)|. In
Proposition 8.4, we show that we can pick the points in each part sufficiently centrally in such a way as to
guarantee the following two facts:
- First, provided that some part Ai satisfies |Ai| ≥ 0.01| co(Ai)|, then all the n+ 1 parts Ai,0, . . . , Ai,n in which
we subdivide Ai satisfy |Ai,j | ≥ Ωn(1)| co(Ai,j)|.
- Second, for any parameter ε > 0, there exists k ∈ N such that essentially all parts Ai constructed in generation
k are small, in the sense that the total volumes of all large parts Ai with diam(Ai) ≥ ε in generation ℓ are at
most ε.

To conclude, we choose ε > 0 smaller than δ2|A|, and sufficiently small so that the boundary of A (recall
that A is a finite union of boxes and points) thickened by ε has size at most δ2|A|. We run the process up to
generation ℓ and note that all parts fall into four categories. First, there are the parts Ai where we stopped
further subdividing because |Ai| ≤ 0.01| co(Ai)|; for such Ai we also get |Ai| ≥ Ωn(1)| co(Ai)|. Second, there
are the parts Ai where we stopped further subdividing because Ai = co(Ai). Third, are the small parts Ai in
generation ℓ with diam(Ai) ≤ ε and 0.01| co(Ai)| < |Ai| < | co(Ai)|. As these are neither empty nor full, co(Ai)
must intersect the boundary of A, so that the combined volume of these co(Ai)’s is at most δ2|A|. Finally, there
are the big parts in generation ℓ with diam(Ai) > ε, the total volume of which is at most δ2|A|.

Now, neglecting the parts in the third and fourth categories, as they contribute very little, it is easy to
check Theorem 1.6 for the parts in the first and second categories. Indeed, in the first category we can use a
qualitative stability result (see Proposition 8.3), and in the second category there is nothing to prove as the set
is already convex.

Having proved Theorem 1.6, we turn our attention to generalizing it to an arbitrary number of vertices of
co(A).

The first step (Proposition 10.3) is to identify a collection of disjoint convex regions Xi ⊂ co(A) of small
diameter ϵ that contain a positive proportion of the missing volume of co(A)\A, i.e.,

∑
| co(A∩Xi)\(A∩Xi)| =

Ωn(| co(A) \ A|). To find the regions Xi of small diameter, we induct akin to the proof for few vertices. First,
we find as follows a triangulation of co(A) so that all simplices are pretty full. We triangulate ∂ co(A) and
consider the n-simplices formed by a (n − 1)-simplex in ∂ co(A) together with the origin o. Within each of
these simplices, we find a central point in A which partitions the simplex into smaller simplices all of which
preserve the convex hull. We iterate until we find a simplex with low density (between 98% and 99%) or small
diameter. For simplices with low density, finding a convex subregion with smaller diameter containing a positive
proportion of the missing region is a lot simpler (Lemma 10.8).

A standard reduction (Proposition 2.9) allows us to assume that

Bn(o,Ωn(1)) ⊂ K ⊂ A,B ⊂ (1 + η)K ⊂ Bn(o,On(1))

for some convex set K and η small in terms of n and t. We consider a simplicial tube U , i.e., a set of the form
T × R+ with T ⊂ Rn−1 a regular simplex centered at the origin. We insist that the diameter of U is small in
terms of n but much larger than the diameter ϵ of the regions Xi. We take a random rotation of U . As each
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Xi is completely contained inside U with probability Ω(1), we get that

| co(A) \A| = O(1)
∑

| co(A ∩Xi) \ (A ∩Xi)| = O(1)E| co(A ∩ U) \ (A ∩ U)|.

So it suffices to show that for every rotation of U we have | co(A ∩ U) \ (A ∩ U)| = On,t(δ)|A|. After some
reductions, we may assume |A∩U | = |B ∩U | and |t(A∩U) + (1− t)(B ∩U)| − |A∩U | ≤ |tA+ (1− t)B| − |A|.
Partitioning U into smaller parallel tubes Ui, we find that∑

i

(
|t(A ∩ Ui) + (1 − t)(B ∩ Ui)| − t|A ∩ Ui| − (1 − t)|B ∩ Ui|

)
≤ |t(A ∩ U) + (1 − t)(B ∩ U)| − |A ∩ U |,

although we might have |A∩Ui| ≠ |B∩Ui|. In the direction of the tubes, every fibre of A∩Ui and B∩Ui starts
with a long interval, so that extending one of the sets at the bottom does not affect |t(A ∩ Ui) + (1 − t)(B ∩
Ui)| − t|A ∩ Ui| − (1 − t)|B ∩ Ui| (cf. Lemma 10.11). Extending appropriately (which is always quite little), we
retrieve |A∩Ui| = |B∩Ui|, and by choosing Ui appropriately we find that co(A∩Ui) has few vertices. Applying
Theorem 1.6 concludes.

We now turn to the proof of Theorem 1.3. The first step is to reduce Theorem 1.3 to Theorem 1.5, that is,
the first step is to switch from showing that A + x and B + y are contained in a common convex set K with
almost the same volume, to show that |(A+ z)△B| is small. This reduction follows quickly from Theorem 1.7
and Theorem 1.4.

The starting point for the proof of Theorem 1.5 is inspired by a classical proof of the Brunn-Minkowski
inequality. Assume that the sets A and B are finite unions of boxes and assume that |A| = |B| and |tA+ (1 −
t)B| ≤ (1 + δ)|A|. Our move is to choose a hyperplane H that partitions A into A1 and A2, and then to find a
parallel hyperplane G that partitions B into B1 and B2 such that |Ai| = |Bi|. Repetition of this move creates
a partition of A and B into sets A1, . . . , Am and B1, . . . , Bm with the property that |Ai| = |Bi| and the sets
{tAi + (1 − t)Bi}1≤i≤m are all disjoint. Hence, if |tAi + (1 − t)Bi| = (1 + δi)|Ai|, then

∑
i δi|Ai| ≤ δ|A|. Our

aim is to show Theorem 1.5 for each pair of sets Ai and Bi, that is, |(Ai + xi)△Bi| ≤ On,t(δ
1/2
i )|Ai|. This is

motivated by the fact that, by cutting with sufficiently many hyperplanes, the sets Ai and Bi become simple
enough (e.g. boxes). Now, under the “much too optimistic” assumption that all translates xi coincide, we can
put all the pieces together to get

|(A+ x)△B| =
∑
i

|(Ai + xi)△Bi| ≤
∑
i

On,t(δ
1/2
i )|Ai| ≤ On,t(δ

1/2)|A|.

The main problem with the above plan is that there is no reason to believe that all the translates xi coincide.
In general, given sets Y and Z, it is difficult to grasp the optimal translation x that minimizes |(Y + x)△Z|.
However, for certain classes of sets, which we call cone-like sets, this is possible.

A cone C is the intersection of a finite family of half-spaces generated by hyperplanes through the origin o.
In particular, the vertex of the cone is at the origin. We always assume that the cone is not too wide, that is,
all angles at o are less than 179◦. We say that Y ⊂ C is C-like if

C ∩Bn(o,Ωn(1)) ⊂ Y ⊂ C ∩Bn(o,On(1))

Now, fix a cone C and let Y and Z be convex (or approximately convex) subsets of C that are C-like. For such
sets, if for a translate x we have |(Y +x)△Z| ≤

√
δ|Y | then ||x||2 must be small so that also |Y△Z| ≤ On(

√
δ)|Y |.

So, in effect, the essentially optimal translation for cone-like sets is x = o.
Motivated by this idea, the plan is to partition the whole space into cones at origin C1, . . . Cm using hy-

perplane cuts, which induce the partitions of A and B into subsets A1, . . . , Am and B1, . . . , Bm, in order to
reduce Theorem 1.5 from A and B to Ai and Bi, which we hope to be simpler to deal with. For this to work,
we must impose that the subsets Ai and Bi of Ci are Ci-like and have the same size. The first condition
turns out to be easy to satisfy, as after an affine transformation we can assume without loss of generality that
Bn(o,Ωn(1)) ⊂ A,B ⊂ Bn(o,On(1)) (see Proposition 2.9). The second condition is also rather easy to satisfy.

In Theorem 4.11, we show that we can always find such a partition into cones, each of which is the convex
hull of a set of bounded size of rays through the origin. Moreover, all the rays are clustered arbitrarily close
to a pair of rays. Thus, each cone Ci has a bounded number of faces and is arbitrarily narrow in all but one
direction. (In general, one cannot hope for all cones to be arbitrarily narrow in all directions, as one can see
already in the two-dimensional case when A = [0, 1 − ε] × [0, 1 + ε] and B = [0, 1 + ε] × [0, 1 − ε].)
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Now, recalling that A and B are finite unions of boxes and insisting that the narrow directions of the cones
are much smaller than the sides of the boxes, we can assume without loss of generality that the subsets Ai and
Bi of Ci are such that each sectional cut in the short directions is either completely full or completely empty.

So far, we have reduced Theorem 1.5 to rather simple sets Ai and Bi. So, given such sets Ai and Bi with

|Ai| = |Bi| and |tAi + (1 − t)Bi| ≤ (1 + δi)|Ai|, we need to show that |Ai△Bi| ≤ On(δ
1/2
i /t1/2)|Ai|.

We proceed akin to the final step for the linear result. It is enough to show that for each large tube U loosely

oriented in the same direction as Ci we have |(Ai ∩U)△(Bi ∩U)| ≤ On(δ
1/2
i /t1/2)|Ai| . After some reductions,

we may assume |Ai∩U | = |Bi∩U |. Now by the linear result we know that | co(Ai∩U)\ (Ai∩U)| ≤ On,t(δ)|Ai|.
Recall that in Ai and Bi each sectional cut of Ci in the short directions is either completely full or completely
empty. Combining the two facts we get that Ai ∩ U and Bi ∩ U are essentially one-codimension compressed
sets. For such sets we can prove a sharp quadratic stability and thus conclude.

1.5 Structure of the paper

Given the complexity of our proofs, we kindly encourage the reader to refer to the table of contents as a guide
for navigation and orientation within the paper. We note that:
- The proof of Theorem 1.3 uses Theorem 1.4, Theorem 1.5, and Theorem 1.7;
- The proof of Theorem 1.5 uses Theorem 1.4;
- The proof of Theorem 1.4 uses Theorem 1.6;
- Theorem 1.7 and Theorem 1.6 are proved directly.

At the beginning of the sections, we include more detailed overviews of the proofs.

Acknowledgements. AF acknowledges the support of the ERC Grant No.721675 “Regularity and Stability in
Partial Differential Equations (RSPDE)” and of the Lagrange Mathematics and Computation Research Center.

2 Initial reductions of Theorem 1.4, Theorem 1.5, and Theorem 1.6

We shall deduce some basic allowed additional assumptions for Theorem 1.5, Theorem 1.4, and Theorem 1.6,
but before we do so, we need a few definitions.

2.1 Setup

Definition 2.1. A set X ⊂ Rn is called simple if

X =
⊔
i≤k

xi + [0, 1]n

for some k ∈ N, that is, X is a finite disjoint union of translates of the unit cube.

Definition 2.2. A convex set C ⊂ Rn is called a cone if there exists a hyperplane H not containing the origin
and a bounded convex set P ⊂ H such that

C =
⊔
t≥0

tP.

Definition 2.3. We write Sv0,...,vn for the simplex with vertices v0, . . . , vn. Assuming that Sv0,...,vn contains
the origin in the interior, construct the family of cones Cv0,...,vn := {Ci : 0 ≤ i ≤ n}, where

Ci =
⊔
t≥0

t co(v0, . . . vi−1, vi+1, . . . , vn).

Note that the cones in Cv0,...,vn form an essential partition of Rn.

Definition 2.4. Fix vectors e0, . . . , en ∈ Rn such that Se0,...,en is a regular unit volume simplex centered at the
origin o. Denote S = Se0,...,en and C = Ce0,...,en .

Definition 2.5. A pair of sets X,Y ⊂ Rn is λ-bounded if there exists an r > 0 so that

rS ⊂ X,Y ⊂ λrS.

Observation 2.6. If A,B ⊂ Rn are λ-bounded and |A| = |B| = 1, then B(o, (2λn)−1) ⊂ A,B ⊂ B(o, 2λn).
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Definition 2.7. Given a cone F ⊂ C ′ ∈ C, a pair of sets X,Y ⊂ Rn is (λ, F )-bounded if there exists an r > 0
so that

r(F ∩ S) ⊂ X,Y ⊂ λr(F ∩ S).

Definition 2.8. A pair of sets X,Y ⊂ Rk is called a η-sandwich if there exists a convex set P such that
o ∈ P ⊂ X,Y ⊂ (1 + η)P .

Given a cone F and an η-sandwich X,Y ⊂ Rn, the pair X ∩ F, Y ∩ F is also an η-sandwich.

2.2 Proposition

Proposition 2.9. Fix n ∈ N and t ∈ (0, 1/2].

• Assume that there exist constants λ2.9n > 2n2 and η2.9n,t > 0 such that Theorem 1.5 holds for all simple
λ2.9n -bounded η2.9n,t-sandwiches A,B ⊂ Rn. Then it holds for all measurable sets A,B ⊂ Rn.

• Assume that there exist constants λ2.9n > 2n2 and η2.9n,t > 0 such that Theorem 1.4 holds for all λ2.9n -bounded
η2.9n,t-sandwiches A,B ⊂ Rn so that A is a simple set intersected with co(A) and analogously for B. Then
it holds for all measurable sets A,B ⊂ Rn.

• Similarly, fix n ∈ N and t ∈ (0, 1). If Theorem 1.6 holds for all λ2.9n -bounded η2.9n,t-sandwiches A,B ⊂ Rn

so that A is a simple set intersected with co(A), then it holds for all measurable sets A,B ⊂ Rn.

2.3 Auxiliary Lemmas

We first collect some auxiliary results that will be used to prove Proposition 2.9. The proof of such results will
be given in Section 2.5 below.

We recall the following result by Michael Christ.

Theorem 2.10 (Christ 2012, [Chr12a]). For all n ∈ N, t ∈ (0, 1) and η > 0, there exist constants ∆2.10
n > 0,

so that for all measurable X,Y ⊂ Rn of equal volume with the property that |tX + (1 − t)Y | ≤ (1 + ∆2.10
n )|X|,

then
min
v∈Rn

| co(X ∪ (v + Y ))| ≤ (1 + η)|X|.

We also need two lemmas.

Lemma 2.11. For n ∈ N, t ∈ (0, 1/2] and η > 0, there exist constants c2.11 and ∆2.11
n,t (η) > 0 so that the

following holds. If X,Y ⊂ Rn are measurable sets with |X| = |Y | and |tX + (1 − t)Y | = (1 + δ)|X| with
δ ∈ [0,∆2.11

n,t ], then, up to translation, there exist measurable sets X ′, Y ′ ⊂ Rn so that

1. X ′, Y ′ is an η-sandwich,

2. |X ′| = |Y ′| = |X|,

3. co(X ′) = co(X) and co(Y ′) = co(Y ),

4. |X ′△X| + |Y ′△Y | ≤ c2.11t−1δ|X|,

5. |tX ′ + (1 − t)Y ′| ≤ (1 + δ)|X|.

Moreover, if X ⊂ Y , we additionally find X ′ ⊂ Y ′.

Lemma 2.12. For n ∈ N, and η > 0 the following holds. If X,Y ⊂ Rn is an η-sandwich, then there exists
v ∈ Rn and there exists a linear transformation θ : Rn → Rn such that θ(v+X), θ(v+Y ) is a (n2+n3η)-bounded
nη-sandwich.
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2.4 Proof of Proposition 2.9

Proof of Proposition 2.9. Choose η sufficiently small in terms of n, η2.9n , and λ2.9n . Choose ζ small in terms of
η, and choose ξ sufficiently small in terms of ζ and η.

Apply Lemma 2.11 with parameter η to A,B to find A1, B1. Apply Lemma 2.12 to A1, B1 to find A2, B2

which is a (n2 + n3η)-bounded nη-sandwich. To additionally get that the sets are simple we use a standard
approximation (see e.g. [vHK23a, Lemma 3.13]). Find compact subset A3 ⊂ A2, so that |A2 \A3| → 0 as ζ → 0.
We can ensure | co(A3)| → | co(A2)| as ζ → 0, by requiring A3 to contain a large finite subset of the vertices of
co(A2) (or all of them if V (co(A2)) is finite). Analogously define B3. Note that we may additionally ask that
A3, B3 have the same size and form a (n2 + n3η)-bounded nη-sandwich.

From here we consider Theorem 1.5, Theorem 1.4, and Theorem 1.6 separately. First, consider Theorem 1.5.
Let

A4 := {x ∈ (ξZ)n : (x+ [0, ξ]n) ∩A3 ̸= ∅} + [0, ξ]n ⊃ A3

and B4 analogously. Since A3 is compact, |A4 \ A3| → 0 as ξ → 0. Similarly, as tA3 + (1 − t)B3 is compact,
|(tA4 + (1 − t)B4) \ (tA3 + (1 − t)B3)| → 0 as ξ → 0. We can construct subsets A5 and B5 of A4 and B4,
respectively such that A5 = X + [0, ξ]n and B5 = Y + [0, ξ]n with X,Y ⊂ (ξZ)n, |A5| = |B5| = min{|A4|, |B4|}
and A5, B5 is a simple (n2 + n3η)-bounded 2nη-sandwich as ξ → 0. By the above,

lim
ζ→0

lim
ξ→0

|tA5 + (1 − t)B5|/|A5| ≤ |tA2 + (1 − t)B2|/|A2| ≤ 1 + δ.

Choosing η sufficiently small, we can apply Theorem 1.5 to find limζ→0 limξ→0 |A5△B5|/|A5| ≤ c1.5n t−1/2δ
1
2 (up

to a translation). This implies that, up to a translation, |A2△B2|/|A2| ≤ 2c1.5n t−1/2δ
1
2 , hence |A△B|/|A| ≤

3c1.5n t−1/2δ
1
2 , as desired.

For Theorem 1.4 and Theorem 1.6, proceed analogously to the previous paragraph but with

A4 := ({x ∈ (ξZ)n : (x+ [0, ξ]n) ∩A3 ̸= ∅} + [0, ξ]n) ∩ co(A3) ⊃ A3

and B4 similarly.

2.5 Proofs of Auxiliary Lemmas

2.5.1 Proof of Lemma 2.11

The idea will be to show that a large homothetic copy of co(X∪Y ) is contained in tX+(1− t)Y , so that adding
a slightly smaller homothetic copy of co(X ∪ Y ) to X and Y will not change tX + (1 − t)Y .

Proof of Lemma 2.11. Translate X and Y so that | co(X ∪ Y )| is minimal. Additionally, taking an affine
transformation if necessary, we may assume that the John ellipsoid E ⊂ co(X ∪ Y ) is a ball centered at the
origin. Note that |E| ≥ n−n| co(X ∪ Y )| ≥ n−n|X|.

Let η′ = tη and ξ = min
{

1
3

(
tη′

(1−t)n

)n
, 2−n

}
. Apply Theorem 2.10 with parameters t, n, and η2.10 = ξ to

produce ∆2.10, and choose ∆n = ∆2.10
n , so that | co(X ∪ Y )| ≤ (1 + ξ)|X|.

Claim 2.13. (1 − η′) co(X ∪ Y ) ⊂ tX + (1 − t)Y

Proof of claim. Consider a point p ∈ (1 − η′) co(X ∪ Y ). Find the point p′ ∈ ∂ co(X ∪ Y ) so that p = λp′ for
some λ ∈ [0, 1 − η′]. Let H : Rn → Rn be the homothety of ratio 1 − λ > η′ centered at p′. By convexity
H(E) ⊂ H(co(X ∪ Y )) ⊂ co(X ∪ Y ) and H(o) = p′, so that co(X ∪ Y ) contains a set of size

|H(E)| ≥ (1 − λ)n|E| ≥ η′n|E| ≥ (η′/n)n|X|

symmetric around p. Note that

|H(E) \ Y | ≤ | co(X ∪ Y ) \ Y | ≤ ξ|Y | ≤ 1

3

(
tη′

(1 − t)n

)n

|Y | ≤ 1

3
|H(E)|,

hence |H(E) ∩ Y | ≥ 2
3 |H(E)|. Now consider the homothety H ′ : Rn → Rn of ratio −t/(1 − t) centered at p.

Consider the set H ′(H(E)∩Y ) ⊂ H(E) and note that |H ′(H(E)∩Y )| ≥ 2
3 |H

′(H(E))|. Similarly as before, we
find

|H ′(H(E) ∩ Y ) \X| ≤ | co(X ∪ Y ) \X| ≤ 1

3

(
tη′

(1 − t)n

)n

|X| ≤ 1

3
|H ′(H(E))| ≤ 1

2
|H ′(H(E) ∩ Y )|.

Hence, there exists a point y ∈ H(E) ∩ Y , so that H ′(y) ∈ X ∩ H ′(H(E)). Note that this implies that
tx+ (1 − t)y = p, so that p ∈ tX + (1 − t)Y . This concludes the claim.

9



Consider the sets X ′′ := X ∪ (1 − t−1η′) co(X ∪ Y ) and Y ′′ := Y ∪ (1 − t−1η′) co(X ∪ Y ). Note that we get

tX ′′ + (1 − t)Y ′′ ⊂ (tX + (1 − t)Y ) ∪ (t(1 − t−1η′) co(X ∪ Y ) + (1 − t) co(X ∪ Y ))

= (tX + (1 − t)Y ) ∪ (1 − η′) co(X ∪ Y )) = tX + (1 − t)Y,

where in the last equality we used the claim. We find |X′′\X|
|X| ≤ | co(X∪Y )\X|

|X| ≤ ξ ≤ 2−n. Now using the Brunn-

Minkowski inequality, we find (t|X ′′| 1
n + (1 − t)|Y ′′| 1

n )n ≤ |tX ′′ + (1 − t)Y ′′| = |tX + (1 − t)Y | ≤ (1 + δ)|X|,
which yields(

1 + t
|X ′′ \X|

2n|X|
+ (1 − t)

|Y ′′ \ Y |
2n|Y |

)n

≤

(
t

(
1 +

|X ′′ \X|
|X|

) 1
n

+ (1 − t)

(
1 +

|Y ′′ \ Y |
|Y |

) 1
n

)n

≤ 1 + δ,

so that |X ′′ \X| + |Y ′′ \ Y | ≤ 2δt−1|X|.
Having gained control over the size of X ′′ and Y ′′, we remove some of it to get the equality in sizes. To

this end choose subsets X ′ ⊂ X ′′ so that the vertices of co(X) = co(X ′′) are in X ′ (so that co(X ′) = co(X)),
(1 − t−1η′) co(X ∪ Y ) ⊂ X ′ and |X ′| = |X|. Similarly, choose Y ′ ⊂ Y ′′ and ensure |X ′| = |Y ′|. Now note that

|X ′△X| + |Y ′△Y | = |X ′′ \X| + |X ′′ \X ′| + |Y ′′ \ Y | + |Y ′′ \ Y ′| = 2 (|X ′′ \X| + |Y ′′ \ Y |) ≤ 4δt−1|X|,

and |tX ′ + (1 − t)Y ′| ≤ |tX ′′ + (1 − t)Y ′′| = |tX + (1 − t)Y | ≤ (1 + δ)|X|.
Finally, if X ⊂ Y , note that |Y \X| = 0. Constructing X ′ as before and setting Y ′ = X ′∪ (Y \X) concludes

the proof.

2.5.2 Proof of Lemma 2.12

Proof of Lemma 2.12. We begin the proof with the following two claims.

Claim 2.14. Let α, η ∈ (0, 1), P ⊂ Rn convex and X,Y , so that o ∈ P ⊂ X,Y ⊂ (1+η)P and let o′ ∈ (1−α)P .
Let P ′ = P − o′, X ′ = X − o′ and Y ′ = Y − o′. Then o ∈ P ′ ⊂ X ′, Y ′ ⊂ (1 + η/α)P ′.

Proof. The first and second containment is trivial so we focus on the last containment. By hypothesis, it is
enough to show (1 + η)P − o′ ⊂ (1 + η/α)(P − o′). This is equivalent to (1 + η)P + (η/α)o′ ⊂ (1 + η/α)P.
Because o′ ∈ (1 − α)P , it is enough to note that (1 + η)P + (η/α)(1 − α)P = (1 + η/α)P. This concludes the
proof of the claim.

Claim 2.15. Assume that o ∈ P is a convex set. Let o′ be the center of John ellipsoid E of P . Then
o′ ∈ (1 − 1

n )P .

Proof. John ellipsoid has the following property. (E − o′) ⊂ (P − o′) ⊂ n(E − o′). In particular, by symmetry
of E, we have o− o′ ∈ n(E− o′) = −n(E− o′), which, is equivalent to o′ ∈ 1

n+1o+ n
n+1E. As o ∈ P and E ⊂ P ,

this implies o′ ∈ n
n+1P.

We now return to the proof of Lemma 2.12. Let P ⊂ Rn convex o ∈ P ⊂ X,Y ⊂ (1 + η)P using that X,Y
is an η sandwich. Let o′ be the center of the John ellipsoid E in P . Let P ′ = P − o′, E′ = E − o′, X ′ = X − o′

and Y ′ = Y − o′.
By Claim 2.15, we get o′ ∈ (1− 1

n )P . By Claim 2.14 we get o ∈ P ′ ⊂ X ′, Y ′ ⊂ (1 +nη)P ′. In particular, we
deduce that X ′, Y ′ is a nη-sandwich.

By construction, we get that E′ is the John ellipsoid of P ′ and it is centered at o. It has the property that
E′ ⊂ P ′ ⊂ nE′. It follows that E′ ⊂ X ′, Y ′ ⊂ (n+ n2η)E′.

As E′ is an ellipsoid centered at the origin o, there exists a linear transformation θ : Rn → Rn such that
θ(E′) is a ball centered at the origin. In particular, we get that θ(E′) ⊂ θ(X ′), θ(Y ′) ⊂ (n+ n2η)θ(E′).

By observing that the John ellipsoid of the regular simplex S is a ball centered at the origin, we immediately
get that rS ⊂ θ(E′) ⊂ nrS for some r > 0. Putting together all of the above, we get that

rS ⊂ θ(X ′), θ(Y ′) ⊂ (n2 + n3η)rS.

We conclude that θ(X − o′), θ(Y − o′) is (n2 + n3η)-bounded. As sandwiches are preserved under linear
transformations, we also conclude that θ(X − o′), θ(Y − o′) is a nη-sandwich.
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3 Outline of the proof of the Quadratic Theorem (Theorem 1.5)

In this section, we give an outline of the results contained in the next four sections. We shall assume that
Theorem 1.4 has been proved.

Thanks to the simple reduction performed in the previous section, see Section 2 and specifically Proposi-
tion 2.9, we can assume that A and B are already pretty convex, are sandwiched between two balls of comparable
sizes, and are the finite union of axis aligned cubes. The strategy is now the following.

1. Moving A and B slightly we can partition Rn into n+1 reasonably shaped (not too large or small) convex
cones C ∈ C1 so that |A ∩ C| = |B ∩ C| (see Proposition 5.4).

2. We will refine this partition into cones using the following procedure. Given a cone C and a codimension-
two subspace S, we find a hyperplane H ⊃ S so that |C ∩H± ∩A| = |C ∩H± ∩B| (see Proposition 5.5).

3. Choosing the codimension-two subspaces carefully, we obtain a partition into convex cones C ∈ C2 essen-
tially all of which satisfy the following properties (see Proposition 5.6, the engine of which is Theorem 4.11):

• |A ∩ C| = |B ∩ C|,
• C is the convex hull of few half-lines through the origin,

• C is very narrow in all but one direction of an orthogonal basis depending on C.

These imply
∑

C∈C2
|t(A ∩ C) + (1 − t)(B ∩ C)| ≤ |tA+ (1 − t)B|.

4. Removing a negligible part of A and B, we may additionally assume that the sections of C in the narrow
directions are completely contained in or disjoint from A∩C and B ∩C for C ∈ C2 (see Proposition 5.7).
In some sense this reduces A ∩ C and B ∩ C to two-dimensional sets, as all information about the sets is
captured by π(A ∩ C) and π(B ∩ C), where π is the projection along the narrow directions.

5. In Proposition 6.8 we construct a bounded family U of cylinders. All cylinders have the same simplex
base, which is contained in a face of T and inside C. Moreover, the cylinders cover a big ball intersected
with C (so, in particular, A∩C and B∩C). Furthermore, for U ∈ U , we have |U ∩A∩C| = Ωn(1)|A∩C|.

6. In Proposition 6.7, for U ∈ U , we find a matching cylinder V parallel to U such that |U∩A∩C| = |V ∩B∩C|
and |t(U ∩A∩C) + (1 − t)(V ∩A∩C)| − |U ∩A∩C| ≤ |t(A∩C) + (1 − t)(B ∩C)| − |A∩C|. Moreover,
the distance between U and V is small, namely |(U△V ) ∩ S ∩ C| ≤ On(1)δ1/2t−1/2|S ∩ C|. This allows
us to assume U = V and further reduce the problem to the sets A ∩ U ∩ C and B ∩ V ∩ C which satisfy
|t(U ∩A ∩ C) + (1 − t)(V ∩A ∩ C)| = (1 + δ′)|U ∩A ∩ C|.

7. By Theorem 1.4, we find | co(U ∩ A ∩ C) \ (U ∩ A ∩ C)| = On,t(δ
′)|(U ∩ A ∩ C)|. We also know that

that the sections of C in the narrow directions are completely contained in or disjoint from A ∩ C and
B ∩C. Combining these, we can deduce that U ∩A∩C and V ∩B ∩C are essentially one-codimensional
compressed.

8. In Proposition 6.6 we resolve the problem for one-codimensional (in the long direction) compressed sets.

4 Intermediate results for the Quadratic Theorem (Theorem 1.5):
Part I

4.1 Setup

Definition 4.1. Let Kn be the family of convex sets in Rn with a finite number of vertices and let Sn
k be the

set of codimension k affine subspaces of Rn.

Definition 4.2. Say a function f : Kn×Sn
2 → Sn

1 is a respectful function if L ⊂ f(K,L). A respectful function
f induces functions f−, f+ : Kn×Sn

2 → Kn, where f−(K,L), f+(K,L) are the convex sets the affine hyperplane
f(K,L) essentially partitions K into.

Definition 4.3. Given a respectful function f : Kn × Sn
2 → Sn

1 and a convex set P , we say F is a valid
partition of P into convex subsets if there exists a sequence of families {P} = G0, . . . ,Gj = F such that if

Gi = {P1, P2, . . . , Pk}, then there exists codimension-two affine subspaces L1, . . . , Lk such that Gi+1 =
⋃k

j=1Rj,

where Rj = {f+(Pj , Lj), f
−(Pj , Lj)} or Rj = {Pj}.
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We now consider the analogous definitions for cones (cf. Definition 2.2).

Definition 4.4. Let Cn be the family of cones in Rn and let T n
k be the set of codimension k subspaces of Rn.

Definition 4.5. Say a function f : Cn×T n
2 → T n

1 is a respectful function if L ⊂ f(C,L). A respectful function
f induces functions f−, f+ : Cn × T n

2 → Cn, where f−(C,L), f+(C,L) are the cones the hyperplane f(C,L)
partitions C into.

Definition 4.6. Given a respectful function f : Cn × T n
2 → T n

1 and a cone C, we say F is a valid partition of
C into cones if there exists a sequence of families {C} = G0, . . . ,Gj = F such that if Gi = {C1, C2, . . . , Ck}, then
there exists codimension-two subspaces L1, . . . , Lk such that Gi+1 =

⋃k
j=1Rj, where Rj = {f+(Cj , Lj), f

−(Cj , Lj)}
or Rj = {Cj}.

Definition 4.7. Given a cone C ⊂ Rn, define

µn(C) := |C ∩ S|,

where S is the unit volume simplex from Definition 2.4.

Definition 4.8. A function f : C → Kn from some convex domain C ⊂ Rm is linear if f(tx + (1 − t)y) =
tf(x) + (1 − t)f(y) for all x, y ∈ C.

For example, the function f : R2
≥0 → K2 given by f(x, y) = [x/2, 3x/2] × [y, 3y] is linear. Note that given a

linear function f : C → Kn with C ∈ Cm and f(o) = {o}, the set
⋃

x∈C f(x) × {x} is a cone in Cm+n.

Definition 4.9. A cone C ∈ Cn is (i, ℓ, ε)-good if there exists a basis eC1 , . . . , e
C
n and there exists a cone C ′ ∈ Ci

and a linear function f : C ′ → Kn−i such that f(x) has at most ℓ vertices for all x ∈ C ′,

sup
y,z∈f(x)

||y − z||2 ≤ ε||x||2, and C = ∪x∈C′{f(x) × {x}}.

Definition 4.10. When a basis is established, let πi : Rn → R be the projection onto the ith coordinate and let
πi,j : Rn → R2 be the projection onto the plane spanned by the ith and jth coordinate.

4.2 Theorem

In this section, we will prove the following theorem. Recall from Definition 2.4 that S is a regular simplex with
unit volume. Let F0, . . . , Fn be the faces of S defined by Fi = Ci ∩ ∂S where Ci ∈ C.

Theorem 4.11. There exist constants ℓ4.11n (m) such that for every ε > 0 the following holds. Given a respectful
f : Cn × T n

2 → T n
1 and a cone C defined by m lines which is a subcone of some Ci ∈ C, there exists a valid

partition F of C that can be written as F = F0 ⊔ F1 ⊔ F2 such that

1.
∑

F∈F0
µn(F ) ≤ ε.

2. Every cone F ∈ F1 is (1, ℓ4.11n (m), ε)-good.

3. For every cone F ∈ F2 there exists a sub-cone F ′ of F with µn(F ′) ≥ (1 − ε)µn(F ) such that F ′ is
(2, ℓ4.11n (m), ε)-good.

Furthermore, given H + v the affine hyperplane containing Fi, where H is a hyperplane through the origin, we
can insist that for all cones F ∈ F1 we have eFn ∈ H⊥ and for all F ∈ F2 we have eF

′

n ∈ H⊥.

We note that a slightly more general result holds where we drop S. The motivation to include S comes from
the way we apply the theorem.

4.3 Propositions

To prove Theorem 4.11, we first state some propositions and lemmas that will be used in the proofs. All these
results will be proved later below.

Proposition 4.12. There exists a constant ℓ4.122 such that for every ε > 0 the following holds. Given a respectful
f : K2×S2

2 → S2
1 and convex set P , there exists a valid partition F of P that can be written as F = F0⊔F1⊔F2

such that

12



1.
∑

F∈F0
|F | ≤ ε.

2. For every F ∈ F1 we have |V (F )| ≤ ℓ4.122 and for a basis e1, e2 and for i = 1, 2 we have that |πi(F )| ≤ ε,

3. For every F ∈ F2 we have |V (F )| ≤ ℓ4.122 there exists a basis (dependent on F ) e1, e2 such that we have
|π1(F )| ≤ ε and |π2(F )| ≥ ε and π2(V (F ))) ⊂ V (π2(F )) + (−ε2, ε2).

Here πi : Rn → R is the projection onto the i-th coordinate (as in Definition 4.10).

Proposition 4.13. There exists a constant ℓ4.13n (m) such that for every ε > 0 the following holds. Given a
respectful f : Kn × Sn

2 → Sn
1 and convex set P with |V (P )| ≤ m, there exists a valid partition F of P that can

be written as F = F0 ⊔ F1 ⊔ F2 such that

1.
∑

F∈F0
|F | ≤ ε.

2. For every F ∈ F1 we have |V (F )| ≤ ℓ4.13n (m) and for a basis e1, e2, . . . , en we have for every i |πi(F )| ≤ ε.

3. For every F ∈ F2 we have |V (F )| ≤ ℓ4.13n (m) and there exists a basis (dependent on F ) e1, e2, . . . , en such
that for every i ̸= n we have |πi(F )| ≤ ε and |πn(F )| ≥ ε and πn(V (F ))) ⊂ V (πn(F )) + (−ε2, ε2).

4.4 Auxiliary Lemmas

Lemma 4.14. There exist constants λ4.14n > 0 so that given a convex set P ⊂ Rn and an affine subspace
L′ ∈ Sn

2 , there exists a translate L ∈ Sn
2 of L′ so that any affine hyperplane H ⊃ L essentially partitioning the

space into two parts H+ and H− satisfies

|H+ ∩ P |
|H− ∩ P |

∈
[
λ4.14n , (λ4.14n )−1

]
.

Lemma 4.15. For any convex body P ⊂ R2 with at least 7 vertices, there exists a point p ∈ P , so that for any
line ℓ ∋ p essentially partitioning the plane into halfplanes ℓ+ and ℓ−, we have that both convex sets ℓ+ ∩P and
ℓ− ∩ P have fewer vertices than P .

Lemma 4.16. Let P ⊂ R2 be a convex set with at most C vertices and a respectful function f : K2 ×R2 → S2
1 .

Then there exists a valid partition of P into at most 2C−6 parts so that all parts have at most 6 vertices.

Lemma 4.17. Let P ⊂ Rn be a convex set. For any ξ > 0, there exist ζ0, η0 > 0 (depending on P ) so that
for any ζ < ζ0 and η < η0 the following holds. Say a line L ⊂ Rn is ζ permissible if for one of the points
x ∈ L ∩ ∂P , there exists a line Lx tangent to P at x with ∠L,Lx ≤ ζ. Let

Qζ,η := P ∩
⋃

L:ζ permissible

L+B(o, η),

then Qζ,η ⊂ ∂P +B(o, ξ)

Lemma 4.18. There exists a constant α > 0, so that for any ε > 0 the following holds. Given a basis e1, e2
in R2, a convex set P ⊂ R2 with at most six vertices and a respectful f : K2 × R2 → S2

1 , there exists a valid
partition G of P and an element P ′ ∈ G so that |P ′| ≥ α|P | and

• either |π2(P ′)| ≤ |π2(P )| − ε2,

• or π2(V (P ′)) ⊂ V (π2(P ′)) + (−ε2, ε2).

Furthermore, all convex sets in G have at most 10 vertices.

4.5 Proof of Theorem 4.11

Theorem 4.11 can be considered as Proposition 4.13 coned off at the origin.

Proof of Theorem 4.11. Let ℓ4.11n (m) := (ℓ4.13n−1(m))2. Let c4.11n be 1/n + 1 times the radius of the largest ball
inside T . Choose η > 0 sufficiently small in terms of ε.

Let P := (v + H) ∩ C ∈ Kn−1. For any subset P ′ ⊂ v + H, we define C(P ′) :=
⋃

t≥0 tP
′. Note that if P ′

is a bounded convex set in H + v, then C(P ′) is a cone. In particular, C = C(P ). Note moreover that for a
codimension 2 affine subspace L of v +H, C(L) is a codimension 2 subspace of Rn.
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In the following we will slightly abuse notation to interpret v +H as a copy Rn−1 to aid the application of
Proposition 4.13. For instance, we will write Kn−1 to indicate the convex subsets of v +H.

We construct a respectful function f ′ : Kn−1 × Sn−1
2 → Sn−1

1 from f : Cn × T n
2 → T n

1 as follows. For any
convex subset P ′ ⊂ P and a codimension 2 affine subspace L of v+H, define f ′(P ′, L) = (v+H)∩f(C(P ′), C(L)).
Note that indeed

L = (v +H) ∩ C(L) ⊂ (v +H) ∩ f (C(P ′), C(L)) = f ′(P ′, L),

so that f ′ is respectful.
Now apply Proposition 4.13 to P with respectful function f ′ and parameter η (as ε), to find valid partition

F ′ = F ′
0 ∪ F ′

1 ∪ F ′
2 of P , where all P ′ ∈ F ′

1 ∪ F ′
2 have at most ℓ4.13n−1(m) vertices. Define F = F0 ∪ F1 ∪ F2 by

Fi := {C(P ′) : P ′ ∈ F ′
i}. Note that clearly F is a valid partition by the construction of f ′, so it remains to

check that it indeed satisfies the conditions on F0, F1, and F2.
By definition of H, we find that µn(C(P ′)) = c4.11n |P ′|, so that∑

F∈F0

µn(F ) = c4.11n

∑
P ′∈F ′

0

|P ′| ≤ c4.11n η ≤ ε,

as c4.11n represents 1/(n+ 1) of the distance from o to Fi.
Consider F ∈ F1 and choose a basis e1, . . . , en with en perpendicular to H. Let P ′ ∈ F ′

1, so that F = C(P ′).
To show that F is (1, ℓ, ε)-good, let C ′ = R≥0en and g : C ′ → Kn−1, ten 7→ (tv+H)∩F = tP ′, which is clearly
linear. Note that g(ten) is homothetic for all t, so always has the same number of vertices (as P ′), in particular
at most ℓ4.13n−1(m) ≤ ℓ4.11n (m). Note

sup
x,y∈g(ten)

||x− y||2 = sup
x,y∈tP ′

||x− y||2 ≤ t
√
n− 1η ≤ ε||ten||2.

This concludes that F is (1, ℓ, ε)-good.
Consider F ∈ F2 and the P ′ ∈ F ′

2, so that F = C(P ′). Let en be the unit vector orthogonal to H, and
let e1, . . . , en−1 be the basis of H so that |πi(P ′)| ≤ η for i ≤ n − 2 and |πn−1(P ′)| ≥ η and πn−1(V (P ′)) ⊂
V (πn−1(P ′)) + (−η2, η2). Let

P ′′ := P ′ ∩ π−1
n−1

(
πn−1(P ′) \

[
V (πn−1(P ′)) +

(
−η2, η2

)])
,

so that by construction πn−1(V (P ′′)) = V (πn−1(P ′′)). By convexity, we have |P ′ \ P ′′| ≤ On(η|P ′|). Now
let F ′ := C(P ′′) ⊂ F , and note that µn(F ′) ≥ (1 − ε)µn(F ). Let C ′ := C(πn−1,n(F ′)) = πn−1,n(F ′), where
πn−1,n : Rn → R2 is the projection onto the last two coordinates and let

g : C ′ → Kn−2, x 7→ π−1
n−1,n(x) ∩ F ′.

To see that g is linear, consider the auxiliary function

g′ : πn−1(P ′′) → Kn−2, x 7→ π−1
n−1(x) ∩ P ′′

and note that g′ is linear because πn−1(V (P ′′)) = V (πn−1(P ′′)). Let h > 0 be such that πn(v) = h and note
that π−1

n (th) ∩ F ′ = tP ′′, so that for a point (x, y) ∈ πn−1,n(F ′′), we have g(x, y) = y
hg

′(hx
y ). Hence, we get for

(x, y), (x′, y′) ∈ C ′, that

hg (tx+ (1 − t)x′, ty + (1 − t)y′) = (ty + (1 − t)y′)g′
(
tx+ (1 − t)x′

ty + (1 − t)y′
h

)
= (ty + (1 − t)y′)

(
g′
(

ty

ty + (1 − t)y′
· x
y
h+

(1 − t)y′

ty + (1 − t)y′
· x

′

y′
h

))
= (ty + (1 − t)y′)

(
ty

ty + (1 − t)y′
g′
(
x

y
h

)
+

(1 − t)y′

ty + (1 − t)y′
g′
(
x′

y′
h

))
= tyg′

(
x

y
h

)
+ (1 − t)y′g′

(
x′

y′
h

)
= thg(x, y) + (1 − t)hg(x′, y′),

so that g is linear. Finally, to count the number of vertices of g(x, y), note that it is the intersection between a
homothetic copy of P ′′ and a hyperplane, so that the number of vertices is bounded by the number of edges in

P ′′ which is at most
(ℓ4.13n−1(m)

2

)
≤ ℓ4.11n (m).
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4.6 Proof of Propositions

4.6.1 Proof of Proposition 4.12

Note that S2
2 = R2.

Proof of Proposition 4.12. Choose ℓ4.122 = 10. We first show that we may assume that |π1(P )| ≤ ε, per the
following claim.

Claim 4.19. The result for convex sets P with |π1(P )| ≤ ε implies the result for general convex P .

Proof of claim. Iteratively produce a valid partition of P , starting with G0 = {P}. Given Gi = {P1, . . . , P2i},
by Lemma 4.14, find points pj ∈ Pj and construct

Gi+1 := {f+(P1, p1), f−(P1, p1), . . . , f+(P2i , p2i), f
−(P2i , p2i)}.

Now note that by construction max{|P ′| : P ′ ∈ Gi+1} ≤ (1 − λ2) max{|P ′| : P ′ ∈ Gi}, where λ2 > 0 is the

constant from Lemma 4.14. Hence, for i0 sufficiently large, we find that max{|P ′| : P ′ ∈ Gi0} < ε2

8 . This implies
that for all P ′ ∈ Gi0 there exists a basis e1, e2 so that |π1(P ′)| ≤ ε. Indeed, let E′ be the outer Lowner-John
ellipsoid of P ′ and let e1, e2 be the short and long axis of E′. Hence, |π1(E′)|2/2 ≤ |π1(E′)||π2(E′)|/2 ≤ |E′| ≤
4|P | ≤ ε2

2 . Therefore, |π1(P ′)| ≤ |π1(E′)| ≤ ε. Now applying the result in each P ′ ∈ Gi0 , we deduce the result
in P .

Henceforth, assume π1(P ) ≤ ε. We iteratively construct a sequence of valid partitions Gi and G′
i of P ,

starting with G0 = {P}.
Given Gi, apply Lemma 4.16 to all elements of Gi to find refinement G′

i in which all elements have at most 6
vertices. Then apply Lemma 4.18 to each of the elements of G′

i to produce refinement Gi+1. Given this sequence
we will construct a valid partition of P with the desired properties. Consider the uniform probability measure P
on P , so that

∑
P ′∈Gi

P(P ′) = 1 for all i. we are going to analyse the change in expected value of the following
parameter. Let f0(P ) = |π2(P )|. Given fi : Gi → R, construct fi+1 : Gi+1 → R as follows.

fi+1(P ′) :=

{
0 if P ′ ⊂ P ′′ ∈ Gi with fi(P

′′) = 0, or if π2(V (P ′)) ⊂ V (π2(P ′)) + (−ε2, ε2)

|π2(P ′)| otherwise.

Note that if |π2(P ′)| < 2ε2, then fi(P
′) = 0 by the second clause, so if fi(P

′) ̸= 0, then fi(P
′) ≥ 2ε2. In terms

of this function, we construct our families F i
0,F i

1,F i
2, as follows; F0

0 = {P}, F0
1 = ∅, F0

2 = ∅, and

• F i+1
0 = {P ′ ∈ Gi+1 : fi+1(P ′) > 0}

• F i+1
1 = F i

1 ∪ {P ′ ∈ Gi+1 : f(P ′) = 0, |π2(P ′)| ≤ ε, and ∃P ′′ ∈ F i
0, P

′ ⊂ P ′′}

• F i+1
2 = F i

2 ∪ {P ′ ∈ Gi+1 : f(P ′) = 0, |π2(P ′)| > ε, and ∃P ′′ ∈ F i
0, P

′ ⊂ P ′′}

It is easy to see that F i = F i
0 ⊔ F i

1 ⊔ F i
2 is a valid partition of P . We will show that for i sufficiently large F i

satisfies the desired the conditions. We use shorthand P
(
F i

0

)
for P

(⋃
P ′∈Fi

0
P ′
)

=
∑

P ′∈Fi
0
P(P ′).

Claim 4.20. P
(
F i

0

)
→ 0 as i→ ∞.

Proof of claim. First note that fi is non-negative and non-increasing, in the sense that if P ′ ∈ Gi and P ′′ ∈ Gj

with P ′ ⊂ P ′′, then fj(P
′′) ≥ fi(P

′). Partition Gi into two parts F i
0 and Hi := Gi\F i

0 (so that Hi is a refinement
of F i

1 ∪ F i
2). Consider some P ′ ∈ F i

0 (i.e., with fi(P
′) > 2ε2) and the valid partition {P1, . . . , Pj} ⊂ G′

i of P ′.
Note that by Lemma 4.18, for every 1 ≤ k ≤ j, we can find Pk ⊃ P ′

k ∈ Gi+1 with P(P ′
k) ≥ αP(Pk) and

either |π2(P ′
k)| ≤ |π2(Pk)| − ε2, or π2(V (P ′

k)) ⊂ V (π2(P ′
k)) + (−ε2, ε2).

Either way, we find fi+1(P ′
k) ≤ fi(P

′) − ε2. Hence, if we let Gi+1(P ′) := {P ′′ ∈ Gi+1 : P ′′ ⊂ P ′}, then∑
P ′′∈Gi+1(P ′)

P(P ′′)fi+1(P ′′) ≤ P(P ′)fi(P
′) − αP(P ′)ε2.

Summing this over all P ′ ∈ F i
0 and using induction, we find

0 ≤
∑

P ′′∈Gi+1

P(P ′′)fi+1(P ′′) ≤
∑

P ′∈Gi

P(P ′)fi(P
′) − αε2P

(
F i

0

)
≤ f0(P ) − αε2

i∑
j=0

P
(
F i

0

)
.

This implies P
(
F i

0

)
→ 0 as i→ 0 and thus the conclusion follows.
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By this claim, we can find i0 so that P
(
F i0

0

)
≤ ε

|P | , thus
∑

P ′∈Fi0
0
|P ′| = P

(
F i0

0

)
|P | ≤ ε. Hence, let

F0 = F i0
0 ,F1 = F i0

1 , and F2 = F i0
2 . By construction, we have for every F ∈ F1, |π1(F )|, |π2(F )| ≤ ε and that,

for F ∈ F2,

|π1(F )| ≤ ε, |π2(F )| > ε, and π2(V (F )) ⊂ V (π2(F )) + (−ε2, ε2).

Finally, by Lemma 4.18 all parts in Gi have at most 10 vertices, so in particular so do the parts in F1 ⊔F2.

4.6.2 Proof of Proposition 4.13

Proof of Proposition 4.13. Let ξ ≫ ζ ≫ η be chosen sufficiently small in terms of ε and n to make various
statements throughout the proof.

We first find a valid partition so that all parts are small in all but one direction.
We iteratively construct a sequence of valid partitions Gi for i = 0, . . . , n, starting with G0 = {P}. Each of

the Gi’s can be partitioned into two parts Gi
0, and Gi

1, so that the following hold

1.
∑

F∈Gi
0
|F | ≤ iη

2. For every F ∈ Gi
1, there exists a basis e1, . . . , en so that |πj(F )| ≤ η for all 1 < j ≤ i.

3. For every F ∈ Gi
0 ∪ Gi

1, we have that F = P ∩ F ′ where F ′ is the intersection of at most iℓ4.122 halfspaces,
each of which contains all but two of the basis vectors corresponding to F .

Assume that Gi
0,Gi

1 have been constructed. Fix a F ∈ Gi
1 and the corresponding basis e1, . . . , en. Consider

the plane H spanned by e1 and ei+1 and the projection π = π1,i+1 onto that plane. Now note that any translate
S of the codimension-two subspace of Rn spanned by e2, . . . , ei, ei+2, . . . , en, has that π(S) is a single point in
R2. Hence, the respectful function f : Kn × Sn

2 → Sn
1 corresponds to a respectful function f ′ : K2 × S2

2 → S2
1 .

Indeed, for X ∈ K2 and x ∈ S2
2 = R2, let

f ′(X,x) := π(f(π−1(X) ∩ F, π−1(x))).

Now apply Proposition 4.12 to π(F ) with respectful function f ′ and parameter η·min
{

1, 1
maxx∈R2 |π−1(x)∩F |

}
,

to find a valid partition H = H0 ⊔H1 ⊔H2 of π(F ) so that

1.
∑

Q∈H0
|Q| ≤ η

maxx∈R2 |π−1(x)∩F | .

2. For every Q ∈ H1 there exists a basis e′1, e
′
2 such that for i = 1, 2 we have |π′

i(Q)| ≤ η.

3. For every Q ∈ H2 there exists a basis e′1, e
′
2 such that we have |π′

1(Q)| ≤ η, |π′
2(Q)| ≥ η and π′

2(V (Q))) ⊂
V (π′

2(Q)) + (−η2, η2).

4. For every Q ∈ H1 ∪H2, we have |V (Q)| ≤ ℓ4.122 , i.e., Q is the intersection of at most ℓ2 halfplanes.

Note that 2 and 3, imply the weaker statement that for every Q ∈ H1 ∪H2, there exists a basis e′1, e
′
2 such that

we have |π′
1(Q)| ≤ η. The partition H naturally corresponds to a valid partition H′ = H′

0⊔H′
1⊔H′

2 of F , where
H′

i := {π−1(Q) ∩ F : Q ∈ Hi}. This is a valid partition by construction of f ′. The properties of H translate to
the following properties of H′.

1.
∑

Q∈H′
0
|Q| ≤ η.

2. For every Q ∈ H′
1 ∪H′

2 there exists a basis e′1, e
′
i+1 of the plane spanned by e1 and ei+1 such that we have

|π′
i+1(Q)| ≤ η.

3. For every Q ∈ H′
1 ∪ H′

2, we have Q = F ∩Q′, where Q′ is the intersection of at most ℓ4.122 halfspaces all
of which contain e2, . . . , ei, ei+2, . . . , en.

Now for Q, we choose the basis e′1, e2, . . . , ei, e
′
i+1, ei+2, . . . , en. Given F ∈ Gi

1, let H′
0(F ), H′

1(F ), and H′
2(F )

be the sets produced here. We define

Gi+1
0 := Gi

0 ∪
⋃

F∈Gi
1

H′
0(F ), and Gi+1

1 :=
⋃

F∈Gi
1

H′
1(F ) ∪H′

2(F ).

Note that these satisfy the properties 1, 2 and 3 of Gi+1
0 ,Gi+1

1 set out above.
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Now consider the elements of Gn
1 . These can only be ’long’ in at most one direction, viz e1. Now that we

have established this direction, we will repeat essentially the same process to show that the sets are either short
in the e1 direction as well, or (most of) the vertices are close to the extremes in the e1 direction.

We continue constructing a sequence of valid partitions Gn+i for i = 1, . . . , n, starting with G0 = {P}. Each
of the Gn+i’s can be partitioned into three parts Gn+i

0 ,Gn+i
1 ,Gn+i

2 , so that the following hold

1.
∑

F∈Gn+i
0

|F | ≤ nη + iζ.

2. For every F ∈ Gn+i
1 , there exists a basis e1, . . . , en so that |πj(F )| ≤ ζ for all j = 1, . . . n.

3. For every F ∈ Gn+i
2 , there exists a basis e1, . . . , en so that |πj(F )| ≤ η for all j = 2, . . . n. Moreover, we

have π1(V (π1,j(F ))) ⊂ V (π1(F )) + (−2ζ2, 2ζ2) for all j = 2, . . . , i.

4. For every F ∈ Gn+i
1 ∪ Gn+i

2 , we have that F = P ∩ F ′ where F ′ is the intersection of at most (n+ i)ℓ4.122

halfspaces, each of which contains all but two of the basis vectors corresponding to F .

Assume that Gn+i
0 ,Gn+i

1 ,Gn+i
2 have been constructed. Fix a F ∈ Gn+i

2 and the corresponding basis e1, . . . , en.
As before, consider the plane spanned by e1 and ei+1 and the projection π = π1,i+1 onto that plane. Now note
that any translate L of the codimension-two subspace of Rn spanned by e2, . . . , ei, ei+2, . . . , en, has that π(L)
is a single point in R2. Hence, the respectful function f : Kn × Sn

2 → Sn
1 corresponds to a respectful function

f ′ : K2 × S2
2 → S2

1 . Indeed, for X ∈ K2 and x ∈ S2
2 = R2, let

f ′(X,x) := π(f(π−1(X) ∩ F, π−1(x))).

Now apply Proposition 4.12 to π(F ) with respectful function f ′ and parameter ζ · min
{

1, 1
maxx∈R2 |π−1(x)∩F |

}
,

to find a valid partition H = H0 ⊔H1 ⊔H2 of π(F ) so that

1.
∑

Q∈H0
|Q| ≤ ζ

maxx∈R2 |π−1(x)∩F | .

2. For every Q ∈ H1 there exists a basis e′1, e
′
2 such that for i = 1, 2 we have |π′

i(Q)| ≤ ζ.

3. For every Q ∈ F2 there exists a basis e′1, e
′
2 such that we have |π′

2(Q)| ≤ ζ, |π′
1(Q)| ≥ ζ and π′

1(V (Q))) ⊂
V (π′

1(Q)) + (−ζ2, ζ2).

4. For every Q ∈ H1 ∪H2, we have |V (Q)| ≤ ℓ4.122 , i.e., Q is the intersection of at most ℓ4.122 halfplanes.

Let Q satisfy property 3. Given the information we already have about Q (viz |π2(Q)| ≤ η), we will show that
we can get essentially the same property 3, with basis e′1, e

′
2 replaced by e1, e2.

Claim 4.21. |π2(Q)| ≤ ζ/2, |π1(Q)| ≥ ζ/2 and π1(V (Q))) ⊂ V (π1(Q)) + (−4ζ2, 4ζ2).

Proof of claim. First note that, up to translation, in the e1, e2 basis we have Q ⊂ [0, |π1(Q)|] × [0, |π2(Q)|].
Hence, we get

ζ ≤ |π′
1(Q)| ≤ |π1(Q)| + |π2(Q)| ≤ |π1(Q)| + η,

so |π1(Q)| ≥ ζ − η ≥ ζ/2. Also, |π2(Q)| ≤ η ≤ ζ/2.
For the last part, it is enough to show that there exists two vertices x, y ∈ V (Q) such that for any other

vertex z ∈ V (Q) we have min(|xz|, |yz|) ≤ 2ζ2.
It is easy to see that there exist two vertices x, y ∈ V (Q) such that V (π′

1(Q)) = {π′
1(x), π′

1(y)}. We
have |xy| ≥ |π′

1(x)π′
1(y)| = |π′

1(Q)| ≥ ζ. Moreover, |π′
1(x)π′

1(y)| ≥ ζ and |π′
2(x)π′

2(y)| ≤ ζ implies that
|⟨ y−x

|y−x| , e
′
1⟩| ≤ sin(45◦) = 1/

√
2.

Fix z ∈ V (Q) and assume that π′
1(z) ∈ (π′

1(x)− ζ2, π′
1(x) + ζ2), i.e., |π′

1(x)π′
1(z)| ≤ ζ2. It is enough to show

that |zx| ≤ 2ζ2. Assume for a contradiction that |zx| ≥ 2ζ2. Combining the last two inequalities, we deduce
that |⟨ z−x

|z−x| , e
′
1⟩| ≥ sin(60◦) =

√
3/2.

As |⟨ y−x
|y−x| , e

′
1⟩| ≤ sin(45◦) and |⟨ z−x

|z−x| , e
′
1⟩| ≥ sin(60◦) we deduce that |⟨ y−x

|y−x| ,
z−x
|z−x| ⟩| ≥ sin(15◦).

In the triangle co({x, y, z}) the radius r of the inscribed circle has the formula r = |⟨y−x,z−x⟩|
|xz|+|yz|+|xy| . Using the

above, we deduce that

r ≥ |xy||xz| sin(15◦)

2|xy| + 2|xz|
=

sin(15◦)
2

|xy| + 2
|xz|

≥ sin(15◦)

4
min(|xy|, |xz|) ≥ ζ2 sin(15◦)

2
.

Hence |π2(Q)| ≥ |π2(co({x, y, z}))| ≥ ζ2 sin(15◦). This gives the desired result as |π2(Q)| ≤ η < ζ2 sin(15◦).
The conclusion follows.
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As before, we can translate back to a valid partition H′ = H′
0⊔H′

1⊔H′
2 of F , where H′

i := π − 1(Q)∩F : Q ∈
Hi}. This is a valid partition by construction of f ′. The properties of H translate to the following properties
of H′.

1.
∑

Q∈H′
0
|Q| ≤ ζ.

2. For every Q ∈ H′
1, there exists a basis e′1, e

′
i+1 of the plane spanned by e1 and ei+1 such that we have

|π′
1(Q)|, |π′

i+1(Q)| ≤ ζ.

3. For every Q ∈ H′
2, we have π1(V (π1,i+1(Q))) ⊂ V (π1(Q)) + (−4ζ2, 4ζ2).

4. For every Q ∈ H′
1 ∪ H′

2, we have Q = F ∩Q′, where Q′ is the intersection of at most ℓ4.122 halfspaces all
of which contain e2, . . . , ei, ei+2, . . . , en.

Given F ∈ Gn+i
2 , let H′

0(F ), H′
1(F ), and H′

2(F ) be the sets produced here. We define Gn+i+1 = Gn+i+1
0 ⊔

Gn+i+1
1 ⊔ Gn+i+1

2 as follows:

Gn+i+1
0 := Gn+i

0 ∪
⋃

F∈Gn+i
2

H′
0(F ), Gn+i+1

1 := Gn+i
1 ∪

⋃
F∈Gn+i

2

H′
1(F ), Gn+i+1

2 :=
⋃

F∈Gn+i
2

H′
2(F )

Change the basis to e′1, e2, . . . , ei, e
′
i+1, ei+2, . . . , en for those parts Q ∈ H′

1(F ) for some F ∈ Gn+i
2 . It is easy to

see that this valid partition Gn+i+1 = Gn+i+1
0 ⊔ Gn+i+1

1 ⊔ Gn+i+1
2 satisfies the properties as set out before.

Consider the valid partition G2n = G2n
0 ⊔ G2n

1 ⊔ G2n
2 which has the following properties:

1.
∑

F∈G2n
0

|F | ≤ 2nζ

2. For every F ∈ G2n
1 , there exists a basis e1, . . . , en so that |πi(F )| ≤ ζ for all i = 1, . . . n.

3. For every F ∈ G2n
2 , there exists a basis e1, . . . , en so that |πi(F )| ≤ η for all i = 2, . . . n. Moreover, we

have π1(V (π1,i(F ))) ⊂ V (π1(F )) + (−4ζ2, 4ζ2) for all i = 2, . . . , n.

4. For every F ∈ G2n
1 ∪ G2n

2 , we have that F = P ∩ F ′ where F ′ is the intersection of at most 2nℓ4.122

halfspaces, each of which contains all but one of the basis vectors e2, . . . , en corresponding to F .

This last property shows that F is the intersection 2nℓ4.122 + ℓP halfspaces, where ℓP ≤
(
m
k

)
is the number

of halfspaces needed to construct P . Note that a vertex of F arises from n halfspaces, so that |V (F )| ≤(
2nℓ4.122 +ℓP

n

)
≤ ℓ4.13n (m). Hence, what remains is to strengthen property 3, to show that for F ∈ G2n

2 , we have
π1(V (F )) ⊂ V (π1(F )) + (−4ζ2, 4ζ2). By the above we can partition V (F ) into those vertices that are also a
vertex of F ′ and those that are not.

First consider a vertex v of F that is also a vertex of F ′. Note that as each of the defining hyperplanes
of F ′ contains all but one of e2, . . . , en, and there are n hyperplanes needed to define a vertex of F ′, v must
be defined by at least two planes containing the same n − 2 elements from e2, . . . , en. Say v is defined by two
planes containing e2, . . . , ei−1, ei+1, en, then we find that π1,i(v) ∈ V (π1,i(F )), so by property 3:

π1(v) = π1(π1,i(v)) ∈ π1(V (π1,i(F ))) ⊂ V (π1(F )) + (−4ζ2, 4ζ2).

Hence, it remains to deal with vertices that lie on ∂P . we will show that if such a vertex lies far from
V (π1(F )), then F is contained very close to the boundary of P .

Note that as we have that |πi(F )| ≤ η for all i = 2, . . . n, we find that up to translation, we have F ⊂
[0, |π1(F )|] × [0, η]n−1, so that if we let C := R× [0, η]n−1, then F ⊂ C ∩ P .

Claim 4.22. If ∃u, v, w ∈ C ∩ ∂P , so that |π1(u) − π1(v)|, |π1(v) − π1(w)|, |π1(w) − π1(u)| > 2ζ2, then there
exists a point x in C ∩ ∂P and a line Lx tangent to P at x so that ∠Lx, e1 ≤ ζ

Proof. Note that by convexity of P , C∩∂P can have at most two connected components, so we may assume u, v
are in the same connected component. Let πc

1 : Rn → Rn−1 be the projection away from the first coordinate.
Note that |πc

1(u) − πc
1(v)| ≤

√
n− 1η as πc

1(u), πc
1(v) ∈ [0, η]n−1. Hence,

1

2
∠(u− v), e1 ≤ sin(∠(u− v), e1) ≤

√
n− 1η

ζ2
≤ 1

2
ζ,

using that η is sufficiently small in terms of ζ.
Consider the plane H containing u, v and direction e1. Note that again H ∩ C ∩ ∂P has at most two

connected components with u and v being in the same component. By the mean value theorem, there exists
a point x ∈ H ∩ C ∩ ∂P between u and v with a line Lx tangent to H ∩ P (and thus to P ) parallel to u − v.
Clearly, ∠Lx, e1 = ∠(u− v), e1 ≤ ζ.
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Note that because F ⊂ C ∩ P , we have the intervals π1(F ) ⊂ π1(C ∩ P ). Moreover, because C = R ×
[0, η]n−1, there exist u,w ∈ C ∩ ∂P such that π1(C ∩ P ) = [π1(u), π1(w)]. Assume now v is a vertex of F
that lies on ∂P with the property that π1(v) ̸∈ V (π1(F )) + (−2ζ2, 2ζ2). It immediately follows that π1(v) ̸∈
{π1(u), π1(w)}+(−2ζ2, 2ζ2) i.e., |π1(u)−π1(v)|, |π1(v)−π1(w)|, |π1(w)−π1(u)| > 2ζ2. Hence, this claim shows
that F ⊂ L + B(0,

√
n · η) for some line L which makes an angle at most ζ with a tangent line at a point in

L ∩ ∂P . By Lemma 4.17, this implies F ⊂ ∂P +B(0, ξ).
With this setup, we are ready to conclude. Define F as follows:

F0 := G2n
0 ∪

{
F ∈ G2n

2 : ∃v ∈ V (F ) : π1(v) ̸∈ V (π1(F )) + (−2ζ2, 2ζ2)
}

F1 := G2n
1

F2 :=
{
F ∈ G2n

2 : ∀v ∈ V (F ) : π1(v) ∈ V (π1(F )) + (−2ζ2, 2ζ2)
}
.

Indeed, ∑
F∈F0

|F | = 2nζ + |∂P +B(0, ξ)| ≤ ε,

where we used that ξ is sufficiently small in terms of ε and P .

4.7 Proof of Auxiliary Lemmas

4.7.1 Proof of Lemma 4.14

Proof of Lemma 4.14. Let λn = n−n Translate P so that the John ellipsoid E ⊂ P ⊂ nE is centred at the
origin. Consider a translate L of L′ that contains the origin. Let H ⊃ L be any hyperplane containing L. Note
that as H also contains the centre of E, we find

λn = n−n =
1
2 |E|
1
2 |nE|

=
|H+ ∩ E|
|H− ∩ nE|

≤ |H+ ∩ P |
|H− ∩ P |

≤ |H+ ∩ nE|
|H− ∩ E|

=
1
2 |nE|
1
2 |E|

= nn = λ−1
n ,

which concludes the proof of the lemma.

4.7.2 Proof of Lemma 4.15

Proof of Lemma 4.15. Let v1, . . . , vk where k ≥ 7 be the vertices of P appearing around ∂P in that order. For
every i ∈ {1, . . . k}, consider two vertices vi and vi+3 where the indices are considered mod k. The line through
vi and vi+3 partitions the plane into two halfplanes. Let Hi be the halfplane that contains all vertices except
for vi+1 and vi+2.

Claim 4.23.
⋂k

i=1Hi ̸= ∅

Proof of Claim. By Helly’s theorem it suffices to show that any three of these halfplanes have non-empty
intersection. Note that |Hc

i ∩ {v1, . . . , vk}| = 2, so for any i, i′, i′′ we find

|(Hi ∩Hi′ ∩Hi′′) ∩ {v1, . . . , vk}| = |{v1, . . . , vk} \ (Hc
i ∪Hc

i′ ∪Hc
i′′)| ≥ k − 6 ≥ 1.

Hence, the intersection of all Hi is non-empty.

Choose some p ∈
⋂k

i=1Hi and consider any line ℓ containing p. Consider the two intersection points between
ℓ and ∂P , say they lie on the line segment between vi and vi+1 and on the line segment between vj and vj+1.
Assume for a contradiction one of the sets ℓ+ ∩ P and ℓ− ∩ P has at least k vertices. Then we find that
|i− j| ≤ 2 (again mod k), say j ∈ {i+ 1, i+ 2}. However, this implies that p ∈ ℓ ∩ P ⊂ Hc

i , which is clearly a
contradiction.

4.7.3 Proof of Lemma 4.16

Proof of Lemma 4.16. Iteratively construct a sequence of valid partitions Gi of P , starting with G0 = {P}.
Given Gi = {P1, . . . , Pj}, use Lemma 4.15 to find points pi ∈ Pi (in those Pi with at least 7 vertices) with the
property that every line through them partitions Pi into polygons with fewer vertices than Pi. Now let

Gi+1 =
{
f+(P1, p1), f−(P1, p1), . . . , f+(Pj , pj), f

−(Pj , pj)
}
.

Note that if we let v(Gi) be the maximal number of vertices among all parts in Gi, then v(Gi+1) ≤ max{v(Gi)−
1, 6}. Also, if we let n(Gi) be the number of parts of Gi, then n(Gi) ≤ 2i. Hence, we find v(GC−6) ≤ 6 and
n(Gi) ≤ 2c−6. Clearly GC−6 is a valid partition with the desired properties.
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4.7.4 Proof of Lemma 4.17

Proof of Lemma 4.17. Let D(P ) := supx,y∈P |x− y|, we will show that Qζ,η ⊂ ∂P +B(0, η + ζD(P )). Indeed,
consider a ζ-permissible line L with the corresponding point x ∈ L ∩ ∂P and tangent line Lx. For any point
y ∈ L ∩ P , we have |x− y| ≤ D(P ). By the definition of the sin, we have

min
y′∈Lx

|y − y′| = |x− y| sin(∠L,Lx) ≤ D(P )ζ.

If we let y′ ∈ Lx the point realizing miny′∈Lx
|y − y′|, then the line segment between y and y′ intersects ∂P , so

that miny′∈∂P |y− y′| ≤ miny′∈Lx |y− y′| ≤ ζD(P ). Choosing ζ and η sufficiently small so that η+ ζD(P ) ≤ ξ,
the lemma follows.

4.7.5 Proof of Lemma 4.18

Proof of Lemma 4.18. Let α = λ42, where λ2 is the constant from Lemma 4.14.
Iteratively produce a valid partition of P , starting with G0 = {P}. Given Gi = {P1, . . . , P2i}, by Lemma 4.14,

find points pj ∈ Pj and construct

Gi+1 := {f+(P1, p1), f−(P1, p1), . . . , f+(P2i , p2i), f
−(P2i , p2i)}.

Consider G4, which has 24 = 16 elements. Note that by construction, each P ′ ∈ G4 has |P ′| ≥ λ42|P | = α|P |.
Consider the set of newly created vertices

⋃
P ′∈G4

V (P ′) \ V (P ). If there is a v ∈
⋃

P ′∈G4
V (P ′) \ V (P ) so

that π2(v) ̸∈ V (π2(P ))+(−ε2, ε2) (or a line f(Pj , pj) through a vertex in V (P )), then consider the line f(Pj , pj)
that created this vertex. Note that

min{|π2(f+(Pj , pj))|, |π2(f−(Pj , pj))|} ≤ |π2(P )| − ε2,

so that at least one element P ′ of G4 has |π2(P ′)| ≤ |π2(P )| − ε2.
Alternatively, we find that

π2

( ⋃
P ′∈G4

V (P ′) \ V (P )

)
⊂ V (π2(P )) + (−ε2, ε2).

As there are at most 4 vertices of P whose projection is not in V (π2(P )) + (−ε2, ε2), each of which is in at most
element of G4, and there are 16 sets in G4, there is an set P ′ ∈ G4 with V (P ′) ⊂ V (π2(P )) + (−ε2, ε2). Note
that (

V (π2(P )) + (−ε2, ε2)
)
∩ π2(P ′) ⊂ V (π2(P ′)) + (−ε2, ε2).

Finally, note that every element of G4 has at most 10 vertices. The lemma follows.

5 Intermediate results for Quadratic Theorem (Theorem 1.5): Part
II

5.1 Setup

Definition 5.1. Given a (i, ℓ, ε)-good cone C ∈ Cn (see Definition 4.9), we say a measurable subset X ⊂ C is
filled if for all x ∈ C ′ we have

f(x) × {x} ⊂ X or (f(x) × {x}) ∩X = ∅.

Definition 5.2. A pair of sets X,Y ⊂ Rn is a (η, γ)-approximate sandwich if there exists a convex set P ⊂ Rn

containing the origin, so that X,Y ⊂ (1 + η)P and |P \X| + |P \ Y | ≤ γ|P |.

5.2 Theorem

Theorem 5.3. There exists an ℓ = ℓ5.3n so that for every ξ, λ, η, γ > 0 the following holds. Given A,B ⊂ Rn a
simple λn-bounded ηn-sandwich with the property that for all cones Ci ∈ C, we have |A ∩ Ci| = |B ∩ Ci|. Then
there exist measurable subsets A′ ⊂ A and B′ ⊂ B and there exists a family of cones G essentially partitioning
Rn refining C and a partition G = G0 ⊔ G1 ⊔ G2 such that
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1. |A′| = |B′| ≥ (1 − ξ)|A|

2. Every cone F ∈ G0 has |A′ ∩ F | = |B′ ∩ F | = 0.

3. Every cone F ∈ G1 ⊔ G2 has |A′ ∩ F | = |B′ ∩ F |.

4. Every cone F ∈ G1 ⊔ G2 has A′ ∩ F and B′ ∩ F are (2λ, F )-bounded (η, γ)-approximate sandwiches inside
F .

5. Every cone F ∈ G1 is (1, ℓ,∞)-good and every cone F ∈ G2 is (2, ℓ,∞)-good.

6. For every cone F ∈ G1 ⊔ G2, A
′ ∩ F and B′ ∩ F are filled in F .

7. For every cone F ∈ G1 ∪ G2, if F ⊂ Ci, we have that eFn is perpendicular to the face of S contained in Ci.

5.3 Propositions

Again, before proving Theorem 5.3, we collect a list of results that will be used in the proof.

Proposition 5.4. Let v0, . . . , vn ⊂ Rn be vectors not contained in a halfspace and let A,B ⊂ Rn be measurable
sets with equal volume. Then there exists a vector v ∈ Rn such that for every cone C ∈ Cv0,...,vn we have

|A ∩ C| = |(B + v) ∩ C|.

Moreover, for every η, λ > 0, there is a computable constant η′5.4 > 0 such that the following holds. If
{v0, . . . , vn} = {e0, . . . , en} (as in Definition 2.4) and if A,B ⊂ Rn is a λ-bounded η′5.4-sandwich, then A,B+v
is a 2λ-bounded η-sandwich.

Proposition 5.5. Assume that C ⊂ Rn is a cone and assume that A,B ⊂ Rn are measurable sets with the
property that

|A ∩ C| = |B ∩ C|.

Then given a codimension-two subspace L (through the origin), there exists a hyperplane H through L which
essentially partitions the cone

C = C1 ∪ C2

with the property that
|A ∩ C1| = |B ∩ C1| and |A ∩ C2| = |B ∩ C2|

Proposition 5.6. There exists an ℓ5.6n so that for every ε, λ, η > 0 the following holds. Given A,B ⊂ Rn a
simple λn-bounded ηn-sandwich with the property that for all cones Ci ∈ C, we have |A ∩Ci| = |B ∩Ci|. There
exists a family of cones F essentially partitioning Rn refining C and a partition F = F0 ⊔ F1 ⊔ F2 such that

1. Every cone F ∈ F has |A ∩ F | = |B ∩ F |.

2. For every cone F ∈ F , the pair A ∩ F,B ∩ F is a (λ, F )-bounded η-sandwich.

3.
∑

F∈F0
µn(F ) ≤ ε.

4. Every cone F ∈ F1 is (1, ℓ5.6n , ε)-good.

5. For every cone F ∈ F2 there exists a sub-cone F ′ of F with µn(F ′) ≥ (1 − ε)µn(F ) such that F ′ is
(2, ℓ5.6n , ε)-good.

6. For every cone F ∈ F1 (or F ′ for F ∈ F2), if F ⊂ Ci, we have that eFn (or eF
′

n ) is perpendicular to the
face of S contained in Ci.

Proposition 5.7. For any ℓ, ξ, λ, η, γ > 0, and A,B ⊂ Rn simple sets with equal volume, there exist ε5.7 > 0
such that the following holds. Let F be a family of cones essentially partitioning Rn refining C and let F =
F0 ⊔ F1 ⊔ F2 be a partition such that

1. Every cone F ∈ F has |A ∩ F | = |B ∩ F |.

2. For every cone F ∈ F , the pair A ∩ F,B ∩ F is a (λ, F )-bounded η-sandwich.

3.
∑

F∈F0
µn(F ) ≤ ε5.7.
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4. Every cone F ∈ F1 is (1, ℓ, ε5.7)-good.

5. For every cone F ∈ F2 there exists a sub-cone F ′ of F with µ(F ′) ≥ (1 − ε5.7)µn(F ) such that F ′ is
(2, ℓ, ε5.7)-good.

6. For every cone F ∈ F1 (or F ′ for F ∈ F2), if F ⊂ Ci, we have that eFn (or eF
′

n ) is perpendicular to the
face of S contained in Ci.

Then there exist measurable subsets A′ ⊂ A and B′ ⊂ B and there exists a family of cones G essentially
partitioning Rn refining F and a partition G = G0 ⊔ G1 ⊔ G2 such that

1. |A′| = |B′| ≥ (1 − ξ)|A|

2. Every cone F ∈ G0 has |A′ ∩ F | = |B′ ∩ F | = 0.

3. Every cone F ∈ G1 ⊔ G2 has |A′ ∩ F | = |B′ ∩ F |.

4. Every cone F ∈ G1 ⊔ G2 has A′ ∩ F and B′ ∩ F are (2λ, F )-bounded (η, γ)-approximate sandwiches inside
F .

5. Every cone F ∈ G1 is (1, ℓ,∞)-good and every cone F ∈ G2 is (2, ℓ,∞)-good.

6. For every cone F ∈ G1 ⊔ G2, A
′ ∩ F and B′ ∩ F are filled in F .

5.4 Proof of Theorem

5.4.1 Proof of Theorem 5.3

Proof of Theorem 5.3. Let ℓ5.3n := ℓ5.6n . Choose ϵ sufficiently small to be able to apply Proposition 5.7. Apply
Proposition 5.6 with this ϵ and then apply Proposition 5.7.

5.5 Proofs of Propositions

5.5.1 Proof of Proposition 5.4

Proof of Proposition 5.4. We begin by proving the first conclusion. Applying an affine transformation if neces-
sary, we may assume Sv0,...,vn = S and Cv0,...,vn = C = {C0, . . . , Cn}. Recall that S is the simplex containing
the origin in its interior with vertices V (S) = {e0, . . . , en} (as in Definition 2.4). Denote by Fi = co({ej : i ̸= j})
the face of S opposite ei.

First, assume for a contradiction that for all v ∈ Rn, there exists i ∈ [0, n] such that |(B−v)∩Ci| ≠ |A∩Ci|.
Note that for any v ∈ Rn, we have∑

i∈[0,n]

|(B − v) ∩ Ci| = |B| = |A| =
∑

i∈[0,n]

|A ∩ Ci|.

Hence, if we define the closed sets

Xi := {v ∈ Rn : |(B − v) ∩ Cf(v)| ≥ |A ∩ Cf(v)|}

for i = 0, . . . , n, then
⋃

iXi = Rn. Consider rS, a large blow-up of S, so that A,B ⊂ rS. Note that rS is a
simplex containing the origin with vertices V (rS) = {rv0, . . . , rvn}. Moreover, the face of rS opposite to vertex
rvi is rFi. It is easy to check that if v ∈ rFi, then |(B − v)∩Ci| = 0. By the definition of the Xi’s, this implies
that v ∈

⋃
j ̸=iXi. By the Knaster-Kuratowski-Mazurkiewicz lemma [KKM29], we find a point v ∈ Rn, such

that for all i ∈ [0, n], |(B + v) ∩ Ci| = |A ∩ Ci|.
We now prove the second conclusion. Fix v ∈ Rn as above and assume, without loss of generality, v ∈ Ci for

some i ∈ {0, . . . , n}, P ⊂ A,B ⊂ (1+η′)P , and S ⊂ A,B ⊂ λS. It is easy to check that (X∩Ci)+v ⊂ (X+v)∩Ci.
Also, there exist universal constants αn, βn > 0 such that |(S+ v)∩Ci| ≥ (1 + min(αn, βn||v||2))|S ∩Ci|, where
we used that {v0, . . . , vn} = {e0, . . . , en}.

From the second and third inclusions and the above inequality, we get that

|(B + v) ∩ Ci| ≥ |((B \ S) + v) ∩ Ci| + |(S + v) ∩ Ci|
≥ |(B \ S) ∩ Ci| + (1 + min(αn, βn||v||2))|S ∩ Ci|
= |(B \ S) ∩ Ci| + |S ∩ Ci| + min(αn, βn||v||2)|S ∩ Ci|
≥ |B ∩ Ci| + (n+ 1)−1 min(αn, βn||v||2)|S|
≥ |B ∩ Ci| + λ−n(n+ 1)−1 min(αn, βn||v||2)|B|.
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From the first inclusion and the choice of v, we get that

|(1 + η′P ) \ P | ≥ |A \B| ≥ |(A ∩ Ci) \ (B ∩ Ci)| ≥ |A ∩ Ci| − |B ∩ Ci| = |(B + v) ∩ Ci| − |B ∩ Ci|.

Finally, from the first inclusion, we also get that ((1 + η′)n − 1)|B| ≥ |(1 + η′)P \ P |. Combining the last
three inequalities, we get that (1 + η′)n − 1 ≥ λ−n(n + 1)−1 min(αn, βn||v||2). By choosing η′ > 0 such that
((1 + η′)n − 1)λn(n+ 1)α−1

n < 1, we further get that ||v||2 ≤ ((1 + η′)n − 1)λn(n+ 1)β−1
n .

Let Z is the unit volume ball centered at the origin, let τn be its radius and set ζ = ((1 + η′)n − 1)λn(n +
1)β−1

n τ−1
n . The above inequality implies that v ∈ ζZ. As S is a unit volume regular simplex and Z is a unit

volume ball, both centered at the origin, we find v ∈ ζZ ⊂ nζS. Moreover, from the first two inclusions, it easily
follows that S ⊂ 2P which implies v ∈ 2nζP.

From the first two inclusions and the last two inclusions, we get

(1 − nζ)S ⊂ B + v ⊂ (λ+ nζ)S and (1 − 2nζ)P ⊂ B + v ⊂ (1 + η′ + 2nζ)P.

Provided ζ ≤ 10−1n−1 min(1, η), and thus η′ small, the conclusion follows. Thus, we shall choose η′ such that
((1 + η′)n − 1)λn(n+ 1)1α−1

n < 1 and ((1 + η′)n − 1)λn(n+ 1)1β−1
n τ−1

n < 10−1n−1 min(1, η).

5.5.2 Proof of Proposition 5.5

Proof of Proposition 5.5. For notational convenience, assume that A,B ⊂ C, so that |A| = |B|. Consider any
hyperplane H0 containing L. For θ ∈ [0, 2π], let ρθ : Rn → Rn be the rotation of the space fixing L by angle
θ. Let Hθ := ρθ(H0) and let H+

θ and H−
θ be the halfspaces generated by Hθ. Now consider the function

f : [0, π] → R defined by f(θ) := |H+
θ ∩A| − |H+

θ ∩B|. Note that as A and B are bounded sets, f is continuous.
Note moreover that as H+

π = H−
0 , we find:

f(π) = |H+
π ∩A| − |H+

π ∩B| = |H−
0 ∩A| − |H−

0 ∩B| = (|A| − |H+
0 ∩A|) − (|B| − |H+

0 ∩B|) = −f(0).

By continuity, this implies the existence of a θ0 ∈ [0, π] so that f(θ0) = 0. Hence, taking H = Hθ0 , and
C1 := H+ ∩ C and C2 := H− ∩ C, we find

|A ∩ C1| = |B ∩ C1| and |A ∩ C2| = |B ∩ C2|.

This concludes the proof of the lemma.

5.5.3 Proof of Proposition 5.6

Let ℓn := ℓ4.11n (n), where ℓ4.11n (n) is the constant from Theorem 4.11.
For this proposition, we apply Theorem 4.11 to the context of A and B.

Proof of Proposition 5.6. We will construct a respectful function f : Cn × T n
2 → T n

1 as follows. Given a cone
C ∈ Cn and a codimension-two subspace L ∈ T n

2 , distinguish two case; either |C ∩ A| = |C ∩B| or not. In the
latter case, let f(C,L) be any hyperplane containing L; this will not be a case that is going to affect us. If
|C ∩A| = |C ∩B|, let f(C,L) be the hyperplane given by Proposition 5.5.

Apply Theorem 4.11 to each of the Ci ∈ C with parameter ε/(n+ 1), to find a partitions FCi = FCi
0 ⊔FCi

1 ⊔
FCi

2 . Let Fj =
⋃n

i=0 F
Ci
j for j = 0, 1, 2, which then satisfies the conclusions 3, 4, 5, and 6, with the note that

each of the Ci’s is defined by n lines. It remains to check the first two conclusions.
For conclusion 1, note that by Proposition 5.5, a valid partition of Ci contains only cones F so that |A∩F | =

|B ∩ F |, so the same holds in particular for all F ∈ F .
For conclusion 2, note that being a λ-bounded η sandwich is inherited by taking subcones, so in particular

for all F ∈ F , we have that A ∩ F,B ∩ F is a (λ, F )-bounded ηn sandwich.

5.5.4 Proof of Proposition 5.7

Proof of Proposition 5.7. We first construct G′ = G′
0 ⊔ G′

1 ⊔ G′
2. First set G′

1 := F1. For all F ∈ F2, let F ′ ⊂ F
be the subcone with µn(F ′) ≥ (1 − ε)µn(F ), which is (2, ℓ, ε)-good. Then let G′

2 := {F ′ : F ∈ F2}. For every
F ∈ F2, we can partition F \ F ′ into a number of convex cones. Let F(F ) be that collection of convex cones.
Let G′

0 := F0 ∪
⋃

F∈F2
F(F ).

Clearly, G′ is a refinement of F . Note that
∑

G∈G′
0
µn(G) =

∑
F∈F0

µn(F ) +
∑

F∈F2
µn(F \ F ′) ≤ 2ε.

We construct A ⊃ A1 ⊃ A′ and B ⊃ B1 ⊃ B′ with increasingly more structure as follows.
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Let A1 ⊂ A and B1 ⊂ B maximal so that A1 ∩ F and B1 ∩ F are filled for all F ∈ G′
1 ∪ G′

2. To this
end, for a given F ∈ G′

i with i = 1, 2, consider the cone C ∈ Ci and linear function f : C → Kn−i so that
F =

⋃
x∈C{x}× f(x). Let g, h : C → P(Rn−i) so that A∩F =

⋃
x∈C{x}× g(x) and B ∩F =

⋃
x∈C{x}× h(x).

Define g′, h′ : C → Kn−i by

g′(x) :=

{
f(x) if g(x) = f(x)

∅ otherwise
,

and h′ analogously. Let

A1 ∩ F :=
⋃
x∈C

{x} × g′(x) and B1 ∩ F :=
⋃
x∈C

{x} × h′(x).

For F ∈ G′
0, remove everything in the interior of F from A and B, so that A1 ∩ F ◦ := ∅ and B1 ∩ F ◦ := ∅.

By λ-boundedness, we get∑
F∈G0

|F ∩ (A \A1)| ≤
∑
F∈G′

0

On(|A|)µn(F ) ≤ On(ε|A|),

and analogously for B. To control |A\A1| in G′
1∪G′

2, we use the fact that the cones F ∈ G′
1∪G′

2 are (i, ℓ, ε)-good
and that A and B are simple. Find QA ⊂ Zn so that A =

⋃
x∈QA

x+ [0, 1]n. Note that if x ∈ F ∩ (A \A1) for

some cone F ∈ G′
1 ∪ G′

2, then consider the basis eF1 , . . . , e
F
n and write x = x′ × x′′ so that x ∈ x′ × g(x′), with

g : C → Kn−i as before. As x ̸∈ A1, we find that g(x′) ̸= ∅ and g(x′) ̸= f(x′), so that g(x′) contains an element
of ∂A. As F was (i, ℓ, ε)-good, we find that the radius of f(x′) is at most ε||x′||2 ≤ On(ε|A|1/n). This implies
that all points x in A \ A1 must be close to the boundary of A, i.e., F ∩ (A \ A1) ⊂ ∂A + B(o,On(ε|A|1/n)).
Hence, ∑

F∈G1∪G2

|F ∩ (A \A1)| ≤ |∂A+B(o,On(ε|A|1/n))| = On(ε|A|1/n · |QA|) = On(ε|A|(n+1)/n),

so that we find

|A \A1| =
∑
F∈G0

|F ∩ (A \A1)| +
∑

F∈G1∪G2

|F ∩ (A \A1)| = On(ε|A|(n+1)/n) ≤ ε′,

for any ε′ by choosing ε sufficiently small in terms of ε′, |A| and n. Let B1 ⊂ B be constructed analogously.
Note that the sets A1 and B1 satisfy conclusions 1, 2, 5, and 6 in the lemma.

We continue to construct A2 ⊂ A1 and B2 ⊂ B1. We aim to remove part of A1 ∩ F ′ or B1 ∩ F ′ (whichever
is larger), outside of 1

2rS, where r is such that rS ⊂ A,B ⊂ λrS, while maintaining the property that the sets
remain filled in the cones. Indeed note that as

A \A1 ∩ F ′ ⊂ ∂A+B(o,On(ε|A|1/n)) and rS ⊂ A,

we find that choosing ε sufficiently small in terms of |A|, r, and n, we have 2
3r(S ∩ F ′) ⊂ A1, B1. Hence,

(assuming that A1 ∩ F ′ is larger than B1 ∩ F ′), there exists a filled subset A2 ∩ F ′ ⊂ A1 ∩ F ′ so that if we let
B2 ∩ F ′ = B1 ∩ F ′, then |A2 ∩ F ′| = |B2 ∩ F ′| and 1

2r(S ∩ F ′) ⊂ A2 ∩ F ′, B2 ∩ F ′. Let A2 and B2 be defined
thus in all F ′ ∈ G′

1 ∪ G′
2.

To estimate |A2\A1|+|B1\B2|, for every F ′ ∈ G1∪G2, compare |A1∩F ′| and |B1∩F ′|. Find the F ∈ F1∪F2

so that F ′ ⊂ F . Note that |A1 ∩ F ′|, |B1 ∩ F ′| ≤ |F ∩B| = |F ∩A|, so that we find∑
F ′∈G′

1∪G′
2

∣∣|A1 ∩ F ′| − |B1 ∩ F ′|
∣∣ ≤ ∑

F ′∈G′
1∪G′

2

|F ∩A| − |F ′ ∩A1| + |F ∩B| − |F ′ ∩B1|.

We consider the contribution from A and B independently to find∑
F ′∈G′

1∪G′
2

|F ∩A| − |F ′ ∩A1| ≤
∑

F ′∈G′
1∪G′

2

|(F \ F ′) ∩A| + |F ′ ∩ (A \A1)| ≤ |A \A1| ≤ ε′.

Hence, we find

|A2 \A1| + |B1 \B2| ≤
∑

F ′∈G′
1∪G′

2

∣∣|A1 ∩ F ′| − |B1 ∩ F ′|
∣∣ = 2ε′.
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Note that A2 and B2 satisfy conclusions 1, 2, 3, 5, and 6 from the lemma. To get conclusion 4 as well, we
construct A′ ⊂ A2 and B′ ⊂ B2 as follows. Let H ⊂ G′

1 ∪ G′
2 be the collection of those F ′ so that A2 ∩ F ′ and

B2 ∩ F ′ is not a (η, γ)-approximate sandwich in F ′. If we let F ∈ F so that F ′ ⊂ F , then we find that A ∩ F
and B ∩ F is a (η, F ) sandwich, so there exists a P so that P ⊂ A ∩ F,B ∩ F ⊂ (1 + η)P . This immediately
implies that A2 ∩ F ′, B2 ∩ F ′ ⊂ (1 + η)P ∩ F ′, so as A2 ∩ F ′, B2 ∩ F ′ is not (η, γ)-approximate sandwich, we
must find |(P ∩ F ′) \A2| + |(P ∩ F ′) \B2| ≥ γ|P ∩ F ′|. Notice that as P ⊂ A,B, we find that

|(A ∩ F ′) \A2| + |(B ∩ F ′) \B2| ≥ γ|P ∩ F ′| ≥ 1

2
(1 − η)nγ(| co(F ′ ∩A2)| + | co(F ′ ∩B2)|)

≥ Ωn(|F ′ ∩A2| + |F ′ ∩B2|),

so that, summing over all F ′, we find

∑
F ′∈H

|F ′ ∩A2| + |F ′ ∩B2| = On

(∑
F ′∈H

|(A ∩ F ′) \A2| + |(B ∩ F ′) \B2|

)
≤ On(|A \A2| + |B \B2|) ≤ On(ε′).

Hence, the result follows by choosing G0 = G′
0 ∪ H, G1 = G′

1 \ H, G2 = G′
2 \ H, and A′ ⊂ A2 and B′ ⊂ B2

are obtained by removing everything in the interior of the cones in H, i.e., A′ = A2 \
⋃

F∈H F ◦ and B′ =
B2 \

⋃
F∈H F ◦.

6 Intermediate results for the Quadratic Theorem (Theorem 1.5):
Part III

6.1 Setup

Definition 6.1. Let e1, . . . , en be an orthogonal basis. Let πi1,...,ij : Rn → Rj be the projection onto the j-
dimensional subspace spanned by e1, . . . , eij . For a set Y and xi1 , . . . , xij ∈ R, let Yxi1

,...,xij
be the fibre of Y

above (xi1 , . . . , xij ).

Definition 6.2. For a set Y let Y ′ = Y ∩ π−1
1 [1/4, 1/2].

Definition 6.3. Given a (n− 1)-dimensional simplex X ⊂ Rn, a cylinder over X is a set of the form X +R+v
for some direction v ∈ Sn−1.

Definition 6.4. Given ρ > 0 and a subcone C ⊂ Rn of a cone in C, we say a cylinder U over a simplex
T ⊂ C ∩ 1

2∂S is ρ-central if the n + 1 defining hyperplanes H1, . . . ,Hn+1 (i.e., so that U =
⋂n+1

i=1 H
+
i ) of the

cylinder have the property that for all choices ∗i ∈ {+,−}, we have |C ∩ S ∩
⋂n+1

i=1 H
∗i
i )| ≥ ρ|C ∩ S|.

Definition 6.5. Say a set X ⊂ Rn is α-almost convex if | co(X) \X| ≤ α|X|.

6.2 Propositions

Proposition 6.6. For any w > 1, there exists cn,w > 0 such that the following holds. Let T = {o, e1, . . . , en−1}
be an orthogonal simplex. Let U = T × R. Let T × [0, 1] ⊂ A,B ⊂ T × [0, w]. Assume that A and B are
filled in the sense that Ax1,xn

= Ux1,xn
or Ax1,xn

= ∅ and similarly Bx1,xn
= Ux1,xn

or Bx1,xn
= ∅. If

|tA + (1 − t)B| ≤ (1 + δ)|A| with 0 < δ ≪n,t 1, then |A′△B′| ≤ cn,wt
−1/2δ1/2|A|. Here A′ and B′ are as in

Definition 6.2.

Proposition 6.7. Let C ⊂ Rn be a subcone of a cone in C, let U be a ρ-central cylinder over a simplex
T ⊂ C ∩ 1

2∂S, and let α-almost convex sets X,Y ⊂ C be so that

• |X| = |Y |,

• S ∩ C ⊂ X,Y ⊂ λS,

• |tX + (1 − t)Y | ≤ (1 + δ)|X|.

Then there exists a cylinder V = (1 + β)U + x so that

• |β| ≤ On,ρ

(
δ1/2t−1/2 + α

)
,
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• |(U△V ) ∩ S| = On,ρ

(
δ1/2t−1/2 + α

)
|C ∩ S|,

• |X ∩ U | = |Y ∩ V |,

• |t(X ∩ U) + (1 − t)(Y ∩ V )| − |X ∩ U | ≤ |tX + (1 − t)Y | − |X|.

Proposition 6.8. For all n ∈ N, λ ≥ 1, and ϵ > 0, there exists ρ = ρ6.8n,λ,ϵ > 0 so that the following holds. Let
C ⊂ Rn be a subcone of a cone in C. Let f1, . . . , fn be an orthonormal basis of Rn so that fn is perpendicular
to the face of S intersecting C.

Then there exists a (n−1)-simplex T ⊂ C∩ 1
2∂S of radius less than ϵ and a collection U of ρ-central cylinders

over T so that

• |U| = On,λ,ϵ(1),

• λ(C ∩ S) \ (C ∩ S) ⊂
⋃

U∈U U ,

• one facet of T is parallel to the subspace spanned by f1, . . . , fn−2.

6.3 Proof of Propositions

6.3.1 Proof of Quadratic Theorem: Proposition 6.6

Proof of Proposition 6.6. Let C, D be the sets A, B, respectively, Steiner symmetrized around e1, i.e., Cx1 ,
Dx1

are discs with the same size a Ax1
, Bx1

, respectively.

Claim 6.9. |A′△B′| ≤ |C ′△D′| +On,t(δ)|A|

Proof. By Theorem 1.4, we know that | co(A) \ A|, | co(B) \ B| ≤ On,t(δ)|A|. Therefore, it is enough to show
that

|A′△B′| ≤ |C ′△D′| + | co(A) \A| + | co(B) \B|.
For a fixed fiber, we have the elementary inequality

|Ax1,...,xn−1
△Bx1,...,xn−1

| ≤
∣∣|Ax1,...,xn−1

| − |Bx1,...,xn−1
|
∣∣

+ | co(A)x1,...,xn−1
| − |Ax1,...,xn−1

| + | co(B)x1,...,xn−1
| − |Bx1,...,xn−1

|.

By the hypothesis that A and B are filled, for fixed x1 and varying x2, . . . , xn−1, we have |Ax1,...,xn−1
| is constant

and |Bx1,...,xn−1
| is constant. Hence, for fixed x1, we get that∫ ∣∣|Ax1,...,xn−1 | − |Bx1,...,xn−1 |

∣∣dx2 . . . dxn−1 =

∣∣∣∣ ∫ |Ax1,...,xn−1 | − |Bx1,...,xn−1 |dx2 . . . dxn−1

∣∣∣∣ =
∣∣|Ax1 | − |Bx1 |

∣∣,
therefore,∫

|Ax1,...,xn−1
△Bx1,...,xn−1

|dx2 . . . dxn−1 ≤
∫ ∣∣|Ax1,...,xn−1

| − |Bx1,...,xn−1
|
∣∣dx2 . . . dxn−1

+

∫
| co(A)x1,...,xn−1

| − |Ax1,...,xn−1
|dx2 . . . dxn−1

+

∫
| co(B)x1,...,xn−1

| − |Bx1,...,xn−1
|dx2 . . . dxn−1

=
∣∣|Ax1

| − |Bx1
|
∣∣+ | co(A)x1

| − |Ax1
| + | co(B)x1

| − |Bx1
|.

Thus, we deduce

|A′△B′| =

∫
T ′

|Ax1,...,xn−1△Bx1,...,xn−1 |dx1dx2 . . . dxn−1

=

∫ 1/2

1/4

(∣∣|Ax1 | − |Bx1 |
∣∣+ | co(A)x1 | − |Ax1 | + | co(B)x1 | − |Bx1 |

)
dx1

=

∫ 1/2

1/4

(∣∣|Cx1
| − |Dx1

|
∣∣+ | co(A)x1

| − |Ax1
| + | co(B)x1

| − |Bx1
|
)
dx1

≤ |C ′△D′| + | co(A) \A| + | co(B) \B|.

This concludes the proof of the claim.
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Recall that the sets C and D are Steiner symmetrized around e1. In particular, as |tA+(1−t)B| ≤ (1+δ)|A|,
we deduce |tC + (1 − t)D| ≤ (1 + δ)|C|.

Finally, because T×[0, 1] ⊂ A,B ⊂ T×[0, w], there exists a parameter p such that p(1−x1)n ≤ |Cx1
|, |Dx1

| ≤
wp(1 − x1)n for x1 ∈ [0, 1] .

For a point x ∈ [0, 1] there exists a unique point yx ∈ [0, 1] such that if we denote by I = [0, x] and J = [0, y],
then |CI | = |DJ |.

Claim 6.10. The function yx : [0, 2/3] → [0, 1] is continuous and Lipschitz with parameter Θn,w(1).

Proof. This follows immediately from the fact that, for an interval I ⊂ [0, 2/3], we have |CI |, |DI | = Θn,w(p)|I|.

Claim 6.11. For x ∈ [1/4, 1/2], y = yx satisfies |y − x| = Od,w(t−1/2δ1/2).

Proof. Let I = [0, x] and J = [0, y]. As tCI+(1−t)DJ and tCIc+(1−t)DJc are disjoint, we get |tCI+(1−t)DJ | ≤
|CI | + δ|C|. Moreover, as |A| = Ow(|CI |), we further get |tCI + (1 − t)DJ | ≤ (1 +On,w(δ))|CI |.

First note the qualitative bound that y ≤ 2/3 (provided δ is small). Recall that for every 0 ≤ z ≤ 2/3 we
have |Cz|, |Dz| = Θn,w(p), and that the sets CI and DJ are symmetrized. It is easy to see that, by doing d+ 1
parallel hyperplane cuts (containing the direction e1), we can construct convex cylinders C ′

I and D′
J inside CI

and DJ , respectively, such that

|C ′
I | = |D′

J | = Θn,w(1)|CI | and |tC ′
I + (1 − t)D′

J | − |C ′
I | ≤ |tCI + (1 − t)DJ | − |CI |.

In particular, we get that the convex cylinders C ′
I and D′

J have heights |I| and |J | and |tC ′
I + (1 − t)D′

J | ≤
(1 + Θn,w(δ))|C ′

I |. By the sharp stability of the Brunn-Minkowski for convex sets, we then deduce |I| =
(1 +O(t−1/2δ1/2))|J |. As x ∈ (1/4, 1/2) We conclude |y − x| = On,w(t−1/2δ1/2).

Claim 6.12. For points x ∈ (1/4, 1/2), if |y−x| = On,w(t−1/2δ1/2), then | co(C)x|−| co(C)y| ≤ On,w(t−1/2δ1/2)
and | co(D)x| − | co(D)y| ≤ On,w(t−1/2δ1/2)p.

Proof. It is enough to notice that for x ∈ (1/4, 2/3), we have | co(C)x| is Lipschitz with parameter Θn,w(p),
which follows from the fact that | co(C)x|1/n, | co(D)x|1/n are convex and p(1−x1)n ≤ |Cx|, |Dx| ≤ wp(1−x1)n

for x1 ∈ [0, 1].

Consider the partitions into very small consecutive intervals [0, 1] = I0∪· · ·∪Iℓ and [0, 1] = J0∪· · ·∪Jℓ such
that CIk and DJk

are all cylinders with the same volume. Moreover, set |tCIk + (1 − t)DJk
| = (1 + δk)|CIk |. It

is trivial to check that
∑

k δk|CIk | ≤ δ|C|. In particular,
∑

k:Ik⊂[1/4,1/2] δk ≤ On,w(δ).

Claim 6.13. Fix k such that Ik, Jk ⊂ [0, 2/3]. For x ∈ Ik and y ∈ Jk we have |Cx| = (1+On,w(t−1/2δ
1/2
k ))|Dy|.

Proof. Because CIk and DJk
are convex cylinders, the result follows immediately from the sharp stability of

Brunn-Minkowski inequality for convex sets [FMP09].

It is easy to see that the function x→ yx is picewise linear and maps the interval Ik linearly into the interval
Jk. Fix x ∈ Ik ⊂ [1/4, 1/2]. We have the elementary bound∣∣|Cx| − |Dx|

∣∣ ≤ ∣∣|Cx| − |Dyx
|
∣∣+ | co(D)x \Dx| + | co(D)yx

\Dyx
| +
∣∣| co(D)x| − | co(D)yx

|
∣∣.

From Claim 6.13, we deduce ∣∣|Cx| − |Dyx
|
∣∣ = On,w(t−1/2δ

1/2
k )p.

From Claim 6.11 and Claim 6.12, we get∣∣| co(D)x| − | co(D)yx |
∣∣ ≤ On,w(t−1/2δ1/2)p.
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Therefore

|C ′△D′| =

∫ 1/2

1/4

∣∣|Cx| − |Dx|
∣∣dx =

∑
k:Ik⊂[1/4,1/2]

On,w(t−1/2δ
1/2
k )p× |Ik| +On,w(t−1/2δ1/2)p× 1/4

+

∫ 1/2

1/4

(
| co(D)x \Dx| + | co(D)yx \Dyx |

)
dx

=
∑

k:Ik⊂[1/4,1/2]

On,w(t−1/2δ
1/2
k )|CIk | +On,w(t−1/2δ1/2)|C[1/4,1/2]|

+

∫ 1/2

1/4

(
| co(D)x \Dx| + | co(D)yx

\Dyx
|
)
dx

≤ On,w(t−1/2δ1/2)|C| +

∫ 1/2

1/4

(
| co(D)x \Dx| + | co(D)yx \Dyx |

)
dx.

By the linear stability result we have | co(D) \D| ≤ On,w(δ)|C|, and by Claim 6.10 we deduce∫ 1/2

1/4

(
| co(D)x \Dx| + | co(D)yx

\Dyx
|
)
dx ≤ On,w(δ)|C|.

Therefore, we get |C ′△D′| ≤ On,w(t−1/2δ1/2)|C|, that together with Claim 6.9 allows us to conclude that
|A′△B′| ≤ On,w(t−1/2δ1/2)|A|.

6.3.2 Proof of Proposition 6.7

Proof of Proposition 6.7. First affinely transform so that the simplex formed by the vertices of T together with
the origin form a regular simplex.

Write H0 for the hyperplane containing the face of 1
2S intersecting C. Writing H+

0 for the halfspace defined

by H0 not containing the origin, we find that by S ∩ C ⊂ X,Y ⊂ λS, we have |H+
0 ∩ X| = |H+

0 ∩ Y |. Let
X ′ := H+

0 ∩X and Y ′ := H+
0 ∩ Y , so that |X ′| = |Y ′|. By the Brunn-Minkowski inequality, we have

|t(H−
0 ∩X) + (1 − t)(H−

0 ∩ Y )| ≥ |H−
0 ∩X|.

Since t(H−
0 ∩ X) + (1 − t)(H−

0 ∩ Y ) is a subset of tX + (1 − t)Y disjoint from tX ′ + (1 − t)Y ′, we find that
|tX ′ + (1 − t)Y ′| − |X ′| ≤ |tX + (1 − t)Y | − |X|.

We repeatedly apply this last argument for different hyperplane cuts.
Let H1, . . . ,Hn be the hyperplane cuts defining U . Find parallel hyperplanes G1, . . . , Gn so that |X ′ ∩⋂j

i=1H
+
i | = |Y ′ ∩

⋂j
i=1G

+
i | for all j = 0, . . . , n, which exist by continuity. We will show that the distance

between Hi and Gi is at most On

(
δ1/2t−1/2

)
. We show this for i = 1, the other cases follow analogously by

induction.
Consider the sets X± := X ′ ∩ H±

1 and Y ± := Y ′ ∩ G±
1 . By the fact that U is central, we know that

|X− ∩ S| ≥ ρ|C ∩ S|. Write H ′ for the hyperplane 2H0 containing the face of S intersecting C. Let

X ′′ := X− ∩ (H ′)− = S ∩H+
0 ∩H−

1 ∩ (H ′)−

and find a plane G′ parallel to H ′ so that Y ′′ := Y − ∩ (G′)− satisfies |X ′′| = |Y ′′|. By the argument before, we
find that

|tX ′′ + (1 − t)Y ′′| − |X ′′| ≤ |tX ′ + (1 − t)Y ′| − |X ′| ≤ |tX + (1 − t)Y | − |X| ≤ δ|X| ≤ ρ−1δ|X ′′|.

Note that X ′′ is convex, so by the stability result for the Brunn-Minkowski inequality in [FMP09] we find that
|X ′′△(Y ′′ + x)| ≤ On

(
δ1/2t−1/2

)
|X ′′| for some translate x ∈ Rn.

Consider the component x⊥ of x perpendicular to H0. Note that the band between H0 and H0 + x⊥ of
S ∩C ∩H−

1 ∩G−1
1 is completely contained in X ′′△Y ′′, so as U is central, this implies ||x⊥||2 = On

(
δ1/2t−1/2

)
.

As X ′′ and Y ′′ are ρ−1α-almost convex, we find that translating them by x⊥ changes the symmetric difference
only little, i.e.,

|X ′′△(Y ′′ + (x− x⊥))| ≤ |X ′′△(Y ′′ + x)| +On

(
δ1/2t−1/2 + α

)
|X ′′| ≤ On

(
δ1/2t−1/2 + α

)
|X ′′|.

28



It is now easy to see that the translate z with no component perpendicular to H0 minimizing |X ′′△(Y ′′ + z)|
is z = 0. Indeed, for z = 0, in every plane P parallel to H0 we have that P ∩X ′′ and P ∩ Y ′′ are nested (which
one is contained in which depends on the relative positions of H1 and H ′). Hence, we find

|X ′′△Y ′′| ≤ On

(
δ1/2t−1/2 + α

)
|X ′′|.

Finally, akin to the previous argument, we now find that (G1△H1) ∩ S ∩ C ∩H+
0 ∩H ′− ∩G′− ⊂ X ′′△Y ′′, so

that |(G1△H1) ∩ S| ≤ On

(
δ1/2t−1/2 + α

)
|C ∩ S|. This concludes the induction.

Letting V :=
⋂n

i=0H
+
i , we find that U△V ⊂

⋃n
i=1G

+
i △H

+
i , therefore

|(U△V ) ∩ S| ≤ On

(
δ1/2t−1/2 + α

)
|C ∩ S|,

and consequently |β| = On

(
δ1/2t−1/2 + α

)
.

6.3.3 Proof of Proposition 6.8

Proof of Proposition 6.8. We first show that we may assume C ∩ 1
2∂S is a simplex.

Consider the set P := C ∩ 1
2∂S which lies in a subspace spanned by f1, . . . , fn−1. Let L be the subspace

spanned by f1, . . . , fn−2. Let x, x′ ∈ ∂P so that x + L and x′ + L are the two translates of L tangent to P .

Write o′ := x+x′

2 . Let P ′ be the projection of P onto o′ + L along the direction xx′. Note that P ∩ (o′ + L)

contains o′+P ′

2 . Let T ′ be the largest simplex contained in that translate of o′+P ′

2 , so that |T ′| = Ωn(|P ′|) and
P ′ is contained in some translate of 2nT ′. Let T ′′ = co(T ′ ∪ {x}).

This construction gives a set T ′′ so that there exists a translate of 4nT ′′ which contains P . Indeed, for every
point y on the line segment between o′ and o′+x

2 we have that L+ y∩T ′′ is a homothetic copy of T ′ larger than
1
2T

′. Hence, for all points y on the line segment between 4no′ and 2n(o′ + x) we have that L + y ∩ 4nT ′′ is a
homothetic copy of T ′ larger than 2nT ′ (which contains a translate of P ′). Hence, we can translate 4nT ′′ so
that P ⊂ z + 4nT ′′ and |T ′′| ≥ Ωn(|P |).

Let T be the translate of min{ϵ, 1
4n}T

′′ centred at the barycenter of T ′′, so that we still have |T | ≥ Ωn,ϵ(|P |)
(for notational convenience assume min{ϵ, 1

4n} = 1
4n ). Note that one of the facets of T is parallel to T ′, i.e., to

the subspace spanned by f1, . . . , fn−2. Since the T is contained in the proper interior of T ′′ ⊂ z + 4nT ′′ (at a
distance lower bounded in terms of n from ∂(z + 4nT ′′)), we find that there exists some σn so that z + 4nT ′′

is contained in the translate of σnT centred at the barycenter of T . Write p for the barycenter of T , so that
Hp,4n(T ) = T ′′ ⊂ P ⊂ Hp,σn(T ), where Hq,ξ is the homothety with ratio ξ centred at q.

Write S′ for the halfspace containing S defined by the hyperplane which contains the face of S intersecting
C. Note that C ∩ S = C ∩ S′. Write C ′ :=

⋃
s>0 sHp,σn

(T ) for the cone generated by the set Hp,σn
(T ) ⊃ P

and write C ′′ :=
⋃

s>0 sHp,4n(T ) for the cone generated by the set Hp,4n(T ) = T ′′ ⊂ P , so that C ′′ ⊂ C ⊂ C ′.
We have that

λ(C ∩ S) \ (C ∩ S) ⊂ λ(C ′ ∩ S′) \ (C ′ ∩ S′).

Up to an affine transformation, we may assume co(T ∪ {o}) is a regular simplex. Note that the problem of
covering λ(C ′ ∩ S′) \ (C ′ ∩ S′) with cylinders over T which are central in the cone C ′′ depends only on n, λ,
and ϵ and no longer on the particular C, and f1, . . . , fn that we started with. Hence, we can simply choose
any collection U of cylinders (which are ξ-central for some ξ > 0) so that λ(C ′ ∩ S′) \ (C ′ ∩ S′) ⊂

⋃
U∈U U and

choose ρ′ appropriately so that the cylinders are ρ′-central in C ′′. We automatically have |U| = On,λ,ϵ(1) and
if a cylinder is ρ′-central in C ′′ it is also ρ central in C for some ρ depending only on λ, n, ϵ, and ρ′.

7 Proof of the Quadratic Symmetric Difference result (Theorem 1.5)

Proof of Theorem 1.5. Choose parameters according to the following hierarchies. First choose

n≫ λ−1 ≫ ρ≫ ϵ≫ λ′−1 ≫ w−1,

so that ϵ, ρ, λ, λ′, w = θn(1). Then choose

t, n, ϵ, ρ, λ, λ′, w ≫ ∆, η′′ ≫ η ≫ γ ≫ η′,

where every variable is understood to be chosen sufficiently small in terms of all of the preceding variables.
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By Proposition 2.9, we may assume that A,B form a simple λ/2-bounded η′-sandwich. By Proposition 5.4
we may assume (after translating) that, for Ci ∈ C, |Ci ∩ A| = |Ci ∩ B| at the cost of A,B form a simple
λ-bounded η-sandwich.

Now apply Theorem 5.3 with parameters ξ = δ, λ, η, γ > 0, to find A′ ⊂ A, B′ ⊂ B, and a family of cones G
essentially partitioning Rn refining C and a partition G = G0 ⊔ G1 ⊔ G2 such that:

1. |A′| = |B′| ≥ (1 − ξ)|A|;

2. For every cone F ∈ G0 it holds |A′ ∩ F | = |B′ ∩ F | = 0;

3. For every cone F ∈ G1 ⊔ G2 it holds |A′ ∩ F | = |B′ ∩ F |;

4. For every cone F ∈ G1 ⊔G2, A′ ∩F and B′ ∩F are (2λ, F )-bounded (η, γ)-approximate sandwiches inside
F ;

5. Every cone F ∈ G1 is (1, ℓ5.3n ,∞)-good, and every cone F ∈ G2 is (2, ℓ5.3n ,∞)-good;

6. For every cone F ∈ G1 ⊔ G2, A′ ∩ F and B′ ∩ F are filled in F ;

7. For every cone F ∈ G1 ∪ G2, if F ⊂ Ci then eFn is perpendicular to the face of S contained in Ci.

By our choice of ξ, it suffices to show |A′△B′| ≤ On(t−1/2δ1/2)|A|, as |A△B| ≤ |A′△B′|+|A\A′|+|B\B′| ≤
|A′△B′| + 2δ|A|.

For every cone F ∈ G1 ⊔ G2, write δF := |t(A′∩F )+(1−t)(B′∩F )|−|A′∩F |
|A′∩F | . For notational convenience, write

δF = 0 for F ∈ G0. In terms of this parameter, we find∑
F∈G

δF |A′∩F | =
∑
F∈G

|t(A′∩F )+(1−t)(B′∩F )|−|A′∩F | ≤ |tA′+(1−t)B′|−|A′| ≤ |tA+(1−t)B|−|A′| ≤ 2δ|A|,

where we used that t(A′ ∩ F ) + (1 − t)(B′ ∩ F ) are essentially disjoint subsets of tA′ + (1 − t)B′. We also have
the trivial observation that

∑
F∈G |(A′ ∩ F )△(B′ ∩ F )| =

∑
F∈G |(A′△B′) ∩ F | = |A′△B′|. By concavity of

the square root function, it thus suffices to show |(A′ ∩ F )△(B′ ∩ F )| ≤ On(t−1/2δ1/2)|A′ ∩ F | for every cone
F ∈ G. Henceforth, fix a cone C ∈ G2 for which we will show this bound on the symmetric difference (the case
that C ∈ G0 ⊔ G1 follows analogously, though more easily). For notational convenience write X := A′ ∩ C and
Y := B′ ∩ C.

As X,Y form an (η, γ)-approximate sandwich inside C, we find that for sufficiently small η and γ, we have
that δC is smaller than ∆ for all C ∈ G. Hence, by Theorem 1.4, we know that X and Y are On,t(δ)-almost
convex.

Now apply Proposition 6.8 to the cone C and the basis eC1 , . . . , e
C
n to find a (n − 1)-simplex T ⊂ C ∩ 1

2∂S
and a collection U of ρ-central cylinders over T of radius less than ϵ, so that

• |U| = On,λ(1) = On(1),

• λ(C ∩ S) \ (C ∩ S) ⊂
⋃

U∈U U ,

• one facet of T is parallel to the subspace spanned by eC1 , . . . , e
C
n−2.

Since A′ ∩ C and B′ ∩ C are λ-bounded inside the cone C, we have

X△Y ⊂ λ(C ∩ S) \ (C ∩ S) ⊂
⋃
U∈U

U,

so that

|X△Y | ≤
∑
U∈U

|U ∩ (X△Y )| ≤ |U|max
U∈U

|U ∩ (X△Y )| ≤ On

(
max
U∈U

|U ∩ (X△Y )|
)
.

Hence, it suffices to show |U ∩ (X△Y )| ≤ On(t−1/2δ1/2)|X|. Because one facet of T is parallel to the subspace
spanned by eC1 , . . . , e

C
n−2, we find that X ∩ U filled.

Now apply Proposition 6.7 to C,U , and the On,t(δ)-almost convex pair X,Y , to find a cylinder V =
(1 + β)U + x so that:

• |β| ≤ On,ρ

(
δ1/2t−1/2 +On,t(δ)

)
= On

(
δ1/2t−1/2

)
,

• |(U△V ) ∩ S| = On,ρ

(
δ1/2t−1/2 +On,t(δ)

)
|C ∩ S| = On

(
δ1/2t−1/2

)
|C ∩ S|,
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• |X ∩ U | = |Y ∩ V |,

• |t(X ∩ U) + (1 − t)(Y ∩ V )| − |X ∩ U | ≤ |tX + (1 − t)Y | − |X| = δC |X|.

Note that as V is homothetic to U , we also have that V ∩ Y is filled.
As T lies well within S and has radius less than ϵ, we can apply Lemma 10.10 to find t′ ∈ (t/2, 2t) and

X ′, Y ′ that form a tubular λ′-bounded η′′-sandwich, where λ′ = θn(λ) = θn(1) and η′′ tend to zero with η, so
that

|t′X ′ + (1 − t′)Y ′| − t′|X ′| − (1 − t′)|Y ′| ≤ |t(X ∩ U) + (1 − t)(Y ∩ V )| ≤ δC |X|,

and |(X ∩ U)△(Y ∩ V )| ≤ |X ′△Y ′| + On

(
δ
1/2
C t−1/2

)
|X ∩ U |. Moreover, as we have only taken affine trans-

formations, we find that X ′, Y ′ are both filled in their common tube, say W . After affine transformation, we
may assume W = S′ × R for an orthogonal simplex S′, so that S′ × [0, 1] ⊂ X ′, Y ′ ⊂ S′ × [0, w/2] for some
w = On,λ′(1) = On(1).

Note that by construction
∣∣|X ′| − |Y ′|

∣∣ ≤ On

(
δ
1/2
C t−1/2

)
|X ′|. Extend (i.e., append a set of the form

S′ × [−ζ, 0) for an appropriate ζ ≤ On

(
δ
1/2
C t−1/2

)
and then translating that set up by ζ) the smaller of the

two sets to find X ′′ ⊇ X ′ and Y ′′ ⊇ Y ′ with |X ′′| = |Y ′′|, so that by Lemma 10.11, we find

|t′X ′′ + (1 − t′)Y ′′| − |X ′′| = |t′X ′ + (1 − t′)Y ′| − t′|X ′| − (1 − t′)|Y ′| ≤ δC |X|.

Moreover, we have |X ′△Y ′| ≤ |X ′′△Y ′′| +On

(
δ
1/2
C t−1/2

)
|X ′′| and

S′ × [0, 1] ⊂ X ′′, Y ′′ ⊂ S′ × [0, w/2 + ζ] ⊂ S′ × [0, w].

Clearly, X ′′ and Y ′′ are still filled.
Recall that as U was ρ-central, we find that |X ′′| ≥ 2−n|X ′| ≥ Ωn,ρ(|X|) = Ωn(|X|). Hence, as δC ≤ ∆,

we find that δC
|X|
|X′′| is sufficiently small in terms of n and t so that we can apply Proposition 6.6 to find that

|X ′′△Y ′′| ≤ On,w(t−1/2δ1/2)|X ′′| = On(t−1/2δ1/2)|X ′′|.

Remark 7.1. We remark that in the above proof we applied Theorem 5.3 to construct the family G. We never
used the property that cones in G1 and G2 are generated by a bounded number of lines (i.e. in property 5 it would
suffice to have ℓn = ∞). However, we believe this property significantly expands the applicability of Theorem 5.3
and we shall exploit exploit it in future work.

8 Intermediate results for Linear Theorem with few vertices (The-
orem 1.6)

For notational convenience, consider the following definitions. Given A,B ⊂ Rn with |A| = |B| and t ∈ (0, 1),
let

Dt(A,B) := tA+ (1 − t)B, and δt(A,B) :=
|Dt(A,B)|

|A|
− 1.

Throughout this section, we will always consider t ∈ (0, 1). We will show the following theorem.

Theorem 8.1. There exists a constants c8.1 such that the following holds. Given A,B ⊂ Rn of equal volume
and t ∈ [τ, 1 − τ ] such that co(A) is a simplex, A is the intersection between a simple set and a simplex and
δt(A,B) ≤ min{t, (1 − t)}n, then

| co(A) \A| ≤ min{t, (1 − t)}−c8.1n8

δt(A,B)|A|.

Theorem 1.6 follows easily from Theorem 8.1 which is the same result with the stronger assumption that
co(A) is a simplex.
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8.1 Outline of the proof of Theorem 8.1

The proof of Theorem 8.1 follows the following steps.

1. Writing S = co(x0, . . . , xn), find a point v ∈ A so that the density in each of the subsimplices

co(x0, . . . , xi−1, v, xi+1, . . . , xn)

does not decrease too much (cf Proposition 8.4).

2. The doubling of A in each of the subsimplices is subadditive (cf Proposition 8.2), i.e., there exists a
matching partition B =

⋃
S′ BS′ with |BS′ | = |A ∩ S′| so that

|tA+ (1 − t)B| ≥
∑

|t(A ∩ S′) + (1 − t)BS′ |.

3. Iterating this process, we end up with two types of simplices: those in which A has low density and those
with small radius.

4. For a simplex in which A has a sufficiently low density (but not too low), i.e., |S′∩A|/|S′| is small, a recent
result by van Hintum and Keevash [vHK23b] shows that the doubling is Ωn,t(1) (cf Proposition 8.3). Since
we can guarantee the density of A inside S′ is On,t(1), we find that |S′| is controlled by the doubling of
A ∩ S′.

5. Assuming that without loss of generality that A is a finite union of boxes intersected with a simplex (cf
Proposition 2.9), the combined volume of simplices with small radius that are not completely filled by A
goes to zero with the number of iterations.

6. Therefore, we conclude

| co(A) \A| =
∑
S′

|S′ \A| ≤
∑

low density S′

On,t(|t(A ∩ S′) + (1 − t)BS′ | − |A ∩ S′|) +
∑

small radius S′

|S′|

= On,t(|tA+ (1 − t)B| − |A|).

8.2 Auxiliary propositions

A crucial ingredient is the following proposition.

Proposition 8.2. If co(A) is a simplex S′ with vertex set {x0, . . . xn} and x ∈ A is some point in the interior
of co(A), then we partition S′ into simplices

Si := co(x0, . . . , xi−1, x, xi+1, . . . , xn).

For any B ⊂ Rn with |B| = |A| there exist sets Bi ⊂ Rn with |Bi| = |A ∩ Si|, so that∑
i

|A ∩ Si|
|A|

δt(A ∩ Si, Bi) ≤ δt(A,B)

We recall here the following result of van Hintum and Keevash [vHK23b].

Proposition 8.3 ([vHK23b]). There exists a constant c8.3 so that if t ∈ (0, 12 ] and A,B ⊂ Rn of equal volume

satisfy | co(A)| + | co(B)| ≥ t−c8.3n2 |A|, then δt(A,B) ≥ tn.

The last crucial ingredient is the following proposition.

Proposition 8.4. For all n ∈ N and α > 0 there exists a constant η8.4α,n > 0 (we can take η8.4α,n = c8.4n αc8.4n6

for
some constants c8.4n , c8.4 > 0) so that the following holds. Let X ⊂ Rn be a set and S′ = co{x0, . . . , xn} ⊂ Rn

be a simplex with X ⊂ S′. If |X| ≥ α|S′|, then there exists a point x ∈ X such that for all 0 ≤ i ≤ n

| co{x0, . . . , xi−1, x, xi+1, . . . , xn} ∩X| ≥ η8.4α,n|S′|.

Moreover, there exists a constant ρ8.4α,n > 0 (we can take ρ8.4α,n = η8.4α,n) such that

max
i
d(x, xi) ≤ (1 − ρ8.4α,n) max

i,j
d(xi, xj),

A weaker version of Proposition 8.4 in the dense domain follows later in Lemma 10.6, which has a simpler
proof.
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8.3 Auxiliary lemmas

Lemma 8.5. For all n ∈ N and α > 0 there exist constants η8.51,α,n, η
8.5
2,α,n > 0 (we can take η8.51,α,n = η8.52,α,n =

c8.5n αc8.5n3

, for some constants c8.5n , c8.5 > 0) so that the following holds. Let X ⊂ Rn be a set and S′ =
co{x0, . . . , xn} ⊂ Rn be a simplex with X ⊂ S′. If |X| ≥ α|S′|, then there exists a subset Y ⊂ X with
|Y | ≥ η8.51,α,n|S′| such that for all x ∈ Y and 1 ≤ i ≤ n

| co{x0, . . . , xi−1, x, xi+1, . . . , xn} ∩X| = η8.52,α,n|S′|.

Lemma 8.6. For all n ∈ N and α > 0 there exist constants η8.61,α,n, η
8.6
2,α,n > 0 (we can take them η8.61,α,n =

η8.62,α,n = c8.6n αc8.6n
2

, for some constants c8.6n
2

n , c8.6 > 0 ) so that the following holds. Let X ⊂ Q = [−1, 1]n. If
|X| ≥ α|Q|, then there exists a subset Y ⊂ X with |Y | ≥ η8.61,α,n|Q| such that for all x ∈ Y and all faces F of
the box Q

| co({x} ∪ F ) ∩X| ≥ η8.62,α,n|Q|.

Before the next lemma we need a definition.

Definition 8.7. For α > 0 and 1 ≤ j ≤ n construct the (n− 1)-dimensional box

Qj,α = co

({
n∑

i=1

εiei : εi ∈ {−α, α} for all i ∈ [n] \ {j} and εj = 1

})
and construct the cone

Cj,α = ∪t≥0tQj,α.

Moreover, for −n ≤ j ≤ −1 let Qj,α = −Q−j,α and Cj,α = −C−j,α.

Lemma 8.8. For all n ∈ N and α > 0 there exist constants η8.81,α,n, η
8.8
2,α,n > 0 (we can take η8.81,α,n = η8.82,α,n =

c8.8n αc8.8n2

, for some constants c8.8n , c8.8 > 0) so that the following holds. Let X ⊂ Q = [−1, 1]n. If |X| ≥ α|Q|,
then there exists a subset Y ⊂ X with |Y | ≥ η8.81,α,n|Q| such that for all x ∈ Y and all j ∈ [−n, n] \ {0}

|(x+ Cj,α) ∩X| ≥ η8.82,α,n|Q|.

Lemma 8.9. For all n ∈ N and α > 0 the following holds. Let P = [0, a1] × · · · × [0, an] + x be a box with
x ∈ Rn and anα

2/8 ≤ a1, . . . , an−1 ≤ anα
2/4. Let X be a subset of the box with |X| ≥ α|P |. Then there exists

a box
Q = [0, b1] × · · · × [0, bn] + y with y ∈ Rn and b1(α/4)2/8 ≤ b2, . . . , bn ≤ b1(α/4)2/4

such that, if we set Y = Q ∩X, then the following holds:

|Q| ≥ α2n|P |/27n, |Y | ≥ α|Q|/4, and |(y + Cn,α) ∩X| ≥ α|P |/4 for all y ∈ Y .

We shall need one more lemma, for the proof Theorem 1.6.

Lemma 8.10. Let t ∈ (0, 1) and A,B,C ⊂ Rn so that |A| = |B| and C is convex with a finite number of
vertices, then there exists a subset B′ ⊂ B so that |B′| = |A ∩ C| and

|t(A ∩ C) + (1 − t)B′| − |A ∩ C| ≤ |tA+ (1 − t)B| − |A|.

8.4 Proof of Theorem 8.1

Proof of Theorem 8.1. we will consider the case t ≤ 1
2 , the other case follows analogously. Let ε = tc

8.3n2

. Let
c8.3 be the constant from Proposition 8.3. Let c8.4, c8.4n and ρ = ρ8.4ε,n the constants from Proposition 8.4.

Consider the following iterative process. First set T0 = {co(A)} and S0 = ∅, and note that | co(A)| ≤ ε−1|A|
by Proposition 8.3. At a given stage i with Ti,Si, look at every element S′ ∈ Ti and distinguish two cases:
either |S′ ∩A| ≤ ε|S′| or |S′ ∩A| > ε|S′|.

For each simplex S′ = co{x0, . . . , xn} ∈ Ti with |S′ ∩ A| ≥ ε|S′| we construct the n + 1 simplices
f0(S′), . . . , fn(S′) as follows. We apply Proposition 8.4 to find a central point x ∈ S′ ∩A and we construct the
simplex fj(S

′) = co{x0, . . . , xj−1, x, xj+1, . . . , xn}.
Now let

Ti+1 :=
⋃

S′∈Ti: |S′∩A|≥ε|S′|

{f0(S′), . . . , fn(S′)} and Si+1 := Si ∪ {S′ ∈ Ti : |S′ ∩A| < ε|S′|} .

Using the fact that A is closed, it follows by induction that for i ∈ N and S′ ∈ Ti⊔Si we have co(A∩S′) = S′.
Moreover, Ti ⊔ Si forms an essential partition of co(A).
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Claim 8.11. For all S′ ∈ Ti and j ∈ [0, n], we have |fj(S′)| ≥ c8.4n εc
8.4n6 |S′|.

Proof. By Proposition 8.4 (and our choice of x ∈ S′ ∩A), we have |fj(S′)| ≥ |fj(S′) ∩A| ≥ c8.4n εc
8.4n6 |S′|.

Claim 8.12. For all S′ ∈ Si ∪ Ti, we have |S′ ∩A| ≥ c8.4n εc
8.4n6 |S′|.

Proof. Every simplex S′ ∈ Si ∪ Ti is fj(S
′′) for some S′′ with |S′′ ∩ A| ≥ ε|S′′|. By Proposition 8.4 (and our

choice of x ∈ S′ ∩A), we have |S′ ∩A| ≥ c8.4n εc
8.4n6 |S′′|.

Claim 8.13. At stage i there exists a function gi : Ti ∪ Si → P(Rn), so that for all S′ ∈ Ti ∪ Si, gi(S
′) is a

measurable subset of B such that |gi(S′)| = |S′ ∩A| and∑
S′∈Ti∪Si

|A ∩ S′| · δt(A ∩ S′, gi(S
′)) ≤ |A| · δt(A,B).

Proof. This follows by induction from Proposition 8.2.

Claim 8.14. For every i, we have that∑
S′∈Si

|S′| ≤ 1

c8.4n

t−c8.4c8.3n8−n|A| · δt(A,B).

Proof of Claim. For S′ ∈ Si, we know by construction and by the second claim that c8.4n εc
8.4n6 |S′| ≤ |S′ ∩A| <

ε|S′|. Moreover, co(A ∩ S′) = S′. Hence, by Proposition 8.3, δt(A ∩ S′, gi(S
′)) ≥ tn, where gi is the function

from the previous claim. Hence, combining the results from the previous two claims, we find∑
S′∈Si

|S′| ≤ 1

c8.4n

ε−c8.4n6 ∑
S′∈Si

|S′ ∩A| ≤ 1

c8.4n

ε−c8.4n6 ∑
S′∈Si

|S′ ∩A| · δt(A ∩ S′, gi(S
′))

tn

≤ 1

c8.4n

t−nε−c8.4n6

|A| · δt(A,B) =
1

c8.4n

t−c8.4c8.3n8−n|A| · δt(A,B),

which concludes the claim.

Before we conclude we need one more claim. Given a simplex S′, let radius rad(S′) be the maximal length
among its edges.

Claim 8.15. For all r > 0 the following holds:∑
S′∈Ti:rad(T )>r

|S′| → 0 as i→ ∞.

Proof of Claim. We make the convention
⋃
Ti :=

⋃
S′∈Ti

S′ Let k = ⌈log(1−ρ)(r)⌉. We can distinguish two types
of elements in Ti. Either S′ ⊂

⋃
Ti+k(n+1) or not. Collect the former in T ′

i and the latter in T ′′
i .

For S′ ∈ T ′′
i , at least some simplex originating from S′ is in Si+k(n+1). By the first claim, that simplex will

have size at least (c8.4n εc
8.4n6

)k(n+1)|S′|. Hence,∑
S′∈Ti+k(n+1): S′⊂

⋃
T ′′
i

|S′| ≤
(

1 − (c8.4n εc
8.4n6

)k(n+1)
) ∣∣∣⋃ T ′′

i

∣∣∣ .
For S′ ∈ T ′

i , we will find an element S′′ ∈ Ti+k(n+1) with S′′ ⊂ S′ and rad(S′′) < r. Let S′ = S0,
and consider Sj+1 := fn(fn−1(. . . f0(Sj) . . . ). Crucially, rad(Sj+1) ≤ (1 − ρ)rad(Sj). Indeed, none of the
edges of Sj remain and all of the edges added have length at most (1 − ρ)rad(Sj) by Proposition 8.4. Hence,

rad(Sk) ≤ r · rad(S0) ≤ r. Note that again by the first claim |Sk| ≥ (c8.4n εc
8.4n6

)k(n+1)|S′|.
Combining these two cases gives∑

S′∈Ti+k(n+1): rad(S′)>r

|S′| ≤
(

1 − (c8.4n εc
8.4n6

)k(n+1)
) ∑

S′∈Ti: rad(S′)>r

|S′|.

The conclusion follows.
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To bound the contribution from the simplices in Ti, we use the assumption that A is the intersection between
a finite union of cubes and a simplex. In particular, this implies that ∂A has finite (n−1)-dimensional Hausdorff
measure. Hence, |∂A + Bn(o, r)| → 0 as r → 0. Fix r to be such that |∂A + Bn(o, r)| ≤ δt(A,B)2|A|. Using
Claim 8.15, find an i, so that

∑
S′∈Ti:rad(S′)>r |S′| ≤ δt(A,B)2|A|.

Note that for S′ ∈ Ti, we have S′ ∩A ̸= ∅, so if S′ ̸⊂ A, we find that S′ ∩ ∂A ̸= ∅. We conclude that∑
S′∈Ti

|S′ \A| ≤
∑

S′∈Ti: S′⊂A

|S′ \A| +
∑

S′∈Ti: rad(S′)>r

|S′| +
∑

S′∈Ti: S′∩∂A ̸=∅, rad(S′)≤r

|S′|

≤ 0 + δt(A,B)2|A| + |∂A+Bn(o, r)| ≤ 2δt(A,B)2|A|.

Combining this with the bound on Si, we find

| co(A) \A| =
∑

S′∈Si∪Ti

|S′ \A| ≤ c8.4n t−c8.4c8.3n8−nδt(A,B)|A| + 2δt(A,B)2|A| ≤ t−c8.1n8

δt(A,B)|A|,

and the result follows.

8.5 Proof of Propositions

8.5.1 Sublinearity of doubling in subsimplices; Proposition 8.2

Proposition 8.2 hinges on a geometric lemma.
Let Si as in the statement of Proposition 8.2 and translate so that x is the origin. Consider the cones

generated by the Si, i.e., Cx0,...,xn .
We will use Proposition 5.4 repeatedly and Proposition 8.2 will follow quickly.

Proof of Proposition 8.2. Apply Proposition 5.4, find a v so that |A ∩ Si| = |A ∩ Ci| = |(B − v) ∩ Ci| for all
Ci ∈ Cx0,...,xn . We will show that the union

⋃n
i=0Dt(A ∩ Si, B ∩ (v +Ci)) ⊂ Dt(A,B) is an essentially disjoint

union. Indeed note that, as Ci is a convex set,

Dt(A ∩ Si, B ∩ (v + Ci)) ⊂ Dt(Ci, v + Ci) = (1 − t)v + Ci

and
⋃

i(1− t)v+Ci is an essentially disjoint union. We can conclude by setting Bi = B∩(v+Ci) and expanding∑
i

|A ∩ Si| · δt(A ∩ Si, Bi) =
∑
i

|Dt(A ∩ Si, B ∩ (v + Ci))| − |A ∩ Si| ≤ |Dt(A,B)| − |A| ≤ |A| · δt(A,B).

The proposition follows.

8.5.2 Proof of Proposition 8.4

Proof of Proposition 8.4. Set η8.4α,n = min(η8.52,α,n, η
8.5
2,η8.5

1,α,n,n
). We apply Lemma 8.5 to the set X together with

the special vertex xn. Thus we construct a subset Y ⊂ X with |Y | ≥ η8.51,α,n|S′| such that for all x ∈ Y and
0 ≤ i ≤ n− 1, | co{x0, . . . , xi−1, x, xi+1, . . . , xn} ∩X| ≥ η8.52,α,n|S′|. Now we apply again Lemma 8.5 to the set Y
together with the special vertex xn−1. Thus we construct a subset Z ⊂ Y with |Z| ≥ η8.5

1,η8.5
1,α,n,n

|S′| such that

for all x ∈ Z and 0 ≤ i ≤ n− 2 or i = n,

| co{x0, . . . , xi−1, x, xi+1, . . . , xn} ∩ Y | ≥ η8.52,η8.5
1,α,n,n

|S′|.

Fix z ∈ Z ⊂ Y ⊂ X. By the above inequalities, we conclude that for 0 ≤ i ≤ n,

| co{x0, . . . , xi−1, x, xi+1, . . . , xn} ∩X| ≥ min
(
η8.52,α,n, η

8.5
2,η8.5

1,α,n,n

)
|S′| ≥ η8.4α,n|S′|.

For the last part, fix 0 ≤ k ≤ n. Let qk be the intersection of the ray xkx with the face opposite xk. On

the one hand, a simple computation gives |xqk|
|xkqk| = | co{x0,...,xi−1,x,xi+1,...,xn}|

| co{x0,...,xn}| . From the first part, we know

that | co{x0,...,xi−1,x,xi+1,...,xn}|
| co{x0,...,xn}| ≥ η8.4α,n. Combining the last two inequalities, we get |xqk|

|xkqk| ≥ η8.4α,n i.e., |xxk|
|xkqk| ≤

1 − η8.4α,n. On the other hand, because the diameter of a simplex is realized between two vertices, we have
|xkqk| ≤ maxi,j(xixj). Combining the last two inequalities, we find d(x, xi) ≤ (1 − ρ8.4α,n) maxi,j d(xi, xj), which
concludes the proposition.
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8.6 Proof of Auxiliary Lemmas

8.6.1 Proof of Lemma 8.5

Proof of Lemma 8.5. Set η8.51,α,n = η8.6
1, αn+1

(2n)n+1 ,n

αn+1

(2n)n+1 and η8.52,α,n = η8.6
2, αn+1

(2n)n+1 ,n

αn+1

(2n)n+1 . After an affine transfor-

mation, without loss of generality, we can assume that S′ = co({o, e1, . . . , en}). For (λ1, . . . , λn) ∈ S′ construct
the box Qλ1,...,λn

= {(p1, . . . , pn) : λ1 ≥ p1 ≥ 0, . . . , λn ≥ pn ≥ 0}.

Claim 8.16. There exist λ1 ≥ 0, . . . , λn ≥ 0 with λ1 + · · · + λn = 1 such that Q := Qλ1,...,λn satisfies

|X ∩Q| ≥ αn+1

(2n)n+1 |S′|.

Proof of Claim 8.16. It is enough to prove that for λ = (λ1, . . . , λn) ∈ S′ chosen uniformly at random, we have

Eλ|X ∩Q| ≥ αn+1

(2n)n+1
|S′|.

Note that for 1 ≥ s ≥ 0 we have (1 − s)S′ ⊂ S′ and |(1 − s)S′| = (1 − s)n|S′| ≥ (1 − ns)|S′|. Therefore∣∣∣X ∩
(

1 − α

2n

)
S′
∣∣∣ ≥ |X ∩ S′| −

∣∣∣S′ \
(

1 − α

2n

)
S′
∣∣∣ ≥ α|S′| − |S′| +

∣∣∣(1 − α

2n

)
S′
∣∣∣

≥ α|S′| − |S′| +
(

1 − α

2

)
|S′| =

α

2
|S′|.

Fix x = (x1, . . . , xn) ∈ S′ and choose a random λ = (λ1, . . . λn) ∈ F . We have

Pλ(x ∈ Qλ) =
|{(λ1, . . . λn) : λi ≥ xi for all i and λ1 + · · · + λn ≤ 1}|
|{(λ1, . . . λn) : λi ≥ 0 for all i and λ1 + · · · + λn ≤ 1}|

=
|{(λ1, . . . λn) : λi ≥ 0 for all i and λ1 + · · · + λn ≤ 1 − (x1 + · · · + xn)}|

|{(λ1, . . . λn) : λi ≥ 0 for all i and λ1 + · · · + λn ≤ 1}|
= (1 − (x1 + · · · + xn))n.

In particular, if x ∈ (1 − α
2n )S′, we have x1 + · · · + xn ≤ 1 − α

2n and thus Pλ(x ∈ Qλ) ≥ αn

(2n)n . Putting all

together, we conclude

Eλ|X ∩Q| =

∫
x∈X

Pλ(x ∈ Qλ) ≥
∫
x∈X∩(1− α

2n )S′
Pλ(x ∈ Qλ) ≥

∫
x∈X∩(1− α

2n )S′

αn

(2n)n

=
∣∣∣X ∩

(
1 − α

2n

)
S′
∣∣∣ αn

(2n)n
≥ α

2

αn

(2n)n
|S′| ≥ αn+1

(2n)n+1
.

By Claim 8.16, we find λ = (λ1, . . . , λn) ∈ S′ and Q = Qλ such that |X ∩ Q| ≥ αn+1

(2n)n+1 |S′|. Note that

Q ⊂ S′. Hence |X ∩Q| ≥ αn+1

(2n)n+1 |Q|. Set X ′ = X ∩Q.

We apply Lemma 8.6 to the set X ′. Thus, we construct a subset Y ⊂ X ′ ⊂ X with |Y | ≥ η8.6
1, αn+1

(2n)n+1 ,n
|Q|

such that for all x ∈ Y and all faces F of the box Q, we have | co({x} ∪ F ) ∩ X ′| = η8.6
2, αn+1

(2n)n+1 ,n
|Q|. As

|Q| ≥ |X ∩Q| ≥ αn+1

(2n)n+1 |S′|, this implies that

|Y | ≥ η8.6
1, αn+1

(2n)n+1 ,n

αn+1

(2n)n+1
|S′| and | co({x} ∪ F ) ∩X| = η8.6

2, αn+1

(2n)n+1 ,n

αn+1

(2n)n+1
|S′|.

Moreover, note that each face of S′, except the face opposite to o, contains a face of Q inside it. Fix 1 ≤ i ≤ n
and let F be the face of Q such that F ⊂ co(0, e1, . . . , ei−1, ei+1, . . . , en). We conclude that for y ∈ Y , we have

| co(x0, . . . , xi−1, y, xi+1, . . . , xn) ∩X| ≥ | co({y} ∪ F ) ∩X| ≥ η8.6
2, αn+1

(2n)n+1 ,n

αn+1

(2n)n+1
|T |.

36



8.6.2 Proof of Lemma 8.6

Proof of Lemma 8.6. Set η8.61,α,n = 2−1η8.81,α/16n,n and η8.62,α,n = 2−1η8.82,α/16n,n. By taking an affine transformation,

without loss of generality, we can assume that Q = [−(1 + α
4n ), (1 + α

4n )]n.
Let Q′ = [−1, 1]n. For 1 ≤ i ≤ n let Fi be the face of the box Q in direction ei and for −n ≤ i ≤ −1 let Fi

be the face of the box Q in direction −e−i. So F−n, . . . , F−1, F1, . . . Fn are the faces of Q.
Let X ′ = X ∩Q′. Note that

|X ′| ≥ |X| + |Q′| − |Q| ≥ α|Q| + |Q′| − |Q| =
(

1 − (1 − α)
(

1 +
α

4n

)n)
|Q′| ≥ α

2
|Q′|.

We apply Lemma 8.8 with parameter α/16n to the set X ′. Thus, we construct a subset Y ⊂ X ′ with |Y | ≥
η8.81,α/16n,n|Q

′| such that for all x ∈ Y and all j ∈ [−n, n] \ {0}, we have |(x + Cj,α/16n) ∩X ′| ≥ η8.82,α/16n,n|Q
′|.

As |Q′| = (1 + α
4n )−n|Q| ≥ 1

2 |Q| this implies that

|Y | ≥ 2−1η8.81,α/16n,n|Q| and |(x+ Cj,α/16n) ∩X| ≥ 2−1η8.82,α/16n,n|Q|.

For x ∈ Q′ and j ∈ [−n, n] \ {0} it is easy to check that (x+ Cj,α/16n) ∩Q ⊂ co({x} ∪ Fj) and as X ⊂ Q, this
implies that (x+Cj,α/16n) ∩X ⊂ co({x} ∪ Fj) ∩X. We conclude that for x ∈ Y and j ∈ [−n, n] \ {0}, we have

| co({x} ∪ Fj) ∩X| ≥ 2−1η8.82,α/16n,n| co(X)|.

8.6.3 Proof of Lemma 8.8

Proof of Lemma 8.8. Set η8.81,α,n = η8.82,α,n = α4n2+2n−1/216n
3+14n2+11n−5. Given a number i, let i ∈ [n] be the

unique number such that i = i mod n. Set î = i if i < n and î = −i if i ≥ n. Our strategy is to apply repeatedly
analogues of Lemma 8.9 where instead of focusing on the pair of coordinates (n, 1), we focus on the pair of
coordinates (i, i+ 1).

By Claim 8.18, there exists a box Q′ ⊂ Q,

Q′ = [0, b1] × . . .× [0, bn] + y where y ∈ Rn, such that bn = 2 and bn
(α/4)2

8
≤ b1, . . . , bn−1 ≤ bn

(α/4)2

4
,

and such that X ∩Q′ has density |X ∩Q′| ≥ α|Q′|/4. In particular |Q′| ≥ |Q|α2n−2/27n−7

By applying Lemma 8.9, we construct inductively the sequence of pairs (X0, Q0), . . . , (X2n, Q2n) with the
following properties. Define Q0 = Q′ and X0 = X ∩Q′. Assume that at step i− 1 we have constructed a box

Qi−1 = [0, ai−1
1 ] × · · · × [0, ai−1

n ] + xi−1 with ai−1

i−1

(α/4i)2

8
≤ ai−1

j ≤ ai−1

i−1

(α/4i)2

4
for j ∈ [n] \ i− 1,

and a subset Xi−1 ⊂ Qi−1 with density |Xi−1| ≥ α|Qi−1|/4i. We apply Lemma 8.9 to the pair (Xi−1, Qi−1)
focusing on the pair of coordinates (i− 1, i) to produce the pair (Xi, Qi). More precisely, we obtain a box
Qi ⊂ Qi−1 with

Qi = [0, ai1] × · · · × [0, ain] + xi where ai
i

(α/4i+1)2

8
≤ aij ≤ ai

i

(α/4i+1)2

4
for j ∈ [n] \ i.

We also obtain the set Xi = Xi−1∩Qi. These have the properties |Qi| ≥ (α/4i)2n|Qi−1|/27n, |Xi| ≥ α|Qi|/4i+1,
and

|(x+ C
î−1,α

) ∩Xi−1| ≥ |(x+ C
î−1,α/4i

) ∩Xi−1| ≥ α|Qi−1|/4i for all x ∈ Xi.

Because X2n ⊂ · · · ⊂ X0 ⊂ X, Q2n ⊂ · · · ⊂ Q0 and {0̂, 1̂, . . . , 2̂n− 1} = [−n, n] \ {0}, it follows that for
x ∈ X2n and j ∈ [−n, n] \ {0} we have |(x+ Cj,α) ∩X| ≥ α|Q2n|/42n. Moreover, |X2n| ≥ α|Q2n|/42n+1.

It remains to evaluate |Q2n|. Recall that |Q0| ≥ |Q|α2n−2/27n−7. Using the recurrence relation

|Qi| ≥ (α/4i)2n|Qi−1|/27n ≥ α2n|Qi−1|/28n
2+7n,

we get |Q2n| ≥ |Q0|α4n2

/216n
3+14n2

. These imply |Q2n| ≥ α4n2+2n−2|Q|/216n3+14n2+7n−7.
Thus, we conclude that the subset X2n ⊂ X satisfies

|X2n| ≥ α|Q2n|/42n+1 ≥ α4n2+2n−1|Q|/216n
3+14n2+11n−5,

and for all x ∈ X2n and j ∈ [−n, n] \ {0} we have

|(x+ Cj,α) ∩X| ≥ α|Q2n|/42n ≥ α4n2+2n−1|Q|/216n
3+14n2+11n−7.
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8.6.4 Proof of Lemma 8.9

Proof of Lemma 8.9.

Claim 8.17. Given a box R = [0, c1]×· · ·× [0, cn]+z where z ∈ Rn and given a parameter s ≤ min(c1, . . . , cn),
we can construct a partition into boxes with disjoint interiors R = ⊔k

i=1R
i where Ri = [0, ci1] × · · · × [0, cin] + zi

such that zi ∈ Rn and ci1 = c1 and s/2 ≤ ci2, . . . , c
i
n ≤ s.

Proof of Claim 8.17. For 2 ≤ j ≤ n partition the interval [0, cj ] into consecutive intervals [0, cj ] = Ij1 ⊔ · · · ⊔
Ij⌊2cj/s⌋ where

Ijk = [(k − 1)s/2, ks/2] for 1 ≤ k ≤ ⌊2cj/s⌋ − 1, Ij⌊2cj/s⌋ = [(⌊2cj/s⌋ − 1)s/2, cj ].

Let [0, c1] = I11 . Finally, for k1 = 1, 1 ≤ k2 ≤ ⌊2c2/s⌋, · · · , 1 ≤ kn ≤ ⌊2cn/s⌋ construct the box Rk1,k2,...,kn =
I1k1

× · · · × Inkn
+ z.

Note that R = ⊔k1,...,knR
k1,k2,...,kn is a partition into boxes with disjoint interiors. Moreover, the box

Rk1,k2,...,kn = I1k1
× · · · × Inkn

+ z satisfies |I1k1
| = c1, and for 2 ≤ j ≤ n we have |Ijkj

| = s/2 if 1 ≤ kj < ⌊2cj/s⌋,
and |Ij⌊2cj/s⌋| = cj − (⌊2cj/s⌋ − 1)s/2 ∈ [s/2, s]. We conclude that this partition into boxes has the desired

properties.

Claim 8.18. Given a box R = [0, c1] × · · · × [0, cn] + z where z ∈ Rn and c1 ≤ 2 min(c2, . . . , cn) and given
a subset Z ⊂ R with density |Z| ≥ α|R|/4, there exist a sub-box of R, Q = [0, b1] × . . . × [0, bn] + y where
y ∈ Rn such that b1 = c1 and b1(α/4)2/8 ≤ b2, . . . , bn ≤ b1(α/4)2/4, and such that Y := Z ∩ Q has density
|Y | ≥ α|Q|/4.

Proof of Claim 8.18. Set s = c1(α/4)2/4 and note that, because c1 ≤ 2 min(c2, . . . , cn), we have s ≤ min(c1, . . . , cn).
By Claim 8.17, we can construct a partition into boxes with disjoint interiors R = ⊔k

i=1R
i where Ri =

[0, ci1] × · · · × [0, cin] + zi such that zi ∈ Rn and ci1 = c1 and c1(α/4)2/8 ≤ ci2, . . . , c
i
n ≤ c1(α/4)2/4. A simple

averaging argument shows that there exists an index i such that |Z∩Ri|
|Ri| ≥ |Z∩R|

|R| = α/4.

Set Q = Ri, Y = Z ∩Q, b1 = ci1, . . . , bn = cin and y = zi. It is easy to check that Q = [0, b1]× . . .× [0, bn] +y
where b1 = c1 and b1(α/4)2/8 ≤ b2, . . . , bn ≤ b1(α/4)2/4 and |Y | ≥ α|Q|/4.

Fix 0 ≤ r ≤ an(1−α/4) with the following property. Consider the partition of P into three box with disjoint
interiors P = R1 ⊔ R2 ⊔ R3 where R1 = [0, a1] × · · · × [0, r] + x, R2 = [0, a1] × · · · × [r, r + anα/4] + x and
R3 = [0, a1] × · · · × [r + anα/4, an] + x. Let Z1 = X ∩ R1, Z2 = X ∩ R2 and Z3 = X ∩ R3. We choose r such
that |Z1| = |Z3|.

Claim 8.19. a1 ≤ 2 min(a2, . . . , an−1, r) and |Z1| = |Z3| ≥ α|P |/4 ≥ α|R1|/4.

Proof of Claim 8.19. By construction |Z2| ≤ |R2| ≤ α|P |/4. By hypothesis, |Z1| + |Z2| + |Z2| = |X| ≥ α|P |.
Therefore, |Z1| + |Z3| ≥ 3α|P |/4. As |Z1| = |Z3|, we conclude |Z1| = |Z3| ≥ α|P |/4 ≥ α|R1|/4.

From hypothesis anα
2/8 ≤ a1, . . . , an−1 ≤ anα

2/4, it immediately follows that a1 ≤ 2 min(a2, . . . , an−1).
For a1 ≤ 2r, note that

r = an
|R1|
|P |

≥ an
|Z1|
|P |

≥ an
α

4
> an

α2

8
.

Observation 8.20. It follows immediately from the definition of Cn,α and the hypothesis a1, . . . , an−1 ≤ anα
2/4

that for y ∈ R1 we have y+Cn,α ⊃ R3. In particular, by Claim 8.19, for y ∈ Z1 we have |(y+Cn,α)∩X| ≥ α|P |/4.

To finish the proof, let recall R1 = [0, a1] × · · · × [0, r] + x and Z1 = R1 ∩ X. By Claim 8.19, we have
a1 ≤ 2 min(a2, . . . , an1 , r) and |Z1| ≥ α|R1|/4. By Claim 8.18 there exist a sub-box of R1,

Q = [0, b1] × . . .× [0, bn] + y where y ∈ Rn, such that b1 = a1 and b1(α/4)2/8 ≤ b2, . . . , bn ≤ b1(α/4)2/4,

and such that Y := Z1 ∩Q = X ∩Q has density |Y | ≥ α|Q|/4. As Y ⊂ Z1, by Observation 8.20 for all y ∈ Y
|(y + Cn,α) ∩X| ≥ α|P |/4.

It remains to check that |Q| ≥ α2n/43n−22n−1|P |. This easily follows from the aforementioned fact that
b1 = a1, a1(α/4)2/4 ≤ b2, . . . , bn and the fact that a1 ≥ 2−1 max(a2, . . . , an−2) and a1 ≥ anα

2/8 (the last fact
follows from the hypothesis anα

2/8 ≤ a1, . . . , an−1 ≤ anα
2/4).
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8.6.5 Proof of Lemma 8.10

Proof of Lemma 8.10. Let the set H1, . . . ,Hm ⊂ Rn be a finite collection of halfspaces so that C =
⋂
Hi.

Consider the sequence Ai := A ∩
⋂i

j=1Hi. Construct another set of halfspaces H ′
i and subsets Bi ⊂ B defined

by finding a halfspace H ′
i parallel to Hi so that |H ′

i ∩ Bi−1| = |Ai|. Note that because Hi is parallel to H ′
i we

find that tAi + (1 − t)Bi is disjoint from t(Ai−1 \Ai) + (1 − t)(Bi−1 \Bi). By the Brunn-Minkowksi inequality
we find

|tAi−1 + (1 − t)Bi−1| − |Ai−1| ≥ |tAi + (1 − t)Bi| − |Ai| + |t(Ai−1 \Ai) + (1 − t)(Bi−1 \Bi)| − |Ai−1 \Ai|
≥ |tAi + (1 − t)Bi| − |Ai|.

The lemma follows by induction.

9 Proof of the Linear Theorem for few vertices (Theorem 1.6)

Proof of Theorem 1.6. Let c1.6 = c8.1 and k1.6n =
(
v
n

)
. Let λn be anything, and choose ηn so that (1+ηn)−n = 1

2 .
By Proposition 2.9, we may assume that A,B form a simple λn-bounded ηn- sandwich.

Consider the origin o ∈ A ∩B and a triangulation T ′ of the boundary of co(A). Note that |T ′| ≤
(
v
n

)
. Now

consider the triangulation T of ∂ co(A) obtained by adding o to each of the simplices of T ′, i.e.

T := {co(S′ ∪ {o}) : S′ ∈ T ′}.

We will consider | co(A) \A| inside each of the simplices in T . Write AS′ for A∩S′ and note that co(AS′) = S′.
Using Lemma 8.10, find BS′ ⊂ B so that |AS′ | = |BS′ | and |tAS′ + (1 − t)BS′ | ≤ |tA + (1 − t)B| ≤ δ|A|.
Distinguish two cases; either δ|A| < min{t, 1 − t}n|AS′ | or δ|A| ≥ min{t, 1 − t}n|AS′ |. In the former case, we

can apply Theorem 8.1 to find | co(AS′) \ AS′ | ≤ min{t, 1 − t}−c8.1n8

δ|A|. In the latter case we use that A is a
ηn sandwich so that 1

1+ηn
co(AS′) ⊂ AS′ , which implies

| co(AS′) \AS′ | ≤
∣∣∣∣co(AS′) \ 1

1 + ηn
co(AS′)

∣∣∣∣ ≤ (1 − (1 + ηn)−n
)
| co(AS′)|

≤ 1

2
| co(AS′)| ≤ |AS′ | ≤ min{t, 1 − t}−nδ|A|.

Hence, in both cases we find | co(AS′) \ AS′ | ≤ min{t, 1 − t}−c8.1n8

δ|A|. We conclude by adding up the contri-
butions over all S′ ∈ T ,

| co(A) \A| =
∑
S′∈T

| co(AS′) \AS′ | ≤ |T |min{t, 1 − t}−c8.1n8

δ|A| ≤
(
v

n

)
min{t, 1 − t}−c8.1n8

δ|A|.

This concludes the proof of the theorem.

10 Intermediate results for the Linear Theorem: from Theorem 1.6
to Theorem 1.4

10.1 Outline of the proof of Theorem 1.4

The proof of Theorem 1.4 follows the following steps.

1. By Proposition 2.9, we may assume B(o, 0.01) ⊂ K ⊂ A,B ⊂ 1.01K ⊂ B(0, 100) for some convex set K.

2. Find a collection of disjoint convex regions Xi with small diameter ξ so that
∑

i | co(A∩Xi) \ (A∩Xi)| ≥
Ωn(| co(A) \A|) (Proposition 10.3) along the following steps.

• Cone off at the origin to find simplices Ti so that
⋃
Ti = co(A) and co(Ti ∩ A) = Ti. Note that

|Ti ∩A| ≥ 0.99|Ti|.
• In each of the Ti run the following process: find a point in A centrally in Ti and cone off to the

vertices of Ti to find smaller simplices with the same properties as Ti and not much lower density.
(Lemma 10.6)
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• Iterate until either the diameter is small (in which case we have found our region Xi) or the density
has dropped (say between 0.9 and 0.95). (Lemma 10.7)

• For simplices with moderate density, it is easy to find a set of small diameter and a positive proportion
of the missing region. (Lemma 10.8)

3. Consider the tube U = S × R+ where S ⊂ Rn−1 is a regular simplex with side length ϵ centered at the
origin. We choose ϵ ≪ 0.01, so that S falls well within B(o, 0.01). On the other hand, we choose ϵ ≫ ξ,
so that a random rotation of U contains a region Xi completely with probability Ωn(1).

4. Note that | co(A∩U) \ (A∩U)| ≥
∑

Xi⊂U | co(A∩Xi) \ (A∩Xi)|, so that it remains to show | co(A∩U) \
(A ∩ U)| ≤ On,t(|tA+ (1 − t)B| − |A|). (Proposition 10.4)

5. To this ends find a homothetic tube V = x + (1 + β)U so that |A ∩ U | = |B ∩ V | and |t(A ∩ U) + (1 −
t)(B ∩V )| − |A∩U | ≤ |tA+ (1− t)B| − |A|, which moreover is very similar to U , so that x and β are very
small. (Lemma 10.9)

6. Slightly rescaling A ∩ U and B ∩ V (i.e., taking homotheties with factors very close to 1), we find A′, B′

in a tube over the same simplex W so that 2| co(A′) \ A′| ≥ | co(A ∩ U) \ (A ∩ U)| and a t′ ∈ ( 1
2 t, 2t) so

that |t′A′ + (1 − t′)B′| − t′|A′| − (1 − t′)|B′| ≤ |tA+ (1 − t)B| − |A|. (Lemma 10.10)

7. Partition the tube W into parallel simplicial tubes Ui according to the convex hull of A′, so that
⋃

i co(A′∩
Ui) = co(A′) and each of the co(A′ ∩ Ui) has exactly 2n vertices. Note that we have∑
i

|t′(A′ ∩Ui) + (1− t′)(B′ ∩Ui)| − t′|A′ ∩Ui| − (1− t′)|B′ ∩Ui| ≤ |t′A′ + (1− t′)B′| − t′|A′| − (1− t′)|B′|.

8. Consider the fibres in the direction of the tube and note that A′ and B′ start with a long interval in each
of these fibres by the virtue of S lying well within B(o, 0.01). We might not have |A′ ∩ Ui| = |B′ ∩ Ui|,
but because of the long interval at the beginning of each fibre, we may extend A′ and B′ without affecting
|t′(A′ ∩ Ui) + (1 − t′)(B′ ∩ Ui)| − t′|A′ ∩ Ui| − (1 − t′)|B′ ∩ Ui|. (Lemma 10.11)

9. Because K ⊂ A,B ⊂ 1.01K, we never have to extend much to get |A′ ∩ Ui| = |B′ ∩ Ui|. Hence, we can
apply Theorem 1.6 to find that

| co(A′ ∩ Ui) \ (A′ ∩ Ui)| ≤ On,t(|t′(A′ ∩ Ui) + (1 − t′)(B′ ∩ Ui)| − t′|A′ ∩ Ui| − (1 − t′)|B′ ∩ Ui|),

so that summing over Ui gives the result.

10.2 Setup

Definition 10.1. A vertical tube with diameter ℓ is a set U of the form U = S × R+ where S ⊂ Rn−1 is a
regular simplex with side length ℓ centered at the origin. A tube with diameter ℓ is a rotated vertical tube with
diameter ℓ.

Definition 10.2. A pair X,Y ⊂ Rn is a tubular λ-bounded η-sandwich if it is the intersection between the
same tube and a λ-bounded η-sandwich.

10.3 Propositions

Proposition 10.3. For n ∈ N and ξ > 0, there are constants θ > 0 and η > 0 such that the following hold.
Assume A ⊂ Rn is a measurable η-sandwich, then there exist disjoint measurable subsets A1, . . . , Ak of A with
the following properties:

1. Ai = A ∩ co(Ai),

2. co(A1), . . . , co(Ak) are disjoint,

3.
∑

i | co(Ai) \Ai| ≥ θ| co(A) \A|,

4. for every i, diam(co(Ai)) < ξdiam(co(A)).
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Proposition 10.4. For n ∈ N, λ > 1, ε > 0 sufficiently small in terms of n and λ, and 0 < t ≤ 1
2 , there exists

η > 0 such that the following hold. Assume U ⊂ Rn is a tube with diamater ε and assume A,B ⊂ Rn form a
λ-bounded, η-sandwich of measurable sets of volume 1, then

| co(A ∩ U) \ (A ∩ U)| ≤ k10.4n t−c10.4n8

(|tA+ (1 − t)B| − |A|).

Proposition 10.5. For n ∈ N, λ > 1, ε > 0 sufficiently small in terms of n and λ, and t ∈ (0, 1), there exists
η10.5n,λ,ε,t, k

10.5
n , c10.5 > 0 such that the following holds. Assume W ⊂ Rn is a tube or diameter ϵ and assume the

subsets A′, B′ ⊂W form a tubular λ-bounded η-sandwich. Then

| co(A′) \A′| ≤ k10.5n (t′)−c10.5n8

(|t′A′ + (1 − t′)B′| − t′|A′| − (1 − t′)|B′|).

10.4 Lemmas

Lemma 10.6. For all n ∈ N there exists α > 0 depending n such that the following holds. If A is a subset of
Rn with co(A) a simplex with vertices V (co(A)) = {x0, . . . , xn} and if | co(A)| ≤ (1 + α)|A|, then there exists a
point x ∈ A such that for all 0 ≤ i ≤ n

| co{x0, . . . , xi−1, x, xi+1, . . . , xn}|
| co{x0, . . . , xi−1, xi, xi+1, . . . , xn}|

≥ 1

n+ 2
and d(x, xi) ≤

n+ 1

n+ 2
max
j,k

d(xj , xk).

Lemma 10.7. For all n ∈ N and α > 0 sufficiently small in terms of n, there exists an η > 0 so that the
following holds. Given an η-sandwich A there exists an essential partition into convex sets co(A) = P1⊔· · ·⊔Pk

so that denoting Ai = Pi ∩A we have:

1. Pi = co(Ai),

2. | co(Ai) ∩ co(Aj)| = 0 if i ̸= j,

3. co(Ai) is a simplex,

4. Each Ai fall into two categories, i.e., [k] = I ⊔ J so that:

• for all i ∈ I, we have | co(Ai)|
|Ai| ∈ (1 + α, 1 + n!α),

•
∑

I∈J | co(Ai) \Ai| ≤ α| co(A) \A|.

The same conclusion holds if we replace the hypothesis that A is an η-sandwich with the hypothesis that co(A)
is a simplex with | co(A)| ≤ (1 + α)|A|.

Lemma 10.8. For all n ∈ N, α > 0 sufficiently small in terms of n, there exist ζ, β > 0 so that the following
holds. Given A ⊂ Rn so that co(A) is a simplex and | co(A)| = (1 + α)|A|, there exists a subset A′ ⊂ A and
ψ ≥ ζ, so that

1. diam(A′) ≤ (1 − ψ)diam(A),

2. | co(A′)| ≥ (1 − ψ)3n
2 |co(A)|,

3. co(A′) is a simplex,

4. | co(A′) \A′| ≥ β|A′|.

Lemma 10.9. For n ∈ N, λ > 1, for all ε > 0 sufficiently small in terms of λ and n, so that for all 0 < t ≤ 1
2 ,

α > 0 there exists η > 0 such that the following hold. Assume U ⊂ Rn is a tube with diamater 2ε and assume
A,B ⊂ Rn form a λ-bounded, η-sandwich measurable sets of volume 1, then there exists a homothetic tube
V = x+ (1 + β)U with ||x||2 ≤ α and |β| ≤ α such that A◦ = A ∩ U and B◦ = B ∩ V satisfy |A◦| = |B◦| and

|tA◦ + (1 − t)B◦| − |A◦| ≤ |tA+ (1 − t)B| − |A|.

Lemma 10.10. For all η′ > 0, n ∈ N, t ∈ (0, 1/2], λ > 1 and sufficiently small ϵ in terms of n and λ, there
exist η, α > 0, so that the following holds. Let t′ = t

1+β−βt . Assume U ⊂ Rn is a tube of diameter ϵ, V

is a homothetic tube V = x + (1 + β)U with |β|, ||x||2 ≤ α and assume A,B is a λ-bounded η-sandwich with
|A| = |B| = 1 and A◦ := A ∩ U and B◦ := V ∩ B have equal size. Set W = t

t′U , W ′ = 1−t
1−t′V , A′ = t

t′A
◦ and
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B′ = 1−t
1−t′B

◦. Then the tube W ′ = W + 1−t
1−t′x has diameter less than 2ϵ, A′ ⊂ W and B′ ⊂ W ′. Moreover, we

have
|t′A′ + (1 − t′)B′| − t′|A′| − (1 − t′)|B′| ≤ |tA◦ + (1 − t)B◦| − |A◦|.

Furthermore, A′, B′ − 1−t
1−t′x form a tubular 2λ-bounded η′-sandwich. Finally, if A◦, B◦ are α-almost convex,

then |A◦△B◦| ≤ |A′△(B′ − 1−t
1−t′x)| +On,ϵ(α|A◦|)

Lemma 10.11. For n ∈ N, λ > 1, ε > 0 sufficiently small in terms of n and λ, and t ∈ (0, 1), there exists
η > 0 such that the following holds. Given a convex K ⊂ Rn which is λ-bounded and a tube U = S × R+ of
radius ε. Then for all x ∈ S × R−, we have (1 − t)x+ t(U ∩ ((1 + η)K \K)) ⊂ K ∪ (S × R−).

10.5 Proof of Propositions

10.5.1 Proof of Proposition 10.3

Proof of Proposition 10.3. Choose parameters according to the following hierarchy

n, ξ ≫ α≫ ζ ≫ β ≫ θ ≫ η.

We create a sequence of families Fi of sets which all have properties 1 and 2. They have property 3 with ever
decreasing θ while the diameter of the sets decreases until property 4 is satisfied. All sets in the families will
have a simplex as their convex hull. Given a family F of subsets of A satisfying properties 1 and 2, write

D(F) := maxX∈F
diam(X)
diam(A) and P (F) :=

∑
X∈F | co(X)\X|
| co(A)\A| , so that we want to find a family with D(F) < ξ and

P (F) ≥ θ.

First apply Lemma 10.7 with parameter α to find a partition and let F0 be the set of parts so that | co(Ai)|
|Ai| ∈

(1 + α, 1 + n!α). Note that Lemma 10.7 says that P (F0) ≥ 1 − α.
Consider the following process of obtaining a new family F2i+1 from F2i and F2i+2 from F2i+1. All elements

X in Fi with diam(X) ≤ ξdiam(A) remain fixed and stay in all consequent families, we will call them finished.
The idea will be to apply Lemma 10.8 to all other elements in F2i to reduce the diameter. Then we apply
Lemma 10.7 to some of the elements in F2i+1 so that the density of the sets in Fi in their convex hull always
stays below 1/(1 + α).

All non-finished elements X ⊂ A in F2i have | co(X)\X|
| co(X)| ≥ α. If we consider the last subset Y ∈

⋃
j<2i Fj , so

that X ⊂ Y and | co(Y )\Y |
| co(Y )| ≤ n!α, then X derives from Y by a sequence of applications of Lemma 10.8. Hence,

as diam(X) > ξdiam(Y ), we know that

| co(X) \X|
| co(X)|

≤ | co(Y ) \ Y |
| co(Y )|

· | co(Y )|
| co(X)|

< n!αξ−3n2

.

Choosing α sufficiently small in terms of ξ and n, we can apply Lemma 10.8 to all non-finished elements of F2i

and construct F2i+1 with D(F2i+1) ≤ (1 − ζ)D(F2i) and P (F2i+1) ≥ βP (F2i).
To construct F2i+2 from F2i+1, apply Lemma 10.7 to all non-finished elements with | co(A) \ A| < α|A|.

Note that D(F2i+2) ≤ D(F2i+1) and P (F2i+2) ≥ (1 − α)P (F2i+1).

This construction implies that there exists a i ≤ log(ξ)
log(1−ζ) + 1, so that D(F2i+1) ≤ ξ. For this i, we thus find

P (F2i+1) ≥ βi+1(1 − α)i ≥ θ, where the last inequality follows from choosing θ sufficiently small in terms of
n, ξ, α, ζ, and β. Hence, this family satisfies all the conclusions and thus confirms the proposition.

10.5.2 Proof of Proposition 10.4

Proof of Proposition 10.4. Let ε sufficiently small in terms of n and λ to apply Lemma 10.9,Lemma 10.10, and
Proposition 10.5. Let η′ := η10.5n,λ,ε,t so that we can apply Proposition 10.5. Choose α sufficiently small to apply
Lemma 10.10. Let η sufficiently small so that we can apply Lemma 10.9, and Lemma 10.10. Let A◦ := U ∩A.
First use Lemma 10.9 to find V = x + (1 + β)U with ||x||2 ≤ α and |β| ≤ α. Let B◦ = B ∩ V , so that
|tA◦ + (1 − t)B◦| − |A◦| ≤ |tA+ (1 − t)B| − |A|.

As in Lemma 10.10, let t′ = t
1+β−βt . Set W = t

t′U , W ′ = 1−t
1−t′V , A′ = t

t′A
◦ and B′ = 1−t

1−t′B
◦. By

Lemma 10.10, the tube W ′ = W + 1−t
1−t′x has diameter less than 2ϵ, A′ ⊂W and B′ ⊂W ′, and we have

|t′A′ + (1 − t′)B′| − t′|A′| − (1 − t′)|B′| ≤ |tA◦ + (1 − t)B◦| − |A◦| ≤ |tA+ (1 − t)B| − |A|.
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Furthermore, A′, B′ − 1−t
1−t′x form a tubular 2λ-bounded η′-sandwich

By Proposition 10.5 (applied to A′ and B′ − 1−t
1−t′x), we find

| co(A′) \A′| ≤ k10.5n (t′)−c10.5n8

(|t′A′ + (1 − t′)B′| − t′|A′| − (1 − t′)|B′|)

≤ k10.5n (t/2)−c10.5n8

(|tA+ (1 − t)B| − |A|).

By definition of A′, we have:

| co(A ∩ U) \ (A ∩ U)| = | co(A◦) \A◦| =

(
t′

t

)n

| co(A′) \A′| ≤ 2n| co(A′) \A′|.

Hence, we find some constant k10.4n := k10.5n 2n2c
10.5n8

, so that

| co(A ∩ U) \ (A ∩ U)| = k10.4n t−c10.5n8

(|tA+ (1 − t)B| − |A|).

10.5.3 Proof of Proposition 10.5

Proof of Proposition 10.5. Let k10.5n = k1.6n (2n) and c10.5 = c1.6. Let η = η10.5n,λ,ε,t sufficiently small to apply
Lemma 10.11.

As the problem is rotation invariant, we can assume wlog that W = W ′ = S × R+ is a vertical tube.
We can assume wlog that co(A′) has 2n vertices (co(A′) is the intersection of T with a halfspace). Indeed,

partition S into simplices S = S1 ∪ · · · ∪ Sm by projecting a triangulation of the upper boundary of co(A′).
Consider the corresponding partition T = T1∪· · ·∪Tm, where Ti = Si×R+ and set Ai = A′∩Ti and Bi = B′∩Ti.
Note that A′ = ∪iAi, B

′ = ∪iBi, and co(A′) = ∪i co(Ai) are partitions (but co(B′) ⊃ ∪i co(Bi) is essentially a
disjoint union). Unlike many other partitions in this paper, we generally do not have |Ai| = |Bi|. Moreover, as
t′Ai + (1 − t′)Bi are essentially disjoint, we find∑

i

|t′Ai + (1 − t′)Bi| − t′|Ai| − (1 − t′)|Bi| ≤ |t′A′ + (1 − t′)B′| − t′|A′| − (1 − t′)|B′|.

Hence, it is enough to show that

| co(Ai) \Ai| ≤ |t′Ai + (1 − t′)Bi| − t′|Ai| − (1 − t′)|Bi|.

As A′, B′ form a tubular λ-bounded η-sandwich, we deduce that Ai, Bi form a 2λ-bounded η-sandwich. More-
over, by construction co(Ai) has 2n vertices (co(Ai) is the intersection of Ti = Si × R+ with a half-space). By
taking an affine transformation, we can also assume Si ⊂ Rn−1 is a regular simplex centered at the origin. This
concludes the reduction to the case when co(A′) has 2n vertices.

Now assume wlog co(A′) has 2n vertices and say |A′| ≤ |B′| (the other case is identical). Let α = (|B′| −
|A′|)/|S| and note that 0 ≤ α = On,λ(η). Let β > 0 large. Construct the sets A′′ = A′ ⊔ S × [−α − β, 0) and
B′′ = B′ ⊔ S × [−β, 0) such that |A′′| = |B′′|.

By Lemma 10.11, we find that

t′A′′ + (1 − t′)B′′ = S × [−t′α− β, 0) ⊔ (t′A′ + (1 − t′)B′).

Recalling the definition of A′′ and B′′ and the fact that |A′′| = |B′′|, we deduce

|t′A′′ + (1 − t′)B′| − |A′′| = |t′A′ + (1 − t′)B′| − t′|A′| − (1 − t′)|B′|

and | co(A′′) \A′′| = | co(A′) \A′|. Therefore, it is enough to show that

| co(A′′) \A′′| ≤ k10.5n (t′)−c10.5n8

(|t′A′′ + (1 − t′)B′′| − |A′′|).

Moreover, by making β arbitrarily large, we can make the ratio |t′A′′+(1−t′)B′′|−|A′′|
|A′′| arbitrarily close to 0 (as

the numerator is constant but the denominator can be arbitrarily large). As co(A′′) = co(A′) has 2n vertices,
this is a simple application of Theorem 1.6.
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10.6 Proof of Lemmas

10.6.1 Proof of Lemma 10.6

Proof of Lemma 10.6. By taking an affine transformation, we can assume without loss of generality that S =
co(A) = co{x0, . . . , xn} is a regular simplex with volume 1 centered at the origin o. Clearly, for all 0 ≤ i ≤ n

| co{x0, . . . , xi−1, o, xi+1, . . . , xn}|
| co{x0, . . . , xi−1, xi, xi+1, . . . , xn}|

=
1

n+ 1
.

By continuity, there exists ε > 0 sufficiently small in terms of n such that for all x ∈ εS and 0 ≤ i ≤ n

| co{x0, . . . , xi−1, o, xi+1, . . . , xn}|
| co{x0, . . . , xi−1, xi, xi+1, . . . , xn}|

≥ 1

n+ 2
.

As |εS| = εn|S|, provided α ≤ εn/10 we deduce that there exists x ∈ εS ∩ A and it follows that x has the
desired properties.

For the last part, fix 0 ≤ k ≤ n. Let qk be the intersection of the ray xkx with the face opposite xk. On

the one hand, a simple computation gives |xqk|
|xkqk| = | co{x0,...,xi−1,x,xi+1,...,xn}|

| co{x0,...,xn}| . From the first part, we know that
| co{x0,...,xi−1,x,xi+1,...,xn}|

| co{x0,...,xn}| ≥ 1
n+2 . Combining the last two inequalities, we get |xqk|

|xkqk| ≥
1

2(n+1) , i.e., |xxk|
|xkqk| ≤

n+1
n+2 .

On the other hand, because the diameter of a simplex is realized between two vertices, we have |xkqk| ≤
maxi,j(xixj). Combining the last two inequalities, we find d(x, xi) ≤ n+1

n+2 maxi,j d(xi, xj), which concludes the
proposition.

10.6.2 Proof of Lemma 10.7

Proof of Lemma 10.7. First we argue that we can assume without loss of generality that P := co(A) is a simplex.
Consider the essential partition P = S1 ⊔ · · · ⊔ Sr into simplices with a vertex at the origin o, obtained by

partitioning the boundary ∂P into (n−1)-dimensional simplices and conning off at o. Then the sets Aj = A∩Sj

are η-sandwiches.
Note that given A is a finite union of boxes, we have V (Sj) ⊂ Aj i.e., co(Aj) = Sj . In particular, | co(A)\A| =∑

j | co(Aj) \Aj |.
Now assume that for each j we can find an essential partition into convex sets co(Aj) = P j

1 ⊔ · · · ⊔ P j
kj

and

a corresponding partition of indices [kj ] = Ij ⊔ Jj with the desired properties. Then it is easy to check that the

essential partition into convex sets of co(A) = ⊔j≤r,i≤kj
P j
i and the corresponding partition of indices I = ⊔jI

j

and J = ⊔jJ
j have the desired properties.

Thus from now on we can assume co(A) to be a simplex. Moreover, from now on we only retain the weaker

hypothesis that | co(A)|
|A| ≤ (1 + η)n ≤ 1 + α.

Given a simplex co(A), consider the following iterative process. First set T0 = {co(A)} and S0 = ∅, and
note that | co(A)| ≤ (1 + α)|A| by hypothesis. At a given stage i with Ti,Si, look at every element S′ ∈ Ti and
distinguish two cases: either |S′| ≤ (1 + α)|S′ ∩A| or |S′| ≥ (1 + α)|S′ ∩A|.

For each simplex S′ = co{x0, . . . , xn} ∈ Ti with |S′| ≤ (1 + α)|S′ ∩ A| we construct the n + 1 simplices
f0(S′), . . . , fn(S′) as follows. We apply Lemma 10.6 to find a central point x ∈ S′ ∩ A and we construct the
simplex fj(S

′) = co{x0, . . . , xj−1, x, xj+1, . . . , xn}.
Now let

Ti+1 :=
⋃

S′∈Ti: |S′|≤(1+α)|S′∩A|

{f0(S′), . . . , fn(S′)} and Si+1 := Si ∪ {S′ ∈ Ti : |S′| ≥ (1 + α)|S′ ∩A|} .

Using the fact that A is closed, it follows by induction that for i ∈ N and S′ ∈ Ti ⊔ Si we have co(A∩ S′) = S′.
Moreover, Ti ⊔ Si forms an essential partition of co(A).

Claim 10.12. For all S′ ∈ Ti and j ∈ [0, n], we have |fj(S′)| ≥ |S′|/n+ 2.

Proof of Claim. By Lemma 10.6 (and our choice of x ∈ S′∩A), we have |fj(S′)| ≥ |fj(S′)∩A| ≥ |S′|/n+2.

Claim 10.13. For all S′ ∈ Ti, we have |S′| ≤ (1+(n+3)α)|S′∩A| and for all S′ ∈ Si we have (1+α)|S′∩A| ≤
|S′| ≤ (1 + (n+ 3)α)|S′ ∩A|

Proof of Claim. Every simplex S′ ∈ Si ∪ Ti is fj(S
′′) for some S′′ with |S′| ≤ (1 + α)|S′ ∩ A|. By Lemma 10.6

and the fact that α > 0 is small, we have |S′′| ≤ (1 + (n+ 3)α)|S′′ ∩A|. In addition, by construction of Si, for
all S′ ∈ Si we have (1 + α)|S′ ∩A| ≤ |S′|.
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Before we conclude we need two more claims. Given a simplex S′, let radius rad(S′) be the maximal length
among its edges.

Claim 10.14. For all r > 0 the following holds∑
S′∈Ti:rad(T )>r

|S′| → 0 as i→ ∞.

Proof of Claim. We make the convention
⋃
Ti :=

⋃
S′∈Ti

S′ Let k = ⌈log(1−ρ)(r)⌉. We can distinguish two types
of elements in Ti. Either S′ ⊂

⋃
Ti+k(n+1) or not. Collect the former in T ′

i and the latter in T ′′
i .

For S′ ∈ T ′′
i , at least some simplex originating from S′ is in Si+k(n+1). By the first claim, that simplex will

have size at least 1
(n+2)k(n+1) |S′|. Hence,∑

S′∈Ti+k(n+1): S′⊂
⋃

T ′′
i

|S′| ≤
(

1 − 1

(n+ 2)k(n+1)

) ∣∣∣⋃ T ′′
i

∣∣∣ .
For S′ ∈ T ′

i , we will find an element S′′ ∈ Ti+k(n+1) with S′′ ⊂ S′ and rad(S′′) < r. Let S′ = S0, and
consider Sj+1 := fn(fn−1(. . . f0(Sj) . . . ). Crucially, rad(Sj+1) ≤ ((n + 1)/(n + 2))rad(Sj). Indeed, none of
the edges of Sj remain and all of the edges added have length at most (1 − ρ)rad(Sj) by Lemma 10.6. Hence,
rad(Sk) ≤ r · rad(S0) ≤ r. Note that again by the first claim |Sk| ≥ 1

(n+2)k(n+1) |S′|.
Combining these two cases gives∑

S′∈Ti+k(n+1): rad(S′)>r

|S′| ≤
(

1 − 1

(n+ 2)k(n+1)

) ∑
S′∈Ti: rad(S′)>r

|S′|.

The conclusion follows.

Claim 10.15. Assuming A is a finite union of boxes, for every ε > 0 there exists r > 0 depending on A and ε
such that for all i ∈ N the following holds ∑

S′∈Ti:
rad(T )≤r and S′ ̸⊂A

|S′| ≤ ε.

Proof of Claim. Note that
⋃

S′∈Ti:
rad(T )≤r and S′ ̸⊂A

S′ ⊂ B(o, r) + ∂A and hence

∑
S′∈Ti:

rad(T )≤r and S′ ̸⊂A

|S′| ≤ |B(o, r) + ∂A|.

Moreover, we have limr→0
|B(o,r)+∂A|

r = |∂A|. Therefore, for r > 0 sufficiently small in terms of A and ε∑
S′∈Ti:

rad(T )≤r and S′ ̸⊂A

|S′| ≤ |B(o, r) + ∂A| ≤ r|∂A| ≤ ε.

Returning to the proof of the Lemma, we can combine Claim 10.14 and Claim 10.15 to obtain that for some
r sufficiently small and some i sufficiently large (both depending on A,α), we have∑

S′∈Ti:
S′ ̸⊂A

|S′| ≤
∑

S′∈Ti:
rad(T )≤r and S′ ̸⊂A

|S′| +
∑

S′∈Ti:
rad(T )≥r

|S′| ≤ α| co(A) \A|.

We assumed here that A is not convex as otherwise we are immediately done. We further get that∑
S′∈Ti

|S′ \A| ≤ α| co(A) \A|.

On the other hand, by Claim 10.13, for all S′ ∈ Si, we have |S′|
|S′∩A| ∈ (1 + α, 1 + n!α).

By construction, Ti ∪ Si gives an essential partition into convex sets co(A) = P1 ⊔ · · · ⊔ Pk that satisfy
properties 1, 2 and 3. Moreover, by the last two centered equations, the partition of the indices [k] = I ⊔ J
where I = {j ∈ [k] : Pj ∈ Si} and J = {j ∈ [k] : Pj ∈ Si} satisfies properties 4 and 5. The conclusion follows.
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10.6.3 Proof of Lemma 10.8

Proof of Lemma 10.8. Choose parameters according to the following hierarchy:

n≫ γ ≫ α0 ≥ α≫ ζ ≫ η ≫ β.

Here α0 ≥ α reflects that α is assumed to be sufficiently small in terms of n. We proceed by contradiction, so
that every subset X ⊂ A which satisfies conclusions 1, 2, and 3 has | co(X) \X| ≤ β|X|.

Let v0, . . . , vn denote the vertices of T = co(A) and assume T is centred, i.e., that its barycenter is the origin.
Consider the slightly shrunk simplex (1 − γ)T with vertices (1 − γ)v0, . . . , (1 − γ)vn. Our first step will be to
find points in A ∩ (1 − γ)T close to each of these vertices. Indeed, consider the simplex Si := γT + (1 − 2γ)vi
which is a translate of γT whose i-th vertex coincides with (1 − γ)vi. Note that since | co(A) \ A| = α|A| and
|γT | = γn|T | ≥ γn|A|, there must be a point ui ∈ Si ∩A for all i.

We iterate a similar construction to show that in fact we can find points considerably closer to the vertices
vi. Indeed consider the simplex Ti := ηT + (1 − ζ − η)vi which is a translate of ηT whose i-th vertex lies on
(1− ζ)vi. Note that for η sufficiently small in terms of ζ, we find that Ti ⊂ co(u0, . . . , ui−1, vi, ui+1, . . . , un) for
any points uj ∈ Sj . Hence, if we consider

Ai := A ∩ co(u0, . . . , ui−1, vi, ui+1, . . . , un),

we find that co(Ai) = co(u0, . . . , ui−1, vi, ui+1, . . . , un) is a simplex, diam(Ai) ≤ (1 − γ/n)diam(A), and

| co(Ai)| ≥ (1− γ)3n| co(A)| ≥ (1− γ/n)3n
2 | co(A)|, so by our contradiction assumption, we have that | co(Ai) \

Ai| ≤ β|Ai|. Since

Ti ⊂ co(u0, . . . , ui−1, vi, ui+1, . . . , un) and |Ti| = ηn|T | > β|Ai|

(assuming that β is sufficiently small in terms of η), there exists pi ∈ Ti ∩Ai ⊂ A. Let A′ := A∩ co(p0, . . . , pn)
so that A′ ⊂ (1 − ζ)T and diam(A′) ≤ (1 − ζ)diam(A). Clearly, co(A′) = co(p0, . . . , pn) is a simplex. In the
limit ζ, η → 0, we have | co(A′)| = (1 − o(1))| co(A)|. Hence, for ζ, η, and β sufficiently small in terms of α and
n we find:

| co(A) \A| ≤ | co(A) \ co(A′)| + | co(A′) \A′| < α|A|,

a contradiction. This proves the result.

10.6.4 Proof of Lemma 10.9

Proof of Lemma 10.9. As A,B form a λ-bounded η-sandwich, consider the convex K ⊂ Rn, so that

B(o, (3λn)−1) ⊂ K ⊂ A,B ⊂ (1 + η)K ⊂ B(o, 3λn),

where the balls follow from Observation 2.6 combined with 1 + η ≤ 3/2.
We construct V as follows. Let H1, . . . ,Hn be the defining hyperplanes of U , and let H+

i be the corresponding
halfspaces so that U =

⋂
iH

+
i . We construct parallel hyperplanes Gi as follows: Given G1, . . . , Gi−1, find Gi

so that |A ∩
⋂i

j=1H
+
j | = |B ∩

⋂i
j=1G

+
j |. Note that this is possible since, by construction |A ∩

⋂i−1
j=1H

+
j | =

|B ∩
⋂i−1

j=1G
+
j | and |B ∩

⋂i
j=1G

+
j | changes continuously with Gj .

We will show by induction that the distance between Gi and Hi tends to zero as η tends to zero. By
induction |(H+

j △G+
j ) ∩B| → 0 as η → 0 for j < i. This implies that also∣∣∣∣∣∣∣(B ∩H+

i ) ∩
i−1⋂
j=1

H+
j

∣∣∣− ∣∣∣(B ∩H+
i ) ∩

i−1⋂
j=1

G+
j

∣∣∣∣∣∣∣ ≤ ∣∣∣∣(B ∩H+
i ) ∩

i−1⋃
j=1

(H+
j △G+

j )

∣∣∣∣→ 0 as η → 0.

In the same vein, we have that because A,B is a λ-bounded η sandwich∣∣∣∣|A ∩
i⋂

j=1

H+
j | − |B ∩

i⋂
j=1

H+
j |
∣∣∣∣ ≤ ∣∣∣∣(A△B) ∩

i⋂
j=1

H+
j

∣∣∣∣ ≤ |(1 + η)K \K| → 0 as η → 0.

Hence, using that
∣∣∣(B ∩G+

i ) ∩
⋂i−1

j=1G
+
j

∣∣∣ = |A ∩
⋂i

j=1H
+
j |, we find

∣∣∣∣∣∣∣(B ∩G+
i ) ∩

i−1⋂
j=1

G+
j

∣∣∣− ∣∣∣(B ∩H+
i ) ∩

i−1⋂
j=1

G+
j

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣A ∩
i⋂

j=1

H+
j

∣∣∣− ∣∣∣(B ∩H+
i ) ∩

i−1⋂
j=1

G+
j

∣∣∣∣∣∣∣→ 0 as η → 0.
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On the other hand, we find∣∣∣∣∣∣∣(B∩G+
i )∩

i−1⋂
j=1

G+
j

∣∣∣−∣∣∣(B∩H+
i )∩

i−1⋂
j=1

G+
j

∣∣∣∣∣∣∣ =
∣∣∣B∩(G+

i △H
+
i )∩

i−1⋂
j=1

G+
j

∣∣∣ ≥ ∣∣∣(G+
i △H

+
i )∩B(o, (3λn)−1)∩

i−1⋂
j=1

G+
j

∣∣∣.
By induction, we have

∣∣∣(G+
i △H

+
i )∩B(o, (3λn)−1)∩

⋂i−1
j=1G

+
j

∣∣∣ =
∣∣∣(G+

i △H
+
i )∩B(o, (3λn)−1)∩

⋂i−1
j=1H

+
j

∣∣∣+o(1),

where o(1) → 0 as η → 0. As ϵ is sufficiently small in terms of λ and n, we find that∣∣∣∣(G+
i △H

+
i ) ∩B(o, (3λn)−1) ∩

i−1⋂
j=1

H+
j

∣∣∣∣ = Ωn(
∣∣(G+

i △H
+
i ) ∩B(o, (3λn)−1)

∣∣).
We conclude that

∣∣(G+
i △H

+
i ) ∩ B(o, (3λn)−1)

∣∣ → 0 as η → 0, so that indeed the distance between Gi and Hi

tends to zero as η → 0.
Let V :=

⋂n
i=1G

+
i . Since the Gi’s are parallel to the Hi’s, we find that V is homothetic to U , i.e., there are

x ∈ Rn and β ∈ R so that V = x+ (1 + β)U . As the defining hyperplanes tend to each other as η → 0, we find
that for sufficiently small η, ||x||2 ≤ α and |β| ≤ α.

For the last part of the theorem, we proceed by induction to show that Ai := A ∩
⋂i

j=1H
+
j and Bi :=

B ∩
⋂i

j=1H
+
j satisfy

|tAi + (1 − t)Bi| − |Ai| ≤ |tA+ (1 − t)B| − |A|.

For i = 0 this is vacuously true. Note that Ai = Ai−1 ∩H+
i and Bi = Bi−1 ∩G+

i . By construction |Ai| = |Bi|
and |Ai−1| = |Bi−1|, so that we also have A′

i := Ai−1 \ Ai = Ai−1 ∩H−
i and the analogously defined B′

i have
the same volume. We find that

tAi + (1 − t)Bi ⊂ tH+
i + (1 − t)G+

i and tA′
i + (1 − t)B′

i ⊂ tH−
i + (1 − t)G−

i ,

which are two halfspaces separated by the hyperplane tHi +(1− t)Gi, so that tAi +(1− t)Bi and tA′
i +(1− t)B′

i

are disjoint subsets of tAi−1 + (1 − t)Bi−1 and thus

|tAi + (1 − t)Bi| + |tA′
i + (1 − t)B′

i| ≤ |tAi−1 + (1 − t)Bi−1|.

By the Brunn-Minkowski inequality we know that |tA′
i + (1 − t)B′

i| ≥ |A′
i|, so we can conclude

|tAi + (1 − t)Bi| − |Ai| ≤ |tAi + (1 − t)Bi| − |Ai| + |tA′
i + (1 − t)B′

i| − |A′
i| ≤ |tAi−1 + (1 − t)Bi−1| − |Ai−1|
≤ |tA+ (1 − t)B| − |A|,

where the last inequality follows from induction. Finally, An = A◦ and Bn = B◦, so the theorem follows.

10.6.5 Proof of Lemma 10.10

Proof of Lemma 10.10. The first two conclusions are straightforward to checks so we turn our attention to the
third conclusion. Note that by construction t′A′ + (1 − t′)B′ = tA◦ + (1 − t)B◦, so it is enough to show that

t′|A′| + (1 − t′)|B′| ≥ |A◦|.

As |A′| = (t/t′)n|A◦| and |B′| = ((1 − t)/(1 − t′))n|B◦| and |A◦| = |B◦|, this is equivalent to

t′(t/t′)n + (1 − t′)((1 − t)/(1 − t′))n ≥ 1,

which is true by the convexity of the function τ 7→ τn. We turn our attention to the last conclusion.

Recall that K ⊂ A,B ⊂ (1 + η)K for some convex set K. Let K ′ = min
{

t
t′ ,

1−t
1−t′

}
K, so that K ′ ∩W ⊂ A′

and K ′ ∩W ′ ⊂ B′. Similarly, let K ′′ = max
{

t
t′ ,

1−t
1−t′

}
(1 + η)K, so that K ′′ ∩W ⊃ A′ and K ′′ ∩W ′ ⊃ B′.

Note that for α sufficiently small in terms of η, we have t and t′ sufficiently similar that K ′′ ⊂ (1 + 2η)K ′.
To deal with the translation, note that K ′ contains a smaller homothetic copy centred at 1−t

1−t′x. Indeed, let p

be the intersection of the ray R+x with ∂K ′. Since K is λ-bounded, K ′ is 1.5λ-bounded, and so ||p||2 = Ωn(1/λ).

Consider the homothety H centred at p with ratio
||p||2− 1−t

1−t′ ||x||2
||p||2 = 1 + On(αλ−1). Note that H(o) = 1−t

1−t′x.

Let K ′′′ := H(K ′). As p′ ∈ K ′, we find K ′′′ ⊂ K ′. Hence, K ′′′ − 1−t
1−t′x ⊂ A′, B′ − 1−t

1−t′x.
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Similarly, let q be the point in the intersection between R−x and ∂(1 + 2η)K ′, so that ||q||2 = Ωn(1/λ).

Consider the homothety H ′ centred at q with ratio
||q||2+ 1−t

1−t′ ||x||2
||q||2 = 1 +On(αλ−1), so that H ′(o) = 1−t

1−t′x and

H((1 + 2η)K ′) ⊃ (1 + 2η)K ′ is centred at 1−t
1−t′x. Hence, we find A′, B′ − 1−t

1−t′x ⊂
||q||2+ 1−t

1−t′ ||x||2
||q||2 (1 + 2η)K ′.

Combining these two, and taking η and α sufficiently small in terms of λ, n, and η′, we find that A′, B′ − 1−t
1−t′x

form a tubular 2λ-bounded η′-sandwich.
For the final conclusion on the symmetric difference, first note that for translating does not change the

symmetric difference too much:

|A◦△(B◦ + x)| ≤ | co(A◦) \A◦| + | co(B◦ + x) \ (B◦ + x)| + | co(A◦)△ co(B◦ + x)|
≤ 2α|A◦| + | co(A◦)△(co(B◦) + x)|
≤ 2α|A◦| +On(||x||2) + | co(A◦)△ co(B◦)|
≤ (2α+On,ϵ(||x||2))|A◦| + | co(A◦)△ co(B◦)|
≤ On,ϵ(α|A◦|) + (| co(A◦) \A◦| + | co(B◦) \B◦| + |A◦△B◦|)
≤ On,ϵ(α|A◦|) + |A◦△B◦|.

Hence, we may assume x = 0. Similarly we find that the homotheties do not affect the symmetric difference too
much. For simplicity assume β > 0 (the case β ≤ 0 follows analogously), so that |A′△B′| ≤ |(1 + β)B◦△A◦|.
As above, it suffices to show that |(1 + β) co(B◦)△ co(A◦)| is small. Because the origin is in both co(A◦) and
co(B◦) we find that | co(A◦) \ (1 + β) co(B◦)| ≤ | co(A◦) \ co(B◦)|. For the other term, note that

|(1 + β) co(B◦) \ co(A◦)| ≤ |(1 + β) co(B◦) \ co(B◦)| + | co(B◦) \ co(A◦)| ≤ On(β)|A◦| + | co(B◦) \ co(A◦)|.

Combining these two bounds, we find

|(1+β) co(B◦)△ co(A◦)| = | co(A◦)\(1+β) co(B◦)|+ |(1+β) co(B◦)\co(A◦)| ≤ On(α)|A◦|+ | co(B◦)△ co(A◦)|.

We conclude as above that |(1 + β)B◦△A◦| ≤ On(α)|A◦| + | co(B◦)△ co(A◦)|, which finishes the proof.

10.6.6 Proof of Lemma 10.11

Proof of Lemma 10.11. Note that by monotonicity it suffices to show that for points p ∈ (∂(1 + η)K) ∩ U and
x ∈ S × {0}, (where S is the regular simplex from Definition 10.1), we have (1 − t)x+ tp ∈ K ∪ (S × R−).

Consider the angle between px and op. Since |ox| ≤ ϵ and |op| ≥ (2λn)−1 by Observation 2.6, we find that
for sufficiently small ϵ, the angle between px and op is less than any αn,λ.

Let q be the intersection between the line xp and ∂K that lies between x and p. Similarly, let p′ := 1
1+ηp ∈

op ∩ ∂K. By the above, we have ∠qpp′ ≤ αn,λ.
Now we will show that ∠op′q is bounded away from zero in terms of n and λ. Let p′n and qn denote the

n-th coordinates of p′ and q respectively. Since both points lie in U \ B(0, (2λn)−1), we find that p′n, qn ≥
(2λn)−1− ϵ > (3λn)−1, so that the line extending p′q does not intersect B(o, (3λn)−1) inside U . Since, that line
intersects K exactly in the segment p′q, it also does not intersect B(o, (3λn)−1) ⊂ K outside of K. Now note
that for every line ℓ through any point r ∈ B(o, 2λn) \B(o, (3λn)−1) that does not intersect B(o, (3λn)−1), we
find that ∠ℓ, or ≥ arcsin((3λn)−2) ≥ (3λn)−2. Hence, ∠op′q ≥ (3λn)−2, and thus

∠p′qp = ∠op′q − ∠qpp′ ≥ (3λn)−2 − αn,λ ≥ (4λn)−2.

This implies that |pq| = On,λ(|p′p|) = On,λ(η|op′|). Note that as p′ ∈ ∂K and K ⊂ B(o, 2λn), we have
|op′| ≤ 2λn, so that |pq| = On,λ(|p′p|) = On,λ(η). On the other hand, we have by the triangle inequality that

|xp| ≥ |op| − |ox| ≥ 2λn− ϵ ≥ λn. Hence, |pq|
|qx| = On,λ(η), so that choosing η sufficiently small in terms of n, λ,

and t, we find that (1 − t)x+ tp ∈ xp ⊂ K. The lemma follows.

11 Proof of general Linear Theorem (Theorem 1.4)

Proof of Theorem 1.4. Let ϵ = ϵn sufficiently small that we can apply Proposition 10.4 with λ = 2n3. Choose
ξ sufficiently small in terms of n and ϵ. Finally, choose θ = θn and η = ηn,t sufficiently small so that we can
apply Proposition 10.4 and Proposition 10.3. Note that the choice for θ does not depend on t.

By Proposition 2.9, we may assume that A,B form a 2n3-bounded η-sandwich, by picking dn,t sufficiently
small. After re-normalization so that |A| = |B| = 1, this implies by Observation 2.6, that B(o, (4n4)−1) ⊂
A,B ⊂ B(o, 4n4).
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we will show the bound for | co(A) \A|. The bound on | co(B) \B| follows analogously.
Apply Proposition 10.3 with parameter ξ to A to find A1, . . . , Ak. Note that as A ⊂ B(o, 4n4), we have

diam(co(A)) ≤ 8n4, so that diam(co(Ai)) ≤ 8n4ξ.
Consider a uniformly random direction v ∈ Sn−1 and consider the tube U ⊂ Rn of diameter ϵ in that

direction. Note that a simplex of diameter ϵ contains a ball of diameter ϵ′, where ϵ′ depends only on n as ϵ
depends only on n. Hence, U contains the circular B(o, ϵ′) + Rv. Fix one point ai in each of the co(Ai) and
note that if ai ∈ B(o, ϵ′ − 8n4ξ) + Rv then Ai ⊂ U . Choosing ξ ≤ ϵ′/(16n4), we find that the probability
P(Ai ⊂ U) ≥ P(ai ∈ B(o, ϵ′ − 8n4ξ) + Rv) is lower bounded in terms of n for any ai ∈ A ⊂ B(o, 4n4). Say
ρ = ρn > 0 is so that P(Ai ⊂ U) ≥ ρ.

Note that if Ai ⊂ U , then co(A ∩ U) \ (A ∩ U) ⊃ co(Ai) \Ai. Hence, as the co(Ai) are disjoint, we find

E
[
| co(U ∩A) \ (U ∩A)|

]
≥
∑
i

| co(Ai) \Ai| · P(Ai ⊂ U) ≥ ρ
∑
i

| co(Ai) \Ai| ≥ ρθ| co(A) \A|.

Combining this with the bound we have by Proposition 10.4, we find

| co(A) \A| ≤ 1

ρθ
E
[
| co(U ∩A) \ (U ∩A)|

]
≤ k10.4n

ρθ
t−c10.4n8

δ|A|.

Letting k1.4n =
k10.4
n

ρθ gives the theorem.

12 Proof of Symmetric difference vs Common convex hull result
(Theorem 1.7)

12.1 Propositions

The proof of these results separates into two parts, viz if X,Y very similar, i.e., |X△Y | small, or if X,Y very
dissimilar, i.e., |X ∩ Y | small. The former is more difficult.

Proposition 12.1. There exists an absolute constants cn, dn > 0 such that the following holds. Assume
δ ∈ [0, dn] and let A,B ⊂ Rn be convex sets such that |A ∩B| ≥ (1 − δ) max(|A|, |B|). Then

| co(A ∪B)| ≤ (1 + cnδ) min(|A|, |B|).

Proposition 12.2. There exist constants cn so that, given convex sets X,Y ⊂ Rn, we have

| co(X ∪ Y )| ≤ cn
|X| · |Y |
|X ∩ Y |

.

12.2 Proofs of Propositions

12.2.1 Proof of Proposition 12.1

For this proof we use a particular case of the main result from [vHST22], which asserts the following.

Theorem 12.3. For all n ∈ N, there are computable constants c12.3n , d12.3n > 0, such that the following holds.
Let X ⊂ Rn so that

∣∣X+X
2

∣∣ ≤ (1 + d12.3n )|X|, then

| co(X) \X| ≤ c12.3n

∣∣∣∣X +X

2
\X

∣∣∣∣ .
With this theorem in hand, the proposition follows quickly.

Proof of Proposition 12.1. Let c12.3n and d12.3n (t) be the output of Theorem 12.3. Choose cn = 10c12.3n . Choose
dn ≤ 10−1d12.3n ( 1

2 )
By standard approximation arguments we can assume that co(A) and co(B) have a finite number of vertices.

Construct the finite set F = V (co(A)) ∪ V (co(B)) and construct the measurable sets X = (A ∩ B) ∪ F. By
construction co(A ∪B) = co(X) and |X| ≤ min(|A|, |B|). Therefore, it is enough to prove

| co(X) \X| ≤ cnδ|X| = 10c12.3n δ|X|.
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Given that 10δ ≤ d12.3n ( 1
2 ), by Theorem 12.3 applied to the set X, it suffices to prove that

∣∣ 1
2 (X +X)

∣∣ ≤
(1 + 10δ)|X|. Recall that by construction

1

2
(X +X) =

1

2

(
[(A ∩B) ∪ V (co(A)) ∪ V (co(B))] + [(A ∩B) ∪ V (co(A)) ∪ V (co(B))]

)
⊂ 1

2

(
[(A ∩B) ∪ V (co(A))] + [A ∩B]

)⋃ 1

2

(
[(A ∩B) ∪ V (co(B))] + [A ∩B]

)
⋃ 1

2

(
[V (co(A)) ∪ V (co(B))] + [V (co(A)) ∪ V (co(B))]

)
⊂ 1

2

(
A+A

)⋃ 1

2

(
B +B

)⋃ 1

2

(
[V (co(A)) ∪ V (co(B))] + [V (co(A)) ∪ V (co(B))]

)
⊂ A ∪B ∪ 1

2

(
V (co(A)) + V (co(B))

)
.

Therefore, by hypothesis and as | 12 (V (co(A)) + V (co(B)))| = 0, we get∣∣∣∣12(X +X)

∣∣∣∣ ≤ |A ∪B| ≤ 2 max(|A|, |B|) − |A ∩B| ≤ (1 + δ) max(|A|, |B|).

Also by hypothesis, we get |X| = |A ∩ B| ≥ (1 − δ) max(|A|, |B|). Combining the last two inequalities, we
conclude ∣∣∣∣12(X +X)

∣∣∣∣ ≤ (1 + δ) max(|A|, |B|) ≤ (1 + δ)(1 − δ)−1|X| ≤ (1 + 10δ)|X|.

The last inequality follows by noting δ ≤ 1
2 and (1 + x)(1 − x)−1 ≤ 1 + 10x for x ≤ 1/2.

12.2.2 Proof of Proposition 12.2

We first prove the result for axis aligned boxes and then reduce the general case to that case.

Lemma 12.4. For axis aligned R, T ⊂ Rn, we have

| co(R ∪ T )| ≤ 2n
|R| · |T |
|R ∩ T |

Proof. Linearly transforming and translating if needed we may assume that R is a translated unit cube and
T = [0, t1] × · · · × [0, tn]. Given this setup we find that |R ∩ T | ≤

∏n
i=1 min{ti, 1}. On the other hand,

| co(R ∪ T )| ≤ |R+ T | =

n∏
i=1

(ti + 1) ≤ 2n
n∏

i=1

max{ti, 1}.

Combining these bounds with |R| = 1 and |T | =
∏n

i=1 ti, we get

| co(R ∪ T )| ≤ 2n
n∏

i=1

max{ti, 1} = 2n
n∏

i=1

ti
min{ti, 1}

≤ 2n
|R| · |T |
|R ∩ T |

,

which concludes the lemma.

With this lemma in hand, the proof of Proposition 12.2 is just a quick reduction.

Proof of Proposition 12.2. Let E and F the John ellipsoids of X and Y , respectively, so that

X ⊂ E, Y ⊂ F, |E| ≤ On(|X|), and |F | ≤ On(|Y |).

Note that |E ∩F | ≥ |X ∩Y |. Affinely transforming if needed we may assume E is a ball. Rotating if necessary,
we may assume the axes of symmetry of F are the basis vectors e1, . . . , en. Let R and T be the smallest axis
aligned boxes containing E and F respectively, so that |R| = On(|E|) = On(|X|) and |T | = On(|F |) = On(|Y |).
Now use co(X ∪ Y ) ⊂ co(R ∪ T ) and X ∩ Y ⊂ R ∩ T , together with Lemma 12.4, to find

| co(X ∪ Y )| ≤ | co(R ∪ T )| ≤ 2n
|R| · |T |
|R ∩ T |

≤ On

(
|X| · |Y |
|X ∩ Y |

)
.
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12.3 Proof of Theorem Theorem 1.7

Proof of Theorem 1.7. Let d12.1n , c12.1n , c12.2n , be the constants from Proposition 12.1 and Proposition 12.2. Let

cn := max{c12.1n , c12.2n /d12.1n }. Let δ = 1 − |X∩Y |
max(|X|,|Y |) . Consider two cases; either δ ≤ d12.1n or δ > d12.1n . In the

former case, by Proposition 12.1 we have

| co(X ∪ Y )|
min(|X|, |Y |)

− 1 ≤ c12.1n δ = cn

(
1 − |X ∩ Y |

max(|X|, |Y |)

)
≤ cn

|X△Y |
|X ∩ Y |

.

In the latter case, we use

d12.1n < δ ≤ 1 − |X ∩ Y |
max(|X|, |Y |)

≤ |X△Y |
max{|X|, |Y |}

,

to find that max{|X|, |Y |} < |X△Y |/d12.1n . Hence, by Proposition 12.2 we find

| co(X ∪ Y )|
min{|X|, |Y |}

≤ c12.2n

max{|X|, |Y |}
|X ∩ Y |

≤ cn
|X△Y |
|X ∩ Y |

,

which concludes the proof.

13 Putting it all together: Proof of Theorem 1.3

Proof of Theorem 1.3. Choose d1.3n,t sufficiently small in terms of n and t to make various statements throughout
the proof true, e.g. to allow the applications of Theorem 1.5, Theorem 1.4, and Proposition 12.1.

By Theorem 1.5, we find that (after a translation)

|A△B| ≤ c1.5n t−1/2δ
1
2 |A|, so that |A ∩B| ≥ (1 − c1.5n t−1/2δ

1
2 )|A|.

By Theorem 1.4, we find that

| co(A) \A| + | co(B) \B| ≤ t−c1.4n8

δ|A|.
Combining these two bounds and using that d1.3n,t is small, we find | co(A)△ co(B)| ≤ 2c1.5n t−1/2δ

1
2 |A|. Hence,

using Proposition 12.1 and the fact that |A| ≤ min{| co(A)|, | co(B)|}, we have

| co(A ∪B)| = | co(co(A) ∪ co(B))| ≤
(

1 + c12.1n 2c1.5n t−1/2δ
1
2

)
max{| co(A)|, | co(B)|}

≤
(

1 + c12.1n 2c1.5n t−1/2δ
1
2

)(
1 + t−1.4n8

δ
)
|A| ≤

(
1 + c1.3n t−1/2δ1/2

)
|A|.

This concludes the proof of the theorem.

14 Open Problems

It is natural to ask for the t-dependence in Theorem 1.4. To this end we make the following conjecture.

Conjecture 14.1. For all n ∈ N and t ∈ (0, 1/2], there are computable constants c14.1n , d14.1n,t > 0 such that the
following holds. Assume δ ∈ [0, d14.1n,t ], and assume A,B ⊂ Rn are measurable sets of equal volume, so that

|tA+ (1 − t)B| = (1 + δ)|A|.

Then
| co(A) \A| ≤ c14.1n t−1δ|A| and | co(B) \B| ≤ c14.1n t−n+1δ|A|

If true, in Conjecture 14.1, the exponents of δ and t, prioritised in this order, are optimal. Indeed, to bound
| co(A) \ A|, take B = [−1, 1]n and A = [−1, 1]n ∪ {p}, where p = (1 + h, 0, . . . , 0). To bound | co(B) \B|, take
A = [−1, 1]n and B = [−1, 1]n ∪ {p}, where p = (1 + h, 0, . . . , 0). In both cases h≪n,t 1.

It is worth noting that Conjecture 14.1 was established in dimension two [vHSTarb].
For doubling further from minimal, we recall the following conjecture from [vHK23a].

Conjecture 14.2. There is an absolute constant ∆ > 0 so that if δ < ∆ and A ⊂ Rn with
∣∣A+A

2

∣∣ ≤ (1 + δ)|A|
then there is some convex K ⊂ Rn with |K△A| ≤ Oδ(1)|A|.

Finally, we recall the following conjecture suggested by [BFRar].

Conjecture 14.3. Let t ∈ (0, 1) f, g, h : Rn → R≥0 be measurable functions with the property that h(tx+ (1 −
t)y) ≥ f(x)tg(y)1−t for all x, y ∈ Rn and

∫
f =

∫
g = 1. If

∫
h ≤ 1 + δ with δ sufficiently small in terms of t

and n, then there exists a log-concave function ℓ : Rn → R≥0 so that
∫
|h− ℓ| + |f − ℓ| + |g − ℓ| ≤ Ot,n(δ1/2).
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