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Abstract

We study the contracting problem in the persistent private information model of
Williams [16], in which an agent provides a report of a privately observed path to the
principal, who in turn pays the agent in the least expensive way that induces truthful
reporting. We first argue that, in the case of persistent information, the contract in
[16] does not induce truthful reporting if misreporting is allowed to grow sufficiently
fast. The contract becomes incentive compatible (i.e., induces truthful reporting) if
one imposes additional restrictions on misreporting, as shown also in Bloedel et al [2]
under different conditions. Under our restrictions, we show that the contract identified
in [2] is optimal among linear contracts. On the other hand, if additional restrictions
are not imposed, we show that the contract optimal in a family of generalized linear
contracts is deterministic.
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incentive-compatible contracts
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1 Introduction
A classical problem in economics in general, and corporate finance and executive com-
pensation in particular, is how to compensate an economic agent (manager) to report the
information the agent has access to truthfully. The present paper is inspired by Williams
[16], the first paper to consider a Brownian motion continuous-time model of such a
principal-agent problem, in which the principal’s objective is to incentivize the agent to
report the values of a process B observed by the agent truthfully; see also Zhang [17],
which considered a similar problem in a continuous-time Markov chain model. We also
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complement and build on the recent paper Bloedel et al. [2] by Bloedel, Krishna, and
Strulovici, with a comparison to our paper provided below.1

In Williams [16] and Bloedel et al. [2], as well as in the current paper, the principal
minimizes the expected cost among the contracts that are incentive compatible (henceforth
IC), under which the agent reports truthfully. In its main example (Section 6), Williams
[16] provides an “optimal” contract, henceforth called contract W , and derives the main
economic insights based on such a contract. We show that, if the agent is allowed to under-
report with deviations of unbounded growth, contract W is not incentive compatible in the
most interesting case in which the mean reversion parameter λ is strictly positive. Hence,
it cannot be optimal, as it is outside of the set of admissible contracts. We also show that
the contract W becomes incentive compatible if the difference between the misreported
process and the true process is constrained to remain sufficiently bounded. However, as
shown in Bloedel et al. [2], the contract is still not optimal.

In Williams [16], the agent’s report y (realization of a process Y ) for the realized path
b of B has to be such that y ≤ b (i.e., Y ≤ B). The paper justifies this by stating that,
at least in some applications, one can imagine that the agent deposits the value y in an
account and cannot deposit more than the actual value b. However, in addition to Y ≤ B,
Williams [16] assumes much more, namely that

mt := Yt − Bt =
∫ t

0
∆s ds , with ∆ ≤ 0.

This assumption not only requires that Y − B is non-positive, but also that it is differen-
tiable, with non-positive rate of change ∆. Our results do not require this assumption. In
fact, we do not apply the weak formulation (in which the process ∆ represents a Girsanov
change of measure), used in contract theory mainly for tractability – we are able to obtain
our results in the strong formulation. This is possible because as in Williams [16] and
Bloedel et al. [2], we do not find the optimal contract in the general family of contracts,
but in a restricted family. Studying the former, much harder problem, would require the
weak formulation.

1.1 Literature Review

Comparison to Bloedel et al. [2]. The main differences between the present note and
Bloedel et al. [2] are: (a) we study in more detail the case of unbounded under-reporting;
(b) we consider the family of linear contracts that is more general than the family of so-
called self-insurance contracts (SIC) in Bloedel et al. [2]; (c) Bloedel et al. [2] also studies
contracting in the case where the agent has a hidden savings account, which we do not
consider. We next provide a more detailed comparison.
Assumptions:

1. We consider the case with no assumptions on the growth of the misreporting process
m separately. In the other case, in which we do impose restrictions on the growth of mis-
reporting, our restrictions are neither implied nor imply the so-called no-Ponzi condition

1After we completed the first draft of this paper and made it publicly available, the existence of the
paper Bloedel et al. [2] was pointed out to us by its authors. The paper, that was already under revision
at that time, provides a critique and extensions of Williams [16].
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of Bloedel et al. [2]. Note that Williams [16] imposes no restrictions, at least not explicitly,
and this is in part leads to the failure of contract W being IC.
Results (for the case λ > 0):

2. With no restrictions on the growth of misreporting, we show that contract W
and other non-deterministic linear contracts are not IC, and we identify conditions under
which linear contracts are IC. Bloedel et al. [2] also shows that contract W is not IC if
no additional assumptions are imposed, and that it is IC under their no-Ponzi condition.
The authors also show that even under additional assumptions contract W is not optimal.

3. Bloedel et al. [2] finds the contract which is optimal among the self-insurance
contracts, and shows that this contract is strictly better than contract W (which can also
be implemented as a self-insurance contract). We show that the contract in Bloedel et al.
[2] is also optimal in the larger family of linear contracts, which includes the self-insurance
contracts. When λ > 0, none of the three papers is able to find the optimal contract in
the general family of contracts.

4. Bloedel et al. [2] contains other results and interpretations. In particular, they
show that contract W becomes optimal if the agent is allowed to secretly save at the
interest rate equal to the discount rate. Moreover, in the so-called “permanent shocks”
case, corresponding to the mean reversion parameter λ = 0, they find the optimal contract
in the model with no savings account, which in this case is deterministic and, in fact, the
same as in Williams [16].
Discussion:

The question arises which restrictions on the misreporting process are more natural.
This is important because the optimal (linear) contract is very different under different
assumptions – in one case it depends on the reported path, and in the other it is deter-
ministic. One could argue that in some applications the restriction that m has bounded
growth is natural, in others that it is not. For example, there may be cases in which it
may be reasonable to assume that when the reported process becomes too different from
the actual process, the principal will realize that the agent is not telling the truth; for
instance, in the case of an entity reporting carbon emissions, when the reports differ sig-
nificantly from the average of other similar entities. However, it may be less realistic to
assume that there is an exact value of misreporting at which the principal will realize this,
which corresponds to a sufficient condition we identify for a non-deterministic IC contract
to be optimal to exist. In Bloedel et al. [2] an asymptotic growth condition is imposed (the
no-Ponzi condition), and the principal would only know at t = ∞ whether the condition
has been violated, which is also problematic.

Other related papers. early work that considers similar problems in continuous-time
models includes Prat and Jovanovic [14] and He et al. [6]. In the model of these two
papers, there is a drift component unobserved by both the principal and the agent, and
they learn about it over time. These papers, as the current one, consider the problem for
the agent with CARA utility, and a risk-neutral principal. Mathematically, they encounter
similar difficulties: (i) there is an additional state variable that depends on the cumulative
agent’s action, unobserved by the principal; (ii) there are technical issues in the usual
weak formulation of the problem, due to the infinite horizon. These complicate the usual
first-order approach, applied, for example, in Sannikov [15], Cvitanić et al. [4], [5], and
Cvitanić and Xing [3]. The first-order condition now depends additionally on the expected
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value of a functional of the future action. Still, Williams [16], Prat and Jovanovic [14] and
He et al. [6] provide the first-order necessary conditions for the optimal contract, and also
conditions which are not necessary, but sufficient together with the first-order conditions,
for a contract to be optimal.

More recently, Hu et al. [7] characterize the solution for degenerate systems, which is
also the case in our problem. However, they do this on a finite horizon, and the agent’s
objective in that paper does not allow for the objective in this paper, so their results cannot
be used. Other recent papers with unobserved processes include Alvarez and Nadtochiy
[1] and Huang et al. [8], and papers with (possibly) infinite horizon include Lin et al. [11]
and Possamaï and Touzi [13].
Organization of the paper. Section 2 recalls the persistent private information re-
porting problem from Williams [16] and presents the technical assumptions needed to
rigorously pose the problem. In Section 3 we present our counterexample to the contract
claimed to be incentive compatible and optimal in Williams [16], and we elaborate on rea-
sons why the argument presented there is erroneous under our assumptions. In Section 4,
we show that without additional restrictions on m the optimal linear contract is determin-
istic. Moreover, we show that, under growth conditions on m, the optimal self-insurance
contract is IC and optimal among all linear contracts, not just among self-insurance con-
tracts. Section 5 provides a discussion and conclusions.

2 The model and contracting problem
We recall first the framework of Williams [16]. We fix a complete probability space
(Ω, F , P) supporting a Brownian motion W with its usual filtration F = (Ft : t ≥ 0).
The agent observes the realization of the process B, whose evolution is given by

dBt = (µ0 − λBt) dt + σ dWt, B0 = b0, (2.1)

where µ0 ∈ R, λ ≥ 0, σ > 0 and b0 ∈ R.
The principal knows the dynamics of the process B, that is, she knows µ0, λ, σ and b0

in (2.1), but does not observe the realization of B. To elicit B, she offers a contract to the
agent, to receive a report on the observed realization. More formally, the agent chooses a
reporting strategy

Y : [0, ∞) × Ω → R

which is a continuous process adapted to FB, the filtration generated by B. One easily
verifies that up to completion and closure from the right, FB = F. We shall thus assume
that Y is actually F-adapted. Continuity is not necessary for our results, but it seems
reasonable to assume that if the agent reported a discontinuous path, the principal would
consider it a lie. We provide a further discussion on this issue in Section 5.

Contracts

For a fixed reporting strategy Y , we denote by y = (yt)t∈[0,∞) its realization, which is the
path reported to the principal by the agent as the realization b = (bt)t∈[0,∞) of B. By
assumption both y and b are elements of C([0, ∞); R), the space of continuous functions
f : [0, ∞) → R, equipped with the topology of uniform convergence on compact sets. We
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use ys≤t as a shorthand for (ys)s∈[0,t], the reported path up to time t. In exchange for the
report, the principal pays the agent a salary s = (st)t∈[0,∞) continuously in time. Those
payments depend, in an adapted way, only on the path revealed by the agent. This means
that the principal chooses a jointly Borel measurable function s : [0, ∞)×C([0, ∞); R) → R
that satisfies

st(y) = st (ys≤t) , for all t ∈ [0, ∞).
We call s = (st(y))t∈[0,∞) a contract.

Decision problems

As is standard in contract theory, the principal proposes a contract to the agent. Then,
the agent may either accept or reject the contract. Once accepted, the agent continuously
makes the report yt to the principal and in turn receives the contractual compensation
st(y) from the principal.

For a given contract s, the agent aims to maximize

J0(s(Y ), B) := E
[ ∫ ∞

0
e−ρtu

(
st(Y ), Bt

)
dt

]
(2.2)

with
u(x) = −e−θx , (2.3)

for a fixed parameter θ > 0 and discount factor ρ > 0, over reporting strategies Y . We
call any strategy Y s that maximizes (2.2), if it exists, an optimal report for s.

Definition 2.1. A contract s is said to

• be Incentive Compatible (IC), if Y s = B is an optimal reporting strategy;

• satisfy the Participation Constraint, if

J0 (s(B), B) ≥ v0,

for a given reservation utility v0 of the agent.

As usual in contract theory, it is assumed that, if indifferent, the agent will act in the
principal’s best interest, which in our framework means reporting truthfully. In particular,
deterministic contracts are considered incentive compatible.

Having formalized the agent’s problem, we consider the principal’s problem of mini-
mizing

E
[ ∫ ∞

0
e−ρtst(Y s) dt

]
(2.4)

over contracts s that are incentive compatible and of the linear form as introduced in (4.1),
below. Note that we impose incentive compatibility as the objective of the principal – we
implicitly assume that the principal experiences utility equal to minus infinity if the truth
is not reported. This is also assumed in Williams [16]. The problem of minimizing over
a subset of more general contracts (possibly nonlinear and path-dependent) seems not to
have a solution that can be nicely characterized, and is outside of the scope of this paper.

Denote the misreporting process by

mt := Yt − Bt. (2.5)
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Definition 2.2. We say that a misreporting strategy m = (mt)t≥0 is admissible, if it is a
continuous F-adapted process of locally finite variation such that

P
[ ∫ t

0
ms ds < ∞ for all t ≥ 0

]
= 1 .

Remark 2.3. In Williams [16] the following additional conditions are imposed on report-
ing strategies:

The agent can only under-report: Y ≤ B (2.6)

and, in fact, the stronger requirement that

mt =
∫ t

0
∆s ds , for some F-adapted process ∆ ≤ 0. (2.7)

We stress that neither (2.6) nor (2.7) are needed in this paper.
The justification for (2.6) provided in Williams [16] is that for some applications one

can envision that the agent deposits the reported values yt in a savings account observable
by the principal, and is unable to deposit more than the actual values bt. However, for
many applications this may not be a valid restriction; see Section 5 for a discussion. The
requirement that mt satisfies (2.7), i.e., is differentiable is justified in Williams [16] by
saying that “the agent’s report Y must be absolutely continuous with respect to his true
state B”. Indeed, in theory, it could be argued that, given the reported path, the principal
could keep performing, continuously in time, (uncountably) many tests for the likelihood
ratio dP B

0.5(dP B+dQ) , where P B is the law of the true process B, for all possible alternative
laws Q. For a path that comes from a law that is singular with respect to P B, there would
be a positive probability that the tests would reject P B in favor of some singular Q in
finite time. (We thank Martin Larsson for this observation.) In practice, this would, of
course, be very hard to do. 3

3 A Counterexample to Incentive Compatibility
Before studying linear contracts, we show that the contract in the main example of [16,
Sec. 6] is not incentive compatible, if misreporting is not bounded from below and no other
restrictions are imposed on misreporting. Note that no such restrictions are imposed in
Williams [16]. In the example, the agent’s expected utility is

E
[ ∫ ∞

0
e−ρtu(st(Y ) + Bt) dt

]
,

where u is as in (2.3).
We consider here the case λ > 0. In the case λ = 0, the contract in [16, Sec. 6] makes

the agent indifferent, and is thus incentive compatible.
Consider the contract

St := st(Y ) = α − 1
θ

log(−qt) − Yt, (3.1)
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from [16, p. 1271]. Here α is an appropriate constant, qt is the promised utility, i.e., the
value process of the agent under truthful reporting, given by

dqt = −σθβqt dW Y
t ,

where β is a constant and W Y
t is given by

W Y
t := 1

σ

(
Yt − b0 −

∫ t

0
(µ0 − λYs) ds

)
. (3.2)

Note that the functional s in (3.1) satisfies the measurability restrictions required in the
definition of a contract from Section 2. Contract (3.1) may be written as

St + Yt = α̃ + 1
2θβ2σ2t + βσW Y

t , (3.3)

where α̃ is an appropriate constant. It is claimed in Williams [16] that, with

β = ρ

ρ + λ
, (3.4)

this contract is optimal and thus, in particular, incentive compatible. We now show that
this is not the case if misreporting is not bounded from below, and we find a sufficient
condition on admissible misreporting strategies for the contract to be IC.

Proposition 3.1. Any contract that satisfies (3.3) for an arbitrary constant β ∈ (0, 1)
and an arbitrary constant α̃ is not incentive compatible, if we allow all deterministic
misreporting that is not bounded from below.

The proof shows that contract (3.1) actually does not admit an optimal reporting
strategy. Instead, under this contract, the higher the misreporting, the higher the agent’s
utility.

Proof. We provide a counterexample with misreporting processes m that satisfies proper-
ties (2.6) and (2.7) from Remark 2.3, i.e., the assumptions imposed in [16]. Just as in [16,
p. 1272], equation (3.2) can be written as

σ dW Y = dBt −
(
µ0 − ∆t − λ(Bt + mt)

)
dt

= σ dWt +
(
∆t + λmt

)
dt.

Contract (3.3) may be written as

St + Bt = α̃ + 1
2θβ2σ2t + βσWt + λβ

∫ t

0
ms ds − (1 − β)mt, (3.5)

for some constant α̃. For k > 0, let

∆t = −ekt. (3.6)

7



Then, the sum of the last two terms in the expression for St + Bt above is

λβ

∫ t

0
ms ds − (1 − β)mt = 1

k
λβ

∫ t

0
(1 − eks) ds − 1

k
(1 − β)(1 − ekt)

= 1
k

λβ

(
t + 1

k
(1 − ekt)

)
− 1

k
(1 − β)(1 − ekt)

= 1
k

λβt + 1
k

(1 − ekt)
( 1

k
λβ − (1 − β)

)
.

A sufficient condition for this to be larger than zero is

k ≥ λβ

1 − β
.

Thus, for any such k, the agent would be better off using the corresponding strictly
negative ∆ instead of zero. In fact, he would like to set k as large as possible. More
precisely, plugging it back to the agent’s expected utility E[

∫ ∞
0 e−ρtu(St + Bt) dt], we see

that the agent can get as close as he wants to its maximum value, equal to zero, by
increasing k.

Since λ > 0, we have β < 1 in (3.4), and it follows in particular that the contract
in [16, Sec. 6] is not incentive compatible. An inspection of the direct verification of
incentive compatibility in the appendix of Williams [16] reveals the following omission.
On [16, p. 1272] there is an HJB equation for the agent’s value given the contract (3.3),
with β = ρ/(ρ + λ) and with W Y expressed in terms of q. The solution to that equation
is provided as

V (q, m) = q exp(θm)(ρ + λ)
ρ + λ + θλm

. (3.7)

It is in fact immediately seen that this solution cannot be the value function of the agent
for all values of m: since q < 0, this value is positive for m < −(ρ + λ)/(θλ), hence it
cannot be the value function corresponding to the negative CARA utility. An essential
step neglected in Williams [16] is the verification that the solution of the HJB equation is
in fact the agent’s value function. For one thing, on infinite horizon the solution to the
HJB equation may not be equal to the value function if it does not satisfy the following
transversality condition: for all admissible strategies,

lim
T →∞

E
[
e−ρ(T −t)V (qT , mT )

]
= 0 .

It can be checked that the above function does not satisfy this unless m never reaches
−(ρ + λ)/(θλ).

Williams [16] provides another argument to claim that the contract is incentive com-
patible, by checking that the conditions of [16, Theorem 4.1] are satisfied. However, the
proof of that theorem goes through for infinite horizon only if E[e−ρT pT mT ] converges
to zero as T goes to infinity, where, as the paper shows, the adjoint process p satisfies
pT = θqT , with qT as above. Then, it is easy to verify that we do not have the desired con-
vergence if m ever goes below the value −ρ+λ

θλ . This is because then e−ρT qT /qt converges
to infinity, and so does E[e−ρT pT mT ].
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Remark 3.2. It follows from the results of the next section that a contract of the form
(3.5) with β = ρ

ρ+λ becomes incentive compatible if we impose additional restrictions on
admissible misreporting strategies. However, as shown in Bloedel et al. [2], even under
conditions under which that contract is IC, it is not optimal; see Remark 4.5. 3

4 Linear Contracts
We now restrict our attention to the family of linear contracts. We follow the tradition
in the contracting literature of focusing on the contracts most observed in practice, i.e.,
linear contracts, when considering more general contracts is not tractable. For this, let
β, C, k ∈ R be constants, and a : [0, ∞) → R be a differentiable function with a(0) = 0.
We consider contracts s that satisfy

st(Y ) + Yt = C + a(t) + (k + 1)(Yt − Y0) + β

∫ t

0
λYs ds . (4.1)

Note that contracts of this form satisfy the requirements imposed in Section 2.
Lemma 4.1. Any contract s of the linear form in (4.1) satisfies

st(B) + Bt = C + a(t) + βµ0t + (λB0 − µ0) 1
λ

(β − k − 1)(1 − e−λt)

+ βσWt − (β − k − 1)e−λt
∫ t

0
eλsσ dWs.

Proof. We have

At := (k + 1)(Bt − B0) + β

∫ t

0
λBs ds

= (k + 1)(Bt − B0) − β(Bt − B0 − µ0t − σWt).

Using the fact that

Bt = e−λtB0 + µ0

∫ t

0
e−λ(t−s) ds +

∫ t

0
e−λ(t−s)σ dWs, (4.2)

we get

At = (k + 1 − β)
[
(e−λt − 1)B0 + µ0

1
λ

(1 − e−λt) +
∫ t

0
eλ(s−t)σ dWs

]
+ βµ0t + βσWt,

which concludes the proof.

For convenience we introduce the notation

ã(t) := a(t) + βµ0t + (λB0 − µ0) 1
λ

(β − k − 1)(1 − e−λt). (4.3)

Using the function ã we write the objective (2.2) of the agent with exponential in-
tertemporal utility (2.3) using an admissible misreporting strategy m as

J0(s(Y ), B) = −e−θCE
[ ∫ ∞

0
exp

(
− ρt − θ

(
ã(t) + βσWt − (β − k − 1)

×
∫ t

0
eλ(s−t)σdWs

)
− θ

(
kmt + β

∫ t

0
λms ds

))
dt

]
,

(4.4)
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where Y = m + B from (2.5). We may consider the agent’s problem from time t ∈ [0, ∞)
onward. It is a standard Markovian stochastic control problem with control being the
choice of an admissible misreporting strategy m, and states given by the processes

dW w
r = dWr , with W w

t = w;
dXx

r = eλrσ dWr , with Xx
t = x;

dP m
r = λmr dr , with P m

t = p;
(4.5)

for r ∈ [t, ∞) with w, x, p ∈ R. We can then write the agent’s objective function (4.4)
from time t onward as

J(t, p, w, x; m) := −e−θKEp,w,x

[ ∫ ∞

t
exp

(
− ρv − θ

(
ã(v) + βσW w

v − (β − k − 1)

× e−λvXv
)

− θ(kmv + βPv)
)

dv

]
,

where Ep,w,x denotes expectation taken with respect to the law of the unique solution of
system (4.5) on (Ω,F). From this, we see that the HJB equation for the value function

V := V (t, p, w, x) := sup
{

J(t, p, w, x; m) : m is an admissible control
}

(4.6)

is given by

0 = sup
m

{
− exp

(
−ρt − θ

(
C + ã(t) + βσw − (β − k − 1)e−λtx

)
−θ(km + βp)

)
+ λmVp + Vt + 1

2Vww + 1
2σ2e2λtVxx + σeλtVxw

}
,

(4.7)

where subscripts denote partial derivatives. In the remainder of the section, we assume
that m is allowed to take values in an interval (−∞, N), with 0 ≤ N ≤ ∞. Thus, zero
misreporting is always allowed. We first consider the case with no additional restrictions
on the admissible misreporting strategies, and then the case with additional restrictions.
The proofs are postponed to Section 4.3.

4.1 No additional restrictions on misreporting

In this subsection, other than m ≤ N , we impose no restrictions on the admissible pro-
cesses m. When N ∈ (0, ∞], we show that the only IC contracts are the deterministic
contracts; see Proposition 4.2. In the case N = 0, considered in Williams [16], even if non-
deterministic IC contracts may exist, we show that it is still the case that a deterministic
contract is optimal; see Proposition 4.3.

Proposition 4.2. Consider a linear contract of the form (4.1).
(i) For the contract to be IC, it is necessary that either it is deterministic, that is,

β = k = 0 , (4.8)

or it satisfies
β = k + 1. (4.9)

Moreover, we have β ≥ 0 and k ≥ 0.
(ii) If N > 0, then the contract is IC iff β = k = 0.
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We show next that, even if non-deterministic IC contracts may exist, a deterministic
contract is still optimal in a more general family of linear contracts, regardless of whether
N > 0 or N = 0.

Proposition 4.3. The deterministic contract SC given by

SC
t = C − e−λtb0 − 1

λ
µ0(1 − e−λt) + θσ2

4λ

(
1 − e−2λt), (4.10)

where constant C is chosen so that the agent’s participation constraint is satisfied as
equality, is optimal among all IC contracts of the form

St = S0 +
∫ t

0
k(s) dYs +

∫ t

0

(
a(s) + γ(s)Ss + β(s)λYs

)
ds, (4.11)

where λ is a constant, a, k, γ, β are deterministic, measurable functions of time, with k, β, λ
and γ bounded, and such that:

• The contract (4.11) is defined for all t ≥ 0;

• k ≥ 0, β ≥ 0;

• When m ≡ 0 both the agent’s and the principal’s utility are defined and finite, i.e.,
E[

∫ t
0 e−ρtu(Bt + St) dt] < ∞ and E[

∫ t
0 e−ρt|St| dt] < ∞.

Note that (4.11) is more general than the IC contracts of the linear form (4.1).

4.2 Additional restrictions on misreporting, that allow non-deterministic
IC contracts

In this section, we show that additional restrictions on admissible misreporting can be
added to guarantee that (specific) linear contracts of the form (4.1) with β = k +1 are IC.
We also show that the contract that is optimal among the linear IC contracts is superior
to the deterministic contracts.

Denote
r = λβ

1 − β
. (4.12)

It follows from (4.22) in the proof of Proposition 4.2 below that if β = k + 1 (which
necessarily holds unless β = k = 0), the process ã defined by (4.3) is given by

ã(t) = 1
θ

r − ρ

θ
t + 1

2θσ2β2t. (4.13)

Using this and expression (4.18) from the proof of Proposition 4.2 below, it is straightfor-
ward to verify that the agent’s indirect utility function V 0 corresponding to m = 0, when
offered the linear contract satisfying (4.9) and (4.13), is given by

V 0(t, p, w) = −1
r

e−θ(C+βp+σβw+ 1
2 θσ2β2t). (4.14)

We then obtain the following proposition.
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Proposition 4.4. Assume that the set of admissible strategies m is reduced to a subset
for which

(a) V 0 satisfies the HJB equation (4.7) with β = k + 1 and ã given by (4.13);
(b) the following transversality condition holds:

lim
T →∞

e−ρT E
[
V 0(T, P m

T , W w
T )

]
= 0; (4.15)

(c) the following consequence of the martingale property holds:

E
[ ∫ T

0
e−ρsV 0

w(s, P m
s , W w

s ) dW w
s

]
= 0 , for all T > 0, . (4.16)

Then, the linear contract of the form (4.1) satisfying (4.9) and (4.13) is IC, and V 0 is the
value function of the agent.

Remark 4.5.
1. Linear contracts with β = k + 1 were first introduced by Bloedel et al. [2], from a

different reasoning, as the contracts in which the principal offers to the agent a savings
account with interest rate r given by (4.12), called self-insurance contracts, SIC’s. They
provide different sufficient conditions for the contract to be IC – the associated savings
account process has to satisfy a transversality condition, called no-Ponzi condition, that
are neither implied by, nor imply our sufficient conditions. When the contracts are IC,
Bloedel et al. [2] describe how to find optimal r = r̂. They also observe that the contract
from Williams [16] corresponds to r = ρ and show that r̂ < ρ, and hence contract Williams
[16] is not optimal even among SIC’s, thus also not optimal among the linear contracts.

2. Using Proposition 4.2, the principal’s value for the optimal deterministic contract
(β = k = 0) can be computed as

vP,0 = −1
2θσ2 1

ρ(ρ + 2λ) .

The value corresponding to the contract in Williams [16] with r = ρ and β = k + 1 can
be computed as

vP,ρ = −1
2θσ2 1

(ρ + λ)2 > vP,0.

Thus, contract W , and hence also the optimal linear contract among those of the form
(4.1) dominate deterministic contracts, under the assumptions in this section. These
assumptions guarantee the IC property both of contract W and those of the form (4.1).

3. A sufficient condition for assumptions (a) and (c) from Proposition 4.4 to hold is
that admissible strategies satisfy the following: there exists a constant K > 0 such that
P-a.s. |mt| ≤ K, for all t > 0. Some sufficient conditions for (b) to hold are given next,
which basically say that m is sufficiently bounded from below. More precisely, taking
0 = w = p = t without loss of generality, the transversality condition from (4.14) becomes

0 = lim
T →∞

e−ρT E
[
V 0(T, PT , WT )

]
= − lim

T →∞

1
r

e−ρT E
[

exp
(

− θ
(
K + β

∫ T

0
λms ds

)
− θσβWT − 1

2θ2σ2β2T )
)]

.

12



When β > 0 and m is allowed to be unbounded from below, we can find a (deterministic)
process m for which this limit will not equal zero. On the other hand, a sufficient condition
for the limit to be equal to zero is that, for some constant c > 0,

ρ + θβ
1
T

∫ T

0
λms ds ≥ c. (4.17)

In particular, the transversality condition holds if m ≥ − ρ
θλβ + ϵ for some ϵ > 0. When

0 < β < 1, a sufficient condition for this is m ≥ − ρ
θλ + ϵ. This provides an alternative

sufficient condition for the self-insurance contracts to be IC. 3

4.3 Proofs for Sections 4.1 and 4.2

It is possible to extend some of the proofs below to the case in which we allow β and k to
be differentiable functions of time. In that case one first shows that it is necessary for the
contract to be IC that β and k are constant, after which the proofs below can be applied.

Proof of Proposition 4.2. Fix an IC linear contract of the form (4.1). From (4.6), the
indirect utility function corresponding to m = 0 is

V (t, p, w, x) := − e−θCEp,w,x

[ ∫ ∞

t
exp

(
− ρv − θβp − θã(v)−θσβ(w + Wv)

+ θ(β − k − 1)e−λv
(
x +

∫ v

t
eλsσ dWs

))
dv

]
= − e−θC

∫ ∞

t
exp

[
− ρv − θβp − θ

(
ã(v) + σβw − (β − k − 1)xe−λv

)
− 1

2θσ2
∫ v

t

(
β − (β − k − 1)e−λ(v−s)

)2
ds

]
dv .

(4.18)

Since m = 0 is optimal among all admissible strategies m, it is optimal in the subset of
strategies that also satisfy −ϵ ≤ m ≤ ϵ for any given 0 < ϵ < N when N > 0, or strategies
that also satisfy −ϵ ≤ m ≤ 0, when N = 0. Optimizing over this domain, one gets from
the usual stochastic control arguments using the dynamic programming principle when the
set of control is bounded that the corresponding HJB equation is a necessary condition
for the value function; see, e.g., Pham [12].

Note that the derivative with respect to m in the HJB equation is

D(t; m) = kθe−θ[C+ã(t)+βσw−(β−k−1)e−λtx]e−θ(km+βp) + λVp(t, p, w, x). (4.19)

Denote

g(v, p, w, x) := −ρv − θ

(
βp + ã(v) + σβw − (β − k − 1)e−λvx

− 1
2θσ2

∫ v

0

[
β − (β − k − 1)e−λ(v−s)

]2
ds

)
.

(4.20)
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For m = 0 to be optimal, we need to have D(t; 0) ≥ 0. That is, we must have that for all
(t, p, w, x),

keg(t,p,w,x) ≥ −λβ

∫ ∞

t
eg(v,p,w,x) dv .

This implies

k ≥ −λ

∫ ∞

t
βe−ρ(v−t)e

−θ

{
ã(v)−ã(t)+(β−k−1)[e−λt−e−λv ]x− 1

2 θσ2
∫ v

t
[β−(β−k−1)e−λ(v−s)]2 ds

}
dv.

Unless β = 0 or β = k + 1, the right-hand side can be pushed to infinity by sending x to
minus or plus infinity. Notice also that when β < 0 we would need to have k > 0, which
is not possible if β = k + 1. Thus, β ≥ 0.

We next show that necessarily k ≥ 0. From (4.4), the agent’s utility is

J(m) := −e−θCE
[ ∫ ∞

0
e−ρte

−θ

[
ã(t)+βσWt−(β−k−1)e−λt

∫ t

0 eλsσ dWs

]
e

−θ

[
kmt+β

∫ t

0 λms ds

]
dt

]
.

Suppose k < 0 and introduce the (deterministic) strategy

mA
t := 1

k

∫ t

0

(
1 − βλmA

s

)
ds , mA

0 = 0.

We then have
kmA

t + β

∫ t

0
λmA

s ds = t .

Thus, strategy mA is strictly better than m ≡ 0, and the contract is not IC. So, we must
have k ≥ 0.

Suppose now that N > 0 and β = k + 1. Then, for m ≡ 0 to be optimal we must have
D(t; 0) = 0. This is equivalent to

(β − 1)e−ρt−θã(t)+ 1
2 θ2σ2

∫ t

0 β2 ds = −βλ

∫ ∞

t
e−ρv−θã(v)+ 1

2 θ2σ2
∫ v

0 β2 ds dv . (4.21)

From this we conclude that β and 1 − β have the same sign, so that β ∈ (0, 1). However,
this implies k < 0, and the contract cannot be IC. Thus, β = k = 0.

We are now also in a position to prove that (4.13) necessarily holds. Taking the
derivative with respect to t in (4.21), we get

(β − 1)
(

− ρ − θã′(t) + 1
2θ2σ2β2

)
= βλ .

From this, since ã(0) = 0,

ã(t) = 1
θ

∫ t

0

(
− λβ

β − 1 − ρ + 1
2θ2σ2β2

)
ds . (4.22)
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Proof of Proposition 4.3. We begin with some preliminary considerations. The contract
(4.11) is specified by an ordinary differential equation with random coefficients. Since γ
is bounded, in order for St to be defined for all t ≥ 0, we must have that P[

∫ t
0 k(s) dYs +∫ t

0(a(s) + β(s)λYs) ds < ∞] = 1 for all t ≥ 0. Since k is bounded and Y is a con-
tinuous semimartingale, it follows that (

∫ t
0 k(s) dYs)t≥0 is a continuous process so that

P[
∫ t

0 ks dYs < ∞] = 1 for all t ≥ 0. Therefore, we must have that P[
∫ t

0 a(s)+β(s)λYs ds <
∞] = 1 for all t ≥ 0. Since β and λ are bounded and Y is a continuous semimartingale,
we conclude that P[

∫ t
0 β(s)λYs ds < ∞] = 1 for all t ≥ 0. But from this it follows that we

must have
∫ t

0 a(s) ds < ∞ for all t ≥ 0. These observations allow us to write (4.11) as

e−
∫ t

0 γ(s) dsSt = S0 +
∫ t

0
e−

∫ s

0 γ(u) duk(s) dYs +
∫ t

0
e−

∫ s

0 γ(u) du[a(s) + λβ(s)Ys] ds ,

from which we obtain

St = e
∫ t

0 γ(s) dsS0 +
∫ t

0
e
∫ t

s
γ(u) duk(s) dBs +

∫ t

0
e
∫ t

s
γ(u) duk(s) dms (4.23)

+
∫ t

0
e
∫ t

s
γ(u) du(

a(s) + λβ(s)(Bs + ms)
)

ds .

Let us introduce the shorthand notation

Γs,t := e
∫ t

s
γ(u) du for 0 ≤ s ≤ t < ∞.

For each t ≥ 0, P-a.s. each summand in (4.23) is finite and well defined. Indeed, for
the first summand this is clear since we take γ to be bounded. The stochastic integral
(
∫ t

0 Γs,tk(s) dBs)t≥0 in the second summand is a continuous semimartingale since we as-
sume that k and γ are bounded. Thus P[

∫ t
0 Γs,tk(s) dBs < ∞] = 1 for t ≥ 0. For the third

summand we note that Lebesgue-Stiltjes integral against dms is well defined in view of
Definition 2.2. Moreover, for each t ≥ 0, P-a.s., it is finite. The final term is bounded by
our our initial observation that we must have

∫ t
0 a(s) ds < ∞, the fact that the paths of

Brownian motion are continuous and Definition 2.2, respectively. Using our assumption
that E[

∫ ∞
0 e−ρt|St| dt] < ∞, we get

E[e−ρtSt] = Γ0,te
−ρtS0 + E

[ ∫ t

0
Γs,te

−ρt(a(s) + λβ(s)(Bs + ms)
)

ds

+
∫ t

0
e
∫ t

s
γ(u) duk(s) dBs +

∫ t

0
Γs,te

−ρtk(s) dms

]
< ∞ ,

for almost all t ≥ 0. Assume now that the contract is IC. Then, m = 0 is optimal for the
agent. The fact that k, β, λ and γ are bounded together with the previous display implies
that we must have

− ∞ <

∫ ∞

0
e−ρt

∫ t

0
a(s)Γs,t ds dt < ∞ . (4.24)

With these preliminary observations, we consider the principal’s problem which is to min-
imize,

E
[ ∫ ∞

0
e−ρt( − Lu(St + Bt) + St

)
dt

]
(4.25)
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over contracts of the form (4.23), with L being the Lagrange multiplier for the participation
constraint of the agent. Note that here we have not included the reservation utility v0
from the participation constraint since we do not need to calculate the Lagrange multiplier.
The reservation utility only influences the constant C in (4.11). Note that the Lagrange
multiplier L must be non-zero at any optimum. Indeed, if not, then the optimal contract
would need to minimize the objective E[

∫ ∞
0 e−ρtSt dt] which is linear in the contract S.

However, the minimal value for the principal would then be −∞, in contradiction with
our assumption that E[

∫ ∞
0 e−ρt|St| dt] < ∞. We may thus take L ̸= 0, and, in fact, L > 0,

since ours is a minimization problem with a lower bound on agent’s utility.
Instead of minimizing (4.25) over contracts of the form (4.23), it is more convenient

to study a potentially relaxed problem. To this end, let us write (4.25) as

E
[ ∫ ∞

0
e−ρt( − Lu(St + Bt) + St

)
dt

]
=

∫ ∞

0
e−ρtE

[
fa,γ(t) + gβ,k,γ(t) − Bt + L exp

(
− θ

(
fa,γ(t) + gβ,k,γ(t)

))]
dt , (4.26)

where

fa,γ(t) := S0Γ0,t +
∫ t

0
Γs,ta(s) ds ,

gβ,k,γ(t) := Bt +
∫ t

0
Γs,tk(s) dBs +

∫ t

0
Γs,tλβ(s)Bs ds . (4.27)

The application of Fubini’s theorem leading to (4.26) is justified since we assume that
E[

∫ ∞
0 e−ρt|St| dt] < ∞ and that the agent’s utility is finite. In addition, by (4.24), we have

fa,γ(t) < ∞ for all t ≥ 0. We now consider the expectation under the time-integral in
(4.26), specifically the term

E
[
fa,γ(t) + gβ,k,γ(t) − Bt + L exp

(
− θ

(
fa,γ(t) + gβ,k,γ(t)

))]
(4.28)

for t ≥ 0. Again, since E[
∫ ∞

0 e−ρt|St| dt] < ∞ and the agent’s utility is finite, we may
differentiate with respect to fa,γ(t) under the integral in (4.26), and thus also under the
expectation in (4.28), for almost every t ≥ 0. Setting the derivative of (4.28) with respect
to fa,γ(t) equal to zero gives the first order condition, abbreviating the notation to f(t) =
fa,γ(t),

−θ
[
f(t) − 1

θ
log

(
E

[
exp

(
− θgβ,k,γ(t)

)])]
= − log(Lθ) for almost every t ≥ 0 .

It is easily checked that the first order condition is also a sufficient condition for minimizing
the function x → x + ae−bx+c, as we have inside the integral in (4.26) and (4.28). We
rewrite the first order condition as

f(t) = 1
θ

log(Lθ) − Gβ,k,γ(t) (4.29)

where
Gβ,k,γ(t) := −1

θ
log

(
E

[
exp

(
− θgβ,k,γ(t)

)])
. (4.30)
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Next, we represent (4.30) more explicitly, as follows. Starting from (4.30), we find
e−θGt(β,k,γ) = E[exp

(
−θgβ,k,γ(t)

)
]. Moreover, by (2.1) and (4.27), gβ,k,γ(t) may be written

as

gβ,k,γ(t) = b0 +
∫ t

0
Γs,tλβ(s)Bs ds +

∫ t

0
Kk,γ(s, t) dBs

= b0 + λ

∫ t

0

(
Γs,tβ(s) − Kk,γ(s, t)

)
Bs + Kk,γ(s, t)µ0 ds

+
∫ t

0
Kk,γ(s, t)σ dWs ,

with shorthand notation
Kk,γ(s, t) := 1 + Γs,tk(s)

and the explicit representation of Bt from (4.2),

Bt = e−λtb0 +
∫ t

0
µ0e−λ(t−u) du +

∫ t

0
e−λ(t−u)σ dWu . (4.31)

From this it is clear that gβ,k,γ(t) is normally distributed. The mean and variance are
easily computed to be

Mβ,k,γ(t) := b0 + µ0

∫ t

0
Kk,γ(s, t) ds

+ λ

∫ t

0

(
Γs,tβ(s) − Kk,γ(s, t)

)(
e−λsb0 +

∫ s

0
µ0e−λ(s−u)du

)
ds

and

Σ2
β,k,γ(t) := σ2

∫ t

0

(
Kk,γ(s, t) + λeλs

∫ t

s
e−λu

(
Γs,tβ(u) − Kk,γ(s, t)

)
du

)2
ds ,

respectively. From (4.30) we thus get that

Gβ,k,γ(t) = Mβ,k,γ(t) − 1
2θΣ2

β,k,γ(t). (4.32)

From (4.32) we get following explicit version of the first order condition (4.29),

f(t) = 1
θ

log(Lθ) − Mβ,k,γ(t) + 1
2θΣ2

β,k,γ(t) , (4.33)

for almost every t ≥ 0. Returning to (4.28) and using (4.33) we see that

E
[
f(t) + gβ,k,γ(t) − Bt + L exp

(
− θ

(
f(t) + gβ,k,γ(t)

))]
= 1

θ

(
1 + log(Lθ)

)
− Gt(β, k, γ) + µ0

∫ t

0
Γs,tk(s) ds

+
∫ t

0
Γs,t

(
λ

(
β(s) − k(s)

)
E[Bs]

)
ds

= 1
θ

(
1 + log(Lθ)

)
− Mβ,k,γ(t) + 1

2θΣ2
β,k,γ(t),

+ µ0Γs,tk(s) ds +
∫ t

0
Γs,t

(
λ

(
β(s) − k(s)

)
E[Bs]

)
ds

= 1
θ

(
1 + log(Lθ)

)
+ λ

∫ t

0
E[Bs] ds + 1

2θΣ2
β,k,γ(t) , (4.34)
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where the last line uses E[Bt] = e−λsb0 +
∫ s

0 µ0e−λ(s−u)du, see (4.31), and the definition of
Mβ,k,γ . With this we have arrived at our reduced problem. Instead of minimizing (4.25),
we consider the relaxed problem of minimizing (4.34) with respect to (β, k, γ), point wise
for each t ≥ 0. Note that we may neglect the first two summands in this minimization as
well as multiplicative constants. Thus, the relaxed problem is equivalent to minimizing
the function (β, k, γ) 7→ Σ2

β,k,γ(t)/σ2 for each t ≥ 0. For this function a simple calculation
shows that

Σ2
β,k,γ(t)/σ2 =

∫ t

0

(
e−λ(t−s) + Γs,tk(s) + λ

∫ t

s
e−λ(u−s)Γu,t[β(u) − k(u)] du

)2
ds

=
∫ t

0
e2λs

(
e−λt + e−λsΓs,tk(s) + λ

∫ t

s
e−λuΓu,t[β(u) − k(u)] du

)2
ds .

As it turns out, a further relaxation is convenient. For it, let us define

Ft(x, y, z) :=
(
e−λt + λ(y − x) + z

)2
for x, y, z ∈ R and t ≥ 0 ,

and set

gt(s) := −
∫ t

s
e−λuΓu,tk(u) du (4.35)

ht(s) := −
∫ t

s
e−λuΓu,tβ(u) du . (4.36)

With this notation we observe that

Σ2
β,k,γ(t)/σ2 =

∫ t

0
e2λsFt

(
ht(s), gt(s), g′

t(s)
)

ds , for all t ≥ 0 .

The new relaxed problem is thus to minimize for each t ≥ 0

Ft
(
h(s), g(s), g′(s)

)
=

(
e−λt + g′(s) + λ[g(s) − h(s)]

)2
,

over functions g and h, subject to the constraints

g′(s) ≥ 0, h′(s) ≥ 0, g(t) = h(t) = 0.

Note that the choice (g, h) = (0, 0) satisfies the constraints and can be achieved via (4.35)
and (4.36) by setting β, k = 0 and letting γ be arbitrary. Thus this choice is also admissible
for our original relaxed problem of minimizing (β, k, γ) 7→ Σ2

β,k,γ(t)/σ2. Let us compare
this choice to any other admissible choice. Since (x, y, z) 7→ Ft(x, y, z) is convex for all
t ≥ 0, we have that∫ t

0
e2λs(

Ft(0, 0, 0) − Ft(h(s), g(s), g′(s))
)

ds

≤ −
∫ t

0
e2λs(

h(s)∂xFt(0, 0, 0) + g(s)∂yFt(0, 0, 0) + g′(s)∂zFt(0, 0, 0)
)

ds

= −2
∫ t

0
e2λse−λt

(
λ

(
g(s) − h(s)

)
+ g′(s)

)
ds
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using integration by parts and g(t) = 0 in the last equality, we have

= −
∫ t

0
e2λs2e−λt

(
λ

(
g(s) − h(s)

)
− 2λg(s)

)
ds + 2e−λt(g(0) − g(t)e2λt)

≤ 0 .

Therefore (g, h) = (0, 0) is optimal. Via (4.27) we see that g0,0,γ(t) = Bt for any γ and
t ≥ 0. From (4.30) and (4.29) we then get f(t) by setting γ = 0 and choosing a(t)
accordingly. This all gives rise to the contract of the form SC .

Proof of Proposition 4.4: To show that V 0 is the value function, we perform the usual
verification argument from stochastic control theory to verify that m = 0 is optimal. Take
any admissible strategy m. Since we assume that the set of admissible strategies m is such
that the corresponding value function V of (4.14) satisfies the HJB equation, we have, by
Ito’s rule,

e−ρT V 0(T, P m
T , W w

T ) ≤ e−ρtV 0(0, p, w)

+
∫ T

0
e−ρs−θ[C+ã(s)+βσW w

s ]e−θ(kms+βP m
s ) ds

+
∫ T

0
e−ρsV 0

w(s, P m
s , W w

s ) dW w
s .

Taking expectation, and using assumption (c), we get

− E
[ ∫ T

0
e−ρs−θ[C+ã(s)+βσW w

s ]e−θ(kms+βP m
s ) ds

]
≤ V 0(0, p, w) − e−ρT E[V 0(T, P m

T , W w
T )] .

Taking the limit as T → ∞ and using assumption (b) concludes the proof.

5 Discussion and Conclusions
Discussion: ways the agent can misreport. We now discuss, somewhat informally,
what kind of reports by the agent could be considered credible by the principal. In
Williams [16] it is assumed that the only way the agent can lie is with a reporting process
Y that equals the true state process plus a non-positive differentiable drift. In general, we
can ask the following question:

For a reported path y = (yt)t∈[0,∞) to be accepted by the principal as credible, what are
the properties it has to satisfy?
The answer is not obvious. For example, since the diffusion process (2.1) has continuous
paths almost surely, we may want to impose a restriction that the reported path y be
continuous, almost surely. However, the qualifier ‘almost sure’ is relevant in this context,
for – depending on the space on which the diffusion is defined – a discontinuous path
could actually happen, and some principals might be willing to accept even such reports.
Nevertheless, it is reasonable that the principal insists on the reported path y having
properties that are known to hold for almost all paths of B. This can be rephrased as
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saying that the principal fixes a set of paths deemed as unlikely to happen and thus deemed
as lies if reported by the agent:

The principal fixes a Borel measurable set N ⊂ C([0, ∞),R), with the property that
P[B ∈ N ] = 0. Then, if the agent reports y ∈ N , the principal considers it a lie.
The set N could, for instance, include all differentiable paths, for Brownian motion is
almost surely nowhere differentiable. It could also include paths that do not have a
quadratic variation process equal to σ2t, because quadratic variation can be calculated
pathwise; see e.g. Karandikar [9].

On the other hand, no continuous L2 drift can be recognbiblioized as a lie in the above
sense. Indeed, for every t < ∞, the law of B in (2.1) is equivalent to the law of σW· on
C([0, t];R). This follows from Cameron-Martin-Girsanov theory, see e.g. [10, Ch. 3.5]: if
A ⊂ C([0, t],R) is measurable and such that P[σW· ∈ A] > 0, then also P[σW· ∈ Aµ] > 0
for any absolutely continuous µ ∈ L2([0, t]), where Aµ := {s 7→ ws + µs : w ∈ A} is the
set of path translated by µ. Thus, if Nt ⊂ C([0, t],R) is a null set, then set A = N c has a
full measure, and so does Aµ, so that reporting an additional drift µ to any report that is
not considered a sure lie, is not a sure lie. Evidently same conclusion holds also for B.

We leave for further research these issues, and, in particular, the following question:
What is the minimal set of restrictions that are reasonable to assume on the reported
process, while still having interesting examples, that is, examples in which the optimal
contract is not such that the agent is indifferent with respect to how much to misreport?

Conclusions. In this paper, we show that the optimal contract provided in Williams
[16] is not incentive compatible in the case of mean-reverting shocks, if the growth on
under-reporting is not restricted. It becomes incentive compatible if the difference between
the reported process and the true process is sufficiently bounded, but, as shown in Bloedel
et al. [2], it is not optimal. In the case when there is no limit on how much the agent
can under-report, we show that deterministic contracts are the only IC contracts in an
extended family of linear contracts. If additional restrictions on admissible contracts are
imposed, we show that the contract that Bloedel et al. [2] identifies as optimal among
self-insurance contracts is also optimal among the more general class of linear contracts.
It is still an open question what the optimal contract is if we allow general contracts,
and/or under additional restrictions on misreporting, for example, if it is restricted to
take values in a bounded interval. We also leave for future research the question of what
types of misreporting would be credible in continuous-time models driven by Brownian
motion, while still resulting in non-trivial optimal contracts.
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