
WHEN IS MULTIDIMENSIONAL SCREENING A CONVEX
PROGRAM?∗

ALESSIO FIGALLI†, YOUNG-HEON KIM‡ AND ROBERT J. MCCANN§

Date: December 3, 2010.
2000 Mathematics Subject Classification. 91B24, 90B50, 90C25, 49N30, 58E17, 35Q80.
Journal of Economic Literature Classification Codes: C61, D82, D42, H21, J42.

Keywords: principal-agent, asymmetric information, monopoly, nonlinear pricing, price dis-
crimination, multidimensional signalling, screening, social welfare maximization under budget
constraint, optimal taxation, incentive compatibility, mechanism design, exclusion, bunching,
robustness, private / imperfect / incomplete information, optimal transportation, Ma-Trudinger-
Wang, cross-curvature

∗ The initial impetus for this study emerged from discussions with Ivar Ekeland. RJM is
pleased to express his gratitude to Ekeland for introducing him to the principal-agent problem in
1996, and for anticipating already at that time that it ought to be tackled using techniques from
the mathematical theory of optimal transportation. We are grateful to Giuseppe Buttazzo and
Guillaume Carlier also, for stimulating discussions, and to Shibing Chen for a careful reading of
the manuscript. The authors are pleased to thank the Institute for Pure and Applied Mathematics
at UCLA and the Institut Fourier at Grenoble for their generous hospitality during various stages
of this work. [RJM]’s research was supported in part by NSERC grant 217006-08 and NSF
grant DMS-0354729. [YHK] was partially supported by NSF grant DMS-0635607 through the
membership at Institute for Advanced Study, Princeton NJ and NSERC discovery grant 371642-09.
[AF] was partially supported by NSF grant DMS-0969962. Any opinions, findings and conclusions
or recommendations expressed in this material are those of authors and do not reflect the views of
the Natural Sciences and Engineering Research Council of Canada (NSERC) or of the US National
Science Foundation (NSF). c©2010 by the authors.

†Department of Mathematics, The University of Texas at Austin, Austin TX 78712 USA
figalli@math.utexas.edu
‡Department of Mathematics, University of British Columbia, Vancouver BC V6T 1Z2 Canada
yhkim@math.ubc.ca
§Corresponding author: Department of Mathematics, University of Toronto, Toronto, Ontario
Canada M5S 2E4 mccann@math.toronto.edu Phone +1 (416) 978-4658 FAX +1 (416) 978-4107.

1



2

Abstract. A principal wishes to transact business with a multidimensional dis-
tribution of agents whose preferences are known only in the aggregate. Assum-
ing a twist (= generalized Spence-Mirrlees single-crossing) hypothesis, quasi-linear
utilities, and that agents can choose only pure strategies, we identify a structural
condition on the value b(x, y) of product type y to agent type x — and on the prin-
cipal’s costs c(y) — which is necessary and sufficient for reducing the profit max-
imization problem faced by the principal to a convex program. This is a key step
toward making the principal’s problem theoretically and computationally tractable;
in particular, it allows us to derive uniqueness and stability of the principal’s op-
timum strategy — and similarly of the strategy maximizing the expected welfare
of the agents when the principal’s profitability is constrained. We call this condi-
tion non-negative cross-curvature: it is also (i) necessary and sufficient to guarantee
convexity of the set of b-convex functions, (ii) invariant under reparametrization of
agent and/or product types by diffeomorphisms, and (iii) a strengthening of Ma,
Trudinger and Wang’s necessary and sufficient condition (A3w) for continuity of
the correspondence between an exogenously prescribed distribution of agents and
of products. We derive the persistence of economic effects such as the desirability
for a monopoly to establish prices so high they effectively exclude a positive fraction
of its potential customers, in nearly the full range of non-negatively cross-curved
models.
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1. Introduction

The principal-agent paradigm provides a microeconomic framework for modeling

non-competitive decision problems which must be made in the face of informational

asymmetry. Such problems range from monopolist nonlinear pricing [26] [36] [39] [2]

and product line design (“customer screening”) [31], to optimal taxation [24], labour

market signalling and contract theory [35] [27], regulation of monopolies [4] including

public utilities [28], and mechanism design [22] [25]. A typical example would be

the problem faced by a monopolist who wants to market automobiles y ∈ Y to a
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population of potential buyers (“agents”) x ∈ X. Knowing the value b(x, y) of car y

to buyer x, the relative frequency dµ(x) of different buyer types in the population,

and the cost c(y) she incurs in manufacturing car type y, the principal needs to decide

which products (or product bundles) to manufacture and how much to charge for each

of them, so as to maximize her profits.

In the simplest models there are only a finite number of product possibilities (e.g.

with air conditioning, or without) and a finite number of buyer types (e.g. rich, middle-

class, and poor); or possibly a one-dimensional continuum of product possibilities

(parameterized, say, by quality) and of agent types (parameterized, say, by income)

[24] [35] [26] [4]. Of course, real cars depend on more than one parameter — fuel

efficiency, comfort, options, reliability, styling, handling and safety, to name a few —

as do car shoppers, who vary in wealth, income, age, commuting needs, family size,

personal disposition, etc. Thus realistic modeling requires multidimensional type

spaces X ⊂ Rm and Y ⊂ Rn, as in [27] [22] [32] [5] [10]. Although such models

can often be reduced to optimization problems in the calculus of variations [8] [5], in

the absence of convexity they remain dauntingly difficult to analyze. Convexity —

whether manifest or hidden — rules out critical points other than global minima, and

is often the key to locating and characterizing optimal strategies either numerically

or theoretically. The purpose of the present article is to determine when convexity

is present, assuming the dimensions m = n of the agent and product type spaces

coincide.

An archetypal model was addressed by Wilson [39], Armstrong [2], and Rochet and

Choné [31]. A particular example from the last of these studies makes the simplify-

ing hypotheses X = Y = [0,∞[n, c(y) = |y|2/2, and b(x, y) = 〈x, y〉. By assuming

this bilinearity of the buyers’ valuations, Rochet and Choné were able to show that

the principal’s problem can be reduced to a quadratic minimization over the set

of non-negative convex functions — itself a convex set. Although the convexity con-

straint makes this variational problem non-standard, for buyers distributed uniformly

throughout the unit square in R2, they exploited a combination of theoretical and

computational analysis to show a number of results of economic interest. Their most

striking conclusion was that the profit motive alone leads the principal to discrim-

inate between three different types of buyers: (i) low-end customers whom she will

not market cars to, because — as Armstrong had already discovered — making cars

affordable to this segment of the market would cost her too much of her mid-range

and high-end profits; (ii) mid-range customers, whom she will encourage to choose

from a one-parameter family of affordably-priced compromise vehicles; (iii) high-end

customers, whom she will use both available dimensions of her product space to mar-

ket expensive vehicles individually tailored to suit each customer’s desires. Whether

or not such bunching phenomena are robust is an unanswered question of consider-

able interest which — due to their specificity to particular valuation functions —
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the techniques of the foregoing authors remain unable to address. The possibility

of non-robustness was highlighted in [5]; below we go further to suggest which spe-

cific perturbations of the valuation function b(x, y) are most likely to yield robust

results. On the other hand, our conclusions confirm Armstrong’s assertion that what

he called the desirability of exclusion is a very general phenomenon in the models we

study (Theorem 4.8). This exclusion however, is less generic when the dimensions of

the type and allocation spaces differ [10], or when their strict convexity fails [32]: see

Deneckere and Severinov for a discussion of the case (m,n) = (2, 1); see also [3].1

For general valuations b(x, y), the principal’s problem can be reformulated as a

minimimization problem over the space of b-convex functions (Definition 3.1), ac-

cording to Carlier [8]. Such functions generally form a compact but non-convex set,

which prevented Carlier from deducing much more than the existence of an optimal

strategy for the principal — a result which can also be obtained using the method of

Monteiro and Page [25]; (for related developments see Basov [5] or Rochet and Stole

[32]). Our present purpose is to identify conditions on the agent valuations which

guarantee convexity of this feasible set (Theorem 3.2). In the setting we choose, the

conditions we find will actually be necessary as well as sufficient for convexity; this

necessity imparts a significance to these conditions even if they appear unexpected

or unfamiliar. If, in addition, the principal’s manufacturing cost c(y) is b∗-convex, for

b∗(y, x) := b(x, y), the principal’s problem becomes a convex program which renders

it much more amenable to standard theoretical and computational techniques [11].

Although the resulting problem retains the complexities of the Wilson, Armstrong,

and Rochet and Choné’s models, we are able to deduce new results which remained

inaccessible until now, such as conditions guaranteeing uniqueness (Theorem 4.6) and

stability (Corollary 4.7) of the principal’s optimum strategy. The same considerations

and results apply also to the problem of maximimizing the total welfare of the agents

under the constraint that it remain possible for the principal to operate without

sustaining a loss (Remark 5.1).

2. Hypotheses: the basic framework

As in Ma, Trudinger and Wang’s work concerning the smoothness of optimal map-

pings [21], let us assume the buyer valuations satisfy the following hypotheses. Let X

denote the closure of any given set X ⊂ Rn, and for each (x0, y0) ∈ X × Y assume:

(B0) b ∈ C4
(
X × Y

)
, where X ⊂ Rn and Y ⊂ Rn are open and bounded;

1A different robustness result concerning exclusion was found by Barelli, Basov, Bugarin and King
[3], who relax the convexity assumption on the space of agents while allowing a fairly wide class of
valuations b(x, y). No hypothesis analogous to our (B3) below appears in their work, though they
relax our convexity hypothesis (B2) considerably and work under a different hypothesis than (B1).
We are grateful to an anonymous referee, for bringing this work to our attention after the present
manuscript had been submitted.
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(B1) (bi-twist)
x ∈ X 7−→ Dyb(x, y0)

y ∈ Y 7−→ Dxb(x0, y)

}
are diffeomorphisms onto their ranges;

(B2) (bi-convexity)
Xy0 := Dyb(X, y0)

Yx0 := Dxb(x0, Y )

}
are convex subsets of Rn.

Here the subscript x0 serves as a reminder that Yx0 denotes a subset of the cotangent

space T ∗
x0

X= Rn to X at x0. Note (B1) is strengthened form of the multidimensional

generalization of the Spence-Mirrlees single-crossing condition expressed in separate

works from the 1990s by Rüschendorf, Gangbo, and Levin; see e.g. [1]. It turns out

to imply that the marginal utility of buyer type x0 determines the product he selects

uniquely and smoothly (cf. (4.2)), and similarly that buyer type who selects product

y0 will be a well-defined smooth function of y0 and the marginal cost of that product;

(B1) is much less restrictive than the generalized single crossing condition proposed

by McAfee and McMillan [22], since the iso-price curves in the latter context become

hyperplanes, effectively reducing the problem to a single dimension. Hypothesis (B2)

turns out to be necessary (but not sufficient) for the convexity of the principal’s op-

timization problem and strategy space.2 We also assume

(B3) (non-negative cross-curvature)

(2.1)
∂4

∂s2∂t2

∣∣∣∣
(s,t)=(0,0)

b(x(s), y(t)) ≥ 0

whenever either of the two curves s ∈ [−1, 1] 7−→ Dyb(x(s), y(0)) and t ∈ [−1, 1] 7−→
Dxb(x(0), y(t)) forms an affinely parameterized line segment (in Xy(0) ⊂ Rn, or in

Y x(0) ⊂ Rn, respectively). If the inequality (2.1) becomes strict whenever x′(0) and

y′(0) are non-vanishing, we say the valuation function b is positively cross-curved, and

denote this by (B3)u.3

2Necessity of the convexity of Yx0 for that of Vb
Y

in Theorem 3.2 was pointed out to us by Brendan
Pass in his response to this manuscript. In the context of Spence-Mirrlees and Rochet-Choné type
valuations (Examples 3.3–3.4 below), the convexity of Yx0 permits the space Y of product types to
be interpreted as representing randomized (mixed) strategies.

3We will eventually see that condition (B3) can alternately be characterized as in Lemma 4.3
using Definition 4.1; the convexity asserted by that lemma may appear more intuitive and natural
than (B3) from point of view of applications. Historically, non-negative cross-curvature arose as a
strengthening of Trudinger and Wang’s criterion (A3w) guaranteeing smoothness of optimal maps in
the Monge-Kantorovich transportation problem [37]; unlike us, they require (2.1) only if, in addition,

(2.2)
∂2

∂s∂t

∣∣∣∣
(s,t)=(0,0)

b(x(s), y(t)) = 0.

Necessity of Trudinger and Wang’s condition for continuity was shown by Loeper [19], who (like
Trudinger, and independently Kim and McCann [16]) also noted its covariance and some of its
relations to the geometric notion of curvature. Their condition relaxes a hypothesis proposed with Ma
[21], which required strict positivity of (2.1) when (2.2) holds. The strengthening considered here was
first studied in a different but equivalent form by Kim and McCann, where both the original and the
modified conditions were shown to correspond to pseudo-Riemannian sectional curvature conditions
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3. Results concerning the principal-agent problem

A mathematical concept of central relevance to us is encoded in the following

definition.

Definition 3.1 (b-convex). A function u : X 7−→ R is called b-convex if u = (ub∗)b,

where

(3.1) vb(x) = sup
y∈Y

b(x, y) − v(y) and ub∗(y) = sup
x∈X

b(x, y) − u(x).

In other words, if u is its own second b-transform, i.e. a supremal convolution (or

generalized Legendre transform) of some function v : Y 7−→ R ∪ {+∞} with b. The

set of b-convex functions will be denoted by Vb
Y
. Similarly, we define the set U b∗

X
of

b∗-convex functions to consist of those v : Y 7−→ R satisfying v = (vb)b∗.

Although some authors permit b-convex functions to take the value +∞, our hy-

pothesis (B0) ensures b-convex functions are Lipschitz continuous and thus that the

suprema defining their b-transforms are finitely attained. Our first result is the fol-

lowing.

Theorem 3.2 (b-convex functions form a convex set). Assuming b : X × Y 7−→
R satisfies (B0)–(B2), hypothesis (B3) becomes necessary and sufficient for the

convexity of the set Vb
Y

of b-convex functions on X.

To understand the relevance of this theorem to economic theory, let us recall a

mathematical formulation of the principal-agent problem based on [8] and [29] [30].

In this context, each product y ∈ Y costs the principal c(y) to manufacture, and she is

free to market this product to the population X of agents at any lower semicontinuous

price v(y) that she chooses. She is aware that product y has value b(x, y) to agent

x ∈ X, and that in response to any price menu v(y) she proposes, each agent will

induced by buyer valuations on X × Y , thus highlighting their invariance under reparametrization
of either X or Y by diffeomorphism; see Lemma 4.5 of [16]. The same lemma shows it costs no
generality to require both curves s ∈ [−1, 1] 7−→ Dyb(x(s), y(0)) and t ∈ [−1, 1] 7−→ Dxb(x(0), y(t))
to be line segments for (2.1) to hold. Other variants and refinements of Ma, Trudinger, and Wang’s
condition have been proposed and investigated by Figalli and Rifford for different purposes at about
the same time; see e.g. [17].

Kim and McCann showed non-negative cross-curvature guarantees tensorizability of condition
(B3), which is useful for building examples of valuation functions which satisfy it [17]; in suitable
coordinates, it guarantees convexity of each b-convex function, as they showed with Figalli [13]; see
Proposition 4.4. Hereafter we show, in addition, that it is necessary and sufficient to guarantee con-
vexity of the set Vb

Y
of b-convex functions. A variant on the sufficiency was observed simultaneously

and independently from us in a different context by Sei (Lemma 1 of [34]), who was interested in the
function b(x, y) = −d2

Sn(x, y), and used it to give a convex parametrization of a family of statistical
densities he introduced on the round sphere X = Y = Sn.
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compute his indirect utility by combining his valuation for product y with its price

quasi-linearly

(3.2) u(x) = vb(x) := max
y∈Y

b(x, y) − v(y),

and will choose to buy a product yb,v(x) which attains the maximum, meaning u(x) =

b(x, yb,v(x)) − v(yb,v(x)). However, let us assume that there is a distinguished point

y∅ ∈ Y representing the null product (or outside option), which the principal is

compelled to offer to all agents at zero profit,

(3.3) v(y∅) = c(y∅),

either because both quantities vanish (representing the null transaction), or because,

as in [6], there is a competing supplier or regulator from whom the agents can obtain

this product at price c(y∅). In other words, u∅(x) := b(x, y∅) − c(y∅) acts as the

reservation utility of agent x ∈ X, below which he will reject the principal’s offers

and decline to participate, whence u ≥ u∅. The map yb,v : X 7−→ Y from agents

to products they select will not be continuous except possibly if the price menu v is

b∗-convex; when yb,v(x) depends continuously on x ∈ X we say v is strictly b∗-convex.

Knowing b, c and a (Borel) probability measure µ on X — representing the relative

frequency of different types of agents in the population — the principal’s problem is

to decide which lower semicontinuous price menu v : Y 7−→ R ∪ {+∞} maximizes

her profits, or equivalently, minimizes her net losses:

(3.4)

∫
X

[c(yb,v(x))) − v(yb,v(x))]dµ(x).

Note the integrand vanishes (3.3)–(3.4) for any agent x who elects not to participate

(i.e., who chooses the outside option y∅ ∈ Y ).

For absolutely continuous distributions of agents, — or more generally if µ vanishes

on Lipschitz hypersurfaces — it is known that the principal’s losses (3.4) depend on

v only through the indirect utility u = vb, an observation which can be traced back

to Mirrlees [24] in one dimension and Rochet [29] more generally; see also Carlier [8].

This indirect utility u ≥ u∅ is b-convex, due to the well-known identity ((vb)b∗)b =

vb (e.g. Proposition 5.8 of [38]). Conversely, the principal can design any b-convex

function u ≥ u∅ that she wishes simply by choosing price strategy v = ub∗ . Thus,

as detailed below, the principal’s problem can be reformulated as a minimization

problem (4.5) on the set U0 := {u ∈ Vb
Y
| u ≥ u∅}. Under hypotheses (B0)–(B3),

our Theorem 3.2 shows the set Vb
Y

of such utilities u to be convex, in the usual sense.

This represents substantial progress, even though the minimization problem (3.4) still

depends nonlinearly on v = ub∗ . If, in addition, the principal’s cost c(y) is a b∗-convex

function, then Proposition 4.4 and its corollary show her minimization problem (3.4)

becomes a convex functional of u on U0, so the principal’s problem reduces to a convex

program. Necessary and sufficient conditions for a minimum can in principle then
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be expressed using Kuhn-Tucker type conditions, and numerical examples could be

solved using standard algorithms. However we do not do this here: unless µ is taken

to be a finite combination of Dirac masses, the infinite dimensionality of the convex

set Vb
Y

leads to functional analytic subtleties even for the bilinear valuation function

b(x, y) = 〈x, y〉, which have only been resolved with partial success by Rochet and

Choné in that case [31]. If the b∗-convexity of c(y) is strict however, or if the valuation

function is positively cross-curved (B3)u, we shall show the principal’s program has

enough strict convexity to yield unique optimal strategies for both the principal and

the agents in a sense made precise by Theorem 4.6. These optimal strategies represent

a Stackelberg (rather than a Nash) equilibrium, in the sense that no party has any

incentive to change his or her strategies, given that the principal must commit to and

declare her strategy before the agents select theirs.

Of course, it is of practical interest that the principal be able to anticipate not

only her optimal price menu v : Y 7−→ R ∪ {+∞} — also known as the equilibrium

prices — but the corresponding distribution of goods which she will be called on

to manufacture. This can be represented as a Borel probability measure ν on Y ,

which we call the optimal production measure. It quantifies the relative frequency of

goods to be produced, and is the image of µ under the agents’ best response function

yb,v : X 7−→ Y to the principal’s optimal strategy v. This image ν = (yb,v)#µ is a

Borel probability measure on Y known as the push-forward of µ by yb,v, and is defined

by the formula

(3.5) ν(W ) := µ[y−1
b,v (W )]

for each W ⊂ Y . Theorem 4.6 asserts the optimal production measure ν is unique

and the optimal price menu v is uniquely determined ν-a.e.; the same theorem gives

a sharp lower bound for v throughout Y . If the convex domain Xy∅ is strictly convex

and the density of agents is Lipschitz continuous on X, Theorem 4.8 goes on to

assert that these prices will be high enough to drive a positive fraction of agents

out of the market, extending Armstrong’s desirability of exclusion [2] to a rich class

of multidimensional models. Thus the goods to be manufactured and their prices

are uniquely determined at equilibrium, and the principal can price the goods she

prefers not to trade arbitrarily high but not arbitrarily low. Theorem 4.6 goes on

to assert that the optimal strategy yb,v(x) is also uniquely determined for µ-almost

every agent x by b, c and µ, for each Borel probability measure µ on X. Apart from

Theorem 4.8, these conclusions apply to singular and discrete measures as well as

to continuous measures µ, assuming the tie-breaking conventions of Remark 4.2 are

adopted whenever µ fails to vanish on each Lipschitz hypersurface.
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A number of examples of valuation functions b(x, y) which satisfy our hypotheses

are developed in the works by Delanoë, Ge, Figalli, Kim, Lee, Li, Loeper, Ma, Mc-

Cann, Rifford, Trudinger and Wang; see [17] and [38] for references. Here we mention

a few which have relevance to economics:

Example 3.3. For single dimensional type and allocation spaces n = 1, hypotheses

(B1)–(B2) are equivalent to asserting that the valuation function b(x, y) be defined

on a product of two intervals where its cross-partial derivatives D2
xyb do not vanish.

Positive cross-curvature (B3)u asserts that D2
xyb in turn satisfies a Spence-Mirrlees

condition, by having positive cross-partial derivatives: D2
xy(D

2
xyb) > 0.

Example 3.4. The bilinear valuation function b(x, y) = x ·y of Armstrong, Rochet and

Choné satisfies (B0)–(B3) provided only that X, Y ⊂ Rn are convex bodies. In this

case b-convexity coincides with ordinary convexity of u together with a constraint

on its gradient’s range: Du(x) ∈ Y at each point where u is differentiable. Thus

Theorem 4.6 asserts that any strictly convex manufacturing cost c(y) leads to unique

optimal strategies for the principal and for µ-almost every agent. This uniqueness

is well-known for absolutely continuous measures dµ � dvol [31], and Carlier and

Lachand-Robert have extended Mussa and Rosen’s differentiability result u ∈ C1(X)

to n ≥ 1 in that case [9] [26], but the uniqueness of optimal strategies under the

tie-breaking rules described in Remark 4.2 may be new results when applied, for

example, to discrete distributions µ concentrated on finitely many agent types.

Example 3.5. Ma, Trudinger and Wang’s perturbation b(x, y) = x·y+F (x)G(y) of the

bilinear valuation function is non-negatively cross-curved (B3) provided F ∈ C4
(
X

)
and G ∈ C4

(
Y

)
are both convex [21] [16]; it is positively cross-curved if the convexity

is strong, meaning both F (x) − ε|x|2 and G(y)− ε|y|2 remain convex for some ε > 0.

It satisfies (B0)–(B1) provided supx∈X |DF (x)| < 1 and supy∈Y |DG(y)| < 1, and

(B2) if the convex domains X and Y ⊂ Rn are sufficiently convex, meaning all

principal curvatures of these domains are sufficiently large at each boundary point

[21]. On the other hand, b(x, y) = x · y + F (x)G(y) will violate (B3) if D2F (x0) > 0

holds but D2G(y0) ≥ 0 fails at some (x0, y0) ∈ X × Y .

Example 3.6 (On geometry in spatial economics). Consider now a valuation function

such as b(x, y) = −1
2
|x − y|2, modeling a family of buyers X ⊂ Rn each of whom

prefers to choose products corresponding as closely as possible to their own type. Such

a function might model a geographical distribution of otherwise identical consumers

who must decide whether to pay a high fee to have a certain service (such as deliveries

or waste removal) provided directly to their home, an intermediate fee to obtain this

service at a nearby depot, or no fee to obtain the service from a more remote source

y∅ = 0 (such as a centralized warehouse in the first case or a public landfill in the

second). If the monopolist’s costs for providing this service are independent of location
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c(y) = const, then the problem becomes mathematically equivalent to Rochet and

Choné’s (Example 3.4 above): each b-convex strategy u satisfies D2u ≥ −I, and

corresponds to the convex strategy u(x)+ |x|2/2 of [31]. From their results concerning

product and buyer types in the unit disc or unit square X, we infer that only buyers

sufficiently far from the source y∅ can be induced to pay a positive price for the

convenience of obtaining this service nearby. In the case of the square, there will

be a strip of buyer types who select delivery points concentrated along the diagonal,

followed by a region of buyers who pay more for individually customized delivery

points. Since the products consumed lie in a subset of the square, the constraints

Du ∈ [0,∞[2 of [31] are not binding, allowing us to take Y = R2 instead of Y =

[0,∞[2. This in turn allows us to reflect their solution in both the horizontal and

vertical axes, to yield an example in which the outside option y∅ lies in the center

of a two-by-two square, rather than the corner of a one-by-one square. Comparison

with the case of the unit disc X centered at y∅, for which the solution is rotationally

symmetric, shows the bunching observed by Rochet and Choné depends dramatically

on the domain’s geometry, and its lack of strict convexity.

Now consider instead the possibility that the geographical region X, instead of

being flat, is situated either at the bottom of a valley, or at a pass in the moun-

tains, and that the valuation function b(x, y) = −1
2
d(x, y)2 reflects this geography,

by depending on the distance d as measured along a spherical cap in the case of the

valley or along a piece of a saddle in the case of the mountain pass. Then (B0)–

(B1) are both satisfied, and (B2) will be too provided the domain X = Y is convex

enough... consisting for example of all points sufficiently close to the free source y∅
in the spherical or saddle geometry. According to results of Loeper and Kim and

McCann, (B3) will be satisfied in the case of the sphere [17], but violated in the case

of a saddle [19]. Thus for a town in a valley (or on a mountain top), our results show

that the screening problem remains convex, while for a town located on a pass in the

mountains the problem becomes non-convex. This calls into question the uniqueness,

stability, and structure of its solution(s) in the latter case, and displays how geometry

and geography can affect the solubility of economic problems.

In the next section we formulate the results mathematically. Let us first highlight

a further implication of our results concerning robustness of the phenomena observed

by Rochet and Choné. The quadratic functions b(x, y) = x ·y and b(x, y) = −1
2
|x−y|2

both lie on the boundary of the set of non-negatively cross-curved valuations, since

their cross-curvatures (2.1) vanish identically. Our results show non-negative cross-

curvature (B3) to be a necessary and sufficient condition for the principal-agent

problem to be a convex program: the feasible set Vb
Y

becomes non-convex otherwise,

and it is reasonable to expect that uniqueness of the solution among other phenomena

observed in [31] may be violated in that case. In analogy with the discontinuities
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discovered by Loeper [19], we therefore conjecture that the bundling discovered by

Rochet and Choné is robust with respect to perturbations of the quadratic valuation

functions which respect (B0)–(B3), but not generally with respect to perturbations

violating (B3). (See [3] however, for a different robustness result.)

4. Mathematical formulation

Any price menu v : Y 7−→ R ∪ {∞} satisfies

(4.1) vb(x) + v(y) − b(x, y) ≥ 0

for all (y, x) ∈ Y × X, according to definition (3.1). Comparison with (3.2) makes it

clear that a (product, agent) pair produces equality in (4.1) if and only if selecting

product y is among the best responses of agent x to this menu; the set of such best-

response pairs is denoted by ∂b∗v ⊂ Y × X; see also (A.2). We think of this relation

as giving a multivalued correspondence between products and agents: given price

menu v the set of agents (if any) willing to select product y is denoted by ∂b∗v(y).

It turns out ∂b∗v(y) is non-empty for all y ∈ Y if and only if v is b∗-convex. Thus

b∗-convexity of v — or of c — means precisely that each product is priced low enough

to be included among the best responses of some agent or limiting agent type x ∈ X.

As we shall see in Remark 4.2, assuming b∗-convexity of v costs little or no generality;

however, the b∗-convexity of c is a real restriction — but plausible when the product

types Y ⊂ Rn represent mixtures (weighted combinations of pure products) which the

principal could alternately choose to purchase separately and then bundle together;

this becomes natural in the context of the bilinear valuation b(x, y) = x · y assumed

by Rochet and Choné [31].

Let Dom Du ⊂ X denote the set where u is differentiable. If y is among the best

responses of agent x ∈ Dom Dvb to price menu v, the equality in (4.1) implies

(4.2) Dvb(x) = Dxb(x, y).

In other words y = yb(x, Dvb(x)), where yb is defined as follows:

Definition 4.1. For each q ∈ Y x, define yb(x, q) to be the unique product selected

by an agent x ∈ X whose marginal utility with respect to his type is q; i.e. yb is the

unique solution to

(4.3) Dxb(x, yb(x, q)) = q

guaranteed by (B1). The map yb (which is defined on a subset of the cotangent

bundle T ∗X and takes values in Y ) has also been called the b-exponential map [19],

and denoted by yb(x, q) = b-Expxq.

The fact that the best response function takes the form y = yb(x,Dvb(x)), and that

Dom Dvb exhausts X except for a countable number of Lipschitz hypersurfaces, are

key observations exploited throughout both the economic and optimal transportation
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literature. Indeed, vb is well-known to be a b-convex function. It is therefore Lipschitz

and semiconvex, satisfying the bounds

(4.4) |Dvb| ≤ ‖c‖
C1

(
X×Y

), D2vb ≥ −‖c‖
C2

(
X×Y

) inside X.

The second inequality above holds in the distributional sense, and implies the differ-

entiability of vb outside a countable number of Lipschitz hypersurfaces [14].

Assuming µ assigns zero mass to each Lipschitz hypersurface (and so also to a

countable number of them), the results just summarized allow the principal’s problem

(3.4) to be re-expressed in the form min{L(u) | u ∈ U0}, where the principal’s net

losses are given by

(4.5) L(u) :=

∫
X

[u(x) + c(yb(x,Du(x))) − b(x, yb(x,Du(x)))]dµ(x)

as is by now well-known [8]. Here U0 = {u ∈ Vb
Y
| u ≥ u∅} denotes the set of b-convex

functions on X dominating the reservation utility u∅(x) = b(x, y∅)−c(y∅), and the

equality produced in (4.1) by the response yb,v(x) = yb(x, Dvb(x)) for µ-a.e. x has

been exploited. Our hypothesis on the distribution of agent types holds a fortiori

whenever µ is absolutely continuous with respect to Lebesgue measure in coordinates

on X. If no such hypothesis is satisfied, the reformulation (4.5) of the principal’s net

losses may not be well-defined, unless we extend the definition of Du(x) to all of X

by making a measurable selection from the relation

∂u(x) := {q ∈ Rn | u(z) ≥ u(x) + q · (z − x) + o(|z − x|) ∀ z ∈ X}

consistent with the following tie-breaking rule, analogous to one adopted, e.g., by

Buttazzo and Carlier in a similar context [6]:

Remark 4.2. [Tie-breaking rules for singular measures] When an agent x remains in-

different between two or more products, it is convenient to reduce the ambiguity in

the definition of his best response by insisting that yb,v(x) be chosen to maximize

the principal’s profit v(y)− c(y), among those products y which maximize (3.2). We

retain the result yb,v(x) = yb(x,Dvb(x)) by a corresponding (measurable) selection

Dvb(x) ∈ ∂vb(x). This convention costs no generality when the distribution µ of

agent types vanishes on Lipschitz hypersurfaces in X, since u = vb is then differen-

tiable µ-a.e.; in the remaining cases it may be justified by assuming the principal has

sufficient powers of persuasion to sway an agent’s choice to her own advantage when-

ever some indifference would otherwise persist between his preferred products [24].

After adopting this convention, it costs the principal none of her profits to restrict

her choice of strategies to b∗-convex price menus v = (vb)b∗ , a second convention we

also choose to adopt whenever µ fails to vanish on each Lipschitz hypersurface.
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The relevance of Theorem 3.2 to the principal-agent problem should now be clear:

it guarantees convexity of the feasible set U0 in (4.5). Our next proposition addresses

the convexity properties of the principal’s objective functional. Should convexity of

this objective be strict, then the best response yb,v(x) selected by the tie-breaking

rule above becomes unique — which it need not be otherwise.

We precede this proposition with a lemma containing a more intuitive characteri-

zation of non-negative cross-curvature found by two of us [17]. After (B2) and the

second part of hypothesis (B1) are used to define yb(x, q), notice the first part of

(B1) becomes equivalent to the absence of critical points for the functions (4.6) of q.

Inspired by Loeper’s characterization [19] of (A3w), the next lemma asserts (B3) is

equivalent to convexity of these non-critical functions.

Lemma 4.3 (Characterizing non-negative cross-curvature [17]). A valuation b satis-

fying (B0)–(B2) is non-negatively cross-curved (B3) if and only if for each x 6= x1

in X,

(4.6) q ∈ Y x 7−→ b(x1, yb(x, q)) − b(x, yb(x, q))

is a convex function. If the valuation is positively cross-curved, then (4.6) will be

strongly convex (meaning its Hessian will be positive definite).

This lemma plays a key role in establishing the proposition which follows.

Proposition 4.4 (Convexity of the principal’s objective). If b ∈ C4
(
X ×Y

)
satisfies

(B0)–(B3) and c : Y 7−→ R is b∗-convex, then for each x ∈ X, definition (4.3)

makes a(q) := c(yb(x, q)) − b(x, yb(x, q)) a convex function of q on the convex set

Y x := Dxb(x, Y ) ⊂ Rn. This convexity is strict (i) if c is strictly b∗-convex, i.e.,

if Dom Dcb = X, or equivalently, if the allocation yb,c : X 7−→ Y is continuous.

Alternately, this convexity is strict (ii) for each fixed x ∈ Dom Dcb such that

(4.7) q ∈ Y x 7−→ b(x0, yb(x, q)) − b(x, yb(x, q))

is a strictly convex function of q for all x0 ∈ X \ {x}.

The strict convexity of (4.7) may subsequently be denoted by (B3)s, a condition

which Lemma 4.3 shows to be intermediate in strength between non-negative cross-

curvature (B3) and positive cross-curvature (B3)u. As an immediate corollary to

Theorem 3.2 and Proposition 4.4, we have convexity of the principal’s optimization

problem.

Corollary 4.5 (Convexity of the principal’s minimization). Let the distribution of

agent types be given by a Borel probability measure µ on X ⊂ Rn. Unless µ vanishes

on all Lipschitz hypersurfaces, adopt the tie-breaking conventions of Remark 4.2. If

the value b(x, y) of product y ∈ Y to agent x ∈ X satisfies (B0)–(B3) and the

principal’s manufacturing cost c : Y 7−→ R is b∗-convex, then the principal’s problem

(4.5) becomes a convex minimization over the convex set U0.



14 ALESSIO FIGALLI†, YOUNG-HEON KIM‡ AND ROBERT J. MCCANN§

As a consequence, we obtain criteria guaranteeing uniqueness of the principal’s best

strategy.

Theorem 4.6 (Criteria for uniqueness of optimal strategies). Assume the notation

and hypotheses of Corollary 4.5. Suppose, in addition, either (i) that the manufac-

turing cost c is strictly b∗-convex, or else (ii) that the valuation function b satisfies

the strengthened hypothesis (B3)s of (4.7). In case (ii) assume also µ[Dom Dcb] = 1

(it holds automatically unless µ concentrates mass on some Lipschitz hypersurface).

Then the equilibrium response of µ-almost every agent is uniquely determined, as

is the optimal measure ν from (3.5); (always assuming the tie-breaking conventions

of Remark 4.2 to be in effect if µ does not vanish on each Lipschitz hypersurface).

Moreover, the principal has two optimal strategies u± ∈ U0 which coincide at least

µ-almost everywhere, and sandwich all other optimal strategies u ∈ U0 between them:

u− ≤ u ≤ u+ on X. Finally, a lower semicontinuous v : Y 7−→ R ∪ {+∞} is an

optimal price menu if and only if v ≥ ub∗
+ throughout Y , with equality holding ν-almost

everywhere.

This theorem gives hypotheses which guarantee — even for discrete measures µ

corresponding to finitely many agent types — that the solution to the principal’s

problem is unique in the sense that optimality determines how many of each type of

product the principal should manufacture, what price she should charge for each of

them, and which product will be selected by almost every agent. A lower bound is

specified on the price of each product which she does not wish to produce, to ensure

that it does not tempt any agent. When µ vanishes on Lipschitz hypersurfaces,

this solution represents the only Stackelberg equilibrium balancing the interests of

the principal with those of the agents; for more singular µ, it is possible that other

Stackelberg equilibria exist, but if so they violate the restrictions imposed on the

behaviour of the principal and the agents in Remark 4.2.

The uniqueness theorem has as its corollary the following stability result concerning

optimal strategies. Recall that a sequence {µi}∞i=1 of Borel probability measures on a

compact set X ⊂ Rn is said to converge weakly-∗ to µ∞ if

(4.8)

∫
X

g(x)dµ∞(x) = lim
i→∞

∫
X

g(x)dµi(x)

for each continuous test function g : X 7−→ R. This notion of convergence makes the

Borel probability measures P
(
X

)
on X into a compact set, as a consequence of the

Riesz-Markov and Banach-Alaoglu theorems.

Corollary 4.7 (Stability of optimal strategies). For each i ∈ N∪{∞}, let the triple

(bi, ci, µi) consist of a valuation bi : X × Y 7−→ R, manufacturing cost ci : Y 7−→ R,

and a distribution of agent types µi on X satisfying the hypotheses of Theorem 4.6. Let

ui : X 7−→ R denote a bi-convex utility function minimizing the losses of a principal
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faced with data (bi, ci, µi). Suppose that bi → b∞ in C2
(
X×Y

)
, ci → c∞ uniformly on

Y , and µi ⇀ µ∞ weakly-∗ as i → ∞. Assume finally that µ∞ vanishes on all Lipschitz

hypersurfaces. For µ∞-a.e. agent x ∈ X, the product Gi(x) := ybi
(x,Dui(x)) selected

then converges to G∞(x). The optimal measures νi := (Gi)#µi converge weakly-∗ to

ν∞ as i → ∞. And the principal’s strategies converge uniformly in the sense that

limi→∞ ‖ui − u∞‖L∞(X,dµ∞) = 0.

Finally as evidence for the robustness of bunching phenomena displayed by our

models, we show the desirability of exclusion phenomenon found by Armstrong for

valuations b(x, y) =
∑n

i=1 xibi(y) which are linear — or more generally homogeneous

of degree one — in x [2], extends to the full range of non-negatively cross-curved

models. We assume strict convexity on the domain Xy∅ := Dyb(X, y∅) (see Remark

4.9), and that the distribution of agent types dµ(x) = f(x)dx has a Sobolev density

— denoted f ∈ W 1,1
(
X

)
and meaning both the function and its distributional de-

rivative Df are given by Lebesgue integrable densities. This is satisfied a fortiori if

f is Lipschitz or continuously differentiable (as Armstrong assumed). The exclusion

phenomenon is of interest, since it confirms that a positive fraction of customers must

be excluded from participation at equilibrium, thus ensuring elasticity of demand.

Theorem 4.8 (The desirability of exclusion). Let the distribution dµ(x) = f(x)dx

of agent types be given by a density f ∈ W 1,1 on X ⊂ Rn. Assume that the value

b(x, y) of product y ∈ Y to agent x ∈ X satisfies (B0)–(B3) and the principal’s

manufacturing cost c : Y 7−→ R is b∗-convex. Suppose further that the convex do-

main Xy∅ = Dxb(X, y∅) has no n − 1 dimensional facets in its boundary. Then any

minimizer u ∈ U0 of the principal’s losses (4.5) coincides with the reservation utility

on a set U0 := {x ∈ X | u(x) = b(x, y∅) − c(y∅)} whose interior contains a positive

fraction of the agents. Such agents select the outside option y∅.

Remark 4.9 (Facets and exclusion in different dimensions). A convex domain X ⊂ Rn

fails to be strictly convex if it has line segments in its boundary. These segments

belong to facets of dimension 1 or higher, up to n − 1 if the domain has a flat side

(meaning a positive fraction of its boundary coincides with a supporting hyperplane).

Thus strict convexity of Xy∅ is sufficient for the hypothesis of the preceding theorem

to be satisfied — except in dimension n = 1. In a single dimension, every convex

domain X ⊂ R is an interval — hence strictly convex — whose endpoints form

zero-dimensional facets. Thus Theorem 4.8 is vacuous in dimension n = 1, which is

consistent with Armstrong’s observation the necessity of exclusion is a hallmark of

higher dimensions n ≥ 2. More recently, Deneckere and Severinov [10] have argued

that necessity of exclusion is specific to the case in which the dimensions m and n

of agent and product types coincide. When (m,n) = (2, 1) they give necessary and

sufficient conditions for the desirability of exclusion, yielding a result quite different
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from ours in that exclusion turns out to be more frequently the exception than the

rule. However, for another setting in which exclusion is generic, see [3].

5. Discussion, extension, and conclusions

The role of private information in determining market value has a privileged place

in economic theory. This phenomenon has been deeply explored in the principal-agent

framework, where a single seller (or single buyer) transacts business with a collection

of anonymous agents. In this context, the private (asymmetric) information takes the

form of a characteristic x ∈ X peculiar to each individual buyer which determines

his valuation b(x, y) for different products y ∈ Y offered by the principal; x remains

concealed from the principal by anonymity of the buyer — at least until a purchase is

made. Knowing only the valuation function b(x, y), the statistical distribution dµ(x)

of buyer types, and her own manufacturing costs c(y), the principal’s goal is to fix a

price menu for different products which maximizes her profits.

Many studies involving finite spaces of agent and product types X and Y have been

carried out, including Spence’s initial work on labour market signalling. However for a

principal who transacts business with a one-dimensional continuum of agents X ⊂ R,

the problem was solved in Mirrlees’ celebrated work on optimal taxation [24], and in

Spence’s study [35], assuming the contract types y ∈ Y ⊂ R are also parameterized

by a single real variable. (For Mirrlees, y ∈ R represented the amount of labour an in-

dividual chooses to do facing a given tax schedule, while for Spence it represented the

amount of education he chooses to acquire facing a given range of employment pos-

sibilities, x ∈ R being his intrinsic ability in both cases). In the context of nonlinear

pricing discussed above, the one-dimensional model was studied by Mussa and Rosen

[26]. The challenge of resolving the multidimensional version X, Y ⊂ Rn of this ar-

chetypal problem in microeconomic theory has been highlighted by many authors [27]

[22] [32] [5]. When only one side of the market displays multidimensional types, anal-

yses have been carried out by Mirman and Sibley [23], Roberts [28] and Spence [36],

who allow multidimensional products, and by Laffont, Maskin and Rochet [18], and

Deneckere and Severinov [10] who model two-dimensional agents choosing from a one-

dimensional product line. When both sides of the market display multidimensional

types, existence of an equilibrium has been established by Monteiro and Page [25] and

by Carlier [8], who employed a variational formulation; see also the control-theoretic

approach of Basov [5]. However, non-convexities have rendered the behaviour of

this optimization problem largely intractable [15] — unless the valuation function

b(x, y) = x ·G(y) is assumed to depend linearly on agent type [39] [2] [31]. Moreover,

the presence of convexity typically depends on a correct choice of coordinates, so is not

always easy to discern. The present study treats general Borel probability measures µ

on X ⊂ Rn, and provides a unified framework for dealing with discrete and continu-

ous type spaces, by invoking the tie-breaking rules of Remark 4.2 in case µ is discrete.
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Assuming b∗-convexity of c, we consider valuations linear in price (3.2) (sometimes

called quasilinear), which satisfy a generalized Spence-Mirrlees single crossing condi-

tion (B0)-(B1) and appropriate convexity conditions on its domain (B2), and we

identify a criterion (B3) equivalent to convexity of the principal’s optimization prob-

lem (Theorem 3.2). This criterion is a strengthening of Ma, Trudinger and Wang’s

necessary [19] and sufficient [21] [37] condition for continuity of optimal mappings.

Like all of our hypotheses, it is independent of the choice of parameterization of agent

and/or product types — as emphasized in [16]. We believe the resulting convexity

is a fundamental property which will eventually enable a more complete theoretical

and computational analysis of the multidimensional principal-agent problem, and we

indicate some examples of valuation functions which satisfy it in Examples 3.3–3.6;

the bilinear example b(x, y) = x · y of Rochet and Choné lies on the boundary of such

valuation functions. If either the cross-curvature inequality (B3) holds strictly or the

b∗-convexity of c(y) is strict — meaning the efficient solution yb,c(x) depends contin-

uously on x ∈ X — we go on to derive uniqueness and stability of optimal strategies

(Theorem 4.6 and its corollary). Under mild additional hypotheses we confirm that a

positive fraction of agents must be priced out of the market when the type spaces are

multidimensional (Theorem 4.8). We conjecture that non-negative cross-curvature

(B3) is likely to be necessary and sufficient for robustness of Armstrong’s desirability

of exclusion [2] and the other bunching phenomena observed by Rochet and Choné

[31].

Remark 5.1 (Maximizing social welfare under profitability constraints). Before con-

cluding this paper, let us briefly mention an important class of related models to which

the same considerations apply: namely, the problem of maximizing the expected wel-

fare of the agents under a profitability constraint on the principal. Such a model has

been used by Roberts [28] to study energy pricing by a public utility, and explored

by Spence [36] and Monteiro and Page [25] in other contexts. Suppose the welfare

of agent x ∈ X is given by a function w(x, u(x)) of his indirect utility (3.2) which is

concave with respect to its second variable: ∂2w/∂u2 ≤ 0. Introducing a Lagrange

multiplier λ for the profitability constraint L(u) ≤ 0, the problem of maximizing the

net social welfare over all agents becomes equivalent to the maximization

W (λ) := max
u∈U0

−λL(u) +

∫
X

w(x, u(x))dµ(x)

for some choice of λ ≥ 0. Assuming (B0)–(B3), and b∗-convexity of c, for each

λ ≥ 0 this amounts to a concave maximization on a convex set, as a consequence of

Theorem 3.2, Proposition 4.4 and the concavity of w. Theorem 4.6 and its corollary

give hypotheses which guarantee uniqueness and stability of its solution uλ; if the

concavity of w(x, ·) is strict, we obtain uniqueness µ-a.e. of uλ more directly under

the weaker hypotheses of Corollary 4.5. Either way, once the uniqueness of uλ has



18 ALESSIO FIGALLI†, YOUNG-HEON KIM‡ AND ROBERT J. MCCANN§

been established, standard arguments in the calculus of variations show the convex

function W (λ) to be continuously differentiable, and that each value of its deriva-

tive W ′(λ) = −L(uλ) corresponds to a possibly degenerate interval λ ∈ [λ1, λ2] on

which uλ is constant; see e.g. Corollary 2.11 of [7]. Uniqueness of a social welfare

maximizing strategy subject to any budget constraint in the range ]L(u0), L(u∞)[

is therefore established; this range contains the vanishing budget constraint as long

as L(u0) > 0 > L(u∞); here u0 represents the unconstrained maximizer whereas

u∞ ∈ U0 minimizes the principal’s losses (4.5). All of our results — except for the

desirability of exclusion (Theorem 4.8) — extend immediately to this new setting.

This sole exception is in accord with the intuition that it need not be necessary to

exclude any potential buyers if one aims to maximize social welfare instead of the

monopolist’s profits.

6. Proofs

The first sentence of Lemma 4.3 comes from Theorem 2.11 of [17]. We recall its

proof partly for the sake of completeness, but also to establish the second sentence,

which asserts strong convexity.

Proof of Lemma 4.3. Fixing x, x1 ∈ X and q0, q1 ∈ Y x, the second claim in (B2)

guarantees the line segment qt := (1 − t)q0 + tq1 belongs to Y x. Use (4.3) to define

yt := yb(x, qt) and f(·, t) := b(·, yt) − b(x, yt) for t ∈ [0, 1]. Given t0 ∈ [0, 1], use the

first claims in (B1)–(B2) similarly, to define the curve s ∈ [0, 1] 7−→ xs ∈ X for

which

(6.1) Dyb(xs, yt0) = (1 − s)Dyb(x, yt0) + sDyb(x1, yt0),

and set g(s) = ∂2f
∂t2

(xs, t0). The convexity of (4.6) will be verified by checking g(1) ≥ 0.

Let us start by observing s ∈ [0, 1] 7−→ g(s) is a convex function, as a consequence of

property (B3) and (6.1). We next claim g(s) is minimized at s = 0, since

g′(s) =
∂2

∂t2

∣∣∣∣
t=t0

〈Dxb(xs, yb(x0, (1 − t)q0 + tq1)), ẋs〉

vanishes at s = 0, since x0 = x in the definition (4.3) of yb. Thus g(1) ≥ g(0) = 0,

establishing the convexity of (4.6). If b is positively cross-curved, then g′′(s) > 0 and

the desired strong convexity follows from g(1) > g(0) = 0 since x 6= x1 implies the

curve xs does not degenerate to a single point.

Conversely, if the convexity of (4.6) fails we can find x1 ∈ X and s0, t0 ∈ [0, 1] for

which the construction above yields g′′(s0) < 0. In view of Lemma 4.5 of [16], this

provides a contradiction to (2.1). �

We shall also need to recall two basic facts about b-convex functions from e.g. [14]:

any supremum of b-convex functions is again b-convex, unless it is identically infinite;
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and for each y ∈ Y and λ ∈ R, the function

(6.2) x ∈ X 7−→ b(x, y) − λ

is b-convex. Functions of the form either y ∈ Y 7−→ b(x, y)−λ or (6.2) are sometimes

called mountains below.

Proof of Proposition 4.4. The b∗-convexity of the manufacturing cost c = (cb)b∗ as-

serts

c(y) = sup
x∈X

b(x, y) − cb(x)

is a supremum of mountains, whence

a(q) := c(yb(x, q)) − b(x, yb(x, q)) = sup
x0∈X

b(x0, yb(x, q)) − b(x, yb(x, q)) − cb(x0)

for all x ∈ X and q ∈ Y x. According to Lemma 4.3, we have just expressed a(q) as

a supremum of convex functions, thus establishing convexity of a(q). The remainder

of the proof will be devoted to deducing strict convexity of a(q) under the additional

hypotheses (i) or (ii).

In case (ii), (B3)s implies all but one of the functions of q ∈ Yx under the supre-

mum above are strictly convex, the exception being the constant function −cb(x)

corresponding to x0 = x. Thus a(q) is strictly convex, except possibly on the set

{q ∈ Y x | a(q) = −cb(x)} where its lower bound is attained. However, if q0 belongs

to this set, differentiating the function under the supremum with respect to x0 yields

Dxb(x, yb(x, q0)) ∈ ∂cb(x). Since (ii) assumes differentiability of cb at x, (B1) then

implies the minimum of a(q) is attained uniquely at q0 = Dcb(x), to establish strict

convexity of a(q).

The remainder of the proof will be devoted to case (i): deducing strict convexity

of a(q) from strict b∗-convexity of c(y) assuming only (B3). Recall that strict b∗-

convexity was defined by continuity of the agents’ responses yb,c : X 7−→ Y to the

principal’s manufacturing costs (as opposed to the prices the principal would prefer

to select). Fix x ∈ X and use the C3 change of variables q ∈ Y x 7−→ yb(x, q) ∈ Y to

define b̃(·, q) := b(·, yb(x, q)) − b(x, yb(x, q)) and c̃(q) := c(yb(x, q)) − b(x, yb(x, q)) =

a(q). As in [13], it is easy to deduce that b̃ satisfies the same hypotheses (B0)–(B3)

on X × Y x as the original valuation function — except for the fact that b̃ ∈ C3

whereas b ∈ C4. For the reasons explained in [13] this discrepancy shall not trouble

us here: we still have continuous fourth derivatives of b̃ as long as at least one of

the four derivatives is with respect to a variable in X, and at most three derivatives

are with respect to variables in Y x. Note also that c̃b̃ = cb and the continuity of the

agents’ responses yb̃,c̃ in the new variables follows from their presumed continuity in

the original variables, since yb̃,c̃(·) = Dxc(x, yb,c(·)).
The advantage of the new variables is that for each x0 ∈ X, the mountain q ∈

Y x 7−→ b̃(x0, q) is a convex function, according to Lemma 4.3; (alternately, Theorem
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4.3 of [13]). To produce a contradiction, assume convexity of c̃(q) fails to be strict,

so there is a segment t ∈ [0, 1] 7−→ qt ∈ Y x given by qt = (1 − t)q0 + tq1 along which

c̃ is affine with the same slope p ∈ ∂c̃(qt) for each t ∈ [0, 1]. In fact, the compact

convex set ∂c̃(qt) is independent of t ∈]0, 1[, so taking p to be an extreme point of

∂c̃(qt) allows us to find a sequence qt,k ∈ Yx ∩ Dom Dc̃ converging to qt such that

p = limk→∞ Dc̃(qt,k), by Theorem 25.6 of Rockafellar [33]. On the other hand, b∗-

convexity implies c̃(q) is a supremum of mountains: thus to each t ∈ [0, 1] and integer

k corresponds some xt,k ∈ X such that (xt,k, qt,k) ∈ ∂ b̃∗ c̃, meaning

(6.3) c̃(q) ≥ b̃(xt,k, q) − b̃(xt,k, qt,k) + c̃(qt,k)

for all q ∈ Y x. Since qt,k ∈ Dom Dc̃, saturation of this bound at qt,k implies

Dc̃(qt,k) = Dq b̃(xt,k, qt,k). Compactness of X allows us to extract a subsequential

limit (xt,k, qt,k) → (xt, qt) ∈ ∂ b̃∗ c̃ satisfying p = Dq b̃(xt, qt). This first order condition

shows the curve t ∈ [0, 1] 7−→ xt ∈ X to be differentiable, with derivative

(6.4) ẋt = −D2
qxb̃(xt, qt)

−1D2
qq b̃(xt, qt)q̇t,

by the implicit function theorem and (B1). On the other hand, both c̃(·) and b̃(xt, ·)
are convex functions of q ∈ Y x in (6.3), so both must be affine along the segment qt.

This implies q̇t = q1 − q0 is a zero eigenvector of D2
qq b̃(xt, qt), which in turn implies

xt = const from (6.4). On the other hand, the efficient response qt = yb̃,c̃(xt) of agent

xt to price menu c̃ is not constant, since the endpoints q0 6= q1 of the segment are

distinct. This produces the desired contradiction and establishes strict convexity of

c̃. �

Combining Proposition 4.4 with the following standard lemma will allow us to

establish our necessary and sufficient criteria for convexity of the feasible set U0.

Lemma 6.1 (Identification of supporting mountains). Let u be a b-convex function

on X. Assume u is differentiable at x0 ∈ X and Dxu(x0) = Dxb(x0, y) for some

y ∈ Y . Then, u(x) ≥ m(x) for all x ∈ X, where m(·) = b(·, y) − b(x0, y) + u(x0).

Proof. By b-convexity of u, there exists y0 ∈ Y such that u(x0) = b(x0, y0) − ub̄(y0)

and also u(x) ≥ b(x, y0) − ub̄(y0) for all x ∈ X. Since u is differentiable at x0, this

implies Dxu(x0) = Dxb(x0, y0). By the assumption (B1), we conclude y = y0. This

completes the proof since m(·) = b(·, y0) − ub̄(y0). �

Proof of Theorem 3.2. Let us first show the sufficiency. It is enough to show that for

any two b-convex functions u0 and u1, the linear combination ut := (1− t)u0 + tu1 is

again b-convex, for each 0 ≤ t ≤ 1. Fix x0 ∈ X. Since b-convex functions are defined

as suprema of mountains, there exist y0, y1 ∈ Y such that

mx0
i (·) := b(·, yi) − b(x0, yi), i = 0, 1,
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satisfy ui(x) ≥ mx0
i (x) + ui(x0) for all x ∈ X. Clearly equality holds when x = x0.

Let us consider the function

mx0
t (·) = b(·, yt) − b(x0, yt),

where yt defines a line segment

t ∈ [0, 1] 7−→ Dxb(x0, yt) = (1 − t)Dxb(x0, y0) + tDxb(x0, y1) ∈ Rn.

Note that (i) mx0
t (x0) = 0. We claim that (ii) ut(·) ≥ mx0

t (·) + ut(x0). Notice that

ut(·) ≥ (1 − t)mx0
0 (·) + tmx0

1 (·) + ut(x0).

Thus the claim follows from the inequality (1− t)mx0
0 + tmx0

1 ≥ mx0
t , which is implied

by (B3) according to Lemma 4.3. The last two properties (i) and (ii) enable one to

express ut as a supremum of mountains

ut(·) = sup
x0∈X

mx0
t (·) + ut(x0),

hence ut is b-convex by the remark immediately preceding (6.2).

Conversely, let us show the necessity of (B3) for convexity of Vb
Y
. Using the same

notation as above, recall that each mountain mx0
i , i = 0, 1 is b-convex. Assume

the linear combination ht := (1 − t)mx0
0 + tmx0

1 is b-convex. Since Dxh(x0) = (1 −
t)Dxb(x0, y0)+tDxb(x0, y1)) = Dxmt(x0), Lemma 6.1 requires that mx0

t ≤ ht for every

0 ≤ t ≤ 1. This last condition is equivalent the property characterizing nonnegative

cross-curvature in Lemma 4.3. This completes the proof of necessity and the proof of

the theorem. �

Let us turn now to the convexity of the principal’s problem.

Proof of Corollary 4.5. Corollary 4.5 follows by combining the convexity of the set U0

of feasible strategies proved in Theorem 3.2 with the convexity of a(q) from Proposi-

tion 4.4. If µ fails to vanish on each Lipschitz hypersurface, a little care is needed to

deduce convexity of the principal’s objective L(u) from that of a(q), by invoking the

conventions adopted in Remark 4.2 as follows. Let t ∈ [0, 1] 7−→ ut = (1 − t)u0 + tu1

denote a line segment in the convex set U0. If q ∈ ∂ut(x) for some x ∈ X, then

yb(x, q) ∈ ∂but(x) by Theorem 3.1 of Loeper [19]; (a direct proof along the lines of

Lemma 4.3 may be found in [16]). So yb(x, q) is among the best responses of x to

price menu vt = ub∗
t . For each t ∈ [0, 1] select Dut(x) ∈ ∂ut(x) measurably to en-

sure min{c(yb(x, q)) − b(x, yb(x, q)) | q ∈ ∂ut(x)} is achieved at q = Dut(x). Then

a(Dut(x)) ≤ a((1 − t)Du0(x) + tDu1(x)) since (1 − t)Du0(x) + tDu1(x) ∈ ∂ut(x).

The desired convexity of L(u) follows. �

Next we establish uniqueness of the principal’s strategy.
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Proof of Theorem 4.6. Suppose both u0 and u1 minimize the principal’s net losses

L(u) on the convex set U0. Define the line segment ut = (1 − t)u0 + tu1 and —

in case µ fails to vanish on each Lipschitz hypersurface — the measurable selection

Dut(x) ∈ ∂ut(x) as in the proof of Corollary 4.5. The strict convexity of a(q) asserted

by Proposition 4.4 combines with the tie-breaking rule to remove all freedom from this

selection. Under the hypotheses of Theorem 4.6, the same strict convexity implies

the contradiction L(u1/2) < 1
2
L(u0) + 1

2
L(u1) = L(u1) unless Du0 = Du1 holds

µ-a.e. This establishes the uniqueness µ-a.e. of the agents’ equilibrium strategies

yb,v(x) := yb(x,Du1(x)), and of the principal’s optimal measure ν := (yb,v)#µ in

(3.5).

Let spt µ denote the smallest closed subset of X containing the full mass of µ. To

identify u0 = u1 on spt µ and establish the remaining assertions is more technical.

First observe that the participation constraint u1/2(x) ≥ b(x, y∅) − c(y∅) =: u∅(x)

on the continuous function u1/2 ∈ U0 must bind for some agent type x0 ∈ spt µ;

otherwise, for ε > 0 sufficiently small, u1/2 − ε would belong to U0 and reduce the

principal’s losses by ε, contradicting the asserted optimality of u1/2. Since u1/2 is a

convex combination of two other functions obeying the same constraint, we conclude

u0(x0) = u1(x0) coincides with the reservation utility u∅(x0) for type x0. Now use the

map yb,v := yb ◦ Du1 from the first paragraph of the proof to define a joint measure

γ := (id× yb,v)#µ given by γ[U × V ] = µ[U × y−1
b,v (V )] for Borel U × V ⊂ X × Y , and

denote by spt γ the smallest closed subset S ⊂ X × Y carrying the full mass of γ.

Notice spt γ does not depend on t ∈ [0, 1], nor in fact on u0 or u1; any other optimal

strategy for the principal would lead to the same γ.

Since the graph of yb,v lies in the closed set ∂bu1 ⊂ X × Y , the same is true of

S := {(x0, y∅)}∪ spt γ. Thus S is b-cyclically monotone (A.1) by the result of Rochet

[30] discussed immediately before Lemma A.1. Lemma A.1 then yields a minimal

b-convex function u− satisfying u−(x0) = b(x0, y∅) − c(y∅) for which S ⊂ ∂bu−. The

fact that (x0, y∅) ∈ S implies some mountain b(·, y∅) + λ bounds u−(·) from below

with contact at x0. Clearly λ = −c(y∅) whence u− ∈ U0.

Now we have ui ≥ u− for i = 0, 1 with equality at x0. Also, yb,v(x) ∈ ∂bu−(x) for

µ almost all x, whence u− must be an optimal strategy: it is smaller in value than

ui and produces at least as favorable a response as ui from almost all agents. Finally

since

L(ui) − L(u−) ≥
∫

X

(ui(x) − u−(x))dµ(x) ≥ 0,

the fact that ui minimizes the losses of the principal implies the continuous integrand

vanishes µ-almost everywhere. Thus ui ≥ u− on X, with equality holding throughout

spt µ as desired.

Since u0 was arbitrary, we have now proved that all optimal u ∈ U0 coincide with

u1 on spt µ. Optimality of u also implies spt γ ⊂ ∂bu; if in addition the participation
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constraint u(x) ≥ b(x, y∅) − c(y∅) binds at x0, then u ≥ u− on X. Although u−
appears to depend on our choice of x0 ∈ spt µ in the construction above this is not

actually the case: u(x0) = u1(x0) shows the participation constraint binds at x0 for

every optimal strategy and u− is therefore uniquely determined by its minimality

among optimal strategies u ∈ U0.

Now, since any supremum of b-convex functions (not identically infinite) is again

b-convex, define u+ ∈ U0 as the pointwise supremum among all of the principal’s

equilibrium strategies u ∈ U0. The foregoing shows u+ = u− on spt µ, while (x, y) ∈
spt γ ⊂ ∂bu implies

u+(·) ≥ u(·) ≥ u(x) + b(·, y) − b(x, y)

= u+(x) + b(·, y) − b(x, y)

on X, whence spt γ ⊂ ∂bu+. From here we deduce L(u+) ≤ L(u), hence u+ is itself

an optimal strategy for the principal.

Finally, v : Y 7−→ R∪{+∞} is an equilibrium price menu in Carlier’s reformulation

[8] if and only if u := vb minimizes L(u) on U0, in which case u− ≤ u ≤ u+ throughout

X implies ub∗
+ ≤ (vb)b∗ ≤ ub∗

− throughout Y . Moreover, u− = u+ on spt µ implies ub∗
+ =

ub∗
− on spt ν, since yb,v(x) ∈ ∂bu±(x) for µ-a.e. x implies ub∗

± (yb,v(x)) = b(x, yb,v(x)) −
u±(x). We therefore conclude that if v is an equilibrium price menu, then v ≥ (vb)b∗ ≥
ub∗

+ on Y , with both equalities holding ν-a.e. Conversely, if v : Y 7−→ R ∪ {+∞}
satisfies v ≥ ub∗

+ with equality ν-a.e., we deduce the same must be true for its b-

convex hull (vb)b∗ , the latter being the largest b-convex function dominated by v.

Thus (vb)b∗(y∅) = c(y∅) and vb ∈ U0 and vb ≤ u+ throughout X with equality holding

µ-a.e. If µ vanishes on Lipschitz hypersurfaces, then Dvb = Du+ agree µ-a.e., so

L(vb) = L(u+) and vb is a optimal strategy for the principal as desired. If, on the

other hand, µ does not vanish on all Lipschitz hypersurfaces, then we may assume

v is its own b∗-convex hull by Remark 4.2. Any mountain which touches ub∗
+ from

below on spt ν also touches v ≥ ub∗
+ from below at the same point, thus ∂b∗ub∗

+ ⊂ ∂b∗v;

since v is b-convex this is equivalent to ∂bu+ ⊂ ∂bvb. This shows the best response

of x facing price menu ub∗
+ is also one of his best responses facing price menu v: he

cannot have a better response since his indirect utility vb ≤ u+. The constraint on the

agent’s behaviour imposed by Remark 4.2 now implies L(vb) ≤ L(u+); equality must

hold since u+ is one of the principal’s optimal strategies. This confirms optimality of

vb and concludes the proof of the theorem. �

To show stability of the equilibrium requires the following convergence result con-

cerning Borel probability measures P
(
X × Y

)
on the product space.

Proposition 6.2 (Convergence of losses and mixed strategies). Suppose a sequence

of triples (b∞, c∞, µ∞) = limi→∞(bi, ci, µi) satisfy the hypotheses of Corollary 4.7. Let

Li(u) denote the net losses (4.5) by a principal who adopts strategy u facing data
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(bi, ci, µi). If any sequence ui of bi-convex functions converge uniformly on X, then

their limit u∞ is b∞-convex and L∞(u∞) = limi→∞ Li(ui). Furthermore, there is a

unique joint measure γ∞ ∈ P
(
X ×Y

)
supported in ∂b∞u∞ with left marginal µ∞, and

any sequence of joint measures γi ∈ P
(
X × Y

)
vanishing outside ∂biui and with left

marginal µi, must converge weakly-∗ to γ∞.

Proof. Assume a sequence ui → u∞ of bi-convex functions converges uniformly on X.

Topologizing the continuous functions C
(
Z

)
by uniform convergence, where Z = X,Y

or X × Y , makes the transformation (b, u) 7−→ ub∗ given by (3.1) continuous on

C
(
X × Y

)
× C

(
X

)
. This fact allows us to take i → ∞ in the relation u

b∗i bi

i = ui

to conclude b∞-convexity of u∞. From the semiconvexity (4.4) of u∞ we infer its

domain of differentiability Dom Du∞ exhausts X apart from a countable collection

of Lipschitz hypersurfaces, which are µ∞-negligible by hypothesis. Define the map

G∞(x) = yb∞(x,Du∞(x)) on Dom Du∞. Since ∂b∞u∞ ∩ (Dom Du∞ × Y ) coincides

with the graph of G∞, any measure γ∞ supported in ∂b∞u∞ with left marginal µ∞ is

given (6.5) by γ∞ := (id × G∞)#µ∞ as in, e.g., Lemma 2.1 of Ahmad et al [1]. This

specifies γ∞ uniquely.

Now suppose γi ≥ 0 is a sequence of measures supported in ∂biui having left

marginal µi. Compactness allows us to extract from any subsequence of γi a further

subsequence which converges weakly-∗ to some limit γ̄ ∈ P
(
X × Y

)
. Since µi ⇀ µ∞

the left marginal of γ̄ is given by µ∞. Moreover, since ui(x) + u
b∗i
i (y) ≥ bi(x, y)

throughout X × Y with equality on spt γi, uniform convergence of this expression

yields spt γ̄ ⊂ ∂b∞u∞. The uniqueness result of the preceding paragraph then asserts

γ̄ = γ∞ independently of the choice of subsequence, so the full sequence γi ⇀ γ∞
converges weakly-∗.

Finally, use the measurable selection Dui(x) ∈ ∂ui(x) of Remark 4.2 to extend

Dui(x) from Dom Dui to X so as to guarantee that Gi(x) := ybi
(x,Dui(x))) ∈

∂biui(x). Use the Borel map Gi : X 7−→ Y to push µi forward to the joint prob-

ability measure γi := (id × Gi)#µi on X × Y defined by

(6.5) γi[U × V ] := µi[U ∩ G−1
i (V )]

for each Borel U × V ⊂ X × Y . Notice γi is supported in ∂biui and has µi for its

left marginal, hence converges weakly-∗ to γ∞. Moreover, our choice of measurable

selection guarantees that the net losses (4.5) of the principal choosing strategy ui

coincide with

(6.6) Li(ui) =

∫
X×Y

(ci(y) − u
b∗i
i (y))dγi(x, y).
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Weak-∗ convergence of the measures γi ⇀ γ∞ couples with uniform convergence of

the integrands to yield the desired limit

lim
i→∞

Li(ui) =

∫
X×Y

(c∞(y) − ub∗∞
∞ (y))dγ∞(x, y) = L∞(u∞)

and establish the proposition. �

Proof of Corollary 4.7. Let U i
0 denote the space of bi-convex functions u(·) ≥ bi(·, y∅)−

ci(y∅), and Li(u) denote the net loss of the principal who chooses strategy u facing

the triple (bi, ci, µi). The Li-minimizing strategies ui ∈ U i
0 are Lipschitz and semicon-

vex, with upper bounds (4.4) on |Dui| and −D2ui which are independent of i since

‖bi − b∞‖C2 → 0. The Ascoli-Arzelà theorem therefore yields a subsequence ui(j)

which converges uniformly to a limit ū on the compact set X. Since the functions

ui have a semiconvexity constant independent of i, it is a well-known corollary that

their gradients also converge Dui(j)(x) → Dū(x) pointwise on the set of common

differentiability (Dom Dū) ∩ (∩∞
i=1 Dom Dui). This set exhausts X up to a countable

union of Lipschitz hypersurfaces — which is µ∞-negligible by hypothesis. Setting

Gi(x) = ybi
(x,Dui(x)), it is not hard to deduce yb∞(x,Dū(x)) = limj→∞ Gi(j)(x) on

this set from Definition 4.1. If we can now prove ū minimizes L∞(u) on U∞
0 , the

uniqueness of equilibrium product selected by µ∞-a.e. agent x ∈ X in Theorem 4.6

will then imply that limj→∞ Gi(j)(x) = G∞(x) converges to a limit independent of

the subsequence chosen, hence the full sequence Gi(x) converges µ∞-a.e.

To see that ū minimizes L∞(u) on U∞
0 , observe u ∈ U∞

0 implies ub∗∞bi ∈ U i
0 is

Li-feasible, being the bi-transform of a price menu ub∗∞(·) agreeing with c∞(·) at y∅.

Moreover, ub∗∞bi → ub∗∞b∞ uniformly as i → ∞ (by continuity of the b-transform

asserted in the first paragraph of the preceding proof). The optimality of ui therefore

yields Li(ui) ≤ Li(u
b∗∞bi). Proposition 6.2 allows us to deduce L∞(ū) ≤ L∞(u)

by taking the subsequential limit j → ∞. Since the same proposition asserts b∞-

convexity of ū, we find ū ∈ U∞
0 is the desired minimizer after taking the limit j → ∞

in ui(j)(·) ≥ bi(j)(·, y∅) − ci(j)(y∅). This concludes the proof of µ∞-a.e. convergence of

the maps G∞(x) = limi→∞ Gi(x).

Turning to the optimal measures: as in the preceding proof, a measurable selection

Dui(x) ∈ ∂ui(x) consistent with the tie-breaking hypotheses of Remark 4.2 may be

used to extend the Borel map Gi(x) = yb(x,Dui(x)) from Dom Dui to X and define

a joint measure γi := (id×Gi)#µi supported on ∂biui as in (6.5). The left marginal of

γi is obviously given by µi, and its right marginal coincides with the unique optimal

measure νi given by Theorem 4.6. Proposition 6.2 then yields weak-∗ convergence

of γi ⇀ γ∞ and hence of νi ⇀ ν∞. Theorem 4.6 also asserts the two minimizers

u∞ = ū agree µ∞-a.e. In this case the uniform limit ū is independent of the Ascoli-

Arzelà subsequence, hence we recover convergence of the full sequence ui → u∞ in

L∞(X, dµ∞) . �
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Finally, let us extend Armstrong’s desirability of exclusion to our model. Our proof

is inspired by Armstrong’s [2], but differs from his in a number of ways.

Proof of Theorem 4.8. Use the C3-smooth diffeomorphism x ∈ X 7−→ p = Dyb(x, y∅) ∈
Xy∅ provided by (B0)–(B2) and its inverse p ∈ Xy∅ 7−→ x = xb(y∅, p) ∈ X to

reparameterize the space of agents over the strictly convex set Xy∅ . Then ũ(p) :=

u(xb(y∅, p)) − b(xb(y∅, p), y∅) + c(y∅) defines a non-negative b̃-convex function, where

b̃(p, y) := b(xb(y∅, p), y) − b(xb(y∅, p), y∅) + c(y∅). In other words, the space U0 corre-

sponds to the space Ũ0 of non-negative b̃-convex functions on Xy∅ in the new param-

eterization. This subtraction of the reservation utility from the valuation function

does not change any agent’s response to a price menu v offered by the principal, since

valuations by different agent types are never compared. However, it does make the

valuation function b̃(p, y) a convex function of p ∈ Xy∅ , as is easily seen by inter-

changing the roles of x and y in Lemma 4.3. The indirect utility ũ(p) = vb̃(p) is then

also convex, being a supremum (3.1) of such valuation functions.

In the new variables, the distribution of agents f̃(p)dp = f(x)dx is given by f̃(p) =

f(xb(y∅, p)) det[∂xi
b(y∅, p)/∂pj]. The principal’s net losses L̃(ũ) = L(u) are given as

in (4.5) by

L̃(ũ) =

∫
Xy∅

ã(Dũ(p), ũ(p), p)f̃(p)dp,

where ã(q, s, p) = c(yb̃(p, q)) − b̃(p, yb̃(p, q)) + s is a convex function of q on Ỹp :=

Dpb̃(p, Y ) for each fixed p and s, according to Proposition 4.4; (recall that b̃ ∈
C3

(
Xy∅ ×Y

)
satisfies the same hypotheses (B0)–(B3) as b ∈ C4

(
X ×Y

)
, except for

the possibitity that four continuous derivatives with respect to variables in Xy∅ fail

to exist, which is irrelevant as already discussed). This convexity implies

ã(q, s, p) ≥ ã(q0, s, p) + 〈Dqã(q0, s, p), q − q0〉

for all q, q0 ∈ Ỹ p. With p still fixed, the choice q0 = Dpb̃(p, y∅) = 0 shows ã(0, s, p) = s

whence ã(q, s, p) ≥ 〈Dqã(0, s, p), q〉 for s = ũ(x) ≥ 0.

Now suppose ũ ∈ Ũ0 minimizes L̃(ũ). For ε ≥ 0, define the continuously increasing

family of compact convex sets Ũε := {p ∈ Xy∅ | ũ(p) ≤ ε}. Observe that Ũ0 must

be non-empty, since otherwise for ε > 0 small enough Ũε would be empty, and then

ũ − ε ∈ Ũ0 is a better strategy, reducing the principal’s losses by ε. We now claim

the interior of the set Ũ0 — which corresponds to agents who decline to participate

— contains a non-zero fraction of the total population of agents. Our argument is

inspired by the strategy Armstrong worked out in a special case [2], which was to

show that unless this conclusion is true, the profit the principal extracts from agents

in Ũε would vanish at a higher order than ε > 0, making ũε := max{ũ − ε, 0} ∈ Ũ0 a

better strategy than ũ for the principal when ε is sufficiently small.
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For ε > 0, the contribution of Ũε to the principal’s profit is given by

−L̃ε(ũ) := −
∫

Ũε

ã(Dũ(p), ũ(p), p)f̃(p)dp

≤ −
∫

Ũε

〈Dqã(0, ũ(p), p), Dũ(p)〉f̃(p)dp

=

∫
Ũε

ũ(p)∇p · (f̃(p)Dqã(0, ũ(p), p))dp −
∫

∂Ũε

ũ(p)〈Dqã, n̂〉f̃(p)dS(p)(6.7)

where n̂ = n̂Ũε
(p) denotes the outer until normal to Ũε at p, and the divergence

theorem has been used. Here ∂Ũε denotes the boundary of the convex set Ũε, and

dS(p) denotes the n−1 dimensional surface (i.e. Hausdorff) measure on this boundary.

(For Sobolev functions, the integration by parts formula that we need is contained

in §4.3 of [12] under the additional restriction that the vector field ũ(·)Dqa(0, ũ(·), ·)
be C1 smooth, but extends immediately to Lipschitz vectors fields by approximation;

the operation of restricting f̃ to the boundary of Ũε is there shown to give a bounded

linear map from W 1,1(Uε, dp) to L1(∂Uε, dS) called the boundary trace.) As ε → 0,

we claim both integrals in (6.7) vanish at rate o(ε) if the interior of Ũ0 is empty. To

see this, note ũ = ε on ∂Ũε ∩ int Xy∅ , so∫
∂Ũε

ũ(p)〈Dqã, n̂〉f̃(p)dS(p)

= ε

∫
∂Ũε

〈Dqã, n̂〉f̃(p)dS(p) +

∫
∂Ũε∩∂Xy∅

[ũ(p) − ε]〈Dqã, n̂〉f̃(p)dS(p)

= ε

∫
Ũε

∇p · (f̃(p)Dqã(0, ũ(p), p))dp +

∫
Ũε∩∂Xy∅

[ũ(p) − ε]〈Dqã, n̂〉f̃(p)dS(p).

Since 0 ≤ ũ ≤ ε in Ũε, we combine the last inequality with (6.7) to obtain

(6.8) − L̃ε(ũ)

ε
≤

∫
Ũε

∣∣∇p · (f̃(p)Dqã(0, ũ(p), p))
∣∣dp +

∫
Ũε∩∂Xy∅

∣∣〈Dqã, n̂〉f̃(p)
∣∣dS(p).

Notice that domain monotonicity implies the ε → 0 limit of the last expressions above

is given by integrals over the limiting domain Ũ0 = ∩ε>0Ũε. Assume now the interior

of the convex set Ũ0 is empty, so that Ũ0 has dimension at most n − 1. Then the

volume |Ũε| = o(1), hence the first integral in the right hand side dwindles to zero

as ε → 0, (recalling that ũ is Lipschitz, f̃ ∈ W 1,1 and ã ∈ C3). Concerning the

second term, if the convex set Ũ0 has dimension n − 1 then its relative interior must

be disjoint from the boundary of the convex body Xy∅ , since the latter is assumed to

have no n− 1 dimensional facets. Either way Ũ0 ∩∂Xy∅ has dimension at most n− 2,

which implies that ∫
Ũε∩∂Xy∅

dS(p) = o(1)
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as ε → 0. All in all, we have shown Lε(ũ) = o(ε) as ε → 0 whenever Ũ0 has empty

interior, which — as was explained above — contradicts the asserted optimality of

the strategy ũ. However, even if Ũ0 has non-empty interior, more must be true to

avoid inferring the contradictory conclusion Lε(ũ) = o(ε) as ε → 0 from (6.8): one of

the two limiting integrals∫
Ũ0

|∇p · (f̃(p)Dqã(0, ũ(p), p))|dp > 0 or

∫
Ũ0∩∂Xy∅

|〈Dqã, n̂〉|f̃(p)dS(p) > 0

must be non-vanishing. In either case, the W 1,1 density f̃ must be positive somewhere

in Ũ0, whose interior therefore includes a positive fraction of the agents. Since ũ is

differentiable with vanishing gradient on the interior of Ũ0, there is no ambiguity in

the strategy of these agents: they respond to ũ by choosing the outside option. �

Appendix A. Minimal b-convex potentials

The purpose of this appendix is to establish a mathematical result (and some ter-

minology) needed in the last part of the uniqueness proof, Theorem 4.6. In particular,

we establish a minimality property enjoyed by Rochet’s construction of a b-convex

function for which ∂bu contains a prescribed set [30]; Rochet’s construction is modeled

on the analogous construction by Rockafellar of a convex function u whose subdiffer-

ential ∂u contains a given cyclically monotone set [33].

Recall a relation S ⊂ X × Y is b-cyclically monotone if for each integer k ∈ N and

k-tuple of points (x1, y1), . . . , (xk, yk) ∈ S, the inequality

(A.1)
k∑

i=1

b(xi, yi) − b(xi+1, yi) ≥ 0

holds with xk+1 := x1. For a function u : X 7−→ R∪{+∞}, the relation ∂bu ⊂ X×Y

consists of those points (x, y) such that

(A.2) u(·) ≥ u(x) + b(·, y) − b(x, y)

holds throughout X. Rochet’s generalization of Rockafellar’s theorem asserts that

S ⊂ X × Y is b-cyclically monotone if and only if there exists a b-convex function

u : X 7−→ R∪{+∞} such that S ⊂ ∂bu. Here we need to extract a certain minimality

property from its proof.

Lemma A.1. Given a b-cyclically monotone S ⊂ X × Y and (x0, y0) ∈ S, there is a

b-convex function u vanishing at x0 and satisfying S ⊂ ∂bu, which is minimal in the

sense that u ≤ ũ for all ũ : X 7−→ R ∪ {+∞} vanishing at x0 with S ⊂ ∂bũ.

Proof. Given a b-cyclically monotone S ⊂ X×Y and (x0, y0) ∈ S, Rochet [30] verified

the elementary fact that the following formula defines a b-convex function u for which
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S ⊂ ∂bu:

(A.3) u(·) = sup
k∈N

sup
(x1,y1),...,(xk,yk)∈S

b(·, yk) − b(x0, y0) +
k∑

i=1

b(xi, yi−1) − b(xi, yi).

Taking k = 0 shows u(x0) ≥ 0, while the opposite inequality u(x0) ≤ 0 follows from

b-cyclical monotonicity (A.1) of S. Now suppose ũ(x0) = 0 and S ⊂ ∂bũ. For each

k ∈ N and k-tuple in S, we claim ũ(·) exceeds the expression under the supremum

in (A.3). Indeed, (xi, yi) ∈ S ⊂ ∂bũ implies

ũ(xi+1) ≥ ũ(xi) + b(xi+1, yi) − b(xi, yi).

and ũ(xi) < ∞, by evaluating (A.2) at xi and at x0. Summing the displayed in-

equalities from i = 0, . . . , k, arbitrariness of xk+1 ∈ X yields the desired result:

ũ(xk+1) ≥ u(xk+1). �
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