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Example
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e More generally one could aim to count the number Ny of degree d rational curves
(genus 0) in the plane passing through 3d — 1 general points.
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Ny =N,=1, N3 =12, Ny=0620

in the late 19th century. It took almost a century to compute N5 = 87304.
Remarkably, in 1994 Kontsevich, motivated by string theory, gave a recursive formula
computing all Ny starting from Ny = 1:



Kontsevich's recursion

Mathematicians had computed the first few cases
Ny =N,=1, N3 =12, Ny=0620

in the late 19th century. It took almost a century to compute N5 = 87304.
Remarkably, in 1994 Kontsevich, motivated by string theory, gave a recursive formula
computing all Ny starting from Ny = 1:

3d — 4 3d — 4
Ny = § j <d12d22 <3d1 B 2> — d3ds <3d1 B 1>>Nled2
di+dr=d
di,d>>0

for d > 1.
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Stable maps

Let X be a smooth, proper and connected algebraic variety of dimension r over C,
B € Ha(X,Z) an effective curve class, g € Z>g a genus and n € Z>( an integer.

Define

o(C is a connected nodal

genus g curve;

_ opl,...,anC
Mo n(X,8) =12 F:(C.p1.nspr) — X oF ,
gn(X.0) (C.pr Pr) are distict smooth points;
.f*[C] = ﬁ;

o|Aut(f)] < oco.

to be the moduli stack of n-pointed genus g stable maps in class £.
We will also denote by

Mgv”(X75) g Mgan(X7/8)

the open substack where the domain curve C is smooth.



Stable curves

When X = x is a point, we obtain the moduli stack of stable n-pointed genus g curves

( oC is a connected nodal

genus g curve;
gn=219 (C.p1,--,pn) | ®p1,....,pn € C

are distict smooth points;
o|Aut(C, p1,...,pn)| < 0.

<
|
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Properties

The moduli stacks of stable satisfy the following properties:

e there are evaluation maps
evi: Mgn(X,8) = X

defined by ev;([f]) = f(p;) for i =1,...,n;
e there is a forgetful morphism

T Mgm(X,B) — ngn

remembering the (stabilized) domain curve;

e The moduli stack M (X, 3) is proper. It can be non-reduced and have several
components of different dimension. However, it carries a virtual fundamental class

[Mg.n(X, B)™ € Haudim(Mg.n(X, B)).
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Gromov-Witten invariants

Definition
For classes v; € H*(X) and o € H*(M,,5) the integral

n

/ Jevin) -7 ()
Mg n(X,B)]Vr 24

is a Gromov-Witten invariant of X.

Example

We have
3d—1

Ma= | evi(P)
[Mo,34—1(P2,d)]vir ,1:[

1

where P € H?(P?) is the point class.
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Motivating question

Fix a general smooth genus g curve C and n general distinct points p1,...,p, € C.
Also fix n general points x1,...,x, € X.
Question

How many maps f :7(?, P1,--.,Pn) — X are there such that f(p;) = x; for all
i=1,...,nand £[C] = 57
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Goal of the presentation

Goal
We would like:

e to express the answer in the form of a closed formula;
e or maybe to give a recursive formula for the answer (as done by Kontsevich);

e study the structure of such numbers.

Results
In this presentation we will study:

Projective spaces;

Hypersurfaces in Projective spaces;

Point Blow-ups of Projective spaces;

Hirzebruch surfaces.
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Virtual Tevelev degrees

Assume vdim(M, o(X, 8)) = dim(X" x Mg p).

Definition
Define the virtual Tevelev degree vTevgn’ﬂ € Q as the Gromov-Witten invariant

vTevyX —/ evy )
nB J— M n
& [Men(X B H ©

where P € H?7(X) and PXi,. € H3&=3+1(M, ) are the point classes.

Warning
This is a virtual count.



Geometric Tevelev degrees

Definition
The geometric Tevelev degree Tevé}nﬁ € 7Z of X is defined under the assumption
that the map

n
T=m7X Hev,- Mg (X, B) = Mgnx X"
i=1
has reduced and 0-dimensional general fiber, in which case its cardinality is by
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definition Tevy , 5.



Geometric Tevelev degrees

Definition
The geometric Tevelev degree Tevé}nﬁ € 7Z of X is defined under the assumption
that the map

n
T=m7X Hev,- Mg (X, B) = Mgnx X"
i=1
has reduced and 0-dimensional general fiber, in which case its cardinality is by

. X
definition Tevy , 5.
Fact (Lian-Pandharipande)

The geometric degree Tevg,nﬁ is always defined for n > g + 1.
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Reformulation of the problem

Three questions emerge:
e What is vTevX

gn87
e What is Tevg np?
o ls vTevg ng = Tev}g np! (Thatis, is vTevg a3 €numerative?)
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Reduction to genus 0 invariants

We can associate to X its quantum cohomology ring, denoted by (QH*(X),*). This
is defined using only 3-pointed genus 0 Gromov-Witen invariants of X.

Theorem (Buch-Pandharipande)

We have

vTev;n’B = Coeff(P*" x E*§, ¢°P)
Here E € QH*(X) is the quantum Euler class of X and P is the point class on X.

The quantum Euler class of X is a quantum deformation of the Euler characteristic of
X.



Virtual Tevelev degrees of Projective spaces

Example
We have QH*(P") = % where H is the hyperplane class. Then

E=(r+1)H"

and

vTevE:md =(r+1)58.
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Connection with Castelnuovo’s classical count of g}'s

The only example where we know explicit closed formulas for all the geometric Tevelev
degrees of X is when X = P!

Theorem (Castelnuovo, 1889)

We have )
Pl _ g
Tevg73g+1 141 (g)

1
g
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Connection with Castelnuovo’s classical count of g}'s

Of course Castelnuovo’s perspective was different.

Definition B B
A gl on C is the datum of a 2 dimensional subspace of H%(C, L) where L € Pic9(C).

Consider the Brill-Noether locus
G4(C) = {g)'s on C}

which is smooth of dimension p(d,1,g) = g —2(g —d + 1).
Assuming p =0 (i.e. d = % + 1), in one of his celebrated papers of 1889, Castelnuovo
computed

ses(3ON) = 111 ()

. . P!
which agrees with Tevg’37%+1.
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Theorem (J. Tevelev)
We have

1

P Y-
Tevg gi3g41 =25

Theorem (C-Pandharipande-Schmitt)
We have
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Geometric Tevelev degrees of the projective line

Theorem (J. Tevelev)
We have

p! _ 08
Tevg g3 g1 =25

Theorem (C-Pandharipande-Schmitt)
We have

g—d-1

Tevl 4 =28 —2 ;) (f)—i—(g—d—l)(gfd)—i—(d—g—l)( £ )

g—d+1

This interpolates between Castelnuovo's and Tevelev's results.



Observation
Note that for d > d[g] or g = 0, the formula

g—d—1

Ted? , — 26 —2 Z () (g — dfl)( d>+(dfg71)<g_i,+1>.

reduces to
Pl g
Tevg ng =2 —vlevgnd



Observation
Note that for d > d[g] or g = 0, the formula

g—d—1

— 08 _ _ g g
Tevl, 4 =2 22 () (g—d 1)( d>+(d g 1)<g—d+1>'
reduces to X

Tevk g =28 =vTevk, .
Question

Is this a case?
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Failure of enumerativity for small d

Why do we have Tevgmd # vTevEmd for small d7
For n—1 < d (i.e. d < g) we have the following contribution from the boundary:

C
( .y
\ Pn
. d
D> 2
” |
X1 X n

where d;j +...+d,=dand d; >0 forall i =2,...,n.
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Generalities about hypersurfaces

Let X C P! be a hypersurface of degree m. Assume r > 3 and that X is Fano (i.e.
m<r+1).
Then we have a canonical splitting

H*(X) _ H*(X)prim D H*(Pr-‘rl)
where H*(X)Prim = Ker(H U —) C H"(X).

In particular,
B =dL e HyX,Z)

where L is the class of a line in P"™! and d € Z>,.



Quantum Euler class of hypersurfaces

Theorem (Cela)
The following equalities hold:
e (conjectured by Buch-Pandharipande) if m < r then
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Quantum Euler class of hypersurfaces

Theorem (Cela)
The following equalities hold:
e (conjectured by Buch-Pandharipande) if m < r then

E = mflx(x)H*r + (r +2—m-— X(X))mmiqu*miz,

e ifm=r+1 then
E=m "X (X)H"

+ r m G =) ) !)j_llm'"m!(wl) g H" .
j_z; X <J—1> J

In particular, this expression does not involve the primitive cohomology of X !
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Virtual Tevelev degrees of hypersurfaces

(Previous computation) + (Buch-Pandhariapande) ~ Virtual Tevelev degrees of X:

Theorem (Buch-Pandharipande)
Let m>2andr>2m—4and g+ n> 2 then

vTevX L = ((m = 1)) (r 4+ 2 — m)Em(d=mm-g+1,

For higher degree Fano hypersurfaces, an algorithm computing vTevgn,dL is known
[Cela].



Enumerativity for hypersurfaces

What about the geometric degrees Tevf;,n’dL?
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What about the geometric degrees Tevf;,n’dL?

Theorem ( Lian-Pandharipande)
Suppose m > 3 and r > (m + 1)(m — 2) then
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whenever g =0 or d > d[m, g].



Enumerativity for hypersurfaces

What about the geometric degrees Tevf;,n’dL?

Theorem ( Lian-Pandharipande)
Suppose m > 3 and r > (m + 1)(m — 2) then

X X
TeVg7n,dL - VTengnydL
whenever g =0 or d > d[m, g].

Comment
Maybe this is not a case!
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Enumerativity for Blow-ups of Projective spaces

Let X be the Blow-up of P" at ¢ general points.

Theorem (Cela-Lian)

The virtual degree vTevg,n”B is enumerative whenever g = 0 or 3- Ky > K[X, g] in the
following cases:

e X js a del Pezzo surface, i.e. r =2, and the { < 8 points satisfy the property that
no three lie on a line, no six lie on a conic, and, if £ = 8, the points do not all lie
on a cubic singular at one of the q;;

o r=310<4,
e r js arbitrary and { = 1.

In particular, in all the Fano cases vTevgf’nﬁ is enumerative whenever g = 0 or



Geometric Tevelev degrees of Blow-ups of Projective spaces

Assume £ < r + 1 and write
Vi
B=dH" +) KE;.
i=1
and assume that

d—> ki>2g—1forall I C{l,... .0} with |[I[<r.
i€l



Geometric Tevelev degrees of Blow-ups of Projective spaces

Assume £ < r + 1 and write

J4
B=dH" +) KE;.
i=1
and assume that

d—> ki>2g—1forall | C{l,....0} with |/[<r.
i€l

Theorem (Cela-Lian)

Assume further that n — d > 1. Then,

min(ki,...,Kkr+1,M)

r+1
x m( N n—d+2-¢ikj—1—m
Tevy,p = Z (-1) (m> H < k,-J— J

m=0 i=1

where we set kpy1 = -+ = kpy1 =0 when ¢ < r + 1.



One point Blow-ups of Projective spaces

Theorem (Cela-Lian)
Let X = Blg(P") and assume further that n—d > 1. Then,

g
m m(&\(n—d+g—m—1
vTevy 5= (2r)f~™(1—r) <m) < " )
m=0

If moreover n —d > g + 1, then Tev; n.B is well-defined and coincides with vTevX

g,n,B"



Sketch of proof

We divide the proof in steps:

Step 1: Thinking of f : C — X as a map f : C — P", which maps divisors D; of degree k;
to the i-th blown-up point, provides a parametrization of the space of maps
f: C— Xin class 8 as the 'interior’ of a projective bundle

4
P° C P(€) — Pic?(C) x [ Sym*(C)
i=1



Sketch of proof

Step 2: The class of the closure V/(x;) in P(£) of the locus in P° where f(p;) = x;

[V(X')] = ﬁr +01(7717 cee 777£)ﬁr_1 +...+ Ur(771> cee 7775)

where
e 7; € H*(Sym*(C)) is the class of divisors containing a fixed point of C;
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Sketch of proof

Step 2: The class of the closure V/(x;) in P(£) of the locus in P° where f(p;) = x;

[V(X’)] = ﬁr +01(7717 cee 777£)ﬁr_1 +...+ Ur(771> cee 7775)

where
e i € H*(Sym*i(C)) is the class of divisors containing a fixed point of C;

e H= Cl(Op(g)(].)) —m— ... N
e the g; are the symmetric functions in 1y, ..., 7.



Sketch of proof

Step 3: (Transversality) The intersection
n
) V(x)
i=1

is transverse (i.e. consists of finitely many reduced points) and lies in P°.



Sketch of proof

Step 4: By the previous steps

n
Tevg 5 = / <Hr +o1(n, . m)H T o (- 7?%))
P

which we computed explicitely in the two stated cases.
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Enumerativity in general

Let X be a Fano variety.

Speculation

The virtual count vTevg,,”B is always enumerative whenever g = 0 or 5.Ky, > K[X, g].
This is true in all the above examples, but NOT in general.

Example (Beheshti, Lehmann, Lian, Riedl, Starr, Tanimoto)

e (Certain) Fano splitting projective bundles over P* for k > 1;
e Fermat hypersurfaces X C P"*! (r > 3) of degree m such that either 5* < m <
r+lorm=r+1>4



Failure of enumerativity for Fermat hypersurfaces

For simplicity, assume % <m<r+1and let

X = {~X§ + X[+ ...+ Xy =0},



Failure of enumerativity for Fermat hypersurfaces

For simplicity, assume % <m<r+1and let
X={-X"+X"+...+ X", =0}
Then X contains a point and a divisor
p=[1:1:0:...:00e D={-Xo+ X1 =0} N X.

with the property that for every g € D the line pq lies in D.
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S]_ Sn



Failure of enumerativity for Fermat hypersurfaces

Given x1,...,x, € X N\ D, the map [f : (C, p1,...,pn) — X] is as follows.

The domain curve C has the following shape:

S]_ Sn

and the map f contracts C to p, sends each rational tail S; to lines in X such that
f(pi) = x; and each rational tail R; to the line in D through p and g; € f(5;) N D.
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Logarithmic Tevelev degrees

Let X be a toric variety.

We can refine the notion of Tevelev degree by requiring that the map
f:(C,p1,...,pn) — X meets the toric boundary X of X with prescribed
multiplicities.

Using the moduli spaces of logarithmic stable maps Mr(X), we obtain the notion of
virtual and geometric Logarithmic Tevelev degree, respectively denoted by vTev?
and Tevy.

Here I encodes the data of the genus, number of markings and incidence conditions

with 0X.

Fact
When g = 0, we always have vTevy = Tevy.
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Hirzebruch surfaces

Let Ha = Pp1(Op1 @ Opi(—a)) be the Hirzebruch surface with fan

Vi = (—1, a) Vo = (0, 1)
V3 = (1,0)
va = (0,-1)
and let D; be the toric divisor corresponding to v; for i=1,...,4.

Then I = (g, n, (p11, 12, 13, p1a)) where p; € Z‘;é'-

With this notation, we are requiring that [f] meets the toric divisor D; with
multiplicities p;j for i=1,...,4and j =1,...,|u;|.
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Genus 0 Log Tevelev degrees of Hirzebruch surfaces

Fix g = 0 and assume the dimensional constraint

lpa| + |p2| + |p3| + |pal = 2(n —1).

Theorem (Cela-Lopez)
We have:
o if either 1| > n—1 or |u3| > n—1, then

Tev? =0,

e otherwise

4 ) lpil
Tevite = H il Tl 1 an—1—|u2|—u4|<
r- L= ]
i Huzl {v | piy = ul!

n—1—|ua
|2

)
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Application

The above formula is zero whenever || > n—1 — |ual.
In particular, this is the case when p;j =1 for all i,j, that a > 2 and that |us| > 1.
Thus

vlev? = Tevp? = Tevg'[;", 5= 0
where (3 is defined by 5.D; = |uj| for i=1,...,4.
Application
Let o o

(o7 Mr(/Ha) — Mo,n(’Ha,ﬂ)

be the natural morphism forgetting the log-structure. Then, in general,

a[Mr(Ha)"" # [Mo.n(Ha, B

Proof.

The virtual count vTev?j,ﬂ # 0 (by deformation invariance).
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Correspondence theorem

There exists a moduli space My'5P(R", ) parametrizing tropical maps

h:(C,p1,...,pn) = R’

where:
e Cis a genus g graph with n marked ends;
e the map h is continuous and is affine linear on the edges of C;

e the marked ends of C are contracted to points by h and the directions of the
non-marked ends of C are prescribed by incidence conditions in I,

This leads to the definition, in genus g = 0, of tropical Tevelev degrees, denoted by

tropTevy.
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Correspondence theorem

The following correspondence theorem holds.

Theorem (Cela-Lopez)
In genus g = 0 (and for any I), we have the following equality:

tropTevy = Tevy.



A tropical example

Suppose a=1, n=4and p; = (1,1,1), up = (1), uz = (3) and pa = (4). Then

Tevy = (3-4)- G) =24

Below the two contributing curves each with multiplicity 3 - 4 = 12:




Thank you for the attention!



