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Abstract. We prove some stability results concerning the smoothness of optimal trans-
port maps with general cost functions. In particular, we show that the smoothness of
optimal transport maps is an open condition with respect to the cost function and the
densities. As a consequence, we obtain regularity for a large class of transport problems
where the cost does not necessarily satisfy the MTW condition.

1. Introduction

Given a source domain X ⊂ Rn associated with density f : X → R+, a target domain
Y ⊂ Rn associated with density g : Y → R+, and a cost function c : X×Y → R, the optimal
transport problem consists in finding, among all transport maps (i.e., all maps T : X → Y
such that T]f = g), a transport map which minimizes the total transportation cost∫

X
c(x, T (x)) f(x) dx.

It is by now well-known that, under some rather general assumptions on the cost c, there
exists a unique transport map T (see Section 2 for more details). Then, a very natural and
important question becomes the following:

If the data f, g,X, Y, c are smooth, is T smooth as well?

While this question is well understood when c is the squared distance function in Rn (see
for instance [15, Chapter 4.5]), the regularity of optimal transport maps with general cost
has been for long time a fundamental open problem in the theory of optimal transportation.
In 2005, Ma, Trudinger, and Wang [33] found the following fourth order condition (now
called MTW condition after their names) on the cost function:

(1.1)
∑

i,j,k,l,p,q,r,s

cp,q(cij,pcq,rs − cij,rs)cr,kcs,lξiξjηkηl ≥ 0 in X × Y

for all ξ, η ∈ Rn satisfying ξ ⊥ η, where lower indices before (resp. after) the comma indicate

derivatives with respect to x (resp. y) (so for instance ci,j = ∂2c
∂xi∂yj

), (ci,j) is the inverse

of (ci,j), and all derivatives are evaluated at (x, y) ∈ X × Y . Under the above condition,
they proved in [33] that if the densities are positive and smooth and the domains satisfy
some suitable convexity assumptions, then the optimal map is smooth (see also [35, 36]).
Later Loeper [30] showed that the MTW condition is actually necessary for the smoothness
of optimal transport maps. More precisely, if the cost function does not satisfy the MTW
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condition, Loeper constructed two smooth positive densities, supported on smooth domains
satisfying the “right” convexity assumptions, for which the optimal map was not even
continuous. After these two important works, many experts have contributed to develop a
complete regularity theory of optimal transport problem under the MTW condition, to cite
a few see [19, 28, 35, 36, 20, 31, 32, 29, 21, 27, 23, 22, 17, 18].

Unfortunately, several interesting costs do not satisfy the MTW condition, for instance
c(x, y) = 1

p |x−y|
p does not satisfy MTW condition when p ∈ (1, 2)∪(2,∞), and actually the

class of costs satisfying the MTW condition is very restricted. Recently, De Philippis and
Figalli [11] obtained a partial regularity result for optimal transport problem with general
cost without assuming neither the MTW condition nor any convexity on the domains. They
managed to show that optimal maps are always smooth outside a closed set of measure
zero. In a related direction, Caffarelli, Gonzáles, and Nguyen [7] obtained an interior C2,α

regularity result of optimal transport problem when the densities are Cα and the cost
function is of the form c(x, y) = 1

p |x− y|
p with 2 < p < 2 + ε for some ε� 1. This interior

regularity result was later extended by us to a global one, and generalized to a larger class
of cost functions [9].

Motivated by the recent results and techniques developed in [11, 9], in this paper we show
the following stability statement: consider the optimal transport problem from (X, f) to
(Y, g) with cost c, and suppose that the optimal maps Tu and T ∗uc sending respectively f to
g and g to f have some (suitable) degree of smoothness. Then, if we perturb the problem
sightly, regularity persists. More precisely, consider the optimal transport problem from
(X, f̃) to (Y, g̃) with cost c̃, and assume that f̃ and g̃ are close to f and g in C0 norm
respectively, and c̃ is close to c in C2 norm. Then the corresponding optimal transport
maps Tũ and T ∗ũc enjoy the same smoothness as Tu and T ∗uc . This is particularly interesting
since, even if c satisfies the MTW condition, c̃ may not satisfy it.

The paper is organized as follows. In section 2 we introduce some notation and state our
main results. Then, in Section 3, we collect all the new ingredients that we need to apply
the arguments in [11, 9], and finally in the last section we prove our main results.

2. Preliminaries and main results

We begin by introducing some conditions that should be satisfied by the cost. Here and
in the following, X and Y are two bounded open subsets of Rn.

(C0) The cost function c is of class C3 with ‖c‖C3(X×Y ) <∞.
(C1) For any x ∈ X, the map Y 3 y 7→ Dxc(x, y) ∈ Rn is injective.
(C2) For any y ∈ Y , the map X 3 x 7→ Dyc(x, y) ∈ Rn is injective.
(C3) det(Dxyc)(x, y) 6= 0 for all (x, y) ∈ X × Y.
A function u : X → R is said c-convex if it can be written as

(2.1) u(x) = sup
y∈Y
{−c(x, y) + λy}

for some family of constants {λy}y∈Y ⊂ R. Note that (C0) and (2.1) imply that a c-convex
function is semiconvex, namely, there exists some constant K depending only on ‖c‖C2(X×Y )

such that u + K|x|2 is convex. One immediate consequence of the semiconvexity is that u
is twice differentiable almost everywhere.
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It is well known (see for instance [38, Chapter 10]) that (C0) and (C1) ensure that there
exists a unique optimal transport map, and there exists a c-convex function u (also called
potential function) such that the optimal map is a.e. uniquely characterized in terms of u
(and for this reason we denote it by Tu) by the relation

(2.2) −Dxc(x, Tu(x)) = ∇u(x) for a.e. x.

As explained for instance in [11, Section 2] (see also [12]), the transport condition (Tu)#f =
g implies that u solves at almost every point the Monge-Ampère type equation
(2.3)

det
(
D2u(x)+Dxxc

(
x, c-expx(∇u(x))

))
=
∣∣det

(
Dxyc

(
x, c-expx(∇u(x))

))∣∣ f(x)

g(c-expx(∇u(x)))
,

where c-exp denotes the c-exponential map defined as

(2.4) for any x ∈ X, y ∈ Y , p ∈ Rn, c-expx(p) = y ⇔ p = −Dxc(x, y).

Notice that, with this notation, Tu(x) = c-expx(∇u(x)).
For a c-convex function, analogous to the subdifferential for convex function, we can talk

about its c-subdifferential: If u : X → R is a c-convex function as above, the c-subdifferential
of u at x is the (nonempty) set

∂cu(x) :=
{
y ∈ Y : u(z) ≥ −c(z, y) + c(x, y) + u(x) ∀ z ∈ X

}
.

We also define Frechet subdifferential of u at x as

∂−u(x) := {p ∈ Rn : u(z) ≥ u(x) + p · (z − x) + o(|z − x|)}.

It is easy to check that

y ∈ ∂cu(x) =⇒ −Dxc(x, y) ∈ ∂−u(x).

Also, it is well known that the optimal transport Tu satisfies

(2.5) Tu(x) ∈ ∂cu(x) for a.e. x

Let c∗(y, x) := c(x, y). By exchanging the role of X and Y , we can also study the optimal
transport problem from (Y, g) to (X, f). In this case, the corresponding optimal transport
map can be obtained from a c∗-convex function ϕ. It is well known that

(2.6) ϕ(y) = uc(y) := sup
x∈X
{−c(x, y)− u(x)},

hence it is natural to denote by T ∗uc = c*-exp(∇uc) the optimal transport from g to f . Also,
as a consequence of the identity

(2.7) u = (uc)c
∗
,

one can show that T ∗uc = (Tu)−1, that is, Tu : X → Y and T ∗uc : Y → X are inverse to each
other (see for instance [38]).

Below we will call a constant universal if it depends only on the dimension n and the
upper bound of log f and log g. In the following we denote Xσ := {x ∈ X : dist(x, ∂X) > σ}.
We shall state all the results for the potential ũ below, but of course the same results hold
also for ũc.
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Theorem 2.1. Let u be the potential function for the optimal transport problem from (X, f)
to (Y, g) with cost c satisfying (C0)-(C3). Suppose f, g are positive continuous densities,
and that u ∈ C1,α(X̄) and uc ∈ C1,α(Ȳ ) for any α ∈ (0, 1). Then, for any σ > 0, there
exists δ̄ > 0 such that such that the following holds: assume that c̃ satisfies (C0)-(C3),

f̃ : X → R and g̃ : Y → R are positive continuous densities, and

‖c̃− c‖C2 ≤ δ̄, ‖f − f̃‖C0 + ‖g − g̃‖C0 ≤ δ̄.

Then the potential function ũ for the optimal transport problem from (X, f̃) to (Y, g̃) with
cost c̃ belongs to C1,β(Xσ) for any β ∈ (0, 1).

This result has the following interesting consequence on Riemannian manifolds.

Corollary 2.2. Let (M,G) be a smooth closed non-focal Riemannian manifold, and denote
by d the Riemannian distance induced by G. Let f , g be two positive continuous densities,

and let T (resp. T ∗) be the optimal transport map for the cost c = d2

2 sending f (resp. g)

to g (resp. f). Suppose T and T ∗ belong to Cα for any α ∈ (0, 1). Then, there exists δ̄ > 0
such that if

‖G̃ − G‖C2 ≤ δ̄, ‖f − f̃‖C0 + ‖g − g̃‖C0 ≤ δ̄, f̃ , g̃ are positive and continuous,

then the optimal map T̃ (resp. T̃ ∗) for the cost c = d̃2

2 (induced by the metric G̃ on M)

sending f̃ (resp. g̃) to g̃ (resp. f̃) is of class Cβ on M for any β ∈ (0, 1).

The proof of Theorem 2.1 also gives the following interesting result, which implies that
if the potentials are C1,β with β sufficiently close to 1 (say β > 4

5), then higher regularity
follows provided the densities are smooth enough, even without the MTW condition.

Theorem 2.3. Let u be the potential function for the optimal transport problem from (X, f)
to (Y, g) with cost c. Suppose u ∈ C1,β(X̄) and uc ∈ C1,β(Ȳ ), where β > 4

5 . Then

i) if f and g are positive continuous densities, then u ∈ C1,γ(X) and uc ∈ C1,γ(Y ) for
any γ ∈ (0, 1).

ii) if f ∈ Cα(X) and g ∈ Cα(Y ) are positive Hölder continuous densities for some
α ∈ (0, 1), then u ∈ C2,α(X) and uc ∈ C2,α(Y ).

Remark 2.4. In [11], it was proved that for the optimal transport problem from (X, f) to
(Y, g) with cost c satisfying (C0)-(C3), for any given β ∈ (0, 1) there exists a closed set ΣX

of measure 0 such that u is of class C1,β in X \ ΣX . However, in that paper, the set ΣX

may a priori depend on β (as can be checked by inspecting the proof there). Our Theorem
2.3 can be used to show that actually there exists a “universal” singular set ΣX , namely,
we can choose ΣX so that u is C1,β in X \ ΣX for any β ∈ (0, 1).

To show this, one argues as follows: suppose x0 and y0 = Tu(x0) are points where u and
uc are respectively twice differentiable there. Then it follows from [11, Theorem 4.3] (see
also the proof of [11, Theorem 1.3]) that there exists a small positive radius ρ such that u

(resp. uc) is of class C1,5/6 in Bρ(x0) (resp. Tu(Bρ)). Then, by Theorem 2.3 we have that
u is C1,γ in Bρ(x0) for any γ ∈ (0, 1), and one concludes by the very same argument as in
the proof of [11, Theorem 1.3].

We can also prove that the previous results generalize to higher regularity.
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Theorem 2.5. Let u be the potential function for the optimal transport problem from (X, f)
to (Y, g) with cost c satisfying (C0)-(C3). Suppose that f ∈ Cα(X) and g ∈ Cα(Y ) are
positive Hölder continuous densities, and that u ∈ C1,1(X). Then for any σ > 0, there exists

δ̄ > 0 such that the following holds: assume that c̃ satisfies (C0)-(C3), f̃ : X → R and
g̃ : Y → R are positive densities of class Cα, and

‖c̃− c‖C2 ≤ δ̄, ‖f − f̃‖C0 + ‖g − g̃‖C0 ≤ δ̄.

Then the potential function ũ for the optimal transport problem from (X, f̃) to (Y, g̃) with
cost c̃ belongs to C2,α(Xσ).

Corollary 2.6. Let (M,G) be a smooth closed Riemannian manifold, and denote by d the
Riemannian distance induced by G. Let f ∈ Cα(M) and g ∈ Cα(M) be two positive Hölder

continuous densities, and let T be the optimal transport map for the cost c = d2

2 sending f

to g. Suppose T is Lipschitz continuous. Then there exists δ̄ > 0 such that if

‖G̃ − G‖C2 ≤ δ̄, ‖f − f̃‖C0 + ‖g − g̃‖C0 ≤ δ̄, f̃ , g̃ are positive and of class Cα

then the optimal map T̃ for the cost c = d̃2

2 sending f̃ to g̃ is of class C1,α on M.

Finally, if we assume that the boundaries of X and Y are smooth, then we can also obtain
regularity up to the boundary.

Theorem 2.7. Let u be the potential function for the optimal transport problem from (X, f)
to (Y, g) with cost c. Assume that f ∈ Cα(X̄) and g ∈ Cα(Ȳ ) are positive Hölder continuous
densities, and that ∂X and ∂Y are of class C2,α. Suppose u ∈ C2,α(X̄) and uc ∈ C2,α(Ȳ ).
Then there exists δ̄ > 0 such that if

(2.8) ‖c̃− c‖C2 ≤ δ̄, ‖f − f̃‖C0 + ‖g − g̃‖C0 ≤ δ̄, f̃ , g̃ are positive and Cα

then the potential function ũ for the optimal transport problem from (X, f̃) to (Y, g̃) with

cost c̃ belongs to C2,α′(X̄) for some 0 < α′ < α.

3. Localizing the problem

In the following, C, {Ci}i=1,...,5 will always denote positive constants, which may change
from line to line, but without specifically mentioned they depend only on the local C1,α

norms of u and uc, and the C2 norm of c. Although we could have decided to use only C
everywhere, we believe that the introduction of the additional constants C1, . . . , C5 should
help the reader.

From now on we set δ := ‖c̃− c‖C2 .
Given x0 ∈ Xσ and y0 := Tu(x0), as in [11] we perform the transform

c1(x, y) := c(x, y)− c(x, y0)− c(x0, y) + c(x0, y0),(3.1)

c̃1(x, y) := c̃(x, y)− c̃(x, y0)− c̃(x0, y) + c̃(x0, y0),(3.2)

u1 := u(x)− u(x0) + c(x, y0)− c(x0, y0),(3.3)

ũ1 := ũ(x)− ũ(x0) + c̃(x, y0)− c̃(x0, y0).(3.4)

It is easy to see that

(3.5) ‖c̃1 − c1‖C2 ≤ 4δ.
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Up to a change of coordinates we can assume that x0 = y0 = 0 and that Dxyc(0, 0) = −Id,
so that a Taylor expansion of c1 around (x0, y0) = (0, 0) yields

(3.6) c1(x, y) = −x · y +O(|x|2|y|+ |y|2|x|).
In the next result, we study the geometry of the sub-level sets {u1 < h} when h is small

enough.

Lemma 3.1. Under the assumptions of Theorem 2.1, for h sufficiently small we have that

(3.7)
1

C
B
h

1
2+ε ⊂ {u1 < h} ⊂ CB

h
1
2−ε

,

where ε := 1
1+α −

1
2 → 0 as α→ 1.

Proof. The first inclusion follows from the C1,α regularity of u1.
To prove the second inclusion we fix r small. We first notice that, as a consequence of

(2.5) and (2.7), the supremum in the relation

u1(x) = sup
y
−uc11 (y)− c1(x, y)

is attained for y = Tu1(x). Now, for any fixed x ∈ Br, let r1 := |x|
1
α
− 1

2 . Since u1 is C1,α,

we have |Tu1(x)| ≤ C|x|α ≤ |x|
1
α
− 1

2 for x ∈ Br and α > 1/2. Hence, recalling that also
uc11 ∈ C1,α, for x ∈ Br we get

u1(x) = sup
y∈Br1

−uc11 (y)− c1(x, y)

= sup
y∈Br1

−uc11 (y) + x · y +O(|x|2|y|+ |y|2|x|)

≥ sup
y∈Br1

−C|y|1+α + x · y +O(|x|2|y|+ |y|2|x|)

≥ sup
y∈Br1

−(C + 1)|y|1+α + x · y − C|x|2

≥ C1|x|1+
1
α ,

where we used that the standard Legendre transform of |y|1+α is |x|1+
1
α . Thanks to the

above estimate, also the second inclusion follows. �

Now, we exploit the “almost convex” property implied by the Taylor expansion of c1 (see
(3.6)). More precisely, although in our situation the set {u1 ≤ h} is not convex in general,
we are able to show that this set is so close to its convex envelope that we can still use an
affine transformation to normalize it. In the following we will use [E] to denote the convex
envelope of the set E, and we use dist(A,B) to denote the Hausdorff distance between two
sets A and B.

Lemma 3.2. Let ε be as in Lemma 3.1. Then, for h small enough,

dist({u1 ≤ h}, [{u1 ≤ h}]) ≤ Ch1−6ε.

Proof. Denote S := {u1 ≤ h} and notice that, by the argument above, we have

(3.8) S ⊂
⋂
x∈∂S
{z ∈ Br1 : −c1(z, Tu1(x)) + c1(x, Tu1(x)) ≤ 0},
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where r1 = Ch
1
2
−ε.

Now, given any point x̄ ∈ [{u1 ≤ h}] − {u1 ≤ h}, we can write x̄ = x + ξ, where
x ∈ ∂{u1 ≤ h} and ξ is perpendicular to ∂{u1 ≤ h}. Since the function

z 7→ −c1(z, Tu1(x))− uc11 (Tu1(x))

touches u1 from below at the point x (this follows from (2.5)), we deduce that ξ is parallel to
the the vector −Dxc1(x, y), where y := Tu1(x). Moreover, by (3.6) we have that −Dxc1(x, y)
is approximately equal to y, in particular

(3.9) ξ · y ≥ 1

2
|ξ| |y|.

Note also that, by the C1,α regularity of u1, we have |y| ≤ C|x|α ≤ Ch(
1
2
−ε)α.

Now, consider the linear function

L(z) := −z · y + (x+ ξ) · y.
We shall show that if |ξ| is not small enough then L(z) < 0 for any z ∈ S, which will
contradict the fact that x+ ξ = x̄ ∈ [S]. In fact, for any z ∈ S, by (3.6) and (3.9) we have

L(z) + (c1(z, y)− c1(x, y))

= −z · y + (x+ ξ) · y −
(
−z · y +O(|z|2|y|+ |y|2|z|) + x · y +O(|x|2|y|+ |y|2|x|)

)
≤ −ξ · y + C(|z|2 + |y||z|+ |x|2 + |x||y|)|y|

≤
(
−1

2
|ξ|+ C(|z|2 + |y||z|+ |x|2 + |x||y|)

)
|y|

≤
(
−1

2
|ξ|+ C(h1−2ε + h(1−2ε)α)

)
|y|

≤
(
−1

2
|ξ|+ C1h

1−6ε
)
|y|,

where we used that (1− 2ε)α ≥ 1− 6ε for all α ∈ (0, 1). Hence

L(z) < c1(x, y)− c1(z, y) ≤ −u1(x) + u1(z) ≤ 0 ∀ z ∈ S

when |ξ| > C1
2 h

1−6ε, a contradiction.
This proves that

|ξ| ≤ C1

2
h1−6ε,

as desired. �

Let A : Rn → Rn be a unitary linear transformation normalizing the convex set [S], that
is

detA = 1, Br(x0) ⊂ A[S] ⊂ Bnr(x0)
for some r > 0 and x0 ∈ Rn (the existence of this map follows from John’s Lemma [26]).
Now, we perform the family of transformations:

X → X2 :=
1√
t
AX;

Y → Y2 :=
1√
t
A′−1Y ;
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u1(x)→ 1

t
u1(
√
tA−1x) := u2(x);

ũ1(x)→ 1

t
ũ1(
√
tA−1x) := ũ2(x);

c1(x, y)→ 1

t
c1(
√
tA−1x,

√
tA′y) := c2(x, y);

c̃1(x, y)→ 1

t
c̃1(
√
tA−1x,

√
tA′y) := c̃2(x, y);

f(x), g(y)→ f2(x) := f(
√
tA−1x), g2(y) := g(

√
tA′y);

f̃(x), g̃(y)→ f̃2(x) := f̃(
√
tA−1x), g̃2(y) := g̃(

√
tA′y);

S → S̃ :=
1√
t
AS,

where t := r2 is chosen so that

(3.10) B1

(
x̃0
)
⊂ [S̃] ⊂ Bn

(
x̃0
)
, x̃0 :=

x0√
t
.

Notice that, as a consequence of Lemma 3.1,

(3.11)
1

C
h1+2ε ≤ t ≤ Ch1−2ε.

Moreover, Lemmas 3.2 and 3.1 imply that

(3.12) ‖A‖, ‖A−1‖ ≤ Ch−2ε.

In addition, Lemma 3.2 combined with (3.11) and (3.12) yields

(3.13) dist([S̃], S̃) ≤ Ch
1
2
−9ε.

Hence, if α is sufficiently close to 1 so that ε < 1/18, it follows by (3.10) that

(3.14) B 1
C1

(
x̃0
)
⊂ S̃ ⊂ BC1

(
x̃0
)

for some dimensional constant C1.
Now by (3.6), (3.11), (3.12), and the above definition of c2, for all R ≥ 1 we have

‖c2 + x · y‖C2(BR×BR) ≤ C
1

t
t
3
2 (‖A‖3 + ‖A−1‖3)R3

≤ Ch
1
2
−7εR3 ≤ Chε

(3.15)

provided we choose R := h
8
3
ε− 1

6 ≥ 1, which is true under the assumption ε < 1/18.

Remark 3.3. Recalling that ε = 1
1+α −

1
2 , we see that the assumption ε < 1/18 is equivalent

to α > 4/5.

We now improve (3.11) showing that actually t and h are comparable.

Lemma 3.4. Assume that ε < 1/18 and that h is small enough. Then there exists a
universal constant C2 such that 1

C2
h ≤ t ≤ C2h.
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Proof. By subtracting h
t , we can assume u2 = 0 on ∂S̃. All we need to show is that 1

C1
≤

| inf u2| ≤ C1.
Suppose first that | inf u2| > 1, and let us prove a universal upper bound on it. Noticing

that | inf u2| = −u2(0) and that S̃ ⊂ B2C1(0) (this follows from (3.14) and the fact that

0 ∈ S̃), it follows by (3.15) that, for all unit vectors ξ,

u2(0)− c2
(
x,
| inf u2|

4C1
ξ

)
≤ u2(0) +

| inf u2|
4C1

ξ · x+ Chε

≤ −| inf u2|
2

+ Chε

< 0 on ∂S̃,

provided h is small and | inf u2|4C ξ ∈ BR. Hence | inf u2|4C B1 ∩BR ⊂ Tu2(S̃). Since

vol
(
Tu2(S̃)

)
≈ vol(S̃) ≤ C

(this follows by the transport condition and the fact that f and g are bounded away from

zero and infinity) and R = h
8
3
ε− 1

6 can be made arbitrarily large by choosing h small enough,
we deduce that | inf u2| ≤ C1, as desired.

To prove the converse bound, we assume that | inf u2| ≤ 1
C2

for some universal constant

C2, and we prove that C2 is universal bounded from above. Since dist(∂S̃, 12 S̃) ≥ 1
C3
, we

deduce that

u(x) + aξ · (z − x) ≥ a

C3
− | inf u2| ≥

1

C2
,

whenever a > 2C3
C2

, x ∈ 1
2 S̃, ξ is a unit vector, z ∈ ∂S̃, and z − x is parallel to ξ. Then by

(3.15), we have that

u(x)− (c2(z, aξ)− c2(x, aξ)) ≥
1

C2
− Chε ≥ 1

2C2
,

which implies aξ 6∈ Tu2(12 S̃). This yields Tu2(12 S̃) ⊂ B 2C3
C2

(0), and since

vol

(
Tu2

(1

2
S̃
))
≈ vol

(1

2
S̃
)

=
1

2n
vol
(
S̃
)
≥ 1

C

(recall (3.14)), we obtain

C4

(2C3

C2

)n
≥ 1.

This proves that C2 is universally bounded from above, concluding the proof. �

Remark 3.5. By (3.5) and the above definitions of c2 and c̃2 we see that

(3.16) ‖c̃2 − c2‖C2(X2×Y2) = δ̃,

where δ̃ can be as small as we want provided we take δ sufficiently small (the smallness
depends also on h).

We now show that ∂S̃ cannot be too close to the origin.

Lemma 3.6. Assume that ε < 1/18 and that h is small enough. Then there exists a

universal constant C3 such that dist(0, ∂S̃) ≥ 1
C3

.
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Proof. Thanks to Lemma 3.4, without loss of generality we can take t = h in the normal-
ization. Hence u2 = 1 on ∂S̃. Suppose dist(0, ∂S̃) ≤ 1

C3
for some C3 large. By (3.13), we

can assume dist(0, ∂[S̃]) ≤ 2
C3

by taking h sufficiently small. Let C be the convex cone with

vertex (0, 0) ∈ Rn×R and base [S̃]×{12}, and denote by v the convex function whose graph
is C. It follows by the classical Alexandrov’s estimates (see for instance [15, Theorem 2.2.4])
that

(3.17) vol
(
∂−v(C)

)
≥ C3

C4
,

for some universal constant C4 > 0.
Now, for any η ∈ ∂−v(C) ∩BR we have η · x ≤ v, so it follows by (3.15) that

−c2(x, η) ≤ η · x+ Chε

≤ v + Chε

≤ 1

2
+ Chε < 1

for x ∈ ∂S̃ provided h is small. This implies that, for any η ∈ ∂−v(C) ∩BR,

−Dxc(x, η) belongs to ∂−u2(x) for some x ∈ S̃

(it suffices to lower the graph of −c2(·, η) and then lift it until it touches the graph go u2
at some point x ∈ S̃). Since u2 ∈ C1,α, this implies that η ∈ ∂c2u2(x) = Tu2(x) (see [11,
Remark 4.4]), hence

∂−v(C) ∩BR ⊂ Tu2(S̃).

Therefore

C5 ≥ vol
(
S̃
)
≈ vol(Tu2(S̃)) ≥ vol

(
∂−v(C)) ∩BR

)
.

Recalling that R = h
8
3
ε− 1

6 can be made arbitrarily large by choosing h small enough,
combining the estimate above with (3.17) we deduce that

C3 ≤
2C5

C4
,

as desired. �

Remark 3.7. Lemma 3.6 implies that, up to slightly changing the constant in (3.10) and
(3.14), we can assume the center of the balls to be the origin.

From now on, to simplify the notation, Br will denote the ball of radius r centered around
the origin.

Lemma 3.8. Assume that ε < 1/18 and that h is small enough, and set S1/2 := {u2 ≤ 1/2}.
There exists a universal constant C4 such that

(3.18) B 1
C4

⊂ [S1/2] ⊂ BC4 ,

(3.19) B 1
C4

⊂ Tu2([S1/2]) ⊂ BC4 .
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Proof. The second inclusion in (3.18) follows immediately from (3.10) and Remark 3.7. The
first inclusion in (3.18) follows by repeating the proof of Lemma 3.6 with S1/2 in place of
S.

To prove (3.19) we notice that, for any fixed y ∈ B1/4C4
, (3.18) implies that

x · y < 1/4

for x ∈ ∂[S1/2]. Hence it follows by (3.15) that

−c2(x, y) ≤ x · y + Chε < 1/2 ≤ u2(x)

for x ∈ ∂[S1/2] provided h is small enough, and as in the proof of Lemma 3.6 we deduce
that y ∈ Tu2([S1/2]). Since y ∈ B1/4C4

is arbitrary, we have that

B 1
4C4

⊂ Tu2([S1/2]),

which proves the first inclusion in (3.19).
For the second inclusion, the same argument as that in the proof of Lemma 3.6 gives also

(3.20) dist(∂S̃, S1/2) ≥
1

C5

for some large constant C5. Hence, by (3.13) applied to S1/2 we obtain

(3.21) dist(∂S̃, [S1/2]) ≥
1

2C5
.

Now, for any fixed x ∈ [S1/2], let y := aξ, where ξ is a unit vector and 4C5 < a < R. Then

u(x) + y · (z − x) ≥ a 1

2C5
> 2

where z ∈ ∂S̃ is chosen so that z − x is parallel to ξ. Hence

u(x)− c2(z, y) + c2(x, y) ≥ u(x) + y · (z − x)− Chε > 1 ∀x ∈ [S1/2],

which implies that y 6∈ Tu2([S1/2]) and proves that

Tu2([S1/2]) ⊂ B4C5 .

�

All the estimates above hold for our solution u. We now want to extend these bounds to
ũ. For this, we begin begin stating a simple lemma which follows by a standard compactness
argument (see for instance [11]). Here and in the sequel, δ̃ is as in Remark 3.5.

Lemma 3.9. With the same notation as before, it holds

‖ũ2 − u2‖L∞(X2) ≤ ω(δ̃), ‖ũc̃22 − u
c2
2 ‖L∞(Y2) ≤ ω(δ̃),

where the nondecreasing function ω : R+ → R+ satisfies ω(s)→ 0 as s→ 0.

Set
Xσ

2 := {x : dist(x, ∂X2) > σ}, Y σ
2 := {y : dist(x, ∂Y2) > σ},

and define
K1 := max{‖u2‖C1,α(Xσ

2 )
, ‖c2‖C2 , ‖c̃2‖C2},

K2 = inf

{
|Dxc2(x, y)−Dxc2(x, y

′)|
|y − y′|

: x ∈ X2, y, y
′ ∈ Y2}.
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Note that 0 < K1,K2 < ∞ (thanks to our assumptions), and that these constants may
depend on h.

Lemma 3.10. Given any x0 ∈ Xσ
2 satisfying Bω(δ̃)(x0) ⊂ Xσ

2 , given y0 ∈ ∂ c̃2 ũ2(x0), we

have that
|y0 − Tu2(x0)| ≤ K

(
δ̃ + ω(δ̃)

α
2

)
,

where K depends only on K1,K2.

Proof. Since ũ2 is c̃2-convex, we have that ũ2(x) + K1|x − x0|2 is convex. Hence for any
unit vector e we have

ũ2

(
x0 + ω(δ̃)

1
2 e
)

+K1ω(δ̃) ≥ ũ2(x0)− ω(δ̃)
1
2Dxc̃2(x0, y0) · e.

Noticing that −Dxc̃2(x0, y0) ∈ ∂−ũ2(x0) = {Du2(x0)}, by the C1,α regularity of u2 we have

u2

(
x0 + ω(δ̃)

1
2 e
)
≤ u2(x0)− ω(δ̃)

1
2Dxc2(x0, Tu2(x0)) · e+K1ω(δ̃)

1+α
2 .

Hence, combining the two estimates above with Lemma 3.9, we obtain

(−Dxc̃2(x0, y0) +Dxc2(x0, Tu2(x0))) · e ≤ 2K1ω(δ̃)
α
2 + 2ω(δ̃)

1
2 ≤ 2(1 +K1)ω(δ̃)

α
2 .

Since e is an arbitrary unit vector, we see that

|Dxc̃2(x0, y0)−Dxc2(x0, Tu2(x0))| ≤ 2(1 +K1)ω(δ̃)
α
2 .

By Remark 3.5 we also have |Dxc̃2(x0, y0)−Dxc2(x0, y0)| ≤ δ̃, thus

|Dxc2(x0, y0)−Dxc2(x0, Tu2(x0))| ≤ δ̃ + 2(1 +K1)ω(δ̃)
α
2 .

Hence, recalling the definition of K2 we get

K2|y0 − Tu2(x0)| ≤ 2
(
δ̃ + 2(1 +K1)ω(δ̃)

α
2

)
,

which proves the desired estimate with K := 4(1+K1)
K2

. �

Thanks to Remark 3.5 and Lemma 3.10 we see that by first taking h small enough,
and then δ sufficiently small depending on h, it follows by Lemma 3.8 that, up to slightly
enlarging the constant C4, we can ensure that

(3.22) ∂c̃2 ũ2([S1/2]) ⊂ BC4 .

Since the same argument can be repeated for the dual problem, we also have

∂c̃∗2 ũ
c̃2
2 (B 1

C4

) ⊂ [S1/2],

thus
B 1
C4

⊂ ∂c̃2 ũ2
(
∂c̃∗2 ũ

c̃2
2 (B 1

C4

)
)
⊂ ∂c̃2 ũ2([S1/2]) ⊂ BC4 .

Therefore, we can now summarize all facts proved above in the following lemma.

Lemma 3.11. Let C1 := [S1/2], C2 := ∂c̃2 ũ2([S1/2]), f̄ := f̃21C1 , and ḡ := g̃21C2 . Then the
following properties hold:

B 1
C4

⊂ C1 ⊂ BC4 ;

B 1
C4

⊂ C2 ⊂ BC4 ;

‖f̄ − 1C1‖L∞(BC4
) = o(1), ‖ḡ − 1C2‖L∞(BC4

) = o(1)→ 0 as h, δ → 0;
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‖c̃2 + x · y‖C2(BC4
×BC4

) = o(1)→ 0 as h, δ → 0.

4. Proof of the results

4.1. Proof of Theorem 2.1. The proof of Theorem 2.1 is very similar to that of [11,
Theorem 4.3]. More precisely, in [11, Theorem 4.3] the authors have the assumption that
the potential function is close to a quadratic function, which is used to find an approximating
solution with interior C3 estimate. Thanks to the convexity of C1, in our case we also have
the interior C3 estimate for the approximating solution as explained below.

Given any δ1 small, by Lemma 3.11 we can assume that o(1) < δ1, and that δ̃+Chε < δ1
provided h and δ are sufficiently small. Let v∗ be the convex function satisfying

(Dv∗)]1C2 = 1ρC1 ,

where ρ is chosen so that vol(ρC1) = C2. By Lemma 3.11 and [11, Lemma 4.1] we have that

(4.1) ‖ũc̃22 − v
∗‖L∞(B1/C4

) ≤ ω(δ1),

and since ρ is close to 1, up to enlarging C4 slightly we still have

B1/C4
⊂ ρC1 ⊂ BC4 .

Hence by Caffarelli’s interior regularity result (see [4, 2] or [15, Chapter 4.5]) we see that

‖v∗‖C3(B 1
2C4

) ≤ C5,

where C5 depends only on C4. This estimate allows us to repeat the very same argument in
the proof of [11, Theorem 4.3] to show that ũc̃22 ∈ C1,5/6(B 1

3C4

). Then by a standard covering

argument, we have that ũc̃ ∈ C1,5/6(Y σ). By switching X and Y , the same argument shows

that ũ ∈ C1,5/6(Xσ), provided δ̄ is sufficiently small. Then by Theorem 2.3 we have that
ũ ∈ C1,β(Xσ) for any β ∈ (0, 1), as desired. �

4.2. Proof of Theorem 2.3. Let C3 := Tu2([S1/2]), so that (∂c∗2u
c2
2 )]g21C3 = f21C1 . For

any fixed small positive constant δ1, by (3.15) and Lemma 3.8 we have that

B 1
C4

⊂ C1 ⊂ BC4 ,

B 1
C4

⊂ Tu2([S1/2]) ⊂ BC4 ,

‖g2 − 1‖L∞(C3) + ‖f2 − 1‖L∞(C1) ≤ δ1,
‖c2 + x · y‖C2(BC4

×BC4
) ≤ δ1,

provided h is sufficiently small. Then we can proceed similarly to the proof of [11, Theorems
4.3 and 5.3]. Indeed, as in the proof of Theorem 2.1, the only difference between our
conditions and those of [11, Theorems 4.3 and 5.3] is that, instead of uc22 being close to a
quadratic function, we have that uc22 is close to a smooth function v∗ which satisfies

(Dv∗)]1C3 = 1ρC1 ,

where ρ is chosen so that vol(ρC1) = C3. Since ρ is close to 1 and ρC1 is convex, v∗ has C3

estimate in B 1
2C4

, which plays the same role of “uc22 being close to a quadratic function” in

the argument of the proof of [11, Theorems 4.3 and 5.3]. �
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4.3. Proof of Theorem 2.5. Fix any point x0 ∈ X, and set y0 := Tu(x0). Without loss
of generality we may assume x0 = y0 = 0.

Since u ∈ C1,1(X), the transport map Tu is continuous, hence we can choose small positive
constants r1, r2 so that Br1 ⊂ X and Br2 ⊂ Tu(Br1) ⊂ Y. Also, the C1,1 regularity of u
combined with the Monge-Ampère equation (2.3) implies that u is uniformly c-convex, which
implies by duality that uc ∈ C1,1(Br2). Hence, we can apply Theorem 2.3 with X = T ∗uc(Br2)

and Y = Br2 , and 0 < r3 � r1 so that Br3 ⊂⊂ X, to deduce that ũ ∈ C1,5/6(Br3) and

ũc̃ ∈ C1,5/6(Tu(Br3)), provided δ̄ is sufficiently small. Then by Theorem 2.3 we have that
ũ ∈ C2,α(Br3/2), and we conclude the proof by a standard covering argument. �

4.4. Proof of Corollary 2.2 and 2.6. For Corollary 2.2, the condition that (M,G) is
non-focal combined with the property u ∈ C1 ensure that, for any given x0 ∈ M, the
point Tu(x0) stays at some positive distance away from the cut locus of x0 (see for instance
[32, 23]). Hence we can localize the problem by using coordinate charts around x0 and
Tu(x0) so that the cost satisfies (C0)-(C3) in a neighborhood of (x0, Tu(x0)). Then we can
finish the proof of Corollary 2.2 by applying Theorem 2.1 to this localized problem and
using a standard covering argument.

The proof of Corollary 2.6 is similar. Note that the Lipschitz continuity of Tu is equivalent
to u ∈ C1,1, which implies that the “stay away from the cut locus” property holds even
without the nonfocality assumption (see for instance [10]). �

4.5. Proof of Theorem 2.7. As in [9], it is enough to understand the regularity of ũ at
the boundary. Given x0 ∈ ∂X, consider y0 = Tu(x0) ∈ ∂Y , and assume without loss of
generality that x0 = y0 = 0.

We first perform a transformation as that of (3.1), and up to another transformation with
uniformly bounded norm, we can assume that u1 = 1

2 |x|
2 + O(|x|2+α) and that {xn = 0}

is the tangent plane to ∂X at 0. Then it follows by (3.6) that uc11 = 1
2 |y|

2 +O(|y|2+α) and
that {yn = 0} is the tangent plane to ∂Y at 0. This allows us to follow the same argument

of the proof of [9, Corollaries 2.3 and 2.4] to conclude that ũ ∈ C2,α′(X̄) for some α′ < α,
provided δ̄ is sufficiently small. �
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