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Kontsevich’s recursion

Enumerative Geometry aims to count geometric objects satisfying certain conditions.

Example

• How many lines in the plane pass through 2 points?

• More generally one could aim to count the number Nd of degree d rational curves
(genus 0) in the plane passing through 3d − 1 general points.
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Kontsevich’s recursion

Mathematicians had computed the first few cases

N1 = N2 = 1, N3 = 12, N4 = 620

in the late 19th century. It took almost a century to compute N5 = 87304.
Remarkably, in 1994 Kontsevich, motivated by string theory, gave a recursive formula
computing all Nd starting from N1 = 1:

Nd =
∑

d1+d2=d
d1,d2>0

(
d2
1d

2
2

(
3d − 4

3d1 − 2

)
− d3

1d2

(
3d − 4

3d1 − 1

))
Nd1Nd2

for d > 1.
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Stable maps

Let X be a smooth, proper and connected algebraic variety of dimension r over C,
β ∈ H2(X ,Z) an effective curve class, g ∈ Z≥0 a genus and n ∈ Z≥0 an integer.

Define

Mg ,n(X , β) =


f : (C , p1, . . . , pn) → X

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

•C is a connected nodal

genus g curve;

•p1, . . . , pn ∈ C

are distict smooth points;

•f∗[C ] = β;

•|Aut(f )| < ∞.


to be the moduli stack of n-pointed genus g stable maps in class β.
We will also denote by

Mg ,n(X , β) ⊆ Mg ,n(X , β)

the open substack where the domain curve C is smooth.
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Stable curves

When X = ⋆ is a point, we obtain the moduli stack of stable n-pointed genus g curves
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Properties

The moduli stacks of stable satisfy the following properties:

• there are evaluation maps

evi : Mg ,n(X , β) → X

defined by evi ([f ]) = f (pi ) for i = 1, . . . , n;

• there is a forgetful morphism

π : Mg ,n(X , β) → Mg ,n

remembering the (stabilized) domain curve;

• The moduli stack Mg ,n(X , β) is proper. It can be non-reduced and have several
components of different dimension. However, it carries a virtual fundamental class

[Mg ,n(X , β)]vir ∈ H2vdim(Mg ,n(X , β)).
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Gromov-Witten invariants

Definition
For classes γi ∈ H∗(X ) and α ∈ H∗(Mg ,n) the integral∫

[Mg,n(X ,β)]vir

n∏
i=1

ev∗i (γi ) · π∗(α)

is a Gromov-Witten invariant of X .

Example

We have

Nd =

∫
[M0,3d−1(P2,d)]vir

3d−1∏
i=1

ev∗i (P)

where P ∈ H2(P2) is the point class.
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Motivating question

Fix a general smooth genus g curve C and n general distinct points p1, . . . , pn ∈ C .
Also fix n general points x1, . . . , xn ∈ X .

Question
How many maps f : (C , p1, . . . , pn) → X are there such that f (pi ) = xi for all
i = 1, . . . , n and f∗[C ] = β?
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Goal of the presentation

Goal
We would like:

• to express the answer in the form of a closed formula;

• or maybe to give a recursive formula for the answer (as done by Kontsevich);

• study the structure of such numbers.

Results
In this presentation we will study:

• Projective spaces;

• Hypersurfaces in Projective spaces;

• Point Blow-ups of Projective spaces;

• Hirzebruch surfaces.
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Virtual Tevelev degrees

Assume vdim(Mg ,n(X , β)) = dim(X n ×Mg ,n).

Definition
Define the virtual Tevelev degree vTevXg ,n,β ∈ Q as the Gromov-Witten invariant

vTevXg ,n,β =

∫
[Mg,n(X ,β)]vir

n∏
i=1

ev∗i (P) · π∗(PMg,n
)

where P ∈ H2r (X ) and PMg,n
∈ H3g−3+n(Mg ,n) are the point classes.

Warning

This is a virtual count.
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Geometric Tevelev degrees

Definition
The geometric Tevelev degree TevXg ,n,β ∈ Z of X is defined under the assumption
that the map

τ = π ×
n∏

i=1

evi : Mg ,n(X , β) → Mg ,n × X n

has reduced and 0-dimensional general fiber, in which case its cardinality is by
definition TevXg ,n,β.

Fact (Lian-Pandharipande)

The geometric degree TevXg ,n,β is always defined for n ≥ g + 1.
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Reformulation of the problem

Three questions emerge:

• What is vTevXg ,n,β?

• What is TevXg ,n,β?

• Is vTevXg ,n,β = TevXg ,n,β? (That is, is vTevXg ,n,β enumerative?)
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Reduction to genus 0 invariants

We can associate to X its quantum cohomology ring, denoted by (QH∗(X ), ⋆).

This
is defined using only 3-pointed genus 0 Gromov-Witen invariants of X .

Theorem (Buch-Pandharipande)

We have
vTevXg ,n,β = Coeff(P⋆n ⋆ E⋆g , qβP)

Here E ∈ QH∗(X ) is the quantum Euler class of X and P is the point class on X .

The quantum Euler class of X is a quantum deformation of the Euler characteristic of
X .
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Virtual Tevelev degrees of Projective spaces

Example

We have QH∗(Pr ) = Q[H,q]
(H⋆r+1−q)

where H is the hyperplane class. Then

E = (r + 1)H⋆r

and
vTevP

r

g ,n,d = (r + 1)g .



Connection with Castelnuovo’s classical count of g 1
d ’s

The only example where we know explicit closed formulas for all the geometric Tevelev
degrees of X is when X = P1.

Theorem (Castelnuovo, 1889)

We have

TevP
1

g ,3, g
2
+1 =

1

1 + 1
g

(
g
g
2

)
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Connection with Castelnuovo’s classical count of g 1
d ’s

Of course Castelnuovo’s perspective was different.

Definition
A g1

d on C is the datum of a 2 dimensional subspace of H0(C , L) where L ∈ Picd(C ).

Consider the Brill-Noether locus

G 1
d (C ) = {g1

d ’s on C}

which is smooth of dimension ρ(d , 1, g) = g − 2(g − d + 1).
Assuming ρ = 0 (i.e. d = g

2 + 1), in one of his celebrated papers of 1889, Castelnuovo
computed

deg([G 1
d (C )]) =

1

1 + 1
g

(
g
g
2

)
which agrees with TevP

1

g ,3, g
2
+1.
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Geometric Tevelev degrees of the projective line

Theorem (J. Tevelev)

We have
TevP

1

g ,g+3,g+1 = 2g .

Theorem (C-Pandharipande-Schmitt)

We have

TevP
1

g ,n,d = 2g − 2

g−d−1∑
j=0

(
g

j

)
+ (g − d − 1)

(
g

g − d

)
+ (d − g − 1)

(
g

g − d + 1

)
.

This interpolates between Castelnuovo’s and Tevelev’s results.
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Observation
Note that for d > d [g ] or g = 0, the formula
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reduces to
TevP

1

g ,n,d = 2g = vTevP
1

g ,n,d .

Question
Is this a case?
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Failure of enumerativity for small d

Why do we have TevP
1

g ,n,d ̸= vTevP
1

g ,n,d for small d?

For n − 1 ≤ d (i.e. d ≤ g) we have the following contribution from the boundary:

•p1

•
x1

C

•
x2

•
p2

d2

•
xn

•
pn

dn

where d1 + . . .+ dn = d and di > 0 for all i = 2, . . . , n.
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Generalities about hypersurfaces

Let X ⊆ Pr+1 be a hypersurface of degree m. Assume r ≥ 3 and that X is Fano (i.e.
m ≤ r + 1).

Then we have a canonical splitting

H∗(X ) = H∗(X )prim ⊕ H∗(Pr+1)

where H∗(X )prim = Ker(H ∪ −) ⊆ H r (X ).

In particular,
β = dL ∈ H2(X ,Z)

where L is the class of a line in Pr+1 and d ∈ Z≥0.
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Quantum Euler class of hypersurfaces

Theorem (Cela)

The following equalities hold:

• (conjectured by Buch-Pandharipande) if m ≤ r then

E = m−1χ(X )H⋆r + (r + 2−m − χ(X ))mm−1qH⋆m−2,

• if m = r + 1 then

E = m−1χ(X )H⋆r

+
r∑

j=1

m−1(j − χ(X ))

(
r

j − 1

)
(m!)j−1

[
mm − m!

j
(r + 1)

]
qjH⋆r−j .

In particular, this expression does not involve the primitive cohomology of X !
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Virtual Tevelev degrees of hypersurfaces

(Previous computation) + (Buch-Pandhariapande) ⇝ Virtual Tevelev degrees of X :

Theorem (Buch-Pandharipande)

Let m > 2 and r > 2m − 4 and g + n ≥ 2 then

vTevXg ,n,dL = ((m − 1)!)n(r + 2−m)gm(d−n)m−g+1.

For higher degree Fano hypersurfaces, an algorithm computing vTevXg ,n,dL is known
[Cela].
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Enumerativity for hypersurfaces

What about the geometric degrees TevXg ,n,dL?

Theorem ( Lian-Pandharipande)

Suppose m ≥ 3 and r > (m + 1)(m − 2) then

TevXg ,n,dL = vTevXg ,n,dL

whenever g = 0 or d > d [m, g ].

Comment
Maybe this is not a case!
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Enumerativity for Blow-ups of Projective spaces

Let X be the Blow-up of Pr at ℓ general points.

Theorem (Cela-Lian)

The virtual degree vTevXg ,n,β is enumerative whenever g = 0 or β ·K∨
X > K [X , g ] in the

following cases:

• X is a del Pezzo surface, i.e. r = 2, and the ℓ ≤ 8 points satisfy the property that
no three lie on a line, no six lie on a conic, and, if ℓ = 8, the points do not all lie
on a cubic singular at one of the qj ;

• r = 3, ℓ ≤ 4;

• r is arbitrary and ℓ = 1.

In particular, in all the Fano cases vTevXg ,n,β is enumerative whenever g = 0 or
β · K∨

X > K [X , g ].
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Geometric Tevelev degrees of Blow-ups of Projective spaces

Assume ℓ ≤ r + 1 and write

β = dH∨ +
ℓ∑

i=1

kiE
∨
i .

and assume that

d −
∑
i∈I

ki > 2g − 1 for all I ⊆ {1, . . . , ℓ} with |I | ≤ r .

Theorem (Cela-Lian)

Assume further that n − d ≥ 1. Then,

TevX0,n,β =

min(k1,...,kr+1,n)∑
m=0

(−1)m
(
n

m

) r+1∏
i=1

(
n − d +

∑
j ̸=i kj − 1−m

ki −m

)
where we set kℓ+1 = · · · = kr+1 = 0 when ℓ < r + 1.
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One point Blow-ups of Projective spaces

Theorem (Cela-Lian)

Let X = Blq(Pr ) and assume further that n − d ≥ 1. Then,

vTevXg ,n,β =

g∑
m=0

(2r)g−m(1− r)m
(
g

m

)(
n − d + g −m − 1

k1

)
.

If moreover n − d ≥ g + 1, then TevXg ,n,β is well-defined and coincides with vTevXg ,n,β.



Sketch of proof

We divide the proof in steps:

Step 1: Thinking of f : C → X as a map f : C → Pr , which maps divisors Di of degree ki
to the i-th blown-up point, provides a parametrization of the space of maps
f : C → X in class β as the ’interior’ of a projective bundle

P◦ ⊆ P(E) → Picd(C )×
ℓ∏

i=1

Symki (C )



Sketch of proof

Step 2: The class of the closure V (xi ) in P(E) of the locus in P◦ where f (pi ) = xi

[V (xi )] = H̃r + σ1(η1, . . . , ηℓ)H̃
r−1 + . . .+ σr (η1, . . . , ηℓ)

where

• ηi ∈ H∗(Symki (C )) is the class of divisors containing a fixed point of C ;

• H̃ = c1(OP(E)(1))− η1 − . . .− ηℓ;
• the σi are the symmetric functions in η1, . . . , ηℓ.
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Sketch of proof

Step 3: (Transversality) The intersection

n⋂
i=1

V (xi )

is transverse (i.e. consists of finitely many reduced points) and lies in P◦.



Sketch of proof

Step 4: By the previous steps

TevXg ,n,β =

∫
P

(
H̃r + σ1(η1, . . . , ηℓ)H̃

r−1 + . . .+ σr (η1, . . . , ηℓ)

)n

which we computed explicitely in the two stated cases.



Enumerativity in general

Let X be a Fano variety.

Speculation

The virtual count vTevXg ,n,β is always enumerative whenever g = 0 or β.K∨
X > K [X , g ].

This is true in all the above examples, but NOT in general.

Example (Beheshti, Lehmann, Lian, Riedl, Starr, Tanimoto)

• (Certain) Fano splitting projective bundles over Pk for k > 1;

• Fermat hypersurfaces X ⊆ Pr+1 (r ≥ 3) of degree m such that either r+4
2 < m <

r + 1 or m = r + 1 > 4.



Enumerativity in general

Let X be a Fano variety.

Speculation

The virtual count vTevXg ,n,β is always enumerative whenever g = 0 or β.K∨
X > K [X , g ].

This is true in all the above examples, but NOT in general.

Example (Beheshti, Lehmann, Lian, Riedl, Starr, Tanimoto)

• (Certain) Fano splitting projective bundles over Pk for k > 1;

• Fermat hypersurfaces X ⊆ Pr+1 (r ≥ 3) of degree m such that either r+4
2 < m <

r + 1 or m = r + 1 > 4.



Enumerativity in general

Let X be a Fano variety.

Speculation

The virtual count vTevXg ,n,β is always enumerative whenever g = 0 or β.K∨
X > K [X , g ].

This is true in all the above examples, but NOT in general.

Example (Beheshti, Lehmann, Lian, Riedl, Starr, Tanimoto)

• (Certain) Fano splitting projective bundles over Pk for k > 1;

• Fermat hypersurfaces X ⊆ Pr+1 (r ≥ 3) of degree m such that either r+4
2 < m <

r + 1 or m = r + 1 > 4.



Enumerativity in general

Let X be a Fano variety.

Speculation

The virtual count vTevXg ,n,β is always enumerative whenever g = 0 or β.K∨
X > K [X , g ].

This is true in all the above examples, but NOT in general.

Example (Beheshti, Lehmann, Lian, Riedl, Starr, Tanimoto)

• (Certain) Fano splitting projective bundles over Pk for k > 1;

• Fermat hypersurfaces X ⊆ Pr+1 (r ≥ 3) of degree m such that either r+4
2 < m <

r + 1 or m = r + 1 > 4.



Enumerativity in general

Let X be a Fano variety.

Speculation

The virtual count vTevXg ,n,β is always enumerative whenever g = 0 or β.K∨
X > K [X , g ].

This is true in all the above examples, but NOT in general.

Example (Beheshti, Lehmann, Lian, Riedl, Starr, Tanimoto)

• (Certain) Fano splitting projective bundles over Pk for k > 1;

• Fermat hypersurfaces X ⊆ Pr+1 (r ≥ 3) of degree m such that either r+4
2 < m <

r + 1 or m = r + 1 > 4.



Enumerativity in general

Let X be a Fano variety.

Speculation

The virtual count vTevXg ,n,β is always enumerative whenever g = 0 or β.K∨
X > K [X , g ].

This is true in all the above examples, but NOT in general.

Example (Beheshti, Lehmann, Lian, Riedl, Starr, Tanimoto)

• (Certain) Fano splitting projective bundles over Pk for k > 1;

• Fermat hypersurfaces X ⊆ Pr+1 (r ≥ 3) of degree m such that either r+4
2 < m <

r + 1 or m = r + 1 > 4.



Failure of enumerativity for Fermat hypersurfaces

For simplicity, assume r+4
2 < m < r + 1 and let

X = {−Xm
0 + Xm

1 + . . .+ Xm
r+1 = 0}.

Then X contains a point and a divisor

p = [1 : 1 : 0 : . . . : 0] ∈ D = {−X0 + X1 = 0} ∩ X .

with the property that for every q ∈ D the line pq lies in D.
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Failure of enumerativity for Fermat hypersurfaces

Given x1, . . . , xn ∈ X ∖ D, the map [f : (C , p1, . . . , pn) → X ] is as follows.

The domain curve C has the following shape:

C

S1

p1• R1

Sn

pn• Rn

and the map f contracts C to p, sends each rational tail Si to lines in X such that
f (pi ) = xi and each rational tail Ri to the line in D through p and qi ∈ f (Si ) ∩ D.
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Logarithmic Tevelev degrees

Let X be a toric variety.

We can refine the notion of Tevelev degree by requiring that the map
f : (C , p1, . . . , pn) → X meets the toric boundary ∂X of X with prescribed
multiplicities.

Using the moduli spaces of logarithmic stable maps MΓ(X ), we obtain the notion of
virtual and geometric Logarithmic Tevelev degree, respectively denoted by vTevXΓ
and TevXΓ .
Here Γ encodes the data of the genus, number of markings and incidence conditions
with ∂X .

Fact
When g = 0, we always have vTevXΓ = TevXΓ .
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Hirzebruch surfaces

Let Ha = PP1(OP1 ⊕OP1(−a)) be the Hirzebruch surface with fan

v2 = (0, 1)

v4 = (0,−1)

v3 = (1, 0)

v1 = (−1, a)

and let Di be the toric divisor corresponding to vi for i = 1, . . . , 4.

Then Γ = (g , n, (µ1, µ2, µ3, µ4)) where µi ∈ Z|µi |
≥0 .

With this notation, we are requiring that [f ] meets the toric divisor Di with
multiplicities µi ,j for i = 1, . . . , 4 and j = 1, . . . , |µi |.
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Hirzebruch surfaces

Let Ha = PP1(OP1 ⊕OP1(−a)) be the Hirzebruch surface with fan

v2 = (0, 1)
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Genus 0 Log Tevelev degrees of Hirzebruch surfaces

Fix g = 0 and assume the dimensional constraint

|µ1|+ |µ2|+ |µ3|+ |µ4| = 2(n − 1).

Theorem (Cela-Lopez)

We have:

• if either |µ1| > n − 1 or |µ3| > n − 1, then

TevHa
Γ = 0,

• otherwise

TevHa
Γ =

(
4∏

i=1

|µi |!
∏|µi |

j=1 µi ,j∏
u≥1 |{v | µi ,v = u}|!

)
an−1−|µ2|−|µ4|

(
n − 1− |µ4|

|µ2|

)
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Application

The above formula is zero whenever |µ2| > n − 1− |µ4|.

In particular, this is the case when µi ,j = 1 for all i , j , that a ≥ 2 and that |µ2| ≥ 1.
Thus

vTevHa
Γ = TevHa

Γ = TevHa
0,n,β = 0

where β is defined by β.Di = |µi | for i = 1, . . . , 4.

Application

Let
α : MΓ(Ha) → M0,n(Ha, β)

be the natural morphism forgetting the log-structure. Then, in general,

α∗[MΓ(Ha)]
vir ̸= [M0,n(Ha, β)]

vir

Proof.
The virtual count vTevHa

g ,n,β ̸= 0 (by deformation invariance).
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Correspondence theorem

There exists a moduli space Mtrop
g ,n (Rr , Γ) parametrizing tropical maps

h : (C, p1, . . . , pn) → Rr

where:

• C is a genus g graph with n marked ends;

• the map h is continuous and is affine linear on the edges of C;

• the marked ends of C are contracted to points by h and the directions of the
non-marked ends of C are prescribed by incidence conditions in Γ.

This leads to the definition, in genus g = 0, of tropical Tevelev degrees, denoted by

tropTevXΓ .
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Correspondence theorem

The following correspondence theorem holds.

Theorem (Cela-Lopez)

In genus g = 0 (and for any Γ), we have the following equality:

tropTevXΓ = TevXΓ .
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A tropical example

Suppose a = 1, n = 4 and µ1 = (1, 1, 1), µ2 = (1), µ3 = (3) and µ4 = (4). Then

TevXΓ = (3 · 4) ·
(
2

1

)
= 24.

Below the two contributing curves each with multiplicity 3 · 4 = 12:

1 •x2
11

•x33
1

•x4
4

• x1

3

•x211 1

•x3

1

4

•x4

•x1



Thank you for the attention!


