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Abstract

Given two densities f and g, we consider the problem of transporting a fraction m ∈
[0,min{‖f‖L1 , ‖g‖L1}] of the mass of f onto g minimizing a transportation cost. If the cost
per unit of mass is given by |x − y|2, we will see that uniqueness of solutions holds for
m ∈ [‖f ∧ g‖L1 ,min{‖f‖L1 , ‖g‖L1}]. This extends the result of Caffarelli and McCann in
[8], where the authors consider two densities with disjoint supports. The free boundaries of
the active regions are shown to be (n− 1)-rectifiable (provided the supports of f and g have
Lipschitz boundaries), and under some weak regularity assumptions on the geometry of the
supports they are also locally semiconvex. Moreover, assuming f and g supported on two
bounded strictly convex sets Ω,Λ ⊂ Rn, and bounded away from zero and infinity on their
respective supports, C0,α

loc regularity of the optimal transport map and local C1 regularity of
the free boundaries away from Ω∩Λ are shown. Finally, the optimal transport map extends
to a global homeomorphism between the active regions.

1 Introduction

In a recent paper [8], Caffarelli and McCann studied the following variant of the Monge-
Kantorovich problem: let f, g ∈ L1(Rn) be two nonnegative functions, and denote by Γ≤(f, g)
the set of nonnegative finite Borel measures on Rn × Rn whose first and second marginals are
dominated by f and g respectively, i.e.

γ(A× Rn) ≤
∫
A
f(x) dx, γ(Rn ×A) ≤

∫
A
g(y) dy

for all A ⊂ Rn Borel. Denoting by M (γ) the mass of γ (i.e. M (γ) :=
∫

Rn×Rn dγ), fix a
certain amount m ∈ [0,min{‖f‖L1 , ‖g‖L1}] which represents the mass one wants to transport,
and consider the following partial transport problem:

minimize C(γ) :=
∫

Rn×Rn

|x− y|2 dγ(x, y)

among all γ ∈ Γ≤(f, g) with M (γ) = m.
Using weak topologies, one can easily prove existence of minimizers for any fixed amount of

massm ∈ [0,min{‖f‖L1 , ‖g‖L1}] (see Section 2). We denote by Γo(m) the set of such minimizers.
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In general one cannot expect uniqueness of minimizers. Indeed, if m ≤
∫

Rn f ∧ g (where (f ∧
g)(x) := min{f(x), g(x)}), any γ supported on the diagonal {x = y} with marginals dominated
by f ∧ g is a minimizer with zero cost. To ensure uniqueness, in [8] the authors assume f and
g to have disjoint supports. Under this assumption they are able to prove (as in the classical
Monge-Kantorovich problem) that there exists a (unique) convex function ψ such that the unique
minimizer is concentrated on the graph of ∇ψ (see [8, Section 2]). This ψ is also shown to solve
in a weak sense a Monge-Ampère double obstacle problem (see [8, Section 4]).

Moreover, strengthening the disjointness assumption into the hypothesis on the existence of
a hyperplane separating the supports of the two measures, the authors prove a semiconvexity
result on the free boundaries (see [8, Sections 5]1). Furthermore, under some classical regularity
assumptions on the measures and on their supports, local C1,α regularity of ψ (which is equivalent
to local C0,α regularity of the transport map) and on the free boundaries of the active regions
is shown (see [8, Sections 6-7]).

The aim of this paper is to understand what happens if we remove the disjointness assump-
tion. In Section 2 we will see that, although minimizers are non-unique for m <

∫
Rn f ∧g (but in

this case the set of minimizers can be trivially described), uniqueness holds for anym ≥
∫

Rn f∧g.
Moreover, exactly as in [8], the unique minimizer is concentrated on the graph of the gradient
of a convex function. In Remark 2.11 we will also see that our argument for the uniqueness of
minimizers extends to more general cost functions on Rn, and also to the case where f and g are
two densities on a Riemannian manifold with c(x, y) = d(x, y)2, d(x, y) being the Riemannian
distance.

Then, in Section 3 we will prove that the marginals of the minimizers always dominate the
common mass f ∧ g (that is all the common mass is both source and target). This property,
which has an interest in its own, will also play a crucial role in the regularity results of Section 4.
Indeed, thanks to this domination property, in Paragraph 4.1 we can prove a local semiconvexity
result on the free boundaries, which reduces to the Caffarelli-McCann result in the disjoint case
(see Propositions 4.4 and 4.5 for a precise statement).

Paragraph 4.2 is devoted to the regularity properties of the transport map and the free
boundary. First, as in [8], we will prove local C0,α regularity of the transport map (see Theorem
4.8). On the other hand we will see that in our case something completely different happens:
usually, assuming C∞ regularity on the density of f and g (together with some convexity as-
sumption on their supports), one can show that the transport map is C∞ too. In our case we
will show that C0,α

loc regularity is in some sense optimal: we can find two C∞ densities on R,
supported on two bounded intervals and bounded away from zero on their supports, such that
the transport map is not C1 (see Remark 4.9).

Regarding the regularity of the free boundaries, we will prove a local C1 regularity away from
supp(f) ∩ supp(g) (see Theorem 4.11 for a precise statement). Furthermore, as in [8, Section
6], we will see that the transport map extends to a global homeomorphism between the active
regions (see Theorem 4.10).

Finally we will show how one can adapt the proofs in [8, Section 6] to deduce properties like
1In [8] the authors speak about the semiconcavity of the free boundary, but this is equivalent to semiconvexity

up to a change of coordinates.
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the path-connectedness of the active regions, or the fact that free boundary never maps to free
boundary. In Remark 4.15 we also discuss a possible improvement of the C1

loc regularity of the
free boundaries away from supp(f) ∩ supp(g) into a C1,α

loc regularity.

1.1 Preliminaries on measure theory and convex functions

We first recall some definitions which will play an important role in the paper:

Definition 1.1 (Push-forward) Let X, Y be complete separable metric spaces, µ a finite
Borel measure on X, and F : X → Y a Borel map. The push-forward F#µ is the measure on Y
defined by F#µ(B) = µ(F−1(B)) for any Borel set B ⊂ Y .

Definition 1.2 (Marginals) Let X, Y be complete separable metric spaces, and let γ be a
finite Borel measure on X × Y . We say that µ and ν are, respectively, the first and the second
marginals of γ if∫

X×Y
h1(x) dγ(x, y) =

∫
X
h1(x) dµ(x),

∫
X×Y

h2(y) dγ(x, y) =
∫
Y
h2(y) dν(y),

for all bounded continuous functions h1 : X → R, h2 : Y → R.

Definition 1.3 (Minumum and maximum of measures) Let X be a complete separable
metric spaces, µ, ν be two finite Borel measure on X. We define µ ∧ ν and µ ∨ ν by

µ ∧ ν(B) := inf
{
µ(B1) + ν(B2) : B1 ∩B2 = ∅, B1 ∪B2 = B, B1, B2 Borel

}
∀B ⊂ X Borel,

µ∨ ν(B) := sup
{
µ(B1) + ν(B2) : B1 ∩B2 = ∅, B1 ∪B2 = B,B1, B2 Borel

}
∀B ⊂ X Borel.

Moreover, we say that µ ≤ ν if µ(B) ≤ ν(B) for all B ⊂ X Borel.

It is not difficult to check that µ ∧ ν and µ ∨ ν are still finite Borel measures. Moreover the
equality µ∧ ν + µ∨ ν = µ+ ν holds. Indeed, given a Borel set B, assume for simplicity that we
have µ∧ ν(B) = µ(B1) + ν(B2) for some partition B1, B2 of B. Then, given any other partition
B′

1, B
′
2 of B, we have

µ(B2)+ν(B1) = µ(B)−µ(B1)+ν(B)−ν(B2) ≥ µ(B)−µ(B′
2)+ν(B)−ν(B′

1) = µ(B′
1)+ν(B′

2),

that is µ∨ ν(B) = µ(B2)+ ν(B1), which gives µ∧ ν(B)+µ∨ ν(B) = µ(B)+ ν(B) as wanted (in
the general case when the infimum is not attained, it suffices to consider B1 and B2 such that
µ ∧ ν(B) ≥ µ(B1) + ν(B2) − ε for some ε > 0 arbitrarily small).

Let us also recall the so-called Disintegration Theorem (see for instance [4, Theorem 5.3.1],
[10, III-70]). We state it in a particular case, which is however sufficient for our purpose:

Theorem 1.4 (Disintegration of measures) Let X, Y be complete separable metric spaces,
and let γ be a finite Borel measure on X ×Y . Denote by µ and ν the marginals of γ on the first
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and second factor respectively. Then there exists two measurable families of probability measures
(γx)x∈X and (γy)y∈Y such that

γ(dx, dy) = γx(dy) ⊗ dµ(x) = γy(dx) ⊗ dν(y),

i.e. ∫
X×Y

ϕ(x, y) dγ(x, y) =
∫
X

(∫
Y
ϕ(x, y) dγx(y)

)
dµ(x) =

∫
Y

(∫
X
ϕ(x, y) dγy(x)

)
dν(y)

for all bounded continuous functions ϕ : X × Y → R.

We now recall some classical definitions on convex functions:

Definition 1.5 (Subdifferential and Legendre transform) Let φ : Rn → R ∪ {+∞} be a
convex function. If φ(x) is finite, the subdifferential of φ at x is defined as

∂φ(x) := {p ∈ Rn : φ(z) − φ(x) ≥ 〈p, z − x〉 ∀ z ∈ Rn}.

Moreover, for A ⊂ Rn, we define ∂φ(A) := ∪x∈A∂φ(x).
The Legendre transform φ∗ : Rn → R ∪ {+∞} of φ is the convex function defined as

φ∗(y) := sup
x∈Rn

〈y, x〉 − φ(x).

It is well-known that a convex function and its Legendre transform are related by the following
properties:

y ∈ ∂φ(x) ⇔ x ∈ ∂φ∗(y),

φ(x) + φ∗(y) ≥ 〈x, y〉 ∀x, y ∈ Rn with equality if and only if y ∈ ∂φ(x).

Since convex functions are locally Lipschitz in the interior of their domain, by Rademacher’s
Theorem they are differentiable a.e. Indeed, a stronger result holds (see for instance [2] or [17,
Chapter 14, First Appendix]):

Theorem 1.6 (Alexandrov) Let A ⊂ Rn be an open set, φ : A → R be a convex function.
Then φ is twice differentiable (Lebesgue) a.e., that is for almost every x ∈ A there exists a linear
map ∇2φ(x) : Rn → Rn such that

φ(x+ v) = φ(x) + 〈∇φ(x), v〉 +
1
2
〈∇2φ(x) · v, v〉 + o(|v|2) ∀ v ∈ Rn.

Moreover ∇φ(x) is differentiable a.e. in A, and its differential coincides with ∇2φ(x).
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1.2 Notation

In this paper, we will repeatedly adopt the following notation and conventions:

- If µ is a (Borel) measure on Rn with density h with respect to the Lebesgue measure L n,
we often use h in place of µ = hL n. For example, we write F#h in place of F#(hL n).

- If γ ∈ Γ≤(f, g), we denote by fγ and gγ the densities of the first and the second marginal
of γ respectively (observe that the constraint γ ∈ Γ≤(f, g) implies that both marginals are
absolutely continuous with respect to the Lebesgue measure).

- If h1, h2 : Rn → R are Borel functions, we will often consider the Borel set {h1 > h2}. We
remark that if h1, h2 are defined up to a set of (Lebesgue) measure zero, then {h1 > h2}
is well-defined up to a set of measure zero.

- If B1 and B2 are two Borel set (possibly defined up to a set of measure zero), we say that
B1

a.e.
⊂ B2 if the inclusion B1 ⊂ B2 holds up to a set of measure zero.

2 Properties of minimizers

As we already said in the introduction, we consider f, g ∈ L1(Rn) two nonnegative Borel function,
and we denote by Γ≤(f, g) the set of nonnegative finite Borel measures on Rn × Rn whose
first and second marginals are dominated by f and g respectively. We will always assume
for simplicity that both f and g are compactly supported, although many results holds under
more general assumptions (for example if f and g have finite second moments). Let mmax :=
min{‖f‖L1 , ‖g‖L1}. We fix m ∈ [0,mmax], and we consider the minimization problem

C(m) := min
γ∈Γ≤(f,g),M (γ)=m

C(γ), (2.1)

where M (γ) =
∫

Rn×Rn dγ is the mass of γ, and C(γ) :=
∫

Rn×Rn |x − y|2 dγ is the cost of γ.
Since the set

Γ(m) := {γ ∈ Γ≤(f, g), M (γ) = m}

is non-empty and weakly∗ compact, it is simple to prove by the direct method of the calculus of
variations existence of minimizers (see [17, Chapter 4] or [8, Lemma 2.2]). Let Γo(m) ⊂ Γ(m)
denotes the set of minimizers. We want to understand their structure.

Let us define mmin :=
∫

Rn f ∧ g.
We observe that form ≤ mmin, given any density 0 ≤ h ≤ f∧g with massm (i.e.

∫
Rn h = m),

the plan γ := (Id × Id)#h is optimal, since its cost is zero. Moreover, since all minimizers have
zero cost, they are clearly of this form. Thus the set of minimizers is not a singleton except for
m = mmin, in which case the unique minimizer is given by (Id × Id)#(f ∧ g).

We now want to study the case m > mmin.
The main difference between our strategy and the one developed in [8] is the following: in

[8, Section 2] the authors introduce a Lagrange multiplier for the mass constraint, add a point
at infinity which acts as a tariff-free reservoir, and study the relations given by classical duality
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theorems. In this way they are able to deduce existence and uniqueness of minimizers when the
supports of f and g are disjoint. Our strategy is instead to attack directly the minimization
problem by studying the convexity properties of the function m 7→ C(m), and then looking at
the consequences that follow from them. In this way we will prove that there exists a unique
minimizer which is concentrated on the graph of the gradient of a convex function. In particular,
if f and g have disjoint support, we recover the uniqueness result in [8].

The proof of our result is divided in two steps:

1. The function m 7→ C(m) is convex on [0,mmax]. Moreover, if m0 is a point of strict
convexity for C(m), then Γo(m0) is a singleton.

2. The function m 7→ C(m) is strictly convex on (mmin,mmax].

Combining the above steps, we immediately deduce the uniqueness of minimizers for m > mmin.
We remark that the proof of the second step will require an analysis of the structure of

minimizers, that will be obtained applying in a careful way Brenier’s Theorem (see Theorem
2.3).

2.1 Step 1: properties of C(m)

Here we show some elementary properties of the function m 7→ C(m).

Lemma 2.1 (Convexity of C(m)) The function m 7→ C(m) is identically zero on [0,mmin],
and it is convex on [0,mmax].

Proof. The fact that C(m) = 0 for m ∈ [0,mmin] follows from the observation that any γ
supported on the diagonal with marginals dominated by f ∧ g is a minimizer with zero cost.

The convexity of C(m) is a simple consequence of the linearity of the functional and the
convexity of the constraints: if γ1 ∈ Γo(m1) and γ2 ∈ Γo(m2), for any λ ∈ [0, 1] we have
λγ1 + (1 − λ)γ2 ∈ Γ(λm1 + (1 − λ)m2). Therefore we obtain

C
(
λm1 + (1 − λ)m2

)
≤ C

(
λγ1 + (1 − λ)γ2

)
= λC(γ1) + (1 − λ)C(γ2) = λC(m1) + (1 − λ)C(m2) ∀λ ∈ [0, 1].

�

Proposition 2.2 (Strict convexity implies uniqueness) Let γ1, γ2 ∈ Γo(m0) (possibly γ1 =
γ2), and define γ− := γ1∧γ2, γ+ := γ1∨γ2. If we denote m− = M (γ1∧γ2) and m+ = M (γ1∨γ2),
then C(m) is affine on [m−,m+].

In particular, if C(m) its strictly convex at m0, then m− = m+ and Γo(m0) is a singleton.

Proof. As γ− + γ+ = γ1 + γ2 (recall the discussion after Definition 1.3), and γ−, γ+ ∈ Γ≤(f, g)
thanks to Theorem 2.6 below, we have

C(m−) + C(m+) ≤ C(γ−) + C(γ+) = C(γ1) + C(γ2) = 2C(m0),
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that is
C(m+) + C(m−)

2
≤ C(m0).

Since m++m−
2 = m0 and C(m) is convex, we deduce that C(m) is affine on [m−,m+]. Therefore,

if C(m) its strictly convex at m0, then m− = m+, which implies γ− = γ+. Thus γ1 = γ2, and
by the arbitrariness of γ1, γ2 ∈ Γo(m0) we deduce that Γo(m0) is a singleton. �

2.2 Graph property of minimizers

We will need the following result for the classical Monge-Kantorovich problem (see [5, 6, 14, 15]):

Theorem 2.3 Let f ′, g′ ∈ L1(Rn) be nonnegative compactly supported functions such that∫
Rn f

′ =
∫

Rn g
′, and consider the Monge-Kantorovich problem:

minimize
∫

Rn×Rn

|x− y|2 dγ(x, y)

among all γ which have f ′ and g′ as first and second marginals, respectively. Then there exists a
unique optimal γo. Moreover there exists a globally Lipschitz convex function ψ : Rn → R such
that ∇ψ(x) ∈ supp(g′) for a.e. x ∈ Rn, and

γo = (Id ×∇ψ)#f ′ = (∇ψ∗ × Id)#g′,

where ψ∗ denotes the Legendre transform of ψ. This implies in particular

∇ψ∗(∇ψ(x)) = x f ′-a.e., ∇ψ(∇ψ∗(y)) = y g′-a.e. (2.2)

Finally ψ solves the Monge-Ampère equation

det(∇2ψ)(x) =
f ′(x)

g′(∇ψ(x))
f ′-a.e. (2.3)

Conversely, if ϕ : Rn → R is a convex function such that ∇ϕ#f
′ = g′, then (Id×∇ϕ)#f ′ solves

the Monge-Kantorovich problem.

Let us first prove the following key result, which shows that solutions of the partial optimal
transport problem are solutions of an optimal transport problem:

Proposition 2.4 (Minimizers solve an optimal transport problem) Let m ∈ [0,mmax],
γ̄ ∈ Γo(m), and consider the Monge-Kantorovich problem:

minimize C(γ) =
∫

Rn×Rn

|x− y|2 dγ(x, y)

among all γ which have f +(g− gγ̄) and g+(f − fγ̄) as first and second marginals, respectively.
Then the unique minimizer is given by

γ̄ + (Id × Id)#
(
(f − fγ̄) + (g − gγ̄)

)
. (2.4)
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Remark 2.5 Although using Theorem 2.3 the above proposition could be proved in a simpler
way, we prefer to give a proof independent of it to show that the minimizing property of the
plan defined by (2.4) holds true whenever c(x, y) is a nonnegative cost function.

Proof. Let γ have marginals f̄ = f + (g − gγ̄) and ḡ = g + (f − fγ̄). The idea is to prove that,
since

∫
Rn f = m +

∫
Rn(f − fγ̄), γ has to send at least an amount m of the mass of f onto g.

In particular there exists γ− ≤ γ such that M (γ−) ≥ m and γ− ∈ Γ≤(f, g). From this fact the
result will follow easily. Let us therefore prove the existence of γ−.

We consider the disintegration of γ with respect to its first and second marginals respectively,
that is

γ(dx, dy) = γx(dy) ⊗ f̄(x) dx = γy(dx) ⊗ ḡ(y) dy

(see Theorem 1.4). Then we define

γ′(dx, dy) := γx(dy) ⊗ f(x) dx,

and we denote by f ′ and g′ its marginals. It is clear that f ′ = f , g′ ≤ g + (f − fγ̄). Since
M (γ′) =

∫
Rn f = m+

∫
Rn(f − fγ̄), it is not difficult to see that∫

Rn

g′ ∧ g ≥ m;

indeed∫
Rn

g′ ∧ g ≥
∫

Rn

g′ ∧
(
g + (f − fγ̄)

)
−

∫
Rn

g′ ∧ (f − fγ̄) ≥
∫

Rn

g′ −
∫

Rn

(f − fγ̄) = m.

Thus we immediately get that

γ−(dx, dy) := γy(dx) ⊗ (g′ ∧ g)(y) dy

is the desired subplan.
Now, since γ− ∈ Γ≤(f, g) and M (γ−) ≥ m, we get C(γ−) ≥ C(m). As C(γ) ≥ C(γ−) and

γ was arbitrary, we have proved that the infimum in the Monge-Kantorovich problem is greater
or equal than C(m). On the other hand, if we consider the plan γ̃ defined by Equation (2.4),
then C(γ̃) = C(γ̄) = C(m). Thus γ̃ is a minimizer. �

Thanks to the above proposition, we can prove the following:

Theorem 2.6 (Graph structure of minimizers) Let m ∈ [0,mmax]. There exists a globally
Lipschitz convex function ψ such that ∇ψ(x) ∈ {g > 0} for a.e. x ∈ Rn, and all γ ∈ Γo(m) are
concentrated on the graph of ∇ψ. Moreover ∇ψ is injective f-a.e., and for any γ ∈ Γo(m)

∇ψ(x) = x for a.e. x ∈ {fγ < f} ∪ {gγ < g}, (2.5)

and
fγ(x) = gγ(x) for a.e. x ∈ {fγ < f} ∪ {gγ < g}. (2.6)
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Remark 2.7 The key point of the above statement is that the function ψ is the same for all
minimizers. Since we will prove later that for m ∈ [mmin,mmax] there exists a unique minimizer,
while for m ∈ [0,mmin] the minimizers are all concentrated on the graph of the identity map,
the fact that ψ is independent of the minimizer is not interesting in itself. However we preferred
to state the theorem in this form, because we believe that the strategy of the proof is interesting
and could be used in other situations in which uniqueness of minimizers fails.

Proof. It is simple to see that Γo(m) is compact with respect to the weak∗ topology of measures.
In particular Γo(m) is separable, and we can find a dense countable subset (γn)∞n=1 ⊂ Γo(m).
Denote by γ̄ :=

∑∞
n=1

1
2n γn. Since the minimization problem (2.1) is linear and the constraints

are convex, γ̄ ∈ Γo(m). The idea now is that, if we prove that γ̄ is concentrated on a graph,
then all γ ∈ Γo(m) have to be concentrated on such a graph.

To prove the graph property of γ̄ we apply Proposition 2.4: we know that the plan

γ̃ := γ̄ + (Id × Id)#
(
(f − fγ̄) + (g − gγ̄)

)
, (2.7)

solves the Monge-Kantorovich problem:

minimize C(γ) =
∫

Rn×Rn

|x− y|2 dγ(x, y)

among all γ which have f +(g− gγ̄) and g+(f − fγ̄) as first and second marginals, respectively.
By Theorem 2.3 we deduce that γ̃ is concentrated on the graph of the gradient of a convex
function ψ, that is

γ̃ = (Id ×∇ψ)#
(
f + (g − gγ̄)

)
, (2.8)

and by (2.2) we deduce that ∇ψ is injective f -a.e. Combining (2.8) with (2.7) we deduce that γ̃
is both concentrated on the graph of Id and on the graph of ∇ψ for a.e. x ∈ {fγ̄ < f}∪{gγ̄ < g},
which implies

∇ψ(x) = x for a.e. x ∈ {fγ̄ < f} ∪ {gγ̄ < g}. (2.9)

Fix now any γ ∈ Γo(m), and let us prove that ∇ψ(x) = x for a.e. x ∈ {fγ < f} (the case
x ∈ {gγ < g} being analogous). By (2.9) we know that ∇ψ(x) = x for a.e. x ∈

∪
n

(
{fγn <

f} ∪ {gγn < g}
)
. Thus it suffices to prove that, for any k ∈ N,

{
f − fγ >

1
k

}
a.e.
⊂

∞∪
n=1

{
f − fγn >

1
2k

}
.

First of all we observe that, thanks to the density of (γn)∞n=1 in Γo(m), the set (fγn)∞n=1 is dense
in {fγ : γ ∈ Γo(m)} with respect to the the weak∗ topology of measures. On the other hand,
since fγ ≤ f for all γ ∈ Γo(m), the density of (fγn)∞n=1 holds also with respect to the the weak
topology of L1. Therefore, if by contradiction there exists a Borel set A, with |A| > 0, such that
A ⊂ {f − fγ >

1
k} and A ∩ {f − fγn >

1
2k} = ∅ for all n ≥ 1, we would obtain∫

A
f − fγ ≥ 1

k
|A|,

∫
A
f − fγn ≤ 1

2k
|A| ∀n ≥ 1,
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which contradicts the density of (fγn)∞n=1 in {fγ : γ ∈ Γo(m)} in the weak topology of L1. This
proves (2.5). Observing that ∇ψ#fγ = gγ , applying (2.3) with f ′ = fγ and g′ = gγ , we get

det(∇2ψ)(x) =
fγ(x)

gγ(∇ψ(x))
fγ-a.e.

It is a standard measure theory result that, if x̄ is a density point for the set {∇ψ(x) = x}, and
∇ψ(x) is differentiable at x̄, then ∇2ψ(x̄) = In, where In denotes the identity matrix on Rn (see
[3, Proposition 3.73(c)]). By this fact and (2.5), (2.6) follows easily. �

We now use the above theorem to show a domination property of minimizers which has an
interest in itself, and which will play a crucial role in the regularity of the free boundary of the
active regions.

Proposition 2.8 (Common mass is both source and target) Let m0 ∈ [mmin,mmax], γ ∈
Γo(m). Then fγ ≥ f ∧ g, gγ ≥ f ∧ g (that is, all the common mass is both source and target for
every minimizer).

Proof. For m0 = mmin the result is clear since, as we already said, the unique minimizer is
given by (Id × Id)#(f ∧ g). So we can assume m0 > mmin.

Applying Theorem 2.6 we know that we can write γ = (Id × ∇ψ)#fγ , with ∇ψ invertible
fγ-a.e. We observe that, since {fγ < f ∧ g} ⊂ {fγ < f} and {gγ < f ∧ g} ⊂ {gγ < g}, by (2.5)
we get

∇ψ(x) = x for a.e. x ∈ {fγ < f ∧ g} ∪ {gγ < f ∧ g}.

Moreover, by (2.6), fγ(x) = gγ(x) for a.e. x ∈ {fγ < f ∧ g} ∪ {gγ < f ∧ g}. Thus either both fγ
and gγ are greater or equal of f ∧ g, or {fγ < f ∧ g} = {gγ < f ∧ g} 6= ∅ and fγ = gγ on that set.

Suppose by contradiction that h := [f ∧ g − fγ ]+ = [f ∧ g − gγ ]+ is not identically zero. Let
mh > 0 denote the mass of h, and consider the plan γh = (Id× Id)#h. Since fγ+γh

= fγ + fγh
=

fγ + [f ∧ g− fγ ]+ ≤ f and gγ+γh
= gγ + gγh

= gγ + [f ∧ g− gγ ]+ ≤ g, we have γ+ γh ∈ Γ≤(f, g).
Observing that C(γh) = 0, we get

C(m0 +mh) ≤ C(γ + γh) = C(γ) = C(m0).

As C(m) is convex and increasing, it has to be constant on the interval [0,m0 +mh], and since
C(0) = 0, C(m) ≡ 0 on [0,m0 + mh]. This is impossible if m0 ≥ mmin, since it would imply
that a mass m0 +mh > mmin should stay at rest. This contradiction gives the desired result.

�

2.3 Step 2: strict convexity of C(m)

In order to prove the strict convexity property, we first need to show that a linear part in the
graph of C(m) would imply a monotonicity result on minimizers.

Lemma 2.9 Let mmin ≤ m1 < m2 ≤ mmax, and assume that C(m) is linear on [m1,m2]. Fix
γ1 ∈ Γo(m1). Then there exists γ2 ∈ Γo(m2) such that γ1 ≤ γ2.
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Proof. Let γ2 ∈ Γo(m2), and assume γ1 � γ2. We will modify γ2 into γ̃2 so that γ̃2 ∈ Γo(m2)
and γ1 ≤ γ̃2.

Let us consider γ1+γ2
2 . Since C(m) is linear on [m1,m2], we immediately get γ1+γ2

2 ∈
Γo(m1+m2

2 ). In particular we can apply Theorem 2.6 to deduce the existemce of a convex
function ψ such that both γ1 and γ2 are concentrated on the graph of ∇ψ. We now define
γ− = γ1 ∧ γ2 = (Id ×∇ψ)#(fγ1 ∧ fγ2), and we write

γ1 = γ− + γ̄1, γ2 = γ− + γ̄2,

with γ̄1 = (Id×∇ψ)#
(
[fγ1 − fγ2 ]+

)
, γ̄2 = (Id×∇ψ)#

(
[fγ2 − fγ1 ]+

)
. Let λ ∈ (0, 1) be such that

M (λγ̄2) = M (γ̄1). Since the function ∇ψ is injective f -a.e., it is simple to see that

γ− + γ̄1 + γ̄2 ∈ Γ≤(f, g)

(indeed, its marginals are dominated by fγ1 ∨ fγ2 and gγ1 ∨ gγ2 respectively). Thanks to the
optimality of γ1 and γ2 we have

C(γ1) = C(γ− + γ̄1) ≤ C(γ− + λγ̄2), C(γ2) = C(γ− + γ̄2) ≤ C(γ− + γ̄1 + (1 − λ)γ̄2),

which implies C(γ̄1) = C(λγ̄2), and therefore C(γ− + γ̄2) = C(γ− + γ̄1 + (1 − λ)γ̄2). Since

γ1 + (1 − λ)γ̄2 = γ− + γ̄1 + (1 − λ)γ̄2 ≤ γ− + γ̄1 + γ̄2 ∈ Γ≤(f, g),

we see that γ̃2 := γ1 + (1 − λ)γ̄2 ∈ Γo(m2) is the desired minimizer. �

Theorem 2.10 (Strict convexity of C(m)) The function m 7→ C(m) is strictly convex on
[mmin,mmax].

Proof. Assume by contradiction that there exist mmin ≤ m1 < m2 ≤ mmax such that that
C(m) is linear on [m1,m2]. Thanks to Lemma 2.9 we can find γ1 ∈ Γo(m1) and γ2 ∈ Γo(m2)
such that γ1 ≤ γ2. Let us define f̃ := fγ2 − fγ1 , g̃ = gγ2 − gγ1 . We are now interested in the
minimization problem

C̃(m) := min
γ∈Γ≤(f̃ ,g̃),M (γ)=m

C(γ). (2.10)

Let m̃ := m2 −m1 =
∫

Rn f̃ =
∫

Rn g̃, and define γ̃ := γ2 − γ1. Since γ1 + λγ̃ ∈ Γo(m1 + λm̃) for
λ ∈ [0, 1], this easily implies that

C(λγ̃) = C̃(λm̃),

i.e. λγ̃ is optimal in the minimization problem (2.10) for all λ ∈ [0, 1]. We now want to prove
that this is impossible. Fix any λ ∈ (0, 1), and as in the proof of Theorem 2.6 consider the
Monge-Kantorovich problem:

minimize C(γ) =
∫

Rn×Rn

|x− y|2 dγ(x, y)
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among all γ which have λf̃+(1−λ)g̃ and λg̃+(1−λ)f̃ as first and second marginals respectively
(observe that (1 − λ)g̃ = g̃ − gλγ̃ , (1 − λ)f̃ = f̃ − fλγ̃). By Proposition 2.4

γλ := λγ̃ + (Id × Id)#
(
(1 − λ)[f̃ + g̃]

)
,

solves the Monge-Kantorovich problem. Thus, applying Theorem 2.3, we deduce that γλ is
concentrated on the graph of the gradient of a globally Lipschitz convex function ψ. In particular,
since λ ∈ (0, 1), γ̃ is concentrated on the graph of ∇ψ and

∇ψ(x) = x for a.e. x ∈ {f̃ + g̃ > 0}.

This clearly implies f̃ = g̃ and γ̃ = (Id × Id)#f̃ . Therefore 0 = C(γ̃) = C(m2) − C(m1), and
so C(m) is constant on [m1,m2]. Since m1 ≥ mmin, as in the proof of Proposition 2.8 this is
impossible. �

Remark 2.11 (Extension to more general cost functions) We observe that all the above
arguments do not really use that the cost is quadratic: all we need is

(1) c(x, y) ≥ 0 and c(x, y) = 0 only for x = y;

(2) whenever both the source and the target measure are compactly supported and absolutely
continuous with respect to the Lebesgue measure, the Monge-Kantorovich problem with
cost c(x, y) has a unique solution which is concentrated on the graph of a function T ;

(2’) T is injective a.e. on the support of the source measure;

(2”) T is differentiable a.e. on the support of the source measure.

Let us remark that condition (2’) was used in the proof of Lemma 2.9, while (2”) is needed for
deducing (2.6) from (2.5).

Some simple assumptions on the cost function which ensure the validity of (2)-(2’)-(2”) are:

(a) c ∈ C2(Rn × Rn);

(b) the map y 7→ ∇xc(x, y) is injective for all x ∈ Rn;

(b’) the map x 7→ ∇yc(x, y) is injective for all y ∈ Rn;

(c) det(∇x,yc) 6= 0 for all x, y ∈ Rn.

To understand why (a)-(b)-(c) imply (2)-(2”), we recall that (a)-(b) ensure that the existence
of an optimal transport map T . Moreover this map is implicitly defined by the identity

∇xc(x, T (x)) = ∇φ(x),

where φ(x) is given by
φ(x) = inf

y∈supp(ν)
c(x, y) − Cy,
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with y 7→ Cy locally bounded (see [17, Chapter 10]). By (a) we know that φ is locally semicon-
cave, which implies that its gradient (which exists a.e.) is differentiable a.e. Since by (a)-(b)-(c)
the map (x, p) 7→ (x, [∇xc(x, ·)]−1p) is a smooth diffeomorphism, we obtain that also T is dif-
ferentiable a.e. Finally, (a)-(b’) give the existence of an optimal transport map also for the
Monge-Kantorovich problem with cost ĉ(x, y) := c(y, x). From this fact (2’) follows easily.

If c(x, y) = d(x, y)2 with d(x, y) a Riemannian distance on a manifold, although c(x, y) does
not satisfies the above assumptions, existence and uniqueness of the optimal transport map is
still true [16, 12], and the Jacobian identity det(∇T ) = f

g◦T holds almost everywhere [9, 13]
(although in the non-compact case, one has to define the gradient of T in an appropriate weak
sense). So our existence and uniqueness result for the partial transport problem applies also to
this case.

3 Properties of the active regions

Let us denote by Ω and Λ the Borel sets {f > 0} and {g > 0} respectively. We have {f ∧ g >
0} = Ω ∩ Λ.

For m ∈ [mmin,mmax] we denote by γm = (Id × ∇ψm)#fm = (∇ψ∗
m × Id)#gm the unique

minimizer of the minimization problem (2.1), where fm and gm denote the two marginals of γm.
We define the active source and the active target as

Fm := set of density points of {fm > 0}, Gm := set of density points of {gm > 0}.

We want to study the regularity properties of these sets. First of all, by Proposition 2.8, we
have

Fm
a.e.
⊃ Ω ∩ Λ, Gm

a.e.
⊃ Ω ∩ Λ,

which will be a key fact to prove the regularity of the boundary of the free regions. We now
prove an interior ball condition, which is the analogous in our formalism of [8, Corollary 2.4].

Proposition 3.1 (Structure of the active regions) There exists a set Γm ⊂ Rn × Rn on
which γm is concentrated such that

Fm
a.e.= (Ω ∩ Λ) ∪

∪
(x̄,ȳ)∈Γm

{
x ∈ Ω : |x− ȳ|2 < |x̄− ȳ|2

}
,

Gm
a.e.= (Ω ∩ Λ) ∪

∪
(x̄,ȳ)∈Γm

{
y ∈ Λ : |x̄− y|2 < |x̄− ȳ|2

}
.

Proof. Let us recall that γm = (Id × ∇ψm)#fm = (∇ψ∗
m × Id)#gm. We denote by Dψm and

Dψ∗
m

the sets where ψm and ψ∗
m are respectively differentiable. We recall that the gradient of a

convex function is continuous on its domain of definition. We define

Γm := (Id ×∇ψm)(Fm ∩Dψm) ∩ (∇ψ∗
m × Id)(Gm ∩Dψ∗

m
)

=
{
(x, y) : y = ∇ψm(x) with x ∈ Fm ∩Dψm and x = ∇ψ∗

m(y) with y ∈ Gm ∩Dψ∗
m

}
.

(3.1)
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Since Dψm and Dψ∗
m

have full measure for fm and gm respectively, it is clear that γm is concen-
trated on Γm.

We will prove the thesis only for Fm (the case of Gm being analogous). Since Dψm has full
measure for fm, the result will follow from the inclusions

Fm ∩Dψm

a.e.
⊂ (Ω ∩ Λ) ∪

∪
(x̄,ȳ)∈Γm

{
x ∈ Ω : |x− ȳ|2 < |x̄− ȳ|2

} a.e
⊂ Fm. (3.2)

Let us first prove the left inclusion. Let x ∈ Fm ∩Dψm \ Ω ∩ Λ. Then obviously ∇ψm(x) 6= x.
Define vx := ∇ψm(x) − x 6= 0. Since x is a density point for the set {fm > 0}, there exists a
sequence of points (xk) such that

(xk,∇ψm(xk)) ∈ Γm, xk → x and 〈x− xk, vx〉 ≥
1
2
|x− xk||vx|

(the idea is that we want x−xk “almost parallel” to vx). Thanks to the choice of xk it is simple
to check that, since ∇ψm(xk) → ∇ψm(x), we have

|x−∇ψm(xk)|2 < |xk −∇ψm(xk)|2 for k large enough.

Since Fm
a.e.
⊂ Ω, this implies the desired inclusion.

We now have to prove the right inclusion in (3.2). The heuristic idea is simple: if a point
x ∈ Ω is such that |x − ȳ|2 < |x̄ − ȳ|2 but x 6∈ Fm, then we can replace (x̄, ȳ) with (x, ȳ) to
obtain a measure on Rn × Rn with the same mass than γm but which pays less, and this would
contradict the optimality of γm. Here is the rigorous argument: let us consider the set

E :=
∪

(x̄,ȳ)∈Γm

{
x ∈ Ω : |x− ȳ|2 < |x̄− ȳ|2

}
\ Ω ∩ Λ.

First of all, since the set Γm is separable, we can find a dense countable subset
(
(xk, yk)

)
k∈N ∈

Γm, so that
E =

∪
k∈N

{
x ∈ Ω : |x− yk|2 < |xk − yk|2

}
\ Ω ∩ Λ.

Assume by contradiction that E
a.e.

* Fm. This implies that there exist k ∈ N and a Borel set A
with |A| > 0 such that

A ⊂
{
x ∈ Ω : |x− yk|2 < |xk − yk|2

}
\ Ω ∩ Λ, A ∩ Fm = ∅.

Fix ε > 0. First of all, since

Aε := A ∩
{
x ∈ Ω : |x− yk|2 < |xk − yk|2 − ε

}
→ A

as ε → 0 (i.e. χAε → χA in L1 as ε → 0), by monotone convergence there exists ε > 0 small
such that |Aε| > 0. Fix η > 0 small (the smallness will depend on ε, as we will see below). Since
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yk = ∇ψm(xk), ∇ψm is continuous at xk, and xk is a density point for Fm, we can find a small
ball Bδ(xk) such that

|x−∇ψm(x)|2 ≥ |xk−yk|2−
ε

8
, |∇ψm(x)−∇ψm(xk)|2 ≤ η ∀x ∈ Bδ(xk)∩Fm∩Dψm . (3.3)

Therefore, for η = η(ε) small enough,

|x−y|2 ≤
(√

|xk − yk|2 − ε+ η
)2

≤ |xk−yk|2 −
ε

4
∀x ∈ Aε, y ∈ ∇ψm(Bδ(xk)∩Fm∩Dψm).

(3.4)
Up to choosing δ smaller, we can assume

∫
Aε
f ≥

∫
Bδ(xk) fm > 0. Thus, if we consider the

density gδ := ∇ψm#(fmχBδ(xk)), we can replace the plan

γδ := (Id ×∇ψm)#(fmχBδ(xk))

with any plan γ̃d such that fγ̃d
≤ fχAε and gγ̃d

= gδ. In this way, since M (γ̃δ) = M (γδ), thanks
to (3.3) and (3.4) we get

C(γ̃δ) ≤
(
|xk − yk|2 −

ε

4

)
M (γ̃δ) <

(
|xk − yk|2 −

ε

8

)
M (γδ) ≤ C(γδ)

Since γm − γδ + γ̃δ ∈ Γ(m), the above inequality would contradict the optimality of γm. Thus
E ⊂ Fm and also the second inclusion is proved. �

Remark 3.2 (The case of general cost) The above result can be generalized to the cost
functions considered in Remark 2.11, obtaining that

Fm
a.e.= (Ω ∩ Λ) ∪

∪
(x̄,ȳ)∈Γm

{x ∈ Ω : c(x, ȳ) ≤ c(x̄, ȳ)} ,

Gm
a.e.= (Ω ∩ Λ) ∪

∪
(x̄,ȳ)∈Γm

{y ∈ Λ : c(x, ȳ) ≤ c(x̄, ȳ)} ,

with Γm defined as (Id×T )(Fm∩DT )∩(T−1×Id)(Gm∩DT−1), where T is the optimal transport
map, and DT and DT−1 denote the set of continuity points for T and T−1 respectively.

Remark 3.3 (Equality everywhere) Let us define

Um := (Ω ∩ Λ) ∪
∪

(x̄,ȳ)∈Γm

B|x̄−ȳ|(ȳ),

Vm := (Ω ∩ Λ) ∪
∪

(x̄,ȳ)∈Γm

B|x̄−ȳ|(x̄).

By the proof of above proposition it is not difficult to deduce that, if Ω and Λ are open sets,
then

Fm ∩Dψm ⊂ Um ∩ Ω ⊂ Fm
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(and analogously for Gm). Since Fm ∩ Dψm is of full Lebesgue measure inside Fm, and Um is
open, recalling the definition of Fm one easily obtains Fm = Um ∩ Ω, that is the equality is
true everywhere and not only up to set of measure zero (and analogously Gm = Vm ∩ Λ). In
particular, the inclusions Fm ⊃ Ω ∩ Λ and Gm ⊃ Ω ∩ Λ hold.

Remark 3.4 (Monotone expansion of the active regions) Thanks to the uniqueness of
minimizers form ∈ [mmin,mmax], we can apply [8, Theorem 3.4] to show the monotone expansion
of the active regions. More precisely one obtains

fm1 ≤ fm2 and gm1 ≤ gm2 for mmin ≤ m1 ≤ m2 ≤ mmax,

so that in particular

Fm1 ⊂ Fm2 and Gm1 ⊂ Gm2 for mmin ≤ m1 ≤ m2 ≤ mmax.

4 Regularity results

By the duality theory developed in [8], as for m ≥ mmin there exists a unique optimal transport
map ∇ψm, one could prove that ψm is the unique Brenier solution to a Monge-Ampère obstacle
problem2 (see [8, Section 4]). However we prefer here to not make the link with the Monge-
Ampère obstacle problem (which would require to use the duality theory in [8, Section 2] in
order to construct the obstacles), and instead we concentrate directly on the regularity of the
maps ψm and of the free boundaries of the active regions Fm and Gm.

Since for m ≤ mmin the map ψm is trivial (just take ψm(x) = |x|2/2 so that ∇ψm(x) = x
everywhere), from now on we will consider only the case m > mmin.

4.1 Partial semiconvexity of the free boundary

We will assume Ω = {f > 0} and Λ = {g > 0} to be open and bounded sets. We define the free
boundaries of Fm and Gm as ∂Fm ∩ Ω and ∂Gm ∩ Λ respectively. Thanks to Remark 3.3, they
respectively coincide with

∂Um ∩ Ω and ∂Vm ∩ Λ.

Therefore, to prove regularity results on the free boundaries, we need to study the regularity
properties of the sets ∂Um and ∂Vm inside Ω and Λ, respectively.

Definition 4.1 Let E and F be open sets. We say that ∂E ∩ F is locally semiconvex if, for
each x ∈ ∂E ∩ F , there exists a ball Br(x) ⊂ F such that ∂E ∩ Br(x) can be written in some
system of coordinates as the graph of a semiconvex function, and E ∩Br(x) is contained in the
epigraph of such a function.

In [8, Section 5] the authors prove the semiconvexity of the free boundaries of the active
regions assuming the existence of a hyperplane which separates the supports of f and g. Their

2In [8] the authors adopt the terminology of weak∗ solution, instead of Brenier solution.

16



proof is based on an analogue of Proposition 3.1. Indeed the existence of a separating hyperplane,
together with the fact that in their case |x − ∇ψ(x)| ≥ δ > 0, allows to write Um ∩ Ω as the
epigraph of a function u : Rn−1 → R such that, for each point x = (x′, u(x′)) ∈ ∂Um ∩ Ω,
there exists a ball of radius ≥ δ which touches the graph of u at x from below. Thanks to this
property, they can show the semiconvexity of the free boundary. In particular they deduce that
the Lebesgue measure of ∂Um and ∂Um is zero, and so fm and gm give no mass to ∂Um and
∂Vm respectively (this property is crucial to apply Caffarelli’s regularity theory in this context,
see [8, Theorem 6.3] and the proof of Theorem 4.8 in the next paragraph).

Remark 4.2 The assumption of the existence of a separating hyperplane plays an important
role in the semiconvexity property. Indeed assume that g is supported on the ball B1(0) =
{|x| ≤ 1}, and f has a connected support which contains the points x+ := (2, 0, . . . , 0) and
x− := (−2, 0, . . . , 0). It could be possible that the maps ∇ψ send the points x+ and x− into two
(distinct) points y+ and y− such that |x+ − y+| = |x− − y−| = 2. In this case the active target
region Vm contains A := B1(0) ∩

(
B2(x+) ∪ B2(x−)

)
, and so ∂Vm could be not a graph near

the origin (and so it would not be locally semiconvex). However it is still possible to prove that
∂Vm is (n − 1)-rectifiable, so that in particular it has zero Lebesgue measure (see Proposition
4.4 below).

In our case everything becomes a priori much difficult for two reasons: first of all, since we do
not want to assume the supports of f and g to be disjoint, of course we cannot have a separating
hyperplane. Furthermore, as we do not have any lower bound on the quantity |x−∇ψ(x)|, the
condition of having a ball touching from inside at each point of the boundary becomes a priori
useless.

We will solve these problems in two ways, depending on which of the two following results
we want to prove:

(a) The free boundaries have zero Lebesgue measure (resp. are (n−1)-rectifiable, i.e. countable
union of Lipschitz hypersurfaces).

(b) Each free boundary can be written as the union of a locally semiconvex hypersurface
together with a closed subset of a Lipschitz hypersurface.

The idea behind both results is the following: by what we already proved, the active regions
contain Ω ∩ Λ (Proposition 3.1). Therefore, since |x −∇ψ(x)| can be 0 only for x ∈ Ω ∩ Λ, at
the points where radius of the ball touching from inside goes to 0 we will use the information
that the set Ω ∩ Λ is touching ∂Um from inside.

This observation is more or less sufficient to prove (a). On the other hand, by Remark 4.2, it
is clear that to prove (b) we need some geometric assumption on the supports f and g. To deal
with this problem, we will assume that there exists an open convex set C such that Λ ⊂ C and
Ω \ Λ ⊂ Rn \C. This hypothesis, which generalizes the assumption of a separating hyperplane,
is satisfied for instance if Λ is convex, since it suffices to take C = Λ.

We will need the following:
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Lemma 4.3 Let A be a bounded Borel subset of Rn, and define

E :=
∪
x∈A

Br(x)(x),

where x 7→ r(x) ∈ (0,+∞) is a Borel function. Assume that there exist δ,R > 0 such that
δ ≤ r(x) ≤ R for all x ∈ A. Then ∂E is a (n − 1)-rectifiable set, and in particular has zero
Lebesgue measure.

Proof. First of all, let Γ ⊂ Rn × R denotes the graph of x 7→ r(x). Then

E =
∪

(x,r)∈Γ

Br(x).

Denoting by Γ the closure of Γ, it is simple to check that

E =
∪

(x,r)∈Γ

Br(x). (4.1)

Indeed, if y ∈
∪

(x,r)∈ΓBr(x), then there exist (x, r) ∈ Γ such that y ∈ Br(x). Since the ball
Br(x) is open, it is clear that if (xk, r(xk)) is a sequence of points in Γ that converges to (x, r),
then y ∈ Br(xk)(xk) for k large enough. This proves (4.1).

Let now y ∈ ∂E. This implies that for all ε > 0 the following holds:

|y − x| ≥ r − ε ∀ (x, r) ∈ Γ

and there exists (xε, rε) ∈ Γ such that |y − xε| ≤ rε + ε. Since Γ is compact (recall that A is
bounded and r ∈ [δ,R] for all (x, r) ∈ Γ), it is simple to deduce that there exists (x0, r0) ∈ Γ
such that |y − x0| = r0, that is y ∈ ∂Br0(x0). As r0 ≥ δ, we have proved that at each point
y ∈ ∂E we can find a ball of radius δ touching ∂E at y from the interior. This condition, called
Interior Ball Property, implies that ∂E is (n− 1)-rectifiable3.

On the other hand we remark that, to prove just that ∂E has zero Lebesgue measure, it
suffices to show that ∂E has no density points. Indeed we recall that, given a Borel set A, it is
a well-known fact that a.e. point x ∈ A is a density point (see for instance [11, Paragraph 1.7.1,
Corollary 3]). To see that ∂E has no density points it suffices to observe that if y ∈ ∂E then
y ∈ ∂B|y−x|(x) for some ball B|y−x|(x) ⊂ E, and so

lim
r→0

L n
(
∂E ∩Br(y)

)
L n

(
Br(y)

) ≤ lim
r→0

L n
(
Br(y) \B|y−x|(x)

)
L n

(
Br(y)

) =
1
2
.

�
3Using [1, Lemma 2.1] one can prove for instance a stronger result: let {v1, . . . , vkn} be a subset of the unit

sphere of Rn such that, for each vector p ∈ Rn with unit norm, there exists i ∈ {1, . . . , kn} with 〈vi, p〉 ≥ 1/2.
Then, if to any x ∈ ∂E we associate a unit vector px ∈ Rn such that Bδ(x − δpx) ⊂ E, we can decompose ∂E as
the union of Ai, with Ai := {x ∈ ∂E : 〈vi, px〉 ≥ 1/2}, and thanks to [1, Lemma 2.1] one can show that each Ai

is locally semiconvex.
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We can now prove (a).

Proposition 4.4 (No mass on the free boundary) Assume Ω ∩ Λ open, with L n
(
∂(Ω ∩

Λ)
)

= 0. Let (Ω ∩ Λ)ε := {x ∈ Rn : dist(x,Ω ∩ Λ) < ε}, and assume that for any ε > 0

dist
(
Ω \ (Ω ∩ Λ)ε,Λ \ Ω

)
=: δ(ε) > 0. (4.2)

Then L n
(
∂Um

)
= 0, and in particular both fm and gm give no mass to ∂Um. Moreover, if

∂(Ω ∩ Λ) is Lipschitz, then ∂Um is (n− 1)-rectifiable.

Proof. Decompose the boundary of Um as

∂Um = ∂U em ∪ ∂U bm,

where
∂U em := ∂Um \ ∂(Ω ∩ Λ), ∂U bm := ∂Um ∩ ∂(Ω ∩ Λ).

Obviously ∂U bm has measure zero. Since by definition Um ⊃ Ω∩Λ, and Ω∩Λ is open, we easily
get ∂Um ∩ (Ω ∩ Λ) = ∅, that is ∂Um cannot enter inside Ω ∩ Λ. Therefore we can write ∂U em as
the increasing union of the sets

Be
ε := ∂U em \ (Ω ∩ Λ)ε.

Consider the open set
Eε :=

∪
(x̄,ȳ)∈Γm, x̄ 6∈(Ω∩Λ)ε

B|x̄−ȳ|(ȳ),

where Γm is the set defined in (3.1). Thanks to (4.2), we can apply Lemma 4.3 to deduce that
L n

(
∂Eε

)
= 0. Observing that

∂U em \ (Ω ∩ Λ)ε ⊂ ∂Eε,

we obtain that L n
(
Be
ε

)
= 0 for all ε > 0, and so L n

(
∂U em

)
= 0.

Suppose now that ∂(Ω ∩ Λ) is Lipschitz. Then ∂U bm is clearly (n− 1)-rectifiable. Moreover,
by Lemma 4.3, also ∂Eε is (n− 1)-rectifiable for all ε > 0. From this we conclude easily. �

Let us now prove (b).

Proposition 4.5 (Local semiconvexity away from the intersection of the supports) Assume
Ω open, and suppose there exists an open convex set C such that Λ ⊂ C and Ω \ Λ ⊂ Rn \ C.
We decompose the boundary of Um inside Ω as

∂Um ∩ Ω =
(
∂U em ∩ Ω

)
∪

(
∂U bm ∩ Ω

)
,

where
∂U em := ∂Um \ ∂C, ∂U bm := ∂Um ∩ ∂C.

Then ∂U em is locally semiconvex inside Ω.
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Proof. By the definition of C, one can easily check that Ω ∩ Λ = Ω ∩C. In particular Ω ∩ Λ is
open. Therefore, since by Remark 3.3 we have Um ∩Ω = Fm ⊃ Ω∩Λ = Ω∩C, we easily obtain
(∂Um ∩ Ω)∩C = ∅, that is the free boundary cannot enter inside C. Thus we can write ∂U em as
the increasing union of the sets

Be
` := ∂U em ∩ {x ∈ Rn : dist(x,C) ≥ 1/`}.

Let us write C as the intersection of a countable set of halfspaces:

C =
∩
k

Hk, Hk = {x ∈ Rn : 〈x, vk〉 < 0}.

We see that each set Be
` can be written as

Be
` =

∪
k

Be
`,k, Be

`,k := ∂U em ∩ {x ∈ Rn : dist(x,Hk) ≥ 1/`}.

We now remark that, since for any k ∈ N the set Ω ∩ {dist(x,Hk) ≥ 1/`} is separated from Λ
by a hyperplane, by the same proof in [8, Section 5] we deduce that Be

`,k ∩ Ω is contained in a
semiconvex graph. This easily implies that the set ∂U em ∩ Ω is locally semiconvex. �

Remark 4.6 If we exchange the role of Ω and Λ in the above propositions, the above regularity
properties hold for ∂Vm in place of ∂Um.

4.2 Regularity of the transport map and of the free boundary

By the results of Section 2, we know that the optimal plan γm is induced by a convex function
ψm via γm = (Id ×∇ψm)#fm. Since ∇ψm#fm = gm, we will say that ψm is a Brenier solution
to the Monge-Ampère equation

det(∇2ψm)(x) =
fm(x)

gm(∇ψm(x))
on Fm, ∇ψm(Fm) ⊂ Gm. (4.3)

We recall that the function ψm was constructed applying Theorem 2.3 to the Monge-Kantorovich
problem:

minimize C(γ) =
∫

Rn×Rn

|x− y|2 dγ(x, y)

among all γ which have f +(g−gm) and g+(f −fm) as first and second marginals, respectively
(see Proposition 2.4). In particular ∇ψm is unique f -a.e. Therefore, if f is strictly positive on
an open connected set Ω ⊂ Rn, then ψm is unique on Ω up to additive constants.

We now want to deduce regularity properties on ψm and ∂Fm. Exchanging the role of f and
g, all results on ψm and Fm will be true also for ψ∗

m and Gm. We recall that, thanks to Remark
3.3, Fm = Um ∩ Ω, Gm = Vm ∩ Λ.

Assumption 1: we assume that f and g are supported on two bounded open sets Ω and Λ
respectively. Moreover we assume that f and g are bounded away from zero and infinity on Ω
and Λ respectively.
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In order to prove regularity results on transport maps arising from the Monge-Kantorovich
problem it is well known that one needs to assume at least convexity of the target domain (see
[7]), but even assuming Λ to be convex one cannot expect Gm ∩ Λ to be convex. However we
can adapt the strategy used in [8, Section 6] in order to prove local C1,α regularity of ψm. On
the other hand in our case, even assuming f and g to be C∞, we cannot expect ψm to be C∞

in the interior of Ω, while this is the case if Ω and Λ are disjoint (see Remark 4.9 below).
The idea to prove interior regularity for ψm is to apply Caffarelli’s regularity theory. To this

aim we have to prove, as in [8, Section 6], that ψm solves a Monge-Ampère equation with convex
target domain. Let us recall the interior regularity result of Caffarelli [7]:

Theorem 4.7 Let f and g be nonnegative densities supported on two bounded open sets Ω and
Λ respectively. Assume Λ convex, and that f and g are bounded away from zero and infinity on
Ω and Λ respectively. If ψ : Rn → (−∞,+∞] is a convex function such that ∇ψ#f = g, then
there exists α > 0 such that ψ ∈ C1,α

loc (Ω). Moreover ψ is strictly convex on Ω.

Let us therefore assume Λ convex. Since ∇ψm solves the Monge-Kantorovich problem from
fm+(f−fm)+(g−gm) to gm+(f−fm)+(g−gm), and ∇ψm(x) = x for x ∈ {f > fm}∪{g > gm},
we have

∇ψm#(fm + (g − gm)) = g. (4.4)

This implies (see Theorem 2.3) that ∇ψm solves a Monge-Kantorovich problem where the target
measure g is bounded from away from zero and infinity on the bounded open convex set Λ. Since,
under Assumption 1, fm+(g−gm) is bounded from above, in order to apply Caffarelli’s interior
regularity theory we need to prove the existence of an open bounded set on which this density
is concentrated, and to show that it is bounded away from zero on this set. We observe that

∇ψm(x) = x and fm(x) = gm(x) = (f ∧ g)(x)

for a.e. x ∈ {f − fm > 0} ∪ {g − gm > 0} (see Theorem 2.6). Thus

fm = gm = f ∧ g if 0 < fm < f or 0 < gm < g.

This easily implies that

fm + (g − gm) = f or fm + (g − gm) = g if fm = f or fm = f ∧ g,

fm + (g − gm) = g if fm = gm = 0.

Therefore

fm + (g − gm) =
{
f or g in Um ∩ Ω,
g in Λ \ Vm.

(4.5)

Thus fm + (g − gm) is bounded away from zero on the domain (Um ∩ Ω) ∪ (Λ \ Vm), and this
domain has full mass since ∂Vm has zero Lebesgue measure (see Proposition 4.4 and Remark
4.6). Combining this with Theorem 4.7, we obtain:
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Theorem 4.8 (Interior C1,α regularity) Suppose that Assumption 1 holds, and that Λ is
convex. If ψm is a Brenier solution to (4.3), then ψm ∈ C1,α

loc (Um ∩ Ω) and is strictly convex on
Um ∩ Ω.

Remark 4.9 (Smooth densities need not to have a smooth solution) In [8], the authors
show that, if f and g are C∞ with disjoint supports, and if the support of g is convex, then
ψm ∈ C∞. This property strongly relies on the fact that the supports are disjoint. Indeed, even
if we assume f (resp. g) to be C∞ we cannot expect fm (resp. gm) to be continuous on its
support. In particular we cannot expect for higher regularity results. Consider for instance the
following 1-dimensional example: let h ≥ 0 be a even function on R of class C∞ with support
contained in [−1, 1]. Define

f(x) = χ[−4,4](x) + h(x+ 2), g(x) = χ[−4,4](x) + h(x− 2)

(where χA denotes the indicator function of a set A). If m = mmin = 8, then all the common
mass stay at rest. If now m = 8 + ε with 0 < ε <

∫ 1
−1 h, then the following happens: let

δ = δ(ε) ∈ (0, 2) be such that
∫ −1+δ
−1 h =

∫ 1
1−δ h = ε, and let Tδ denote the optimal transport

map (for the classical Monge-Kantorovich problem) which sends fχ[−1−δ,1+δ] into gχ[−1−δ,1+δ].
Then it is not difficult to see that

ψ′
m(x) =


x if x ∈ [−4,−1 − δ],
Tδ(x) if x ∈ [−1 − δ, 1 + δ],
x if x ∈ [1 + δ, 4],

fm = χ[−4,4](x) + h(x+ 2)χ[−1−δ,−1](x), gm = χ[−4,4](x) + h(x− 2)χ[1,1+δ](x).

Therefore, although f and g are C∞ on their supports (which are smooth and convex), fm and
gm are not continuous. Since

ψ′′
m =

fm
gm ◦ ψ′

m

on [−4, 4],

and ψ′
m is continuous on [−4, 4] (so that ψ′

m(−1 − δ) = −1 − δ), we get that

lim
x→(−1−δ)−

ψ′′
m(x) = 1,

lim
x→(−1−δ)+

ψ′′
m(x) = lim

x→(−1−δ)+
fm(x)

gm(ψ′
m(x))

=
f(−1 − δ)
g(−1 − δ)

= 1 + h(1 − δ) > 1,

and so ψm is not C2.

We now want to prove global C1 regularity of ψm up to the free boundary. Moreover we will
prove, following the lines of the proof of [8, Theorem 6.3], that the free boundary is locally a C1

hypersurface away from Ω ∩ Λ, and the transport map displaces along it in the perpendicular
direction. To this aim, we will need to assume strict convexity of the domains:
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Assumption 2: Ω and Λ are strictly convex.

We remark that Assumption 2 implies in particular that Ω is connected. Thus ψm is uniquely
defined on Ω up to additive constants, and it makes sense to speak about the Brenier solution
to (4.3).

Theorem 4.10 (Global C1 regularity) Suppose that Assumptions 1 and 2 hold. Let ψm be
the Brenier solution to (4.3). Then there exists ψ̃m ∈ C1(Rn)∩C1,α

loc (Um∩Ω) such that ψ̃m = ψm
on Um ∩ Ω, ∇ψ̃m(x) = x on Λ \ Vm, and ∇ψ̃m(Rn) = Λ. Moreover ∇ψ̃m : Um ∩ Ω → Vm ∩ Λ is
a homeomorphism.

Proof. Since the assumptions on f and g are symmetric, by Proposition 2.4 we deduce that ∇ψ∗
m

is the unique optimal transport map for the Monge-Kantorovich problem from gm+(f − fm) to
f . By Theorem 4.8 applied to ψ∗

m we know that ψ∗
m ∈ C1,α

loc (Vm ∩ Λ) and is strictly convex on
Vm∩Λ. Since Ω and Λ are both convex, we can apply Proposition 4.5 (with C = Ω) to deduce that
(∂Vm \∂Ω)∩Λ is locally semiconvex. Moreover, as ∇ψ∗

m(y) = y for a.e. y ∈ Λ\Vm ⊂ {g > gm},
we obtain ψ∗

m(y) = |y|2
2 + C on each connected component of the open set Λ \ Vm. Thus it is

not difficult to see that ψ∗
m is strictly convex on the full domain Λ, and thanks to the strict

convexity of Λ ψ∗
m is strictly convex also on Λ. Let us consider the strictly convex function

φm =
{
ψ∗
m on Λ,

+∞ on Rn \ Λ,

and define ψ̃m := φ∗m. Exactly as in [8, Theorem 6.3], the strict convexity of φm implies that
ψ̃m ∈ C1(Rn). Furthermore, since y ∈ ∂ψ̃m(x) if and only if x ∈ ∂φm(y), we deduce that
∂ψ̃m(Rn) ⊂ Λ, which implies that ψ̃m is globally Lipschitz. Finally, as φm ≥ ψ∗

m with equality
on Λ, we deduce that

ψ̃m(x) ≤ ψm(x) ∀x ∈ Rn with equality if ∂ψm(x) ∩ Λ 6= ∅.

Since by (4.4) and (4.5) ∇ψm(x) ∈ Λ for a.e. x ∈ (Um ∩Ω)∪ (Λ \ Vm), we deduce that ψ̃m gives
the desired extension of ψm. This implies in particular that ∇ψm : Um ∩ Ω → Λ extends to a
continuous map from Um ∩ Ω to Vm ∩ Λ. Indeed the extension cannot takes values outside Vm
since fm does not vanish on Um ∩ Ω and ∇ψm#fm = gm is supported on Vm ∩ Λ.

By the symmetry of the assumptions on f and g, the above argument implies that also
∇ψ∗

m : Vm ∩ Λ → Ω extends to a continuous map from Vm ∩ Λ to Um ∩ Ω. Since by (2.2)
∇ψ∗

m(∇ψm(x)) = x a.e. inside Um∩Ω, and ∇ψm(∇ψ∗
m(y)) = y a.e. inside Vm∩Λ, by continuity

both equalities hold everywhere inside Um ∩Ω and Vm ∩Λ respectively. Thus ∇ψm : Um ∩Ω →
Vm ∩ Λ is a homeomorphism with inverse given by ∇ψ∗

m. Since both maps extend continuously
up to the boundary, we deduce that ∇ψ̃m : Um ∩ Ω → Vm ∩ Λ is a homeomorphism. �

We can now prove the C1 regularity of the free boundary away from Ω ∩ Λ.

Theorem 4.11 (Free boundary is C1 away from Ω ∩ Λ) Suppose that Assumptions 1 and
2 hold. Let ∂Um∩Ω =

(
∂U em∩Ω

)
∪

(
∂U bm∩Ω

)
be the decomposition provided by Proposition 4.5

23



with C = Λ, and let ψ̃m be the C1 extensions of ψm provided by Theorem 4.10. Then ∂U em ∩ Ω
is locally a C1 surface, and for all x ∈ ∂U em ∩ Ω the vector ∇ψ̃m(x) − x is different from 0, and
gives the direction of the inward normal to Um.

Proof. Let us recall that
Um := (Ω ∩ Λ) ∪

∪
(x̄,ȳ)∈Γm

B|x̄−ȳ|(ȳ),

where Γm was defined in (3.1). Since by Theorem 4.8 ∇ψm : Um ∩ Ω → Vm ∩ Λ and ∇ψ∗
m :

Vm ∩ Λ → Um ∩ Ω are both continuous, we can write

Um = (Ω ∩ Λ) ∪
∪

x∈Um∩Ω

B|x−∇ψm(x)|
(
∇ψm(x)

)
.

Moreover, since ∇ψ̃m : Um ∩ Ω → Vm ∩ Λ continuously extends ∇ψm (see Theorem 4.10), as in
the proof of Lemma 4.3 we obtain that

Um = (Ω ∩ Λ) ∪
∪

x∈Um∩Ω

B|x−∇ψ̃m(x)|
(
∇ψ̃m(x)

)
.

Let us fix z ∈ ∂U em ∩ Ω. First of all, since z is at a positive distance from Λ, it is clear that
∇ψ̃m(z) − z 6= 0, and that B|z−∇ψ̃m(z)|

(
∇ψ̃m(z)

)
⊂ Um touches ∂U em ∩ Ω at z. Moreover, with

the same notation as in the proof of Proposition 4.5, there exists `, k ∈ N such that z ∈ Be
`,k∩Ω,

and Be
`,k ∩ Ω is the semiconvex graph of a function u`,k : Rn−1 → R, with Um is contained in

the epigraph of u`,k. These two facts together imply that, if z = (z′, u`,k(z′)) and z′ is a point
where u`,k is differentiable, then the vectors (−∇′u`,k(z′), 1) and ∇ψ̃m(z) − z are parallel (here
∇′ denotes the gradient with respect to the first n− 1 coordinates). Writing ∇ψ̃m(z) − z with
respect to the system of coordinates induces by u`,k, that is

∇ψ̃m(z) − z = (∇′ψ̃m(z) − z′, ∂nψ̃m(z) − zn),

we obtain that, if z′ is a point of differentiability for u`,k, then ∂nψ̃m(z)−zn = ∂nψ̃m(z′, u`,k(z′))−
u`,k(z′) 6= 0 and the gradient of u`,k is given by

∇′u`,k(z′) = −
∇′ψ̃m(z′, u`,k(z′)) − z′

∂nψ̃m(z′, u`,k(z′)) − u`,k(z′)
.

From this and the uniform continuity of ∇ψ̃m, we deduce that z′ 7→ ∇′u`,k(z′) is uniformly
continuous on its domain of definition. Thus ∇′u`,k has a unique continuous extension, and the
function u`,k is C1. This easily implies the thesis. �

Following the strategy used in the proof of [8, Corollary 6.7], we can prove the path-
connectedness of the active regions (observe that with respect to the proof in [8] we cannot
use [8, Corollary 2.4], so we need to slightly change the argument, although the strategy of the
proof is the same).
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Corollary 4.12 (Path-connectedness of the active region) Suppose that Assumptions 1
and 2 hold, and let ψ̃m be the C1 extensions of ψm provided by Theorem 4.10. Then Um ∩ Ω is
path-connected.

Proof. Fix x0, x1 ∈ Um ∩ Ω, and let xt := (1 − t)x0 + tx1 the segment joining them. Let us
assume that the segment xt is not entirely contained in Um ∩ Ω (otherwise the thesis is trivially
true), and let [t′, t′′] ⊂ [0, 1] be a maximal subinterval such that xt 6∈ Um ∩ Ω for all t ∈ [t′, t′′].
As in the proof of [8, Corollary 6.7], we will construct a path in Um ∩ Ω which connects xt′ to
xt′′ . Iterating this construction on all intervals [t′, t′′], the path connectedness follows.

Since all xt belongs to the strictly convex set Ω for t ∈ [0, 1], both xt′ and xt′′ necessarily
lie on the free boundary ∂Um ∩ Ω. We will prove that the segment ys := (1 − s)∇ψ̃m(xt′) +
s∇ψ̃m(xt′′) lies in Vm ∩ Λ. Then the homeomorphism ∇ψ̃m will give the desired path [t′, t′′] 3
t 7→ ∇ψ̃−1

m

(
y t−t′

t′′−t′

)
.

Let zs := (1− s)xt′ + sxt′′ reparameterize the segment between xt′ and xt′′ . By construction
we know that zs 6∈ Um ∩ Ω for all s ∈ (0, 1). Assume by contradiction that there exists s̄ ∈ (0, 1)
such that ys̄ 6∈ Vm ∩ Λ. We observe that, by the strict convexity of | · |2,

|zs̄ − ys̄|2 < (1 − s̄)|xt′ −∇ψ̃m(xt′)|2 + s̄|xt′′ −∇ψ̃m(xt′′)|2.

Without loss of generality we can assume |xt′ −∇ψ̃m(xt′)| ≤ |xt′′ −∇ψ̃m(xt′′)|. Thus we have

|zs̄ − ys̄|2 < |xt′ −∇ψ̃m(xt′)|2

The idea is to remove some mass near (xt′ ,∇ψ̃m(xt′) and to add it to (zs̄, ys̄) to contradict the
optimality of γm = (Id ×∇ψ̃m)#fm.

We first prove that for any δ′ > 0 the set Bδ′(xt′)∩
(
Um ∩Ω

)
has positive mass with respect

to fm. Observe that two possibilities arise: either xt′ ∈ (∂Um ∩Ω) \ Λ, or xt′ ∈ ∂(Ω ∩ Λ). Since
Um ⊃ Ω∩Λ and (∂Um∩Ω)\Λ is locally a C1 hypersurface, it is simple to see that in both cases
xt′ belongs to the support of fm.

Thanks to this fact, if we fix ε > 0 small enough, we can find δx, δy, δ′ > 0 small such that

Bδx(zs̄) ∩ Um ∩ Ω = ∅, Bδx(zs̄) ∩Bδ′(xt′) = ∅, Bδy(ys̄) ∩ Vm ∩ Λ = ∅,∫
Bδx (zs̄)

f =
∫
Bδy (ys̄)

g =
∫
Bδ′ (xt′ )

fm = ε,

and
|x− y|2 < |x′ −∇ψ̃m(x′)| ∀x ∈ Bδx(zs̄), y ∈ Bδy(ys̄), x

′ ∈ Bδ′(xt′).

Thus it is not difficult to check that, if we define

γ̄ := (Id ×∇ψ̃m)#
(
(1 − χBδ′ (xt′ )

)fm
)

+
1
ε

(
fχBδx (zs̄)

)
⊗

(
gχBδy (zs̄)

)
then γ̄ ∈ Γ(m), and C(γ̄) < C(γm) = C(m). This contradiction gives the desired result. �
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As in [8, Lemma 6.8], we can also prove that ∇ψ̃m does not map ∂Um ∩ Ω on ∂Vm ∩ Λ:

Proposition 4.13 (Free boundary never maps to free boundary) Suppose that Assump-
tions 1 and 2 hold, and let ψ̃m be the C1 extensions of ψm provided by Theorem 4.10. Then

(a) if x ∈ ∂Um ∩ Ω, then ∇ψ̃m(x) 6∈ ∂Vm ∩ Λ;

(b) if x ∈ ∂Um ∩ ∂Ω, then ∇ψ̃m(x) 6∈ ∂Vm ∩ Λ.

Proof. We first prove (a). Let x ∈ ∂Um ∩ Ω, and assume by contradiction that ∇ψ̃m(x) ∈
∂Vm ∩ Λ. First of all we observe that, since ∂Vm∩ (Ω∩Λ) = ∅, then ∂Vm ∩ Λ∩Ω = ∅. Therefore
∇ψ̃m(x) − x 6= 0, and we have

B|∇ψ̃m(x)−x|(x) ⊂ Vm,

with B|∇ψ̃m(x)−x|(x) touching ∂Vm at ∇ψ̃m(x). We can now use the argument in the proof of

[8, Lemma 6.8] to deduce a contradiction. Indeed, let us define xr = x + r(∇ψ̃m(x) − x) (so
that x0 = x). Since B|x−∇ψ̃m(x)|

(
∇ψ̃m(x)

)
⊂ Um, we have that xr ∈ Um ∩Ω for r small enough.

Let yr := ∇ψ̃m(xr) (so that y0 = ∇ψ̃m(x)). Since ∇ψ̃m is a homeomorphism from Um ∩ Ω onto
Vm ∩ Λ, we have yr 6= y for r > 0. Moreover, by the monotonicity of the gradient of a convex
function,

0 ≤ 〈yr − y0, xr − x0〉 = r〈yr − y0, y0 − x0〉.

This implies that yr lies in the halfspace {y ∈ Rn : 〈y − y0, y0 − x0〉 ≥ 0} for all r > 0, and
y0 is the (unique) closest point to xr. Thus y0 ∈ B|yr−xr|(xr) for r > 0 small. Since any point
ỹ ∈ Vm ∩ Λ sufficiently close to y0 must also belongs to B|yr−xr|(xr) ∩ Λ, this fact contradicts
y0 = y ∈ ∂Vm ∩ Λ.

To prove (b) observe that, by the symmetry of Assumptions 1 and 2 and by (a), the inverse
∇ψ̃∗

m of ∇ψ̃m satisfies that, if y ∈ ∂Vm ∩ Λ, then ∇ψ̃∗
m(y) 6∈ ∂Um ∩ Ω. This implies that, if

∇ψ̃m(x) ∈ ∂Vm ∩Λ, then x 6∈ ∂Um ∩ Ω. Since ∂Um ∩ Ω = ∂Um ∩Ω = (∂Um ∩Ω)∪ (∂Um ∩ ∂Ω),
(b) follows from (a). �

Thanks to the above proposition, one can show that inactive region maps to target boundary.

Corollary 4.14 (Inactive region maps to target boundary) Suppose that Assumptions 1
and 2 hold, and let ψ̃m be the C1 extensions of ψm provided by Theorem 4.10. If x ∈ Ω \ Um,
then ∇ψ̃m(x) ∈ ∂Λ.

Proof. If x ∈ ∂Um ∩ Ω, by Proposition 4.13 we have ∇ψ̃m(x) 6∈ ∂Vm ∩ Λ. Since ∇ψ̃m :
Um ∩ Ω → Vm ∩ Λ is a homeomorphism which maps the boundary on the boundary, this implies
that ∇ψ̃m(x) ∈ ∂(Um∩Λ)\(∂Vm∩Λ) ⊂ ∂Λ. Thus it remains to consider the case x ∈ Ω\Um ∩ Ω,
and the proof is exactly the same as in [8, Corollary 6.9]. �

Remark 4.15 In [8, Sections 7] Caffarelli and McCann prove that the free boundary is locally
C1,α (and not only locally C1). A key fact to achieve this result is that the free boundary never
maps to the free boundary, so that if x ∈ ∂Um ∩ Ω one can exploit the convexity of Vm ∩Λ near
∇ψ̃m(x) to ensure that the Monge-Ampère measure associated to ∇ψ̃∗

m has a doubling property
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(see the discussion at the beginning of [8, Sections 7]). It seems therefore plausible that one
could adapt their proof in our situation, improving the C1

loc regularity of the free boundaries
away from Ω ∩ Λ into a C1,α

loc regularity.
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