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Abstract
The irrigation problem is the problem of �nding an e�cient way to transport a measure

µ+ onto a measure µ−. By e�cient, we mean that a structure that achieves the transport
(which, following [3], we call tra�c plan) is better if it carries the mass in a grouped way
rather than in a separate way. This is formalized by considering costs functionals that
favorize this property. The aim of this paper is to introduce a dynamical cost functional
on tra�c plans that we argue to be more realistic. The existence of minimizers is proved
in two ways: in some cases, we can deduce it from a classical semicontinuity argument; the
other cases are treated by studying the link between our cost and the one introduced in [3].
Finally, we discuss the stability of minimizers with respect to speci�c variations of the cost
functional.

1 Introduction
The variety of structures arising in nature is extraordinary. By exploring the relationship between
form and function, D'Arcy Thompson, in his pioneering work [6], tries to �nd common principles
behind the varied phenomena (physical, chemical, biological, short or long time scale, etc.) that
interact to give birth to these structures. Indeed, despite the complexity of nature, the approach
of retaining only a small but decisive set of parameters and principles to model the phenomenon
at the origin of a given structure can be successful. See for example [12] or consider the work
of Turing on morphogenesis that led him to explain the appearance of heterogeneous spatial
patterns in terms of reaction-di�usion mechanisms [13].

Recently, such an approach was taken to model branched networks that achieve a transport
from a source to a target. Such networks are everywhere in nature (plants and trees, river basins,
bronchial and cardiovascular systems) and in man designed structures (communication networks,
electric power supply, water distribution or drainage networks). The common function of such
networks is to transport some goods from an initial distribution (the supply) to another (the
demand). Following D'Arcy Thompson, it is desirable to tie a link between this unity of form
(branched networks) and this unity of function (transporting goods from a supply to a demand).
This was done in [8, 10, 15, 3, 2, 5] by considering cost functions that encode the e�ciency of a
transport induced by some structure. Branched structures, as the ones observed in nature, then
arise as the optimal structures along which the transport takes place.
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A simple but crucial principle was incorporated in the design of all the cost functions used
by these authors. This principle states that it is more e�cient to transport mass in a grouped
way rather than in a separate way. To embed this principle, the previously mentioned costs
incorporate a parameter α ∈ [0, 1] and make use of the concavity of x 7→ xα. The idea is that for
positive masses m1 and m2, we have (m1 +m2)α ≤ mα

1 +mα
2 , so that the particles are interested

in moving together in order to lower the cost (see for example the role of α in (1)). This e�ect
gets stronger as α decreases, while the limit case α = 1 gives no importance to the grouping of
particles.

We now brie�y review the di�erent costs and descriptions of branched structures that have
been introduced so far. We then introduce a new dynamical cost functional, and enlight the
advantages it has over other models.

The model described by Gilbert in [8] consists in �nite directed weighed graph G with straight
edges E(G) and a weight function w : E(G) → (0,∞). The graph G connects sources µ+ =∑k

i=1 aiδxi and targets µ− =
∑l

j=1 bjδyj with
∑

i ai =
∑

j bj , ai, bj ≥ 0, and is required to satisfy
Kirchho�'s law at each vertex. The cost of G is de�ned to be:

Mα(G) =
∑

e∈E(G)

w(e)αH1(e). (1)

In [15], Xia extends this model to a continuous framework using Radon vector measures. In both
these models, the objects and their costs are static in the sense that no �particle� is actually
transported along the structure, and the cost depends only on the geometry of the network.

In [10, 3, 2], a di�erent kind of object, called tra�c plan and denoted by χ, is considered. In
this framework, all particles are indexed by the set Ω := [0, 1], and to each ω ∈ Ω is associated a
1-Lipschitz path χ(ω, ·) in RN . This is a Lagrangian description of the dynamic of particles that
can be encoded by the image measure Pχ of the map ω 7→ χ(ω, ·) (which is therefore a measure
on the set of 1-Lipschitz paths). This measure induces a network structure similar to the one
considered by Xia. To each tra�c plan is associated a cost Eα which depends only on its network
structure (see De�nition 2.4) and, whenever it is �nite, is the same as the one considered by Xia.
Thus, though a tra�c plan is a dynamical object, its cost is static.

In [5], Brancolini, Buttazzo and Santambrogio consider an Eulerian formulation of the prob-
lem, describing a transport from µ+ to µ− as a path in the space of measures. The cost of
such a path is de�ned as the length induced by a degenerate Riemannian metric in the space of
probability measures. More precisely, the cost of a path µ(t) is given by

∫ 1

0
J(µ(t))|µ′|(t) dt,

where J is a functional in the space of probability measures and |µ′| denotes the metric derivative
(for the Wasserstein distance) of the path. Both the object and the cost are dynamical in this
model.

All the above described models propose structures that transport a measure µ+ to a measure
µ− and associate a cost to this structure. This leads to consider what is called the irrigation
problem by some authors [3, 2, 4], i.e., given two measures µ+ and µ−, the problem of minimizing
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the cost among structures transporting µ+ to µ−. In the case of the tra�c plan model, an
additional problem can be considered, namely the who goes where problem [3, 2]. The latter
problem consists in looking for an optimal structure that achieves a given transference plan. In
other words, rather than only prescribing the initial an �nal distribution of masses as in the
irrigation problem, one also prescribes the coupling between initial and �nal positions of each
particle. As an example, one can think about the case where the initial distribution represents
the habitations, and the �nal distribution stands for the workplaces. In this case, it is natural
to constrain each inhabitant to go from his habitation to his workplace, and so the problem is
to �nd the best itinerary he can follow.

In this paper, we consider the Lagrangian formulation given in [10, 3]. This choice is motivated
by the fact that tra�c plans permit to recover other descriptions. Indeed, given a tra�c plan χ,
one can always canonically de�ne both a structure similar to the one of Xia, and a path in the
space of measures by considering the time marginals of its induced measure Pχ. We consider
general costs of the form

C(χ) :=
∫

Ω

∫

R+

c(χ, ω, t)|χ̇(ω, t)| dt dω. (2)

The advantage of the Lagrangian formulation with respect to the Eulerian one is to allow to
de�ne costs of the above form in which one can take care of the speed of each single particle, so
that only moving particles contribute to the total cost.

What we propose in this paper, is to give a cost to the actual �dynamical� transport of mass
from µ+ to µ− that is induced by χ. To obtain such a cost, it is natural to require c(χ, ω, t) to be
local in space-time. By this property, we mean that c(χ, ω, t) only takes into account the particles
that are located at the point χ(ω, t) at time t. In [3] is considered a cost c(χ, ω, t) depending on
the total mass of particles passing through the point χ(ω, t) at some time (see De�nition 2.4).
Since it takes into account only the global trajectories of particles but not their local dynamics,
this cost is local in space but not in time. The associated functional Eα thus quanti�es the
cost of the structure achieving the transport, rather than the cost of the transport itself. In
other words, we could also say that Eα evaluates the cost of permanent regime connecting µ+

to µ−, rather than the cost of a dynamical transport from µ+ to µ−. The elementary cost c we
introduce in De�nition 3.3 has the desired locality property, and we denote by Cα the induced
cost via formula (2). It is possible to extend the time domain by replacing R+ with R in (2),
and we denote by Eα

R and Cα
R the costs corresponding to Eα and Cα.

We illustrate the advantage of such a �dynamical� cost with respect to the static one in [3]
on two examples:

• It gives a more realistic cost to an overlapping path. Indeed, in the case of the static cost
in [3], a path that follows the same circuit twice contributes to the cost once, while the
locality in time of the model we propose gives the expected cost (see �gure 1).

• It is more appropriate for the �who goes where problem�. Let us consider the problem of
two equal masses m located at points A and B, which represent both the source and the
target distribution, and where the transference plan constraint consists in switching the
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Figure 1: In the case of the static cost Eα in
[3], a portion of a path where it overlaps with
itself contributes only once to the total cost,
whereas the locality in time of the model we
propose gives the expected cost.

A B

Figure 2: The best way to switch two equal
masses between two points A and B is to
transport the mass at A to position B and
the mass at B to position A along the seg-
ment joining them. For such a structure, the
Cα cost we propose distinguishes between
trajectories going from A to B and from B
to A, which is not the case of the Eα cost.
Thus, the Cα cost is more realistic for the
�who goes where� problem.

two masses. In this case, the solution to this �who goes where� problem is to transport the
mass in A to position B and the mass in B to position A along the segment joining them.
For such a structure, the Eα cost does not distinguish between trajectories going from A
to B and from B to A. Indeed, the Eα cost of this structure is |A − B|(2m)α, while the
natural one would be 2|A−B|mα. This is exactly the cost given by Cα (see �gure 2).

In this paper, we will consider the irrigation problems for all the just mentioned costs. As
it will be proved in Section 5, the two irrigation problems with costs Eα and Cα are equivalent
if µ+ is a �nite atomic, while the equivalence for Eα

R and Cα
R always holds. More precisely, in

these cases, we will prove that any minimizer for the dynamical cost is an Eα-minimizer, and
that moreover, up to reparameterization, the converse is true (see the remarks after Theorem
5.2). Since the cost Eα(χ) is invariant by reparameterization of the tra�c plan χ, while Cα(χ)
in general is not, this fact will tell us in particular that the cost Cα has the feature to select,
among all the possible reparameterization of an optimal tra�c plan χ, some particular ones, in
which particles actually move in a grouped way.

Given two measures µ+ and µ−, let us de�ne

Eα(µ+, µ−) := inf Eα(χ),

where the in�mum is taken over all tra�c plans transporting µ+ onto µ− (the same can be done
with Cα, Eα

R and Cα
R). By the above formula, one obtains a one-parameter family of distances

between measures, each of them inducing the weak-∗ topology. It turns out that the continuity
of the function α 7→ Eα(µ+, µ−) is related to the following stability property: given a converging
sequence of tra�c plans χn, respectively optimal for the value αn, its limit is optimal for the limit
value of αn. In particular, considering a sequence αn → 1, one would obtain the convergence
of optimal structures to an optimal structure for the 1-Wasserstein distance. It is therefore of
interest to study the α dependence of Eα(µ+, µ−). This α dependence will be shown in Section
6 to be continuous if α ∈ [1− 1

N , 1] (N being the dimension of the ambient space).
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The plan is as follows. In Section 2, we recall the principal de�nitions and results concerning
tra�c plans. In Section 3, we consider the energy functional of [3] in a more general framework
for which we obtain a general lower semicontinuity result. Then we de�ne a new dynamical
(in the sense previously discussed) cost functional and obtain a partial result of existence of
a �dynamical� optimal tra�c plan for the irrigation problem. We can however obtain a more
complete existence result by studying the properties of Eα-minimizers. Indeed, in Section 4,
we prove that any Eα-optimal tra�c plan can be suitably reparameterized. From this fact, we
deduce in Section 5 that the cost of optimal tra�c plans and dynamical optimal tra�c plans
are the same, and that any Eα-optimal tra�c plan can be reparameterized so that it is becomes
optimal also for the dynamical cost Cα (this is always true for Eα

R and Cα
R , while for Eα and Cα

we need µ+ to be �nite atomic). Finally, in Section 6, we prove continuity results of Eα(µ+, µ−)
with respect to α, for �xed µ+ and µ−. As we already said above, this implies that limits of
optimal (for di�erent values of α) tra�c plans are still optimal for the limit value.

Acknowledgements: we warmly thank Patrick Bernard and Filippo Santambrogio for useful
comments and remarks. The second author gratefully acknowledges the hospitality of the École
Normale Supérieure of Lyon, where this paper was written.

2 Tra�c plans
In this section, we recall principal de�nitions and results concerning tra�c plans (see [10, 15, 2,
3, 4]). Let X be some compact convex N -dimensional set in RN . We shall denote by L 1(A)
the Lebesgue measure of a measurable set A ⊂ R, and by Lip1(R+, X) the space of 1-Lipschitz
curves in X with the metric of uniform convergence on compact sets of R+.

De�nition 2.1. Let Ω = [0, 1]. A tra�c plan is a measurable map χ : Ω×R+ → X such that for
all ω, t 7→ χ(ω, t) is 1-Lipschitz, and constant for t su�ciently large. Without risk of ambiguity,
we shall call �ber both the path χ(ω, ·) and ω ∈ Ω. We denote by Pχ the law of ω 7→ χ(ω) ∈
Lip1(R+, X) de�ned by Pχ(E) := L 1(χ−1(E)) for every Borel set E ⊂ Lip1(R+, X).

We remark that in the sequel we will also need to consider the restriction of a tra�c plan to
a certain subset of �bers Ω′ ⊂ Ω. By abuse of notation, though Ω′ will not be of unit mass, we
will still call χxΩ̃′ a tra�c plan.

De�nition 2.2. Two tra�c plans χ and χ′ are said to be equivalent if Pχ = Pχ′. In all the
following a �tra�c plan� means as well the equivalence class of some χ. All proven properties of
a tra�c plan will be true for any representative up to the addition or removal of a set of �bers
with zero measure.

Stopping time, irrigated measures, transference plan
If χ : Ω× R+ → X is a tra�c plan, de�ne its stopping time by

Tχ(ω) := inf{t ≥ 0 : χ(ω) is constant on [t,∞)}.

5



Let us denote the initial and �nal point of a �ber ω by τ(ω) = χ(ω, 0) and σ(ω) = χ(ω, Tχ(ω)).
To any χ, one can associate its irrigating and irrigated measure respectively de�ned by

µ+(χ)(A) := τ#Pχ(A) = L 1({ω : χ(ω, 0) ∈ A}),

µ−(χ)(A) := σ#Pχ(A) = L 1({ω : χ(ω, Tχ(ω)) ∈ A}),
where A is any Borel subset of RN .

Energy of a tra�c plan
De�nition 2.3. Let χ : Ω×R+ → X be a tra�c plan. De�ne the path class of x ∈ RN in χ as
the set

Ωχ
x := {ω : x ∈ χ(ω,R)},

and the multiplicity of χ at x by θχ(x) = L 1(Ωχ
x). For simplicity, we shall write Ωx := Ωχ

x,
whenever the underlying tra�c plan χ is not ambiguous.

We use the convention that 0α−1 = +∞ for α ∈ [0, 1).

De�nition 2.4. Let α ∈ [0, 1]. We call energy of a tra�c plan χ : Ω× R+ → X the functional

Eα(χ) =
∫

Ω

∫

R+

θχ(χ(ω, t))α−1|χ̇(ω, t)| dt dω. (3)

Let µ+, µ− be two probability measures in X. Denote by TP(µ+, µ−) the set of tra�c plans
χ such that µ+(χ) = µ+ and µ−(χ) = µ−. If C > 0, call TPC the set of tra�c plans such that∫
Ω Tχ(ω) dω ≤ C and TPC(µ+, µ−) := TP(µ+, µ−) ∩ TPC .

Convergence
De�nition 2.5. We say that a sequence of tra�c plans χn converges to a tra�c plan χ if Pχn

weakly-∗ converges to Pχ, or equivalently if the random variables χn converge in law to χ.

De�nition 2.6. We say that a sequence of tra�c plans χn �ber converges to a tra�c plan χ if
χn(ω) converges to χ(ω) uniformly on compact subsets of R+ for every ω ∈ Ω.

Remark 2.7. By Skorokhod theorem (see Theorem 11.7.2 [7]) χn converges to χ if and only if
there exist χ̃n and χ̃ equivalent to χn and χ respectively and such that χ̃n(ω) �ber converges to
χ̃(ω).

Proposition 2.8. Up to a subsequence, any sequence of tra�c plans χn in TPC converges to a
tra�c plan χ. In addition, µ+(χn) ⇀ µ+(χ) and µ−(χn) ⇀ µ−(χ).
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Existence of minimizers
The optimization problem we are interested in is the irrigation problem, i.e. the problem of
minimizing Eα(χ) in TP(µ+, µ−). The following results are proved in [2, 10, 3].

Theorem 2.9. If C > 0 and χn : Ω × R+ → X is a sequence in TPC converging to the tra�c
plan χ, then

Eα(χ) ≤ lim inf
n

Eα(χn).

We notice that the cost Eα(χ) is invariant by time-reparameterization of χ. Therefore, one
can always reparameterize χ so that |χ̇(ω, t)| = 1 for all t ∈ (0, Tχ(ω)) without changing the cost.
In this case, since θα−1

χ ≥ 1, one gets
∫
Ω Tχ(ω)dω ≤ Eα(χ). Thus, if χn is a sequence of tra�c

plan with a uniformly bounded Eα cost, it is in TPC up to reparameterization for C big enough.
By Proposition 2.8 and Theorem 2.9, the direct method of the calculus of variations ensures the
existence of an optimal tra�c plan in TP(µ+, µ−).

Corollary 2.10. The problem of minimizing Eα(χ) in TP(µ+, µ−) admits a solution.

De�nition 2.11. A tra�c plan χ is said to be optimal for the irrigation problem if it is of
minimal cost in TP(µ+(χ), µ−(χ)).

Let
Eα(µ+, µ−) := min

TP(µ+,µ−)
Eα(χ).

As proved in [3], there is an optimal tra�c plan in TP(µ+, µ−) which is loop-free, i.e. for almost
any ω ∈ Ω, the map χ(ω, ·) is one to one in [0, Tχ(ω)]. Moreover, using Propositions 6.4 and
6.6 in [3], given any optimal tra�c plan with �nite energy there is an equivalent loop-free tra�c
plan with the same energy, hence optimal. Thus, without loss of generality, we may assume that
optimal tra�c plans are loop-free.

The triangle inequality for the cost Eα holds (just think of concatenating tra�c plans [4]):

Proposition 2.12. Let µ0, µ1 and µ2 be probability measures. We have the triangle inequality

Eα(µ0, µ2) ≤ Eα(µ0, µ1) + Eα(µ1, µ2).

Stability with respect to µ+ and µ−

The following results were �rst proved in a slightly di�erent framework by Xia [15], and their
proofs adapt immediately to tra�c plans (see [2]). We remark that, here and in the sequel, by
atomic measure we mean a �nite sum of delta measures.

Let C be a cube with edge length L and center c. Let ν be a probability measure on the
compact set X where X ⊂ C. We may approximate ν by atomic measures as follow. For each
i, let

Ci := {Ch
i : h ∈ ZN ∩ [0, 2i)N}

be a partition of C into cubes of edge length L
2i . Now, for each h ∈ ZN ∩ [0, 2i)N , let ch

i be the
center of Ch

i and mh
i = ν(Ch

i ) be the ν mass of the cube Ch
i .
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De�nition 2.13. We de�ne the dyadic approximation of ν as

Ai(ν) :=
∑

h∈ZN∩[0,2i)N

mh
i δch

i
.

We observe that the measures Ai(ν) weakly-∗ converge to ν.
Proposition 2.14. Let α ∈ (1 − 1

N , 1]. Let ν be a probability measure with support in a cube
centered at c and of edge length L. We have

Eα(An(ν), ν) ≤ 2n(N(1−α)−1)

21−N(1−α) − 1

√
NL

2
.

In particular, Eα(An(ν), ν) → 0 locally uniformly in α for all ν when n →∞.
By this result and Theorem 2.9, it is not di�cult to prove that the cost Eα metrizes the

weak-∗ convergence for α ∈ (1− 1
N , 1].

Lemma 2.15. Let α ∈ (1− 1
N , 1]. A sequence of probability measures νn weakly-∗ converges to

ν if and only if Eα(νn, ν) → 0 when n →∞.
Corollary 2.16. Let α ∈ (1− 1

N , 1]. If χn is a sequence of optimal tra�c plans for the irrigation
problem and χn → χ, then χ is optimal.

Moreover, by Proposition 2.14, Eα(µ+, µ−) is always �nite for α ∈ (1− 1
N , 1].

Regularity
The following regularity results were proved in [4].
Proposition 2.17. Let µ+ and µ− be atomic probability measures and α ∈ [0, 1]. An optimum
for the irrigation problem is a �nite tree made of segments (in the sense that the �bers χ(ω, ·),
once parameterized by arc lengths, describe a �nite set of piecewise linear curves).
Theorem 2.18. Let α ∈ (1− 1

N , 1) and let χ be an optimal tra�c plan in TP(µ+, µ−). Assume
that the supports of µ+ and µ− are at positive distance. In any closed ball B(x, r) not meeting
the supports of µ+ and µ−, the tra�c plan has the structure of a �nite graph.

Extension of the time domain
In Sections 4 and 5, we will consider tra�c plans de�ned on Ω× R. All the notions introduced
above are easy to generalize, and we shall denote by TPR(µ+, µ−) the set of extended tra�c
plans from µ+ and µ− and Eα

R the corresponding cost. We denote by TPR,C(µ+, µ−) the tra�c
plans χ ∈ TPR(µ+, µ−) such that

∫
Ω Tχ(ω)dω ≤ C, where for a tra�c plan in TPR

Tχ(ω) := inf{t + s : t, s ≥ 0, χ(ω) is constant on (−∞,−s] ∪ [t,∞)}.
Any tra�c plan χ ∈ TPR can be shifted in time so that it can be seen as a tra�c plan in TP and
the corresponding Eα

R and Eα costs are the same. Thus, from the point of view of the irrigation
problem, the two formalisms yield the same optimal objects. However, the introduction of this
extended model is made necessary for the study of the dynamical framework we propose, since
the dynamical cost we will consider is not invariant by time-reparameterization.

8



3 Dynamic cost of a tra�c plan
Let χ be a tra�c plan and c(χ, ω, t) the elementary cost due to the particle ω along the �ber
χ(ω) at time t. We de�ne a general cost function C of a tra�c plan χ as follows:

C(χ) :=
∫

Ω

∫

R+

c(χ, ω, t)|χ̇(ω, t)| dt dω. (4)

The choice c(χ, ω, t) = θχ(χ(ω, t))α−1 yields the energy of a tra�c plan given by De�nition
2.4. In this section, we �rst prove that for a large class of elementary costs c(χ, ω, t), the cost
of a tra�c plan C(χ) is lower semicontinuous. Then, we introduce a dynamical elementary cost
(see the introduction for the meaning of dynamical) for which the corresponding cost C is lower
semicontinuous. This yields the existence of a minimizer for the dynamical irrigation problem.

Proposition 3.1. Let c : TP(µ+, µ−)×Ω×R+ → R+ such that c(·, ω, ·) is lower semicontinuous
(with respect to the �ber convergence on tra�c plans and the usual topology in R+) for all ω. If
χn : Ω× R+ → X �ber converges to the tra�c plan χ, then

C(χ) ≤ lim inf
n

C(χn).

Proof. Let us set cλ(χ, ω, t) := infs≥0{c(χ, ω, s) + λ|t− s|}. Since c(χ, ω, ·) is lower semicontin-
uous, it is classical (see [1]) that cλ(χ, ω, ·) is λ-Lipschitz and that

c(χ, ω, t) = sup
λ

cλ(χ, ω, t).

Let us prove that, cλ(·, ω, t) is lower semicontinuous for all ω and t. Let χn → χ, and, for �xed
ω and t, assume that up to a subsequence the liminf of cλ(χn, ω, t) is indeed a limit. Now, for
each n, take tn such that

cλ(χn, ω, t) ≥ c(χn, ω, tn) + λ|t− tn| − 1
n

.

If tn → +∞, since c is non-negative,

lim
n

cλ(χn, ω, t) ≥ lim inf
n

λ|t− tn| = +∞ ≥ cλ(χ, ω, t).

Otherwise, up to a subsequence, we can assume tn → t∞, so that lim infn c(χn, ω, tn) ≥ c(χ, ω, t∞).
Therefore,

lim
n

cλ(χn, ω, t) ≥ lim inf
n

c(χn, ω, tn) + λ|t− tn| ≥ c(χ, ω, t∞) + λ|t− t∞| ≥ cλ(χ, ω, t).

Let us �x now T > 0 and ε > 0, and let us consider 0 = t1 ≤ . . . ≤ ti ≤ . . . ≤ tk = T such
that |ti+1 − ti| ≤ ε. Since cλ(χ, ω, ·) is λ-Lipschitz, |χ(ω, ·)| is 1-Lipschitz, and χ 7→ ∫ |χ̇(ω, t)|dt
and χ 7→ cλ(χ, ω, t) are lower semicontinuous for the �ber convergence, we have:
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lim inf
n

∫

[0,T ]
cλ(χn, ω, t)|χ̇n(ω, t)| dt ≥

∑

i

[
lim inf

n
cλ(χn, ω, ti)

∫ ti+1

ti

|χ̇n(ω, t)| dt− λε(ti+1 − ti)
]

≥
∑

i

[
cλ(χ, ω, ti)

∫ ti+1

ti

|χ̇(ω, t)| dt− λε(ti+1 − ti)
]
≥

∫

[0,T ]
cλ(χ, ω, t)|χ̇(ω, t)| dt− 2λεT.

This being true for all ε, we get for a.e. ω and all T > 0,

lim inf
n

∫

R+

c(χn, ω, t)|χ̇n(ω, t)| dt ≥ lim inf
n

∫

[0,T ]
c(χn, ω, t)|χ̇n(ω, t)| dt

≥ lim inf
n

∫

[0,T ]
cλ(χn, ω, t)|χ̇n(ω, t)| dt ≥

∫

[0,T ]
cλ(χ, ω, t)|χ̇(ω, t)| dt.

Then, by Fatou's lemma,

lim inf
n

C(χn) = lim inf
n

∫

Ω

∫

R+

c(χn, ω, t)|χ̇n(ω, t)| dt dω

≥
∫

Ω
lim inf

n

∫

R+

c(χn, ω, t)|χ̇n(ω, t)| dt dω ≥
∫

Ω

∫

[0,T ]
cλ(χ, ω, t)|χ̇(ω, t)| dt dω,

and we conclude thanks to the monotone convergence theorem. ¤
We now de�ne the dynamical multiplicity of ω at time t as the proportion of particles that

are exactly at the same place as ω at time t.

De�nition 3.2. Let χ : Ω×R+ → X be a tra�c plan. We de�ne the path class of (ω, t) ∈ Ω×R
in χ as the set

[ω, t]χ := {ω′ : χ(ω′, t) = χ(ω, t)}
and the multiplicity of χ at (ω, t) by θ̃χ(ω, t) := L 1([ω, t]χ).

De�nition 3.3. Let α ∈ [0, 1]. We call dynamical cost of a tra�c plan χ : Ω × R+ → X the
functional

Cα(χ) =
∫

Ω

∫

R+

θ̃χ(ω, t)α−1|χ̇(ω, t)|dtdω, (5)

i.e. Cα(χ) = C(χ) with c(χ, t, ω) = θ̃χ(ω, t)α−1.

Theorem 3.4. If χn : Ω× R+ → X is a sequence in TP(µ+, µ−) converging to the tra�c plan
χ, then

Cα(χ) ≤ lim inf
n

Cα(χn).

Proof. Let us denote
δ(x, y) =

{
0 if x 6= y,
1 if x = y.
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Setting

c(χ, ω, t) :=
[∫

Ω
δ(χ(ω, t), χ(ω′, t)) dω′

]α−1

,

where α ∈ [0, 1], we observe that c(χ, t, ω) = θ̃χ(ω, t)α−1, so that Cα(χ) = C(χ) as de�ned by
(4). Let us consider a sequence of tra�c plans χn �ber converging to χ, and tn → t. We remark
that the function

RN × RN 3 (x, y) 7→ δ(x, y) ∈ R
is upper semicontinuous. Therefore, since χn(ω) is a 1-Lipschitz curve, if χn(ω) → χ(ω) and
tn → t we have

lim sup
n

δ(χn(ω, tn), χn(ω′, tn)) ≤ δ(χ(ω, t), χ(ω′, t)).

Thus, by Fatou lemma,

lim sup
n

∫

Ω
δ(χn(ω, tn), χn(ω′, tn)) dω′ ≤

∫

Ω
δ(χ(ω, t), χ(ω′, t)) dω′,

and since α ≤ 1,
lim inf

n
c(χn, ω, tn) ≥ c(χ, ω, t). (6)

Therefore Proposition 3.1 ensures that Cα is lower semicontinuous. ¤

Remark 3.5. It is not di�cult to prove the upper semicontinuity of the multiplicity θχ(χ(ω, t)),
so that the elementary cost c(χ, ω, t) = θχ(χ(ω, t))α−1 satis�es the hypothesis of Proposition 3.1.
This yields a new simple proof of Theorem 2.9.

Like in the last paragraph of Section 2, it is possible to consider a dynamical cost Cα
R(χ) for

χ ∈ TPR(µ+, µ−). Proposition 3.1 and Theorem 3.4 hold with TPR and Cα
R in place of TP and

Cα. The compactness of TPC stated in Proposition 2.8 yields:

Proposition 3.6. Let µ+ and µ− be probability measures on X, and let C > 0 be such that
TPC(µ+, µ−) is not empty (for example, take C ≥ diam(X)). Then, there exist Cα-minimizers
(resp. Cα

R-minimizers) in TPC (resp. TPR,C).

The argument used to prove Corollary 2.10 (that states the existence of Eα-minimizers in
TP) is not adaptable to the case of Cα, since neither Cα(χ) nor Cα

R(χ) are invariant by time-
reparameterization of χ. In particular, the situation where Cα-minimizers in TPC change as C
increases to +∞ is not excluded (this is not the case for Eα, since by the reparameterization argu-
ment used to prove Corollary 2.10 we know that all minimizers are in TPC for C = Eα(µ+, µ−)).
However, we shall see in Section 5, that by using synchronization techniques developed in Section
4 we are still able to prove existence of Cα-minimizers in TP(µ+, µ−) provided that µ+ is �nite
atomic, and of Cα

R-minimizers in TPR(µ+, µ−).
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4 Synchronizable tra�c plans
Let us de�ne the support of a tra�c plan χ as the set of points with positive multiplicity. This
set will be denoted by Sχ.

De�nition 4.1. A tra�c plan χ ∈ TPR(µ+, µ−) (resp. TP(µ+, µ−)) is said to be synchronized
(resp. positive synchronized) if it is loop-free, and for all x in the support of χ there is a time
tχ(x) such that χ(ω, tχ(x)) = x for all ω ∈ Ωx (i.e. all �bers which pass through x have to pass
at the same time).

Given two tra�c plans χ and χ̃, we say that χ̃ is a reparameterization of χ if, for almost
every ω ∈ Ω, the curve χ̃(ω, ·) is a reparameterization of χ(ω, ·). We will say that χ̃ is an arc
length parameterization of χ if, for almost every ω, χ̃(ω, ·) is an arc length parameterization of
χ(ω, t).

De�nition 4.2. A tra�c plan χ ∈ TPR(µ+, µ−) is said to be synchronizable (resp. positive
synchronizable) if there is some reparameterization χ̃ ∈ TPR(µ+, µ−) (resp. in TP(µ+, µ−)) of
χ such that χ̃ is synchronized (resp. positive synchronized).

Since θα−1
χ ≤ θ̃α−1

χ with equality if χ is (positive) synchronized, one can easily deduce that if
a tra�c plan is synchronized (resp. positive synchronized), then Eα

R(χ) = Cα
R(χ) (resp. Eα(χ) =

Cα(χ)).
The aim of this section is to prove that Eα-optimal tra�c plans are synchronizable. Indeed,

optimal tra�c plans are such that there is a �nite or countable set of points (xi) and sets Ωi ⊂ Ωxi

that form an (almost-)partition of Ω. This fact makes it possible to synchronize independently
each tree going through some xi, and then harmonize globally these synchronizations thanks to
the so-called strict single oriented path property that we now discuss.

The strict single path de�nition was introduced in [4]. Following these authors, a tra�c plan
is said to be strict single path if all �bers going through x and y have to coincide between x
and y. In other terms there is a single path (or none) between any two points of the irrigation
network. All optimal tra�c plans can then be proven to be strict single path up to the removal
of a set of �bers with null measure. For our synchronization purposes, we need to use a slight
re�nement of this notion, namely what we call the strict single oriented path property. To state
this property in precise terms, we �rst need to introduce some de�nitions.

De�nition 4.3. Let χ be a loop-free tra�c plan, and de�ne tx(ω) := inf{t : χ(ω, t) = x}. Let
x, y in Sχ, and de�ne

Ω−→xy := {ω ∈ Ωχ
x ∩ Ωχ

y : tx(ω) < ty(ω)},
the set of �bers passing through x and then through y. We denote by χxy the restriction of χ to
∪ω∈Ω−→xy

{ω} × [tx(ω), ty(ω)]. It is the tra�c plan made of all pieces of �bers of χ joining x to y.
Denote its support by Γxy := Sχxy .

De�nition 4.4. A tra�c plan χ has the strict single oriented path property (and we say that
χ is strict single oriented) if, for every pair x, y such that |Ω−→xy| > 0, all �bers in Ω−→xy coincide
between x and y with an arc Γxy joining x to y, and Ω−→yx = ∅.

12



By an immediate adaptation of the strict single path property of optimal tra�c plans proven
in [4], we have the following result.
Proposition 4.5. (Strict single oriented path property) Let α ∈ [0, 1) and χ be an optimal
tra�c plan such that Eα(χ) < ∞. Then, up to removing a zero measure set of �bers, χ has the
strict single oriented path property.

We can now detail the lemmas useful to the prove the synchronizability of Eα-optima.
Lemma 4.6. If χ is strict single oriented and Ω̃x ⊂ Ωx, then χx := χxΩ̃x is synchronizable.
Proof. Let χ̃x(ω, t) be an arc length parameterization of χx(ω, t) such that χ̃x(ω, 0) = x.
Since χx(ω, ·) is injective, there is only one such parameterization. Let us now prove that χ̃x

is synchronized. Indeed, let us consider a point y in the image of χ. Since χ is strict single
oriented, there is only one path that connects x to y on the support of the tra�c plan χx. This
allows to de�ne lχx(y) as the distance from x to y (through the support of χ). Since χ̃x(ω, ·) is
parameterized by its arc length, we notice that for all ω ∈ Ωy ∩ Ω̃x χ̃x(ω, lχ(y)) = y, i.e. χ̃x is
synchronized. ¤

Lemma 4.7. Let χ1 and χ2 be synchronized, connected, arc length parameterized, and such that
χ1 ∪ χ2 is strict single oriented. Then χ1 ∪ χ2 is synchronizable.
Proof. If the supports of χ1 and χ2 are disjoints, then χ1∪χ2 is already synchronized. Otherwise,
let x be a point in the support of both χ1 and χ2. Since χ1 is synchronized, there is some tχ1(x)
such that for all ω ∈ Ωχ1

x , χ1(ω, tχ1(x)) = x. We de�ne tχ2(x) analogously. Let us prove that
tχ1(x)− tχ2(x) does not depend on the point x. Let us consider x1 and x2 points in the supports
of both χ1 and χ2. By connectedness and the strict single oriented path property, there is a
unique path on the support of χ1 connecting x1 and x2 (the same holds for χ2). Since χ1 is
arc length parameterized, tχ1(x1) − tχ1(x2) is exactly the distance between x1 and x2 (or its
opposite, depending on the orientation of the path). Since χ1 ∪ χ2 is strict single oriented, the
unique path de�ned by χ2 is the same as the one of χ1 so that we have:

tχ1(x1)− tχ1(x2) = tχ2(x1)− tχ2(x2).

Thus, shifting the time parameterization of χ2 by tχ1(x) − tχ2(x) de�nes a tra�c plan χ̃2 such
that χ1 ∪ χ̃2 is synchronized. ¤

De�nition 4.8. We shall say that a tra�c plan χ is �nitely (resp. countably) decomposable if
there is a �nite (resp. countable) set of points (xi) and sets Ωi ⊂ Ωxi that form a partition of Ω
(almost everywhere).
Proposition 4.9. If χ is a strict single oriented countably decomposable tra�c plan, then it is
synchronizable.
Proof. Let Ωi ⊂ Ωxi de�ning a countable decomposition of χ, and let us denote χi := χxΩi.
Lemma 4.6 ensures that all the χi are synchronizable, and we denote by χ̃i an equivalent syn-
chronized tra�c plans. Since χ is strict single oriented, ∪iχ̃i is strict single oriented. Thus, by
induction, the repeated application of Lemma 4.7 allows to de�ne a synchronized tra�c plan χ̃
that is the union of time shifted versions of χ̃i. Such a tra�c plan χ̃ is a time-reparameterization
of χ that is synchronized. ¤
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Proposition 4.10. If µ+ is �nite atomic, then any optimal tra�c plan χ ∈ TPR(µ+, µ−) is
positive synchronizable.
Proof. Let (xi)n

i=1 be a �nite sequence such that µ+ :=
∑n

i=1 aiδxi . The sets de�ned by
Ω1 := Ωx1 and Ωi := Ωxi \ (∪j<iΩj) for i > 1, yield a partition of Ω, so that χ is �nitely
decomposable. Since χ is optimal, it is strict single oriented, and Proposition 4.9 ensures that
χ is synchronizable. Since µ+ is atomic, by the construction of the reparameterization given in
Lemma 4.7 it is simple to see that, with a suitable time shifting, χ is also positive synchronizable.

¤

Proposition 4.11. Any optimal tra�c plan χ ∈ TPR is synchronizable.
Proof. Any optimal tra�c plan is countably decomposable (see [4, Lemma 3.11]) and strict
single oriented. Thus, by Proposition 4.9, it is synchronizable. ¤

5 Equivalence of the dynamical and classical irrigation problems
In the same way as for Eα, we de�ne:

Cα(µ+, µ−) := inf
TP(µ+,µ−)

Cα(χ), Cα
R(µ+, µ−) := inf

TPR(µ+,µ−)
Cα
R(χ).

Theorem 5.1. If µ+ is �nite atomic, then, for all α ∈ [0, 1],

Eα(µ+, µ−) = Cα(µ+, µ−),

and
Eα
R(µ+, µ−) = Cα

R(µ+, µ−).

Proof. We remark that, by the de�nition of Eα and Cα, we immediately have the inequality

Eα(χ) ≤ Cα(χ) for all tra�c plan χ, (7)

so that,
Eα(µ+, µ−) ≤ Cα(µ+, µ−) ∀α ∈ [0, 1].

Let χ be a minimizer of Eα. Proposition 4.10 ensures that there is a reparameterization χ̃
of χ such that χ̃ is positive synchronized, so that

Eα(µ+, µ−) = Eα(χ) = Eα(χ̃) = Cα(χ̃).

Thus, Eα(µ+, µ−) = Cα(µ+, µ−) for all α ∈ [0, 1]. Finally, Proposition 4.11 yields Eα
R(µ+, µ−) =

Cα
R(µ+, µ−) for all α ∈ [0, 1]. ¤
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By Proposition 4.11, we also have:

Theorem 5.2. Let µ+ and µ− be two probability measures. Then

Eα
R(µ+, µ−) = Cα

R(µ+, µ−).

Theorem 5.2 states the equivalence of the cost given by the dynamical and the classical
irrigation problem. Concerning minimizers, we can observe as a direct consequence of Theorem
5.2 and (7) that every Cα

R-minimizer is an Eα
R-minimizer. Conversely, by Proposition 4.11, any

Eα
R-minimizer can be reparameterized so that it gives a Cα

R-minimizer. The same considerations
are true for Eα and Cα if µ+ is �nite atomic thanks to Proposition 4.10. Thus, in both these cases,
the extended dynamical and classical irrigation problems yield exactly the same minimizers (up
to reparameterization). In particular, as a by-product, we obtain the existence of Cα-minimizers
if µ+ is �nite atomic, and existence of Cα

R-minimizers in general.
As a particular consequence of the fact that every Cα

R-minimizer is an Eα
R-minimizer, we

notice that Cα
R-minimizers inherit all the regularity properties of Eα

R-minimizers (the same holds
for Cα-minimizers, in the case µ+ is �nite atomic). Thus we can translate the regularity results
in Section 2 in the Cα

R framework.

Proposition 5.3. Let α ∈ [0, 1], µ+ and µ− be �nite atomic measures, and χ ∈ TP(µ+, µ−) be
a Cα-minimizer. Then χ is a �nite tree made of segments.

Theorem 5.4. Let α ∈ (1− 1
N , 1), µ+ and µ− be probability measures, and χ ∈ TPR(µ+, µ−) be

a Cα
R-minimizer. Assume that the supports of µ+ and µ− are at positive distance. In any closed

ball B(x, r) not meeting the supports of µ+ and µ−, the tra�c plan χ has the structure of a �nite
graph.

6 Stability with respect to the cost
In this section we study the regularity with respect to α of Eα(µ+, µ−) for �xed µ+ and µ−. By
the equivalence of Eα

R and Cα
R (Theorem 5.2), and Eα and Cα when µ+ is �nite atomic (Theorem

5.1), one can deduce similar stability results for the dynamical cost.
We start studying the regularity with respect to α of Eα(χ) for a �xed tra�c plan χ.

Lemma 6.1. Let χ be a tra�c plan. Then [0, 1] 3 α 7→ Eα(χ) ∈ R+ ∪ {+∞} is non-increasing.
Fix now α ∈ [0, 1). Then:

(i) If Eα(χ) < +∞, then β 7→ Eβ(χ) is �nite and continuous on [α, 1].

(ii) If Eα(χ) = +∞, then Eαn(χ) → +∞ for any decreasing sequence αn ↘ α.
Proof. The monotonicity of α 7→ Eα(χ) is trivial.

Let χ be such that Eα(χ) < +∞ and let βn ∈ [α, 1] such that βn → β. For all (ω, t) ∈ Ω×R+,
we have

θχ(χ(ω, t))βn−1 → θχ(χ(ω, t))β−1.
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In addition, as θχ(χ(ω, t)) ≤ 1, we have

0 ≤ θχ(χ(ω, t))βn−1 ≤ θχ(χ(ω, t))α−1

Thus, since
Eα(χ) =

∫

Ω

∫

R+

θχ(χ(ω, t))α−1|χ̇(ω, t)| dt dω < ∞,

the dominated convergence theorem ensures the convergence of Eβn(χ) to Eβ(χ).
Let us now consider a tra�c plan χ such that Eα(χ) = +∞, and let αn be a decreasing

sequence converging to α. Then for all (ω, t) ∈ Ω×R+, θχ(χ(ω, t))αn−1 is increasingly converging
to θχ(χ(ω, t))α−1. Thus, the monotone convergence theorem ensures that Eαn(χ) → +∞. ¤

Now we can study the stability of Eα(µ+, µ−) with respect to α.

Proposition 6.2. Let µ+ and µ− be two probability measures. The function [0, 1] 3 α 7→
Eα(µ+, µ−) ∈ R+ ∪ {+∞} is non-increasing, right continuous and left lower semicontinuous.
Proof. For simplicity of notation set f(α) := Eα(µ+, µ−). Observe that, since α 7→ Eα(χ) is
non-increasing for all χ, f is non-increasing being an in�mum of non-increasing functions. Thus,
f is left lower semicontinuous, i.e.

lim inf
n

f(αn) ≥ f(α) for all αn ↗ α.

In what follows, χβ will always denote an optimal tra�c plan for the exponent β, i.e. such
that Eβ(χβ) = f(β). Let us consider a decreasing sequence αn such that αn ↘ α and a sequence
of optimal tra�c plans χαn .

By Lemma 6.1 and the optimality of χαn for Eαn we get

f(α) = Eα(χα) = lim
n

Eαn(χα) ≥ lim sup
n

Eαn(χαn) ≥ lim inf
n

Eαn(χαn). (8)

If lim infn Eαn(χαn) = +∞, there is nothing to prove. Otherwise, up to apply the reparameter-
ization argument used to prove Corollary 2.9, we can assume that χαn ∈ TPC for some C > 0.
Thus, by Proposition 2.8, there is a subsequence χαnk

such that

χαnk
→ χ and lim inf

k
Eαnk (χαnk

) = lim inf
n

Eαn(χαn). (9)

Recalling that α 7→ Eα(χ) is non-increasing, and that Eαm is lower semicontinuous for m �xed,
we have

lim inf
k

Eαnk (χαnk
) ≥ lim inf

k
Eαm(χαnk

) ≥ Eαm(χ) for all m. (10)

By Lemma 6.1, limm Eαm(χ) = Eα(χ) so that (8), (9) and (10) yield

f(α) ≥ lim sup
n

f(αn) ≥ lim inf
n

f(αn) ≥ Eα(χ) ≥ f(α).

¤
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Corollary 6.3. Let αn ∈ [0, 1] be a decreasing sequence converging to α, and let µ+ and µ−

be two probability measures. If χαn are optimal tra�c plans for Eαn and χαn → χ, then χ is
optimal for Eα.
Proof. By Proposition 6.2, and since α 7→ Eα(χ) is non-increasing and Eαm is lower semicon-
tinuous for �xed m, we have

Eα(µ+, µ−) = lim
n

Eαn(χαn) ≥ lim inf
n

Eαm(χαn) ≥ Eαm(χ).

Since by Lemma 6.1 limm Eαm(χ) = Eα(χ), χ is optimal. ¤
If we now constrain α to be in (1 − 1

N , 1], we are able to say more. Indeed, in this case,
Proposition 2.14 allows us to approximate µ+ and µ− with atomic measures µ+

n and µ−n in such
a way that Eα(µ+, µ−) is a uniform limit (locally in α) of Eα(µ+

n , µ−n ). Then it is su�cient to
prove that Eα(µ+

n , µ−n ) is continuous for any n, in order to have that Eα(µ+, µ−) is continuous
on (1− 1

N , 1].

Lemma 6.4. Let µ+ =
∑k1

i=1 aiδxi and µ− =
∑k2

i=1 biδyi be atomic measures such that
∑k1

i=1 ai =∑k2
i=1 bi (the irrigating and the irrigated measure have the same mass). Then α 7→ Eα(µ+, µ−)

is continuous on [0, 1].
Proof. By Proposition 2.17, we know that, for all α ∈ [0, 1], an optimum for the irrigation
problem can be viewed as a weighted and oriented �nite graph G. Then, if we call χα an
optimum for Eα, we have

Eα(µ+, µ−) = Eα(χα) =
nα∑

i=1

lim
α
i ,

where the li and mi are respectively the lengths and weigths of the edges of G. Then, since

β 7→ Eβ(χα) =
nα∑

i=1

lim
β
i

is continuous and �nite on [0, 1], we see that Eα(µ+, µ−) is �nite on [0, 1]. Moreover we already
know by Proposition 6.2 that Eα(µ+, µ−) is left lower semicontinuous and right continuous. So,
in order to conclude it is su�cient to prove that Eα(µ+, µ−) is left upper semicontinuous. Let
(αn) be a sequence such that αn ↗ α. The continuity of β 7→ Eβ(χα) ensures that

lim sup
n

Eαn(µ+, µ−) = lim sup
n

Eαn(χαn) ≤ lim sup
n

Eαn(χα) = Eα(χα) = Eα(µ+, µ−).

¤

Theorem 6.5. Let αn ∈ [1 − 1
N , 1] be a sequence converging to α. If the tra�c plans χαn are

optimal for Eαn and χαn → χ, then χ is optimal for Eα.
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Proof. By Proposition 2.14, for all µ+ and µ− there are atomic measures µ+
n and µ−n such

that Eα(µ+
n , µ−n ) converges uniformly to Eα(µ+, µ−) on (1 − 1

N , 1]. Lemma 6.4 asserts that
α 7→ Eα(µ+

n , µ−n ) is continuous, so that α 7→ Eα(µ+, µ−) is continuous on (1 − 1
N , 1]. By the

same kind of argument as in the proof of Corollary 6.3, we deduce that χ is optimal. If α = 1− 1
N ,

we can suppose that up to a subsequence αn ↘ α, so that Corollary 6.3 ensures that χ is optimal
(possibly trivially optimal in the case Eα(χ) = ∞). ¤

Remark 6.6. In the case α = 1, the irrigation problem for the cost Eα is equivalent to the clas-
sical Monge-Kantorovich problem (see [11, 9, 14]). For that particular case, Theorem 6.5 ensures
that the transference plan associated to a sequence of optimal tra�c plans χαn , where αn → 1,
converges, up to a subsequence, to an optimal transference plan for the Monge-Kantorovich prob-
lem.
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