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Abstract. Let E ⊂ Rn, n ≥ 2, be a set of finite perimeter with |E| = |B|, where B denotes the unit ball.
When n = 2, since convexification decreases perimeter (in the class of open connected sets), it is easy to
prove the existence of a convex set F , with |E| = |F |, such that

P (E)− P (F ) ≥ c |E∆F |, c > 0.

Here we prove that, when n ≥ 3, there exists a convex set F , with |E| = |F |, such that

P (E)− P (F ) ≥ c(n) f
(
|E∆F |

)
, c(n) > 0, f(t) =

t

| log t| for t ≪ 1.

Moreover, one can choose F to be a small C2-deformation of the unit ball. Furthermore, this estimate is
essentially sharp as we can show that the inequality above fails for f(t) = t.

Interestingly, the proof of our result relies on a new stability estimate for Alexandrov’s Theorem on
constant mean curvature sets.

1. Introduction

In shape analysis, perimeter has been frequently used to measure the convexity of a set. For instance,
since for any open connected set E ⊂ R2 the convex hull cov(E) is the set with minimal perimeter among
those containing E, one can use the closeness of the ratio

P (cov(E))

P (E)

to 1 in order to measure the convexity of E; see e.g. [24] and the references therein. Moreover, via this
planar property one can explicitly calculate the difference between the perimeters of the sets and obtain
a quantitative inequality:

P (E)

|E|
1
2

− P (cov(E))

|cov(E)|
1
2

≥
√
π

|cov(E) \ E|
|cov(E)|

1
2 |E|

1
2

∀E ⊂ R2 open, connected, and bounded. (1.1)

In particular, this implies that, for |E| = |B| = π,

P (E)− P (F ) ≥ 1

2
√
2
|E∆F |, (1.2)

where F is obtained dilating cov(E) so that |F | = |E|, see Appendix A.
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Unfortunately, when n ≥ 3, convexity of a set is not related anymore to the perimeter of its convex
hull. Indeed, there are many open connected sets E ⊂ Rn for which

P (cov(E)) > P (E)

(a standard example is a dumbbell-type set with a long handle). Still, it is reasonable to ask if an
inequality similar to (1.1) holds in higher dimension with a convex set different from cov(E). Namely,
given a set E ⊂ Rn with |E| = |B| (here and in the sequel, B denotes the unit ball), we would like to
find a set F in the collection C of convex sets with |E| = |F | so that

P (E)− P (F ) ≥ c(n) f
(
|E∆F |

)
where c(n) > 0, f ≥ 0 is an increasing function, and E∆F := (E ∪ F ) \ (E ∩ F ). In addition, one would
like to optimize the asymptotic behavior of f near the origin.

When the collection C is the class of volume-constrained minimizers for the perimeter, i.e., the class
of balls, such an inequality is called the stability of isoperimetric inequality. The sharp behavior of f was
a long-standing open problem that was eventually settled by Fusco, Maggi, and Pratelli in [13]: they
proved that, for any set of finite perimeter E ⊂ Rn with |E| = |B|, one has

P (E)− P (B) ≥ c(n)

(
min
x∈Rn

|E∆(x+B)|
)2

. (1.3)

In other words, f(t) = tα with α = 2, and the result is sharp in the sense that such an inequality is false
for α < 2.

This sharp result was extended to the general Wulff inequality in [7], which involves a generalization
of Euclidean perimeter in the anisotropic case, and the sharp stability with power f(t) = tα, α = 2, was
proven. Afterward, some other stronger distances were also considered, see e.g. Fusco and Julin [12] and
Neumayer [22].

Still in this direction, strong stability for a special class of perimeters given by crystalline norms was
shown by the authors [8]. There we considered the perimeter PK for which the volume-constrained
minimizer is given by a convex polyhedron K and we proved that, for any set of finite perimeter E ⊂ Rn

close to K with |E| = |K|,

PK(E)− PK(K ′) ≥ c(n,K)

(
min

K′∈C (K)
|E∆K ′|

)
,

where C (K) consists of polyhedra whose faces are parallel to the ones of K. Note that in this case,
similarly to (1.1), one has f(t) = tα with α = 1.

In this paper we focus on the classical Euclidean perimeter and investigate the analogue of (1.1) in
arbitrary dimension. Our main result in this direction is Theorem 1.1 below, which shows the strong
stability of convexity with respect to the perimeter. We note that the result is true for n ≥ 2, although
its interest is mainly in the case n ≥ 3.

Before stating our theorem, let us introduce the following notation: For every continuous function
v : Sn−1 → R with ∥v∥L∞(Sn−1) ≤ 1

2 , we define the open set

B + v =
{
y ∈ Rn : y = tω(1 + v(ω)) for some ω ∈ Sn−1, 0 ≤ t < 1

}
. (1.4)

Also, we shall write x+ (B + v) to denote the translation of the set B + v by a vector x ∈ Rn. Now we
state our first main result.
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Theorem 1.1. Let E ⊂ Rn be a set of finite perimeter with |E| = |B|. Define, for λ > 0,

Cλ :=
{
F = x+ (B + v) : v ∈ C2(Sn−1), ∥v∥C2(Sn−1) ≤ λ, x ∈ Rn, |F | = |B|

}
.

Then there exist (small) dimensional constants λ = λ(n) > 0 and c(n) > 0 such that the following holds:
For each 0 < λ ≤ λ we can find a uniformly convex set F ∈ Cλ satisfying

P (E)− P (F ) ≥ c(n)λf
(
|E∆F |

)
, (1.5)

where

f(t) =

{ t
| log t| when 0 < t < 1

e
1
e when t ≥ 1

e

. (1.6)

Remark 1.2. Estimate (1.5) degenerates as λ → 0. This is expected since the collection C0 only consists
of translations of the unit ball and, in that case, the sharp result is provided by (1.3).

Remark 1.3. Even if the set E in Theorem 1.1 belongs to Cλ, it is not necessarily true (at least with the
methods used in this paper) that F = E. Namely, F cannot be regarded a projection of E on the class
of (smooth uniformly) convex sets. This is different from the results in [8].

Remark 1.4. As discussed in Section 3.2 the choice of the function f is essentially sharp for n ≥ 3, since
inequality (1.5) is false with f(t) = t.

To prove Theorem 1.1, we will need a stability result for Alexandrov’s Theorem in the class of sets
that are Lipschitz-close to a sphere. Let us recall some recent results in this direction.

After a series of very general and fundamental results [3, 15, 5] that deal with bubbling phenomena,
several authors tried to understand the stability of Alexandrov’s Theorem in the absence of bubbling.

The first fundamental results in this directions are contained in [15, Theorems 1.8 and 1.10], where
Krummel and Maggi consider the setting of sets that are Lipschitz-close to a sphere (as in the current
paper) and proved sharp stability estimates in terms of the L2-oscillations of the mean curvature.

Later, Ciraolo and Vezzoni [4] proved that when ∂E is a connected closed hypersurface of class C2 with
small oscillation in the mean curvature H∂E , then there exist two concentric balls Bri(x0) and Bre(x0)
such that

Bri(x0) ⊂ E ⊂ Bre(x0), re − ri ≤ C

(
max
x∈∂E

H∂E(x)− min
x∈∂E

H∂E(x)

)
. (1.7)

This result is obtained by a refined use of the moving plane method, and the constant C depends on the
C2 norm of ∂E (more precisely, on a uniform interior-ball condition).

After this, Magnanini and Poggesi [20] were able to replace the L∞-oscillation of H∂E in (1.7) with an
L2-oscillation, but at the price of a non-sharp power when n > 3 (see also [18, 19] for stability estimates
with an L1-oscillation).

In this paper we prove a sharp stability result for Alexandrov’s Theorem in the class of sets that are
Lipschitz-close to a sphere. This result is similar to [15, Theorem 1.10] (see also [21, Theorem 1.3]).
However, our proof provides a control on the difference between an arbitrary constant µ and n− 1 when
measuring the oscillations of the mean curvature around µ. This difference, although small at first sight,
is essential for our application.

It is interesting to notice that Theorem 1.6 implies stability estimates for Alexandrov’s Theorem that
improve the results mentioned above (see Corollary 1.8 and Remark 1.9 below). The experts probably
knew these consequences (as they also follow from [15, Theorem 1.10]), but we could not find them in
the literature, so we decided to present them here for the convenience of the reader.

To state the result, we first define the class of nearly spherical sets (recall the notation introduced in
(1.4)).
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Definition 1.5. Let σ > 0 be a small constant. A set E ⊂ Rn is said σ-nearly spherical if E = B + u
for some function u : Sn−1 → R satisfying ∥u∥W 1,∞(Sn−1) ≤ σ.

We also recall that W−1,2(Sn−1) denotes the dual space of W 1,2(Sn−1), where

∥u∥2W 1,2(Sn−1) := ∥u∥2L2(Sn−1) + ∥Dτu∥2L2(Sn−1),

Here and in the sequel, Dτ denotes the tangential gradient on the unit sphere.
Now we can state our stability result of Alexandrov’s Theorem for nearly spherical sets.

Theorem 1.6. There exists σ = σ(n) > 0 such that the following holds: let H = B + w be a σ-nearly
spherical set such that

0 =

∫
H
x dx,

and let H∂H denote the (distributional) mean curvature of ∂H. Assume that H∂H ∈ L1(∂H), and define

S(ω) := H∂H

(
ω(1 + w(ω))

)
for H n−1-a.e. ω ∈ Sn−1. (1.8)

Then, for any µ ∈ R,

∥w∥W 1,2(Sn−1) + |µ− (n− 1)| ≤ C(n)∥S − µ∥W−1,2(Sn−1) (1.9)

for some dimensional constant C(n) > 0. In particular

|H∆B| ≤ C(n) inf
µ∈R

∥S − µ∥W−1,2(Sn−1). (1.10)

Now, assume in addition that ∥w∥C1,α ≤ M for some α,M > 0, and that H∂H ∈ Lp(∂H) for some

p ∈
[
2n−2
n+1 ,∞

]
with p > 1. Then

∥w∥W 2,p(Sn−1) ≤ C(n, p, α,M) inf
µ∈R

∥H∂H − µ∥Lp(∂H) ∀ p ∈
[
2n− 2

n+ 1
,∞

)
with p > 1, (1.11)

∥D2
τw∥BMO(Sn−1) ≤ C(n, α,M) inf

µ∈R
∥H∂H − µ∥L∞(∂H). (1.12)

Remark 1.7. The assumption H∂H ∈ L1(∂H) is only used to define S in (1.8). However this is not strictly
need, since for a nearly spherical set H it is possible to define S ∈ W−1,2(Sn−1) distributionally using
formula (2.1). So, by approximation, (1.9) and (1.10) hold for any σ-nearly spherical set with S defined
as in (2.1), without needing any assumption on H∂H .

A direct consequence of Theorem 1.6 is the following corollary, which improves the stability results for
the Alexandrov’s Theorem contained in [4, 18, 19, 20].

Corollary 1.8. Let p ∈ (n− 1,∞]. There exists a constant η = η(n, p) > 0, depending only on n and p,
such that the following holds: Let E ⊂ Rn satisfy |E∆B| ≤ η and assume that the mean curvature H∂E

of ∂E belongs to Lp(∂E). Then there exist two concentric balls Bri(x0) and Bre(x0) such that

Bri(x0) ⊂ E ⊂ Bre(x0), re − ri ≤ C(n, p) inf
µ∈R

∥H∂E − µ∥Lp(∂E),

for some constant C(n, p) depending only on p and n.
Moreover, E − x0 = B + w is a nearly spherical set diffeomorphic to a sphere, with

∥w∥C1(Sn−1) ≤ C(n, p) inf
µ∈R

∥H∂E − µ∥Lp(∂E).
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Remark 1.9. Corollary 1.8 can be combined with results contained in the literature to obtain new sharp
stability estimates for the Alexandrov’s Theorem. For instance, it follows from [5] that if

∥H∂E − (n− 1)∥L2(∂E) ≪ 1

then E is L1-close to a finite union of unit spheres. Hence, if E satisfies some additional assumptions that
prevent bubbling (e.g., either assuming that P (E) < 2P (B1), or E satisfies an interior cone condition),
then we know that E is L1-close to a single sphere. Thus, if H∂E is close to a constant in Lp for some
p > n− 1, Corollary 1.8 can be applied to obtain a sharp stability estimate. In particular, this allows us
to improve the results obtained in [4, 18, 19, 20].

It is worth observing that our method is robust, and can likely be extended to the setting of general
smooth elliptic integrand considered in [5]. Also, it may be used to improve the convergence results in
[6] for liquid drops of small mass lying at equilibrium under the action of a potential energy.

The paper is organized as follows. In Section 2 we prove our stability results for the Alexandrov’s
Theorem, namely Theorem 1.6 and Corollary 1.8. Then, in Section 3 we prove a version of Theorem 1.1
in the nearly spherical case, i.e., Proposition 3.1, and we comment on the optimality of the result. Finally,
the proof of Theorem 1.1 is presented in Section 4. In the appendix we prove (1.1) and (1.2).

Notation. We often write positive constants as C(·) and c(·), with the parentheses including all the
parameters on which the constant depends, and simply write C or c if the constant is absolute. Usually
C(·) denotes a constant larger than 1, and c(·) for a constant less than 1. The constant C(·) may vary
between appearances, even within a chain of inequalities.

The Euclidean ball centered at x with radius r is denoted by Br(x), and the unit ball centered at the
origin is simply denoted by B. We denote by Sn−1 the unit sphere, and by H n−1 the (n−1)-dimensional
Hausdorff measure. We recall that Dτ denotes the tangential gradient on the unit sphere.

Acknowledgments. The authors are thankful to Francesco Maggi for useful comments on a preliminary
version of this paper.

2. Stability estimates for Alexandrov’s Theorem

In this section we prove our stability results for Alexandrov’s Theorem, namely Theorem 1.6 and
Corollary 1.8.

2.1. Proof of Theorem 1.6. To simplify the calculation, we define ξ := log(1 + w) and note that

∂H =
{
Sn−1 ∋ ω 7→ eξ(ω)ω

}
. Then the mean curvature of ∂H satisfies the following identity in the weak

sense:

eξS =
n− 1√

1 + |Dτξ|2
− divτ

(
Dτξ√

1 + |Dτξ|2

)
, (2.1)

where S(ω) = H∂H

(
eξ(ω)ω

)
is the mean curvature read on the sphere; see [16, Formula (4)]1 for more

details. Note that, since ξ ∈ W 1,∞(Sn−1) by assumption, it follows from (2.1) that S ∈ W−1,2(Sn−1).
Let µ ∈ R be an arbitrary constant, and set R := S −µ. Then, in the current notation, (2.1) becomes

n− 1√
1 + |Dτξ|2

− divτ

(
Dτξ√

1 + |Dτξ|2

)
− µeξ −Reξ = 0. (2.2)

1Note that our definition of mean curvature equals to (n−1)H in [16]. Also, the dimension n in [16] corresponds to n−1
in our setting.
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Hence, testing this equation against e−ξ we obtain

|Sn−1|
(
µ− (n− 1)

)
=

∫
Sn−1

(
− |Dτξ|2√

1 + |Dτξ|2
e−ξ + (n− 1)

(
1√

1 + |Dτξ|2
e−ξ − 1

)
+R

)
dH n−1.

Thus, since ∥ξ∥W 1,∞ ≤ σ and∣∣∣∣∫
Sn−1

RdH n−1

∣∣∣∣ ≤ ∥1∥W 1,2(Sn−1)∥R∥W−1,2(Sn−1) = C(n)∥R∥W−1,2(Sn−1),

we get∣∣µ− (n− 1)
∣∣ ≤ C(n)

(
∥Dτξ∥2L2(Sn−1) + ∥R∥W−1,2(Sn−1)

)
+ C(n)

∫
Sn−1

∣∣∣∣ 1√
1 + |Dτξ|2

− 1

∣∣∣∣e−ξ dH n−1 + C(n)

∣∣∣∣∫
Sn−1

(
e−ξ − 1

)
dH n−1

∣∣∣∣
≤ C(n)

(
∥Dτξ∥2L2(Sn−1) + ∥ξ∥2L2(Sn−1) + ∥R∥W−1,2(Sn−1)

)
+ C(n)

∣∣∣∣∫
Sn−1

ξ dH n−1

∣∣∣∣,
where we used that e−ξ − 1 = −ξ +O(ξ2). Also, since |H| = |B|, we have∣∣∣∣∫

Sn−1

ξ dH n−1

∣∣∣∣ ≤ (
n− 1

2
+O(σ)

)∫
Sn−1

ξ2 dH n−1,

see [11, Step 1, Theorem 3.1].2 Hence, we have proved that∣∣µ− (n− 1)
∣∣ ≤ C(n)

(
∥ξ∥2W 1,2(Sn−1) + ∥R∥W−1,2(Sn−1)

)
. (2.3)

Testing now (2.2) against ξ, and using again that ∥ξ∥W 1,∞ ≤ σ, thanks to (2.3) we get∫
Sn−1

(
|Dτξ|2√
1 + |Dτξ|2

− (n− 1)
(
eξ − 1

)
ξ

)
dH n−1

=

∫
Sn−1

ξeξRdH n−1 + (n− 1)

∫
Sn−1

(
1− 1√

1 + |Dτξ|2

)
ξ dH n−1 +

(
µ− (n− 1)

) ∫
Sn−1

ξeξ dH n−1

≤ ∥ξeξ∥W 1,2(Sn−1)∥R∥W−1,2(Sn−1) + C(n)σ∥Dτξ∥2L2(Sn−1)

+ C(n)
(
∥ξ∥2W 1,2(Sn−1) + ∥R∥W−1,2(Sn−1)

)
∥ξ∥L1(Sn−1)

≤ C(n)∥ξ∥W 1,2(Sn−1)∥R∥W−1,2(Sn−1) + C(n)σ∥ξ∥2W 1,2(Sn−1).

On the other hand, since
(
eξ − 1

)
ξ = ξ2 +O(ξ3), we can bound the first term above from below as∫

Sn−1

(
|Dτξ|2√
1 + |Dτξ|2

− (n− 1)
(
eξ − 1

)
ξ

)
dH n−1

≥
√

1− σ2

∫
Sn−1

|Dτξ|2 dH n−1 −
(
(n− 1) + C(n)σ

) ∫
Sn−1

ξ2 dH n−1.

2In [11] the author shows that ∣∣∣∣∫
Sn−1

w dH n−1

∣∣∣∣ ≤ (
n− 1

2
+O(σ)

)∫
Sn−1

w2 dH n−1.

However, since ξ = log(1 + w) = w +O(w2), we can replace w with ξ.
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Hence, combining the two inequalities above, we conclude that

(1− C(n)σ)

∫
Sn−1

|Dτξ|2 dH n−1 −
(
n− 1 + C(n)σ

) ∫
Sn−1

ξ2 dH n−1

≤ C(n)∥ξ∥W 1,2(Sn−1)∥R∥W−1,2(Sn−1). (2.4)

We now observe that, since H and B have the same volume and the same barycenter, if {Y0, . . . , Yn}
denote the eigenfunctions corresponding to the first two eigenvalues of the Laplace-Beltrami operator on
the sphere, then ∣∣∣∣∫

Sn−1

Yi ξ dH
n−1

∣∣∣∣ ≤ C(n)σ∥ξ∥L2(Sn−1) for i = 0, . . . , n,

see e.g. [11, Step 1, Theorem 3.1].3 This implies that, for σ ≪ 1, the Poincaré constant for ξ is strictly
larger than n− 1 + ζ for some ζ = ζ(n) > 0, namely∫

Sn−1

|Dτξ|2 dH n−1 ≥ (n− 1 + ζ)

∫
Sn−1

ξ2 dH n−1.

Thus, combining this inequality with (2.4) we finally obtain

∥ξ∥2W 1,2(Sn−1) ≤ C(n)∥ξ∥W 1,2(Sn−1)∥R∥W−1,2(Sn−1),

or equivalently
∥ξ∥W 1,2(Sn−1) ≤ C(n)∥R∥W−1,2(Sn−1). (2.5)

Since ξ := log(1 + w) and R = S − µ with µ arbitrary, (2.5) and (2.3) imply (1.9).
Finally, since

|H∆B| =
∫
Sn−1

|(1 + w)n − 1| dH n−1 ≤ C(n)∥w∥L1(Sn−1) ≤ C(n)∥w∥L2(Sn−1),

(1.10) follows from (1.9).
To prove higher regularity, we rewrite (2.1) as

divτ

(
Dτw√

(1 + w)2 + |Dτw|2

)
+ (n− 1)

(
1− 1 + w√

(1 + w)2 + |Dτw|2

)
+ µw = (n− 1)− µ− (1 + w)R.

Since 1− 1√
1+|z|2

=
∫ 1
0

|z|2
(1+t|z|2)3/2 dt, setting z = Dτw

1+w we get

1− 1 + w√
(1 + w)2 + |Dτw|2

=

∫ 1

0

(1 + w)|Dτw|2

((1 + w)2 + t|Dτw|2)3/2
dt =

(∫ 1

0

(1 + w)Dτw

((1 + w)2 + t|Dτw|2)3/2
dt

)
·Dτw

Also, computing the divergence, we have

divτ

(
Dτw√

(1 + w)2 + |Dτw|2

)
=

(
1 + w)2 + |Dτw|2

)
∆τw −D2

τw[Dτw,Dτw]− (1 + w)|Dτw|2(
(1 + w)2 + |Dτw|2

)3/2
=

(
1 + w)2 + |Dτw|2

)
∆τw −D2

τw[Dτw,Dτw](
(1 + w)2 + |Dτw|2

)3/2 − (1 + w)Dτw(
(1 + w)2 + |Dτw|2

)3/2 ·Dτw.

Hence, w solves a uniformly elliptic equation of the form

A(w,Dτw) : D
2
τw + b(w,Dτw) ·Dτw + µw = (n− 1)− µ− (1 + w)R, (2.6)

3As already noted before, in [11] these properties are shown for w in place of ξ, but since ξ = w+O(w2), we can replace
w with ξ.
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where the coefficients are smooth in the range of w (recall that ∥w∥W 1,∞ ≤ σ ≪ 1) and given by

A(s, z) :=

(
(1 + s)2 + |z|2

)
Id− z ⊗ z(

(1 + s)2 + |z|2
)3/2 ,

b(s, z) := (n− 1)

∫ 1

0

(1 + s)z

((1 + s)2 + t|z|2)3/2
dt− (1 + s)z

((1 + s)2 + |z|2)3/2
.

These considerations are particularly useful when ∥w∥W 1,∞ ≤ σ ≪ 1 also satisfies ∥w∥C1,α ≤ M for some
α,M > 0. Indeed, in this case w solves a uniformly elliptic equations with Hölder coefficients. So it
follows from Calderon-Zygmund Theory that

∥w∥W 2,p(Sn−1) ≤ C(n, p, α,M)
(
∥ξ∥L1(Sn−1) + ∥(n− 1)− µ− (1 + w)R∥Lp(Sn−1)

)
∀ p ∈ (1,∞),

∥D2
τξ∥BMO(Sn−1) ≤ C(n, α,M)

(
∥ξ∥L1(Sn−1) + ∥(n− 1)− µ− (1 + w)R∥L∞(Sn−1)

)
.

Recalling (2.5), we conclude from Sobolev’s embedding4 that

∥w∥W 2,p(Sn−1) ≤ C(n, p, α,M)
(
∥R∥Lp(Sn−1) + ∥R∥W−1,2(Sn−1)

)
≤ C(n, p, α,M)∥R∥

L
max{p, 2n−2

n+1 }(Sn−1)
∀ p ∈ (1,∞),

∥D2
τw∥BMO(Sn−1) ≤ C(n, α,M)∥R∥L∞(Sn−1).

Note now that, since w is uniformly Lipschitz, integrations over Sn−1 or over ∂H are equivalent up to
dimensional multiplicative constants. Hence, the estimates above imply (1.11) and (1.12), concluding the
proof of the theorem. □

2.2. Proof of Corollary 1.8. Since E is η-close in L1 to a ball and its mean curvature belongs to Lp

with p > n− 1, the regularity theory for almost-minimal hypersurfaces (see for instance [23, Chapter 5])
implies that E = B+u is a nearly spherical set for some function u satisfying ∥u∥C1,α(Sn−1) = oη(1) with
α = α(n) > 0, where oη(1) denotes a dimensional constant that goes to 0 as η → 0. In particular, if η is
small enough we can find a translation x0, with |x0| = oη(1), such that H := E − x0 is a nearly spherical
set of the form B + w with barycenter at the origin, where ∥w∥C1,α(Sn−1) ≤ oη(1).

Thus, if η = η(n, p) is sufficiently small, we can apply (1.11) and Sobolev’s embedding to deduce that

∥w∥C1(Sn−1) ≤ C(n, p)∥w∥W 2,p(Sn−1) ≤ C(n, p) inf
µ∈R

∥H∂H − µ∥Lp(∂H).

Since B1−∥w∥L∞(Sn−1)
⊂ H ⊂ B1+∥w∥L∞(Sn−1)

, this concludes the proof. □

3. Nearly spherical case

In this section we first prove Theorem 1.1 in the case when E is a σ-nearly spherical set (recall
Definition 1.5). Then we show that our choice of f is essentially optimal by proving that, for n ≥ 3, f
cannot be chosen to be linear near the origin.

4Since W 1,2(Sn−1) ⊂ L
2n−2
n−3 (Sn−1), we have the dual inclusion L

2n−2
n+1 (Sn−1) ⊂ W−1,2(Sn−1).
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3.1. A version of Theorem 1.1 in the nearly spherical case. We have the following proposition,
that corresponds to Theorem 1.1 in the nearly spherical case.

Proposition 3.1. Let f be defined as in (1.6). There exist small dimensional constants σ(n) > 0 and
λ(n) > 0, and a dimensional constant C(n) > 1, such that the following holds: Let σ ∈ (0, σ(n)),
λ ∈ (0, λ(n)), and let E be a σ-nearly spherical set with |E| = |B|. Then one can find a point x0 ∈ Rn

and a uniformly convex set of class C2 of the form

F = x0 + (B + v),

with ∥v∥C1(Sn−1) ≤ C(n) λ
| log σ| , ∥D

2
τv∥C0(Sn−1) ≤ C(n)λ, and |F | = |E|, such that

P (E)− P (F ) ≥ λ f
(
|E∆F |

)
. (3.1)

Proof. As before, we write the tangential gradient of u as Dτu. Before starting the proof, we observe
that

f ′(t) =
1− log t

log2 t
∈
(
0, 2| log t|−1

)
and f ′′(t) =

−2 + log t

t(log t)3
> 0 for t ∈ (0, 1/e). (3.2)

• Step 1: Solve a suitable variational problem. Given λ > 0 small (the smallness to be fixed later),
consider the variational problem

min
{
P (G) + 2λf(|E∆G|

)
: |G| = |B|

}
, (3.3)

and define ℓ to be the minimal value in the problem above. We claim that a minimizer exists.
Indeed, let Gj be a minimizing sequence for (3.3). Thanks to the uniform boundedness of P (Gj), up

to a subsequence we know that Gj → G∞ in L1
loc(Rn).

Set δ := |E|−|G∞|
|E| ∈ [0, 1]. If δ = 0 (i.e., |G∞| = |E| = |B|), then it follows immediately by the lower

semicontinuity of the perimeter that G∞ is a minimizer. Otherwise, we apply [9, Lemma 2.2] to write
Gj = Hj ∪Rj , where Hj and Rj are disjoint sets such that

|Hj∆G∞| → 0, Rj → ∅ locally, P (Hj) + P (Rj)− P (Gj) → 0.

Hence |Rj | → δ|E| = δ|B|, and it follows from the semicontinuity of the perimeter and the isoperimetric
inequality that

n|B|+ 2λf
(
|E∆G∞|+ δ|E|

)
≤ n|B|

(
(1− δ)(n−1)/n + δ(n−1)/n

)
+ 2λf

(
|E∆G∞|+ δ|E|

)
≤ P (G∞) + n|B|δ(n−1)/n + 2λf

(
|E∆G∞|+ δ|E|

)
≤ lim inf

j→∞
P (Hj) + n|B|1/n|Rj |(n−1)/n + 2λf

(
|E∆Hj |+ |Rj |

)
≤ lim inf

j→∞
P (Hj) + P (Rj) + 2λf

(
|E∆Hj |+ |Rj |

)
= lim inf

j→∞
P (Gj) + 2λf

(
|E∆Gj |

)
= ℓ,

(3.4)

which shows in particular that

P (G∞) + n|B|δ(n−1)/n + 2λf
(
|E∆G∞|+ δ|E|

)
≤ ℓ, (3.5)

On the other hand, using B as competitor, since E is σ-nearly spherical we get

ℓ ≤ n|B|+ 2λf
(
|E∆B|

)
≤ n|B|+ 2λf(C(n)σ).

Combining the inequality above with (3.4) we deduce that

f
(
|E∆G∞|+ δ|E|

)
≤ f(C(n)σ),
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from which it follows (since f is strictly increasing on [0, 1/e]) that

|E∆G∞|+ δ|E| ≤ C(n)σ. (3.6)

In particular, this implies that δ ≤ C(n)σ ≪ 1.
Recalling that δ > 0, we consider 1

(1−δ)1/n
G∞ as competitor. Then, since E is nearly spherical we get

ℓ ≤ P
( 1

(1− δ)1/n
G∞

)
+ 2λf

(∣∣∣E∆
1

(1− δ)1/n
G∞

∣∣∣)
=

1

(1− δ)(n−1)/n
P (G∞) + 2λf

(
1

1− δ

∣∣(1− δ)1/nE∆G∞
∣∣)

≤ 1

(1− δ)(n−1)/n
P (G∞) + 2λf

(
1

1− δ

(
|E∆G∞|+ C(n)δ

))
.

(3.7)

Hence, combining (3.5) and (3.7), since f is 2-Lipschitz we get

n|B|δ(n−1)/n ≤
(

1

(1− δ)(n−1)/n
− 1

)
P (G∞) + 2λf

(
1

1− δ

(
|E∆G∞|+ C(n)δ

))
− 2λf

(
|E∆G∞|

)
≤ C(n)δ,

a contradiction if σ > 0 (and therefore δ > 0) is sufficiently small. This proves that δ = 0 and therefore
G∞ is a minimizer.

Note that, as a consequence of (3.6) applied with δ = 0 we deduce that, for any minimizer G∞,

|E∆G∞| ≤ C(n)σ ≪ 1. (3.8)

• Step 2: Construct the set F . Let H denote a minimizer of the variational problem (3.3) and note that,
for any set G ⊂ Rn with |G| = |E|, since f is 2-Lipschitz (see (3.2)) we have

P (H) ≤ P (G) + 2λ
(
f(|E∆G|)− f(|E∆H|)

)
≤ P (G) + 4λ|G∆H|.

Also, by (3.8) applied with G∞ = H, we have

|E∆H| ≤ C(n)σ ≪ 1. (3.9)

In particular, since E is σ-nearly spherical it follows that |H∆B| ≤ C(n)σ. Thus, by the theory regu-
larity for almost-minimizers close to a ball (see for instance [17, Theorem 26.3]), H = B + w for some
∥w∥C1,α(Sn−1) = oσ(1) with α = α(n) > 0, where oσ(1) denotes a dimensional constant that goes to 0 as
σ → 0. Moreover ∂H satisfies the Euler-Lagrange equation

H∂H + 2λf ′(|E∆H|
) (

1H − 1E
)
= µ on ∂H, (3.10)

where H∂H denotes the mean curvature, and µ > 0 is a Lagrange multiplier associated to the volume
constraint.

Let

x0 =
1

|H|

∫
H
x dx,

denote the barycenter of H. As H is nearly spherical, then |x0| = oσ(1). Hence, the set Hx0 := H − x0
is nearly spherical, has barycenter at the origin, and satisfies (thanks to (3.10))

|H∂Hx0
− µ| ≤ 2λf ′ (|E∆H|) on ∂Hx0 .
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Also, ∥wx0∥C1,α(Sn−1) = oσ(1) ≤ 1 for σ sufficiently small. Thus, if we write Hx0 = B+wx0 , we can apply
(1.11) and (1.12) to deduce that

∥wx0∥W 2,n(Sn−1) + ∥D2
τwx0∥BMO(Sn−1) ≤ C(n) inf

µ∈R
∥H∂H − µ∥L∞(∂H) ≤ C(n)λf ′(|E∆H|

)
. (3.11)

In particular, Sobolev’s inequality, (3.2), and (3.9), imply

∥wx0∥C1,α(Sn−1) ≤ C(n)∥wx0∥W 2,n(Sn−1) ≤ C(n)λf ′(|E∆H|
)
≤ C(n)

λ

| log σ|
, (3.12)

while John-Nirenberg’s Lemma (see for instance [14, Chapter 7]) yields

∥D2
τwx0∥Lq(Sn−1) ≤ C(n)q∥D2

τwx0∥BMO(Sn−1) ≤ C(n)λqf ′(|E∆H|
)

∀ q ∈ [1,∞). (3.13)

We now define wϵ as the solution to the heat equation

∂ϵwϵ = ∆Sn−1wϵ, w0 = wx0 .

Then, denoting by pϵ the heat kernel on the unit sphere, we have

wϵ(x) =

∫
Sn−1

wx0(y)pϵ(x, y) dH
n−1(y),

and pϵ ≥ 0 satisfies

∥pϵ(x, ·)∥L∞(Sn−1) ≤ C(n)ϵ
1−n
2 , ∥pϵ(x, ·)∥L1(Sn−1) = 1. (3.14)

In particular, recalling (3.12),

∥wϵ∥C1,α(Sn−1) ≤ ∥wx0∥C1,α(Sn−1) ≤ C(n)
λ

| log σ|
.

Also, it follows from Hölder’s inequality, (3.13), and (3.14), that

∥D2
τwϵ∥L∞(Sn−1) ≤ sup

x∈Sn−1

∫
Sn−1

|D2
τwx0 |(y)pϵ(x, y) dH n−1(y)

≤ ∥D2
τwx0∥Lq(Sn−1) sup

x∈Sn−1

∥pϵ(x, ·)∥
L

q
q−1 (Sn−1)

≤ C(n)λqf ′(|E∆H|
)
ϵ
1−n
2q (3.15)

for all q ≥ 1. By minimizing the last term in (3.15) with respect to q, which is attained when

c(n)| log ϵ| ≤ q ≤ C(n)| log ϵ|,
we get

∥D2
τwϵ∥L∞(Sn−1) ≤ C(n)λ| log ϵ|f ′(|E∆H|

)
.

Hence, choosing ϵ := |E∆H|6 we eventually arrive at

∥D2
τwϵ∥L∞(Sn−1) ≤ C(n)λ

∣∣ log |E∆H|
∣∣f ′(|E∆H|

)
≤ C(n)λ, (3.16)

where the last inequality follows from (3.2). Moreover, using Poincaré inequality, it follows from (3.11)
and the theory of the heat flow5 that

∥wx0 − wϵ∥L2(Sn−1) ≤ C(n)ϵ1/2∥Dτwx0∥L2(Sn−1) ≤ C(n)λ|E∆H|3f ′(|E∆H|
)
, (3.17)

5The integration against the heat kernel pϵ locally corresponds to integrating wx0 against a convolution kernel of size

ϵ1/2, therefore

∥wx0 − wϵ∥L2(Sn−1) ≤ C(n)ϵ1/2∥Dτwx0∥L2(Sn−1).
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and from (3.16)

∥Dτwx0 −Dτwϵ∥L2(Sn−1) ≤ C(n)ϵ1/2∥D2
τwx0∥L2(Sn−1) ≤ C(n)λ|E∆H|3. (3.18)

Now, let F ′ = B + wϵ denote the
(
C(n) λ

| log σ|

)
-nearly spherical set defined by wϵ. As a consequence of

(3.16), the set F ′ is uniformly convex provided that λ is small enough (the smallness depending only the
dimension). Also, thanks to (3.17),

|F ′∆Hx0 | =
∫
Sn−1

|(1 + wϵ)
n − (1 + wx0)

n| dH n−1 ≤ C(n)∥wϵ − wx0∥L1(Sn−1)

≤ C(n)∥wϵ − wx0∥L2(Sn−1) ≤ C(n)λ|E∆H|3f ′(|E∆H|
)
. (3.19)

Since |Hx0 | = |H| = |E|, this implies that∣∣|F ′| − |E|
∣∣ ≤ |F ′∆Hx0 | ≤ C(n)λ|E∆H|3f ′(|E∆H|

)
namely E and F ′ have almost the same volume. Hence, if we define

ρ :=

(
|E|
|F ′|

)1/n

, F = ρF ′ + x0,

then

|ρ− 1| ≤ C(n)λ|E∆H|3f ′(|E∆H|
)
, (3.20)

and F = B + v is a uniformly convex
(
C(n) λ

| log σ|

)
-nearly spherical set of class C2. Furthermore, it

follows from (3.16) that ∥D2
τv∥C2 ≤ C(n)λ.

• Step 3: Estimate the difference of norms. We first use E as a competitor in (3.3) to get

P (E)− P (H) ≥ 2λf
(
|E∆H|

)
. (3.21)

Also, recalling the formula for the perimeter of a nearly spherical set G = B + u, namely (see e.g. [11,
Step 1, Theorem 3.1])

P (G) =

∫
Sn−1

(1 + u)n−2
√
(1 + u)2(n−1) + (1 + u)2(n−2)|Dτu|2 dH n−1; (3.22)

it follows from (3.17) and (3.18) that

|P (Hx0)− P (F ′)| ≤ C(n)

∫
Sn−1

(
|Dτwx0 −Dτwϵ|+ |wx0 − wϵ|

)
dH n−1 ≤ C(n)λ|E∆H|3. (3.23)

Moreover, (3.20) implies that

|P (F )− P (F ′)| ≤
∣∣ρn−1 − 1

∣∣P (F ′) ≤ C(n)λ|E∆H|3f ′(|E∆H|
)
P (F ′),

so (3.23) yields

|P (H)− P (F )| ≤ C(n)λ|E∆H|3f ′(|E∆H|
)
P (F ′) + C(n)λ|E∆H|3 ≤ C(n)λ|E∆H|3.

Hence, combining this bound with (3.21), we conclude that

P (E)− P (F ) = P (E)− P (H) + P (H)− P (F ) ≥ 2λ
(
f
(
|E∆H|

)
− C(n)|E∆H|3

)
. (3.24)
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Also, since f is 2-Lipschitz and f(t) ≥ ct2 for t ≤ 1, (3.19) and (3.20) yield, for σ ≪ 1,

f(|E∆F |) ≤ f(|E∆H|) + 2|Hx0∆F ′|+ 2|F ′∆(ρF ′)| ≤ f(|E∆H|) + C(n)|E∆H|3

≤
(
1 + C(n)|E∆H|

)
f(|E∆H|) ≤ 1 + C(n)|E∆H|

1− C(n)|E∆H|

(
f
(
|E∆H|

)
− C(n)|E∆H|3

)
≤ 2

(
f
(
|E∆H|

)
− C(n)|E∆H|3

)
.

Hence, combining this bound with (3.24) we finally get

P (E)− P (F ) ≥ λf
(
|E∆F |

)
,

as desired. □

3.2. On the sharpness of the function f . In this section we show that one cannot choose f(t) = t in
(3.1), and therefore also in (1.5), when n ≥ 3.

To prove this fact, we begin by recalling that the boundedness of the Laplacian of a function does
not imply the boundedness of its Hessian (in other words, (−∆Sn−1)−1 is not a bounded operator from
L∞(Sn−1) onto W 2,∞(Sn−1)). Hence, for any θ ≪ 1 we can find a function vθ : Sn−1 → R such that

∥vθ∥W 1,∞(Sn−1) ≤ 1, ∥∆Sn−1vθ∥L∞(Sn−1) ≤ 1, ∥D2
τvθ∥L∞(Sn−1) = θ−3.

In particular, if we define uθ := θ2vθ, it follows that

∥uθ∥W 1,∞(Sn−1) ≤ θ2, ∥∆Sn−1uθ∥L∞(Sn−1) ≤ θ2, ∥D2
τuθ∥L∞(Sn−1) = θ−1. (3.25)

Furthermore, up to adding to uθ a constant of size at most C(n)θ2, we can ensure that∫
Sn−1

(1 + uθ)
n = n|B|.

Let Eθ be the (C(n)θ2)-nearly spherical set defined by uθ, and note that |Eθ| = |B|. Also, since the
Hessian of uθ is large while its Laplacian is small, Eθ is not convex for θ ≪ 1.6

Consider now G = B + w a θ-nearly spherical set satisfying |G| = |Eθ|. If we define the function
F : (−1,∞)× Rn−1 → R as

F(s, z) := (1 + s)n−1

√
1 +

|z|2
(1 + s)2

,

recalling (3.22) we have

P (Eθ)− P (G) =

∫
Sn−1

(
F(uθ, Dτuθ)− F(w,Dτw)

)
dH n−1.

Now, since

F(s, z) = (1 + s)n−1

(
1 +

|z|2

2(1 + s)2

)
+O

(
|z|4

)
= 1+ (n− 1)s+

(n− 1)(n− 2)

2
s2 +

|z|2

2
+O

(
|s|3 + |z|3

)
,

(3.26)

6To see this one can note that, if λ1(x) ≤ . . . ≤ λn−1(x) denote the eigenvalues of D2
τuθ, then∣∣∣∣n−1∑

i=1

λi(x)

∣∣∣∣ ≤ θ2,
n−1
max
i=1

|λi(x)| = θ−1.

This implies that λn−1(x) ∼ θ−1 for θ ≫ 1, hence B + uθ is not convex.



14 ALESSIO FIGALLI, YI RU-YA ZHANG

we see that F is convex in a neighborhood of the origin (recall that n ≥ 3). Hence, if θ is sufficiently
small, it follows by convexity that

P (Eθ)− P (G) ≤
∫
Sn−1

(
∂sF(uθ, Dτuθ)(uθ − w) +DzF(uθ, Dτuθ) · (Dτuθ −Dτw)

)
dH n−1

=

∫
Sn−1

(
∂sF(uθ, Dτuθ)− divτ

(
DzF(uθ, Dτuθ)

))
(uθ − w) dH n−1.

Now, since F is smooth near the origin, ∂sF(0, 0) = 0 (see (3.26)), and ∥uθ∥W 1,∞(Sn−1) ≤ C(n)θ2, we get∣∣∂sF(uθ, Dτuθ)
∣∣ = ∣∣∂sF(uθ, Dτuθ)− ∂sF(0, 0)

∣∣ ≤ C(n)∥uθ∥W 1,∞(Sn−1) ≤ C(n)θ2.

Also, ∣∣divτ(DzF(uθ, Dτuθ)
)∣∣ ≤ ∣∣D2

szF(uθ, Dτuθ) ·Dτuθ|+
∣∣D2

zzF(uθ, Dτuθ) : D
2
τuθ

∣∣.
The first term in the right hand side above can be bounded by C(n)∥uθ∥W 1,∞(Sn−1) ≤ C(n)θ2. For the

second term, since D2
zzF(s, z) = Id +O(|s|+ |z|) (see (3.26)), it follows from (3.25) that∣∣D2

zzF(uθ, Dτuθ) : D
2
τuθ

∣∣ ≤ |∆Sn−1uθ|+ C(n)
(
|uθ|+ |Dτuθ|

)
|D2

τuθ| ≤ θ2 + C(n)θ ≤ C(n)θ.

Hence, in conclusion, we proved that

P (Eθ)− P (G) ≤ C(n)θ

∫
Sn−1

|uθ − w| dH n−1

≤ C(n)θ

∫
Sn−1

|(1 + uθ)
n − (1 + w)n| dH n−1 ≤ C(n)θ|Eθ∆G|. (3.27)

On the other hand, if θ is sufficiently small, we can apply Proposition 3.1 with λ ≤ λ(n), σ = C(n)θ2,
and E = Eθ, to find a (C(n)θ2)-nearly spherical set convex set Fθ such that

P (Eθ)− P (Fθ) ≥ λf
(
|Eθ∆Fθ|

)
.

Applying (3.27) with G = Fθ we conclude that

C(n)θ|Eθ∆Fθ| ≥ λf
(
|Eθ∆Fθ|

)
.

In particular, if one could choose f(t) = t, taking θ < λ
C(n) we would deduce that |Eθ∆Fθ| = 0. This

implies that Eθ is convex, a contradiction.

4. General case

Proof of Theorem 1.1. Recall that f(t) is 2-Lipschitz (see (3.2)). In particular f(t) ≤ 2t.
Let 0 < λ ≤ λ(n), where λ(n) is the one in Proposition 3.1. Suppose that the conclusion of the

theorem fails. Then there exists a sequence of sets of finite perimeter Ek, with |Ek| = |B|, such that

0 < P (Ek)− P (G) < γλf
(
|Ek∆G|

)
for all G ∈ Cλ (4.1)

where γ = γ(n) > 0 is a small dimensional constant to be fixed later. Taking G = B + x in (4.1) with
x ∈ Rn arbitrary, and using the stability result for the isoperimetric inequality from [13, 7], we have

inf
x∈Rn

|Ek∆(B + x)|2 ≤ C(n)
(
P (Ek)− P (G)

)
≤ C(n)γλ inf

x∈Rn
f
(
|Ek∆(B + x)|

)
≤ 2C(n)γλ inf

x∈Rn
|Ek∆(B + x)|,
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from which it follows that

inf
x∈Rn

|Ek∆(B + x)| ≤ 2C(n)γλ.

In particular, up to a translation, we can assume that

|Ek∆B| ≤ 2C(n)γλ. (4.2)

Consider the minimizer of

min{P (F ) + f
(
|Ek∆F |

)
: |Ek| = |F |}.

Assuming γ to be sufficiently small so that |Ek∆B| ≪ 1 (see (4.2)), the existence of such a minimizer Fk

follows from Step 1 in the proof of Proposition 3.1. Also, arguing as at the beginning of Step 2 in the
proof of Proposition 3.1, we deduce that Fk is an almost-minimizer that is L1 close to a ball. Hence, the
regularity theory for almost-minimizers (see for instance [17, Theorem 26.3]) implies that Fk = B + wk

for some ∥wk∥C1,α(Sn−1) → 0 as γλ → 0.

In particular, if γ is sufficiently small, we can apply Proposition 3.1 with λ
2C(n)

in place of λ to deduce

the existence of a convex set Gk ∈ Cλ (namely, Gk = xk + (B + vk) with ∥vk∥C2(Sn−1) ≤ λ) such that

P (Fk)− P (Gk) ≥
λ

2C(n)
f
(
|Fk∆Gk|

)
. (4.3)

On the other hand, taking G = Gk in (4.1) and using Ek as a competitor against the minimality of Fk,
we get

P (Fk) + f
(
|Ek∆Fk|

)
≤ P (Ek) ≤ P (Gk) + γλf

(
|Ek∆Gk|

)
. (4.4)

Hence, combining (4.3) and (4.4), we conclude that

λ

2C(n)
f
(
|Fk∆Gk|

)
+ f

(
|Ek∆Fk|

)
≤ γλf

(
|Ek∆Gk|

)
. (4.5)

Note now that f is convex on (0, 1/e) (see (3.2)) and f(t/2) ≥ 1
4f(t) for t > 0 small. Hence, since

|Fk∆Gk|+ |Ek∆Fk|+ |Ek∆Gk| ≪ 1, we get

f
(
|Fk∆Gk|

)
+ f

(
|Ek∆Fk|

)
≥ 2f

(
|Ek∆Gk|

2

)
≥ 1

2
f
(
|Ek∆Gk|

)
.

Combining this inequality with (4.5) we finally get

1

2
min

{
λ

2C(n)
, 1

}
≤ γλ,

a contradiction if γ = γ(n) > 0 is chosen sufficiently small. □

Appendix A. Strong stability in 2D

The goal of this short appendix is to prove (1.1) and (1.2). The proof is elementary and goes as follows.
First of all it is well-known that, in two dimensions, convexification decreases the perimeter of every open
connected bounded set. More precisely, if cov(E) denotes the convex hull of E, then P (cov(E)) ≤ P (E).
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Hence, thanks to the inclusion E ⊂ cov(E) we get

P (E)

|E|
1
2

− P (cov(E))

|cov(E)|
1
2

≥ P (cov(E))

|E|
1
2

− P (cov(E)))

|cov(E)|
1
2

= P (cov(E))
|cov(E)| − |E|

|cov(E)|
1
2 |E|

1
2

(
|cov(E)|

1
2 + |E|

1
2

)
≥ P (cov(E))

|cov(E)|
1
2

|cov(E)| − |E|
2|cov(E)|

1
2 |E|

1
2

≥
√
π

|cov(E) \ E|
|cov(E)|

1
2 |E|

1
2

,

where the last inequality follows from the two-dimensional isoperimetric inequality applied to cov(E).
This proves (1.1).

Now suppose that |E| = |B| = π, and assume (up to a translation) that 0 ∈ E. Then, we define

F = θ cov(E), θ :=

(
|E|

|cov(E)|

)1/2

.

Note that |F | = |E| and F ⊂ cov(E) (here we use that 0 ∈ E ⊂ cov(E) and that θ ≤ 1), therefore

|cov(E) \ F | = |cov(E)| − |F | = |cov(E)| − |E| = |cov(E) \ E|.

Hence, if |cov(E)| ≤ 2π,

|E∆F | ≤ |cov(E) \ E|+ |cov(E) \ F | = 2|cov(E) \ E|

≤ 2(
√
π)−1|cov(E)|

1
2 (P (E)− P (F )) ≤ 2

√
2(P (E)− P (F )).

On the other hand, if |cov(E)| ≥ 2π, then

P (E)− P (F ) ≥
√
π
|cov(E) \ E|
|cov(E)|

1
2

≥
√
π
2π − π√

2π
≥ 1

2
√
2
|E∆F |,

as |E∆F | ≤ 2π. This proves that, in both cases,

P (E)− P (F ) ≥ 1

2
√
2
|E∆F |,

as desired. □
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Email address: alessio.figalli@math.ethz.ch

Academy of Mathematics and Systems Science, the Chinese Academy of Sciences, Beijing 100190, China
Email address: yzhang@amss.ac.cn


