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Abstract

We prove that in a discrete-time market model the lower arbitrage bound of an American
contingent claim is itself an arbitrage-free price if and only if it corresponds to the price of the
claim optimally exercised under some equivalent martingale measure.
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1 Introduction

When teaching an introductory class in mathematical finance, a very convenient and natural
approach is to develop the arbitrage pricing theory first in the case of a complete market, i.e., when
there exists just one equivalent martingale measure, and then to extend this to the incomplete case,
i.e., to the case of more than one equivalent martingale measure. The advantage of this approach is
that in general whatever operation is carried out under the unique equivalent martingale measure
in order to price a contingent claim in the complete case, is done under any equivalent martingale
measure in the incomplete one. For instance the pricing of a (discounted) European contingent
claim with payoff Y in a complete arbitrage-free market amounts to simply taking the expectation
of Y under the unique equivalent martingale measure Q, thus yielding the unique arbitrage-free
price π = EQ[Y ]. Respectively, in the incomplete case we have a set of arbitrage-free prices which
is the set of expectations EQ[Y ] of Y under all equivalent martingale measures Q. However, when
introducing American contingent claims and developing the corresponding arbitrage pricing theory,
the extension from complete to incomplete markets causes unexpected problems. We recall that an
American contingent claim is a contract which obliges the seller to pay a certain amount Hσ ≥ 0
if the buyer of that claim decides to exercise the claim at (the stopping) time σ. Hence such an
American contingent claim H is determined by the process H = (Ht)t of its possible (discounted)
payoffs Ht at any trading time t. Considering the complete market case with a unique equivalent
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martingale measure Q, the pricing of the (discounted) American contingent claim boils down to
an optimal stopping problem. Indeed, knowing that there exists an optimal exercise time τ , i.e., a
stopping time τ maximizing the expected payoff of H under Q over all possible payoffs,

EQ[Hτ ] = sup{EQ[Hσ] | σ is an exercise time }, (1.1)

the unique arbitrage-free price of H is π = EQ[Hτ ]. Notice that this price is in particular the
unique fair price in the sense of neither being too expensive from the buyer’s point of view, since
she may exercise it optimally at τ , nor being too cheap from the seller’s point of view, as there is
no exercise strategy σ such that the value of the exercised claim Hσ exceeds π. When pricing an
American contingent claim in an incomplete market model, one would, on the one hand, expect
the set of arbitrage-free prices to correspond to the set of prices obtained from the solutions to
the optimal stopping problem (1.1) under any equivalent martingale measure. On the other hand,
any arbitrage-free price should also be fair in the above sense. However, so far, this was not quite
clear.

Following e.g. [2] we will define the arbitrage-free prices of a (discounted) American contingent
claim H in an incomplete market as the fair prices in the above sense; see Definition 2.5. It is then
easily verified that the prices corresponding to the solutions to (1.1) under any equivalent martin-
gale measure are arbitrage-free. However, the converse, that is the fact that every arbitrage-free
price of an American contingent claim originates from the solution to (1.1) under some equivalent
martingale measure, has not been clear so far. To be more precise, the problem here is the lower
arbitrage bound, i.e., the infimum over all arbitrage-free prices, which in case of an American con-
tingent claim may or may not be itself an arbitrage-free price. In case the lower arbitrage bound
π(H) of H is an arbitrage-free price, it was an open question whether there exists a minimal equiv-
alent martingale measure in the sense that the solution to (1.1) under that measure yields the price
π(H). In this paper, we prove that this is indeed the case, and we also give characterizations of
this situation in terms of replicability properties of H (Theorem 3.7). Thus we conclude that the
two approaches to arbitrage pricing, i.e., extending the very natural optimal stopping approach
from the complete to the incomplete case and the presented notion of a fair price, are indeed
consistent. This is formulated in our main result which is stated in Theorem 2.8. In his doctoral
thesis [9], Trevino Aguilar studies a closely related problem in a continuous-time framework, and
many techniques we apply in our proofs are adopted from this work; see Remark 3.8.

The remainder of the paper is organized as follows: In Section 2 we introduce the market model,
give a short overview over the arbitrage pricing theory as regards American contingent claims and
state our main result in Theorem 2.8. The proof of Theorem 2.8 is then carried out in Section 3,
at the end of which we give a more precise characterization of the case when the lower arbitrage
bound is itself an arbitrage-free price (Theorem 3.7). Finally, in Section 4 we provide an example
illustrating our main results.

We assume that the reader is familiar with standard multi-period discrete-time arbitrage theory
such as outlined in Föllmer and Schied [2]. The book [2] is our main reference, and our setup and
notation will to a major extent be adopted from there. As regards the arbitrage pricing theory of
American contingent claims and the related theory of Snell envelopes, we also refer the reader to
[1, 3, 4, 6, 8].
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2 The Main Result

Throughout this paper we consider a discrete-time market model in which d assets are priced at
times t = 0, . . . , T with T ∈ N. The information available in the market is modeled by a filtered
probability space (Ω,F , (Ft)t=0,...,T ,P), where Ft is the class of all events observable up to time
t ∈ {0, . . . , T}, with

F0 = {∅,Ω} and FT = F .

All equalities and inequalities between random variables are understood in the P-almost sure sense.
Following standard arbitrage theory, we assume the existence of a strictly positive asset which

is used as numéraire for discounting. We indicate by Si = (Sit)t=0,...,T , i = 1, . . . , d, the dis-
counted price process of asset i, which is assumed to be non-negative and adapted to the filtration
(Ft)t=0,...,T . A d-dimensional process ξ = (ξ1, . . . , ξd) = (ξ1t , . . . , ξ

d
t )t=1,...,T is a trading strategy

if it is predictable in the sense that ξit is Ft−1-measurable for all t = 1, . . . , T and i = 1, . . . , d.
Here ξit represents the quantity of the asset i kept in the portfolio between time t− 1 and time t.
A trading strategy ξ is called self-financing if at the trading times t = 1, . . . T − 1 the portfolio is
rebalanced between the assets without adding or withdrawing money, that is, if

d∑
i=1

ξitS
i
t =

d∑
i=1

ξit+1S
i
t for t = 1, . . . T − 1.

The (discounted) value process corresponding to a trading strategy ξ is

V ξ = (V ξt )t=0,...,T , where V ξ0 =

d∑
i=1

ξi1S
i
0 and V ξt =

d∑
i=1

ξitS
i
t , t = 1, . . . , T.

Definition 2.1. A probability measure Q on (Ω,F) is called an equivalent martingale measure if
Q is equivalent to P and S = (S1, . . . , Sd) is a (d-dimensional) martingale under Q. The set of all
equivalent martingale measures is denoted by M.

We make the following assumption, which is notably equivalent to the No-Arbitrage condition
for the market S.

Assumption 2.2. We assume that M 6= ∅.

In our study of pricing American contingent claims, the simpler form of a European contingent
claim will play an important role.

Definition 2.3. A (discounted) European contingent claim is a non-negative random variable Y
on (Ω,F ,P).

We indicate by Π(Y ) the set of arbitrage-free prices of Y , that is,

Π(Y ) = {EQ[Y ] | Q ∈M and EQ[Y ] <∞}. (2.1)

It is well-know that either Π(Y ) is an open interval or Π(Y ) is a singleton, and that the latter case
is equivalent to Y being replicable, which means that there exists a self-financing trading strategy
ξ such that V ξT = Y ; see, e.g., [2, Theorem 5.33] and [5].
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Definition 2.4. A (discounted) American contingent claim is a non-negative adapted process
H = (Ht)t=0,...,T on the filtered probability space (Ω,F , (Ft)t=0,...,T ,P).

Let T denote the set of stopping times τ : Ω → {0, . . . , T}. For each time τ ∈ T the random
variable Hτ is interpreted as the discounted payoff obtained by exercising the American contingent
claim H at time τ . Note that Hτ can be considered as the discounted payoff of a European
contingent claim. Therefore, the set of arbitrage-free prices of Hτ is given by

Π(Hτ ) = {EQ[Hτ ] | Q ∈M and EQ[Hτ ] <∞}.

We define the set of arbitrage-free prices of an American contingent claim as in [2, Definition
6.31] reflecting the asymmetric connotation of such a contract: the seller must hedge against all
possible exercise times, while the buyer only needs to find one favorable exercise strategy.

Definition 2.5. A real number π is an arbitrage-free price of the discounted American contingent
claim H if the following two conditions are satisfied:

(i) There exists some τ ∈ T and π′ ∈ Π(Hτ ) such that π ≤ π′.

(ii) There is no τ ∈ T such that π < π′ for all π′ ∈ Π(Hτ ).

The interpretation of the two requirements in Definition 2.5 is clear. The first one makes the
proposed price π not too high from the buyer’s point of view, in the sense that there exists some
exercise strategy τ ∈ T and a Q ∈ M such that π ≤ EQ[Hτ ]. The second requirement accounts
for the point of view of the seller, ruling out exercise strategies τ ∈ T such that π < EQ[Hτ ] for
all Q ∈M.

We denote by Π(H) the set of all arbitrage-free prices of an American contingent claim H.
Notice that if H corresponds to a European contingent claim with maturity T , i.e.

Ht = 0 for all t = 0, . . . , T − 1, and HT = Y (2.2)

for some non-negative F-measurable random variable Y , we have that Π(H) = Π(Y ), where Π(Y )
is given in (2.1). Hence the pricing rules are consistent.

For the remainder of the paper we consider a fixed American contingent claim H such that

Ht ∈ L1(Ω,F ,Q) for all t = 0, . . . , T and Q ∈M. (2.3)

Proposition 2.6. (see [2, Theorem 6.33]) Under condition (2.3), the set Π(H) of all arbitrage-free
prices for H is a real interval with endpoints

π(H) = inf
Q∈M

sup
τ∈T

EQ[Hτ ] = sup
τ∈T

inf
Q∈M

EQ[Hτ ]

and
π(H) = sup

Q∈M
sup
τ∈T

EQ[Hτ ] = sup
τ∈T

sup
Q∈M

EQ[Hτ ].

Moreover, Π(H) either consists of one single point or does not contain its upper endpoint π̄(H).
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As for European contingent claims, π(H) ∈ Π(H) implies that Π(H) = {π(H)}, which is
equivalent to H being attainable in the sense that there exists a superhedging strategy ξ (for the
seller) such that

V ξ0 = π(H), V ξt ≥ Ht for all t = 1, . . . , T , and V ξτ = Hτ for a τ ∈ T ,

see [2, Theorem 6.36]. This means that, if the buyer exercises the claim at time τ , then she
meets the value of the seller’s hedging portfolio. This replicability concept again corresponds to
the replicability of a European contingent claim if H is of type (2.2). However, in contrast to the
pricing of a European contingent claim, in case of a non-replicable American contingent claim both
cases

π(H) ∈ Π(H) and π(H) /∈ Π(H)

can occur, see Example 4.1.

Definition 2.7. A stopping time τ ∈ T is an optimal stopping time for H under Q ∈M if

EQ[Hτ ] = sup
σ∈T

EQ[Hσ]. (2.4)

It is well-known that set of optimal stopping times for H under any Q ∈M is non-empty; see
[2, Theorem 6.20]. Moreover, it is easily verified that, if τ is an optimal stopping time under some
Q ∈M, then EQ[Hτ ] ∈ Π(H). Note also that the set

P := {EQ[Hτ ] | Q ∈M and τ ∈ T is optimal under Q }

is an interval. This is due to the fact that for any two equivalent martingale measures P0,P1 ∈M
and for all α ∈ [0, 1] we have that αP0 + (1− α)P1 ∈M, and the function

f : [0, 1]→ R, α 7→ sup
σ∈T

(
αEP0 [Hσ] + (1− α)EP1 [Hσ]

)
is continuous. Of course the interval bounds of P are π(H) and π(H). So according to Propo-
sition 2.6, if π(H) 6∈ Π(H), then P = Π(H). However, it has been an open question whether
P = Π(H) also in case π(H) ∈ Π(H). If π(H) ∈ Π(H), the problem is whether there exists
an equivalent martingale measure Q ∈ M and an optimal stopping time τ under Q such that
EQ[Hτ ] = π(H), that is,

sup
σ∈T

EQ[Hσ] = inf
P∈M

sup
σ∈T

EP [Hσ]. (2.5)

In Theorem 2.8, which is our main result, we show that this is indeed the case, that is, there is a
one-to-one correspondence between the set Π(H) and the solutions to problem (2.4).

Theorem 2.8. The set Π(H) of all arbitrage-free prices for H coincides with the set P of evalu-
ations at optimal times:

P = Π(H).

The proof of Theorem 2.8 needs some preparation which will be carried out in Section 3, at
the end of which, in Theorem 3.7, we state and prove that π(H) ∈ Π(H) if and only if there
exists Q ∈ M satisfying (2.5). Moreover, we also give a detailed characterization of this situation
in terms of the replicability of a European contingent claim corresponding to exercising H at a
specific stopping time.
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3 Discussion and Proof of Theorem 2.8

In what follows we introduce the basic tools needed for our analysis of the lower arbitrage bound.

Definition 3.1. For Q ∈ M, the Snell envelope UQ = (UQ
t )t=0,...,T of the American contingent

claim H with respect to the measure Q is defined by

UQ
t = ess sup

τ∈T ,τ≥t
EQ[Hτ | Ft], t = 0, . . . , T.

The process UQ is the smallest Q-supermartingale dominating H. In particular, the value at
zero of the Snell envelope with respect to a measure Q ∈ M is the value obtained by optimally
exercising the American contingent claim under that measure:

UQ
0 = sup

σ∈T
EQ[Hσ].

It is known that τ ∈ T is an optimal stopping time for H under Q if and only if Hτ = UQ
τ and the

stopped process (UQ)τ := (UQ
τ∧t)t=0,...,T is a Q-martingale; see [2, Proposition 6.22]. We indicate

with τQ the minimal optimal stopping time for H under Q ∈ M, which is equal to the first time
where the Snell envelope of H w.r. to Q equals the value of the American contingent claim, that
is,

τQ = inf{t ≥ 0 | UQ
t = Ht}.

Throughout the paper a predominant role is played by the following stopping time:

τ̂ := ess inf
Q∈M

τQ,

the importance of which will become clear in Theorem 3.7. We will amongst others show that
the lower arbitrage bound π(H) of H is itself an arbitrage-free price if and only if the European
contingent claim Hτ̂ can be replicated. Let us first verify that τ̂ is indeed a stopping time.

Lemma 3.2. The set {τQ | Q ∈ M} is downward directed. Hence, τ̂ is a stopping time. In
particular, there exists a sequence (Qk)k∈N ∈M such that {τQk = τ̂} ↗ Ω for k →∞.

Proof. For the first part we repeat the argument in the proof of [9, Theorem 5.6] to show that the

set {τQ | Q ∈ M} is downward directed. Indeed, let Q1,Q2 ∈ M, B := {τQ1 ≥ τQ2}, and let Q̃
be the measure obtained by pasting Q1 and Q2 in the stopping time σ :=

(
τQ1 ∧ τQ2

)
1B + T1Bc ,

that is
Q̃(A) := EQ1

[
EQ2 [1A | Fσ]

]
, A ∈ F .

It is then verified that
U Q̃
τQ1∧τQ2

= UQ2

τQ2
1B + UQ1

τQ1
1Bc = HτQ1∧τQ2 ,

hence τ Q̃ ≤ τQ1∧τQ2 , so {τQ | Q ∈M} is downward directed. This implies that there is a sequence
(Qk)k∈N ⊂M such that τQk ↘ τ̂ . ¿From that it follows that τ̂ = ess inf{τQk | k ∈ N} is a stopping
time. Moreover, as time is discrete and by the monotonicity of the sequence (τQk)k∈N, we deduce
that {τQk = τ̂} ↗ Ω for k →∞.
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Definition 3.3. The lower Snell envelope U↓ = (U↓t )t=0,...,T of the process H (w.r. to M) is
defined by

U↓t = ess inf
Q∈M

UQ
t = ess inf

Q∈M
ess sup
τ∈T ,τ≥t

EQ[Hτ | Ft], t = 0, . . . , T.

In particular, U↓0 = π(H).

Notice that, according to Lemma 3.2, for almost all ω ∈ Ω we have τ̂(ω) = τPω (ω) for some
Pω ∈M. Hence we obtain that for almost all ω

Hτ̂ (ω) = HτPω (ω) = UPω
τPω

(ω) ≥ U↓
τPω

(ω) = U↓τ̂ (ω) ≥ Hτ̂ (ω).

Consequently,
U↓τ̂ = Hτ̂ . (3.1)

The stopping time τ̂ is intensively studied in [9], which treats lower (and upper) Snell envelopes
in general. Proposition 3.4 extends a result obtained in [9].

Proposition 3.4. The lower Snell envelope U↓ satisfies the following properties:

(i) (U↓)τ̂ is a M-submartingale, i.e., a submartingale under each Q ∈M.

(ii) If Hτ̂ is replicable at price π(H), then (U↓)τ̂ is a M-martingale.

Proof. (i): Note that the set {UQ
t | Q ∈M} is downward directed for every t ∈ {0, . . . , T}. Indeed,

let Q1,Q2 ∈ M and, as done in [2, Lemma 6.50], define the set B := {UQ1
t > UQ2

t } ∈ Ft and the

probability measure Q̃ obtained by pasting Q1 and Q2 in the stopping time σ := t1B +T1Bc , that
is,

Q̃(A) = EQ1
[
EQ2 [1A∩B | Ft] + 1A∩Bc

]
, A ∈ F .

It is then verified that
U Q̃
t = UQ2

t 1B + UQ1
t 1Bc = UQ1

t ∧ U
Q2
t .

Therefore there is a sequence (Qk)k∈N ⊂M such that

UQk
t ↘ U↓t .

Now fix P∗ ∈ M and notice that we may assume Qk|Ft = P∗|Ft for all k. Indeed, by pasting P∗
with Qk in t we obtain a measure Q∗k ∈M given by

Q∗k(A) = EP∗ [EQk [1A | Ft]], A ∈ F ,

which coincides with P∗ on Ft and is such that U
Q∗k
t = UQk

t . Now for every t ∈ {1, . . . , T},

EP∗ [U↓τ̂∧t | Ft−1] = U↓τ̂ 1{τ̂≤t−1} + EP∗ [U↓t | Ft−1]1{τ̂≥t}

and

EP∗
[
U↓t | Ft−1

]
1{τ̂≥t} = EP∗

[
lim
k→∞

UQk
t | Ft−1

]
1{τ̂≥t}

= lim
k→∞

EP∗
[
UQk
t | Ft−1

]
1{τ̂≥t}

= lim
k→∞

EQk
[
UQk
τQk∧t | Ft−1

]
1{τ̂≥t}

= lim
k→∞

UQk
τQk∧(t−1)1{τ̂≥t}

= lim
k→∞

UQk
t−11{τ̂≥t} ≥ U↓t−11{τ̂≥t},
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where we use the dominated convergence theorem in the second equality since 0 ≤ UQk
t ≤ UQ1

t ≤∑T
t=0Ht , and the facts that Qk|Ft = P∗|Ft , τ̂ ≤ τQ, and (UQk)τ

Qk is a Qk-martingale for the rest.
As P∗ ∈M was arbitrary, (i) is proved.

(ii): Let Hτ̂ be replicable at price π(H) and let P∗ ∈ M. Then in combination with (3.1) and (i)
we have for all t = 0, . . . , T that

π(H) = EP∗ [Hτ̂ ] = EP∗ [U↓τ̂ ] ≥ EP∗ [U↓τ̂∧t] ≥ U
↓
0 = π(H),

thus (U↓)τ̂ is a martingale under P∗.

We denote by T ∗ the set of all optimal stopping times:

T ∗ := {τ ∈ T | τ is an optimal stopping for H under some Q ∈M}.

Lemma 3.5. Let τ ∈ T be such that Hτ is replicable, then the unique arbitrage-free price p of Hτ

satisfies p ≤ π(H). Moreover, if τ ∈ T ∗, then p = π(H).

Proof. For any τ ∈ T and Q ∈M we have

p = EQ[Hτ ] ≤ sup
σ∈T

EQ [Hσ] = UQ
0 , (3.2)

and taking the infimum on the right-hand side over all Q ∈ M yields p ≤ π(H). Moreover, if
τ ∈ T ∗, then there exists a Q ∈M such that equality holds in (3.2).

Proposition 3.6. Let Hτ̂ be replicable at price π(H). Then

Q :=
{
Q ∈M | UQ

τ̂ = Hτ̂

}
=

{
Q ∈M | UQ

0 = π(H)
}
. (3.3)

Proof. Let Q ∈ Q. Since Hτ̂ is replicable at price π(H), according to Proposition 3.4 (U↓)τ̂ is a
M-martingale, so in particular a Q-martingale. We show that the process

Ũt := UQ
t 1{τ̂<t} + U↓t 1{τ̂≥t}

is a Q-supermartingale dominating H. Indeed, for any t ∈ {1, . . . T} we have that

EQ[Ũt | Ft−1] = EQ[UQ
t | Ft−1]1{τ̂<t} + EQ[U↓τ̂∧t | Ft−1]1{τ̂≥t}

≤ UQ
t−11{τ̂≤t−1} + U↓τ̂∧(t−1)1{τ̂>t−1}

= UQ
t−11{τ̂<t−1} + U↓τ̂∧(t−1)1{τ̂≥t−1} = Ũt−1,

where we use the supermartingale property of UQ and (U↓)τ̂ and the fact that UQ
τ̂ = Hτ̂ = U↓τ̂ by

(3.1). Therefore Ũ is a Q-supermartingale which obviously dominates H since both UQ and U↓ do.
By [2, Proposition 6.11], UQ is the smallest Q-supermartingale dominating H, which implies that

UQ
t ≤ Ũt for all t = 0, . . . , T , and thus UQ

0 ≤ Ũ0 = π(H). Hence UQ
0 = π(H), and the inclusion ’⊆’

in (3.3) is proved.
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Now let Q ∈ M be such that UQ
0 = π(H). Then, as UQ is a Q-supermartingale dominating H

and as Hτ̂ is replicable at price π(H), we have

π(H) = UQ
0 ≥ EQ[UQ

τ̂ ] ≥ EQ[Hτ̂ ] = π(H).

This implies UQ
τ̂ = Hτ̂ and concludes the proof of the proposition.

Our main result Theorem 2.8 follows from the subsequent Theorem 3.7, in which we give
equivalent conditions characterizing the case π(H) ∈ Π(H).

Theorem 3.7. The following conditions are equivalent:

(i) π(H) ∈ Π(H).

(ii) Hτ̂ is replicable.

(iii) Hτ̂ is replicable at price π(H).

(iv) There exists Q ∈M such that UQ
0 = π(H).

(v) There exists τ ∈ T ∗ such that Hτ is replicable.

Proof. (i) ⇒ (iii): Let π(H) ∈ Π(H). The second property of Definition 2.5 implies the existence

of some P̃ ∈ M such that π(H) ≥ EP̃[Hτ̂ ]. From Proposition 3.4 (i) we know that (U↓)τ̂ is a
M-submartingale. In conjunction with (3.1) we obtain for all Q ∈M that

EQ [Hτ̂ ] = EQ
[
U↓τ̂

]
≥ U↓0 = π(H).

Taking the infimum over all Q ∈M we arrive at

EP̃[Hτ̂ ] ≤ π(H) ≤ inf
Q∈M

EQ[Hτ̂ ] ≤ EP̃[Hτ̂ ],

which yields

EP̃[Hτ̂ ] = π(H) = inf
Q∈M

EQ[Hτ̂ ].

Consequently, the set of arbitrage-free prices for the European contingent claim Hτ̂ contains its
lower bound. Thus Hτ̂ is replicable and Π(Hτ̂ ) = {π(H)}.
(iii) ⇒ (ii) is obvious.

(ii) ⇒ (iii): Since Hτ̂ is replicable, by Lemma 3.5 we have that its price satisfies p ≤ π(H).
Now fix P∗ ∈ M. By the same arguments as in the proof of Proposition 3.4, there is a sequence
(Qk)k∈N ⊂M such that Qk|Fτ̂ = P∗Fτ̂ and that

UQk
τ̂ ↘ U↓τ̂ = Hτ̂ .

The dominated convergence theorem ensures that

π(H) ≤ lim
k→∞

UQk
0 = lim

k→∞
EQk [UQk

τ̂ ] = lim
k→∞

EP∗ [UQk
τ̂ ] = EP∗ [Hτ̂ ] = p,
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where we use that (UQk)τ
Qk is a Qk-martingale, τ̂ ≤ τQk , and Qk|Fτ̂ = P∗|Fτ̂ .

(iii) ⇒ (iv): Fix P∗ ∈ M. According to Lemma 3.2, there is a sequence (Qk)k∈N ⊂ M such that
Ak := {τQk = τ̂} ↗ Ω. Again we may assume that Qk|Fτ̂ = P∗Fτ̂ . Define

Bk := Ak \
k−1⋃
m=1

Am ∈ Fτ̂ .

Then

τ̂ =

∞∑
k=1

τQk1Bk .

Now consider the probability measure P̃ obtained by pasting the measure P∗ with the measures
Qk on Bk in τ̂ , i.e., P̃ defined via

P̃(A) = EP∗
[ ∞∑
k=1

EQk [1A∩Bk | Fτ̂ ]

]
, A ∈ F .

Clearly P̃ is equivalent to P. Moreover, P̃ ∈M since for i = 1, . . . , d and t = 0, . . . , T − 1 we have

EP̃[Sit+1 | Ft] = EP∗ [Sit+1 | Ft]1{τ̂≥t+1} +

∞∑
k=1

EQk [Sit+11Bk | Ft]1{τ̂≤t}

= EP∗ [Sit+1 | Ft]1{τ̂≥t+1} +

∞∑
k=1

EQk [Sit+1 | Ft]1Bk∩{τ̂≤t} = Sit

as Bk ∩ {τ̂ ≤ t} ∈ Ft. Since on Bk we have UQk
τ̂ = Hτ̂ , by monotone convergence

Hτ̂ =

∞∑
k=1

UQk
τ̂ 1Bk =

∞∑
k=1

ess sup
σ∈T ,σ≥τ̂

EQk [Hσ1Bk | Fτ̂ ]

=

∞∑
k=1

ess sup
σ∈T ,σ≥τ̂

EP̃[Hσ1Bk | Fτ̂ ] ≥ ess sup
σ∈T ,σ≥τ̂

∞∑
k=1

EP̃[Hσ1Bk | Fτ̂ ]

= ess sup
σ∈T ,σ≥τ̂

EP̃[Hσ | Fτ̂ ] = U P̃
τ̂

≥ Hτ̂ .

This means that P̃ ∈M verifies U P̃
τ̂ = Hτ̂ . Since Hτ̂ is replicable at price π(H), by Proposition 3.6

we obtain that U P̃
0 = π(H).

(iv)⇒ (i): As already mentioned, UQ
0 = EQ[HτQ ] clearly satisfies both conditions in Definition 2.5.

(iv) ⇒ (v): If there is Q ∈ M such that UQ
0 = π(H), then, according to the equivalences already

proved, Hτ̂ is replicable at price π(H). This yields

π(H) = UQ
0 = EQ [HτQ ] ≥ EQ [Hτ̂ ] = π(H).

Consequently EQ [HτQ ] = EQ [Hτ̂ ], which means that τ̂ is optimal under Q and consequently
τQ = τ̂ , since τ̂ ≤ τQ and by minimality of τQ. This implies that HτQ = Hτ̂ is replicable.
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(v) ⇒ (iv): Let Q ∈ M and τ be an optimal stopping time under Q, with Hτ being replicable.
Then, according to Lemma 3.5, the unique arbitrage-free price of Hτ is π(H), hence

UQ
0 = EQ[Hτ ] = π(H).

Notice that Theorem 3.7 extends the case of European contingent claims. Indeed, let Y be a
discounted European contingent claim and H the corresponding American contingent claim defined
in (2.2). Then clearly Hτ̂ = Y , thus π(H) = inf Π(Y ) is arbitrage-free if and only if Y is replicable.

Remark 3.8. A major source of ideas how to attack the problem which we consider is [9], where a
problem analogous to (2.5) is studied in a continuous-time setting. More precisely, [9] investigates
the existence of a “worst-case probability measure” Q for the lower Snell envelope of an American
option H with respect to a convex family N of equivalent probability measures, in the sense that
Q ∈ N shall satisfy

sup
τ∈T

EQ[Hτ ] = inf
P∈N

sup
τ∈T

EP [Hτ ].

It is shown that such a measure Q exists under a compactness assumption on the set of densities{
dP
dP | P ∈ N

}
; see also [7], where the multiple prior Snell envelope is studied under the same

assumption. However, when pricing an American contingent claim in a financial market, the set of
test measures N equals the set of equivalent martingale measures M, for which this compactness
assumption is satisfied if and only if the market is complete (M = {Q}). Hence the approach of [9]
does not suite our purposes. Note that Theorem 3.7 does not require any further condition on the
set of equivalent martingale measures M. Moreover, notice that our results are easily extended
to continuous-time financial markets in case the American contingent claim has a discrete tenor
structure. ♦

Our main results are expressed in terms of the stopping time τ̂ , for which we know that
U↓τ̂ = Hτ̂ ; see (3.1). Let us consider the first time when the lower Snell envelope U↓ of H equals
H, that is,

τ↓ := inf{t ≥ 0 | U↓t = Ht}.

Clearly we have τ↓ ≤ τ̂ . It might be expected that τ↓ plays a similarly important role in the
analysis of U↓ as the stopping times τQ do for UQ. Concerning this matter, see for instance the
discussion of the lower Snell envelope as outlined in [2]. It follows directly from Proposition 3.4
and Doob’s stopping theorem that U↓ stopped at τ↓ is a M-submartingale, and a M-martingale
in case π(H) is arbitrage-free. Hence, a natural question is whether τ↓ and τ̂ always coincide, or
in case they do not, whether at least the analysis carried out in this section could also be done
replacing τ̂ by the earlier stopping time τ↓. However, the answer to both questions is no. In
Example 4.1 we show that τ↓ and τ̂ need not coincide, and that Hτ↓ can be replicable without
π(H) being an arbitrage-free price for H. Consequently, τ↓ is not suited for a characterization of
the situation π(H) ∈ Π(H). Nevertheless, if π(H) ∈ Π(H), then in particular τ̂ = τ↓ as it is shown
in the following Proposition 3.9. To this end, note that

τ↓ ∈ T ∗ ⇐⇒ τ↓ = τ̂ = τQ for some Q ∈M.

Proposition 3.9. The following conditions are equivalent:
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(i) π(H) ∈ Π(H),

(ii) τ↓ ∈ T ∗ and Hτ↓ is replicable.

Proof. Suppose that π(H) ∈ Π(H). Then, according to Theorem 3.7, Hτ̂ is replicable at price
π(H). Hence Proposition 3.4 implies that (U↓)τ̂ is aM-martingale. Now Doob’s stopping theorem
yields

EQ[Hτ↓ ] = EQ[U↓
τ↓

] = U↓0 = π(H) for all Q ∈M.

In other words, Hτ↓ has a unique arbitrage-free price given by π(H) and is thus replicable. More-
over, in Theorem 3.7 it is shown that there exists a measure Q ∈M such that HτQ is replicable at
price π(H). This means that EQ[HτQ ] = π(H) = EQ[Hτ↓ ], so τ↓ is optimal for Q. By minimality
of τQ, and since τ↓ ≤ τ̂ ≤ τQ, it follows that τ↓ = τ̂ = τQ.

The reverse implication follows directly from Theorem 3.7.

4 An Illustrating Example

In Example 4.1 we show how in a given incomplete market, in the case of non-replicable American
contingent claims H, we may encounter both π(H) ∈ Π(H) and π(H) 6∈ Π(H); see also [2,
Example 6.34].

Example 4.1. Let X1, X2 be standard normal distributed random variables on the probability
spaces (Ωi,Ai,Pi) respectively, and consider the product space Ω = Ω1 × Ω2, F = A1 ⊗ A2, and

P = P1 ⊗ P2. We define the random variables X̃i on (Ω,F ,P) by X̃i(ω1, ω2) = −1 +
√

2Xi(ωi), i =
1, 2. Let the discounted stock price of the risky asset on (Ω,F ,P) be given by

S0 = 1, S1 = eX̃1 , S2 = eX̃1+X̃2 .

The filtration is
F0 = {∅,Ω}, F1 = σ(X̃1), F2 = σ(X̃1, X̃2).

Consider the following discounted American contingent claim:

H0 = 0, H1 = eX̃1 , H2 = eX̃1+
1
2 X̃2 .

Clearly τQ ≥ 1 for any equivalent martingale measure Q ∈ M. Moreover, note that P ∈ M and
that, for any τ ∈ T such that τ ≥ 1,

EP[Hτ ] = EP[eX̃11{τ=1} + eX̃1+
1
2 X̃21{τ=2}]

= EP[eX̃11{τ=1}] + EP[eX̃11{τ=2}] · EP[e
1
2 X̃2 ]

≤ EP[eX̃11{τ=1}] + EP[eX̃11{τ=2}] = 1,

where the last inequality is strict if P(τ = 2) > 0 since EP[e
1
2 X̃2 ] < 1. In particular this gives

τP = 1, which in turn implies τ̂ = 1. Therefore, Hτ̂ = S1 is replicable and Theorem 3.7 ensures
that π(H) is an arbitrage-free price for H.
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Now consider another discounted American contingent claim, given by

H0 = 0, H1 = eX̃1 , H2 = eX̃1Z where Z = eX̃21{X̃2>1} + 1{X̃2≤1}.

Since Z ≥ 1 and P(Z > 1) > 0, for each stopping time τ ∈ T we have

Hτ = eX̃11{τ=1} + eX̃1Z1{τ=2} ≤ H2,

which implies that τQ = 2 for all Q ∈ M. Indeed, if for some stopping time σ ∈ T we have
P(σ = 1) > 0, then {σ = 1} = A × Ω2 for some A ∈ A1 with P1(A) > 0, because F1 =

σ{X−11 (B) × Ω2 | B ∈ B(R)}. Consequently, P({σ = 1} ∩ {X̃2 > 1}) = P1(A)P2(X2 >
√

2) > 0,

and on the set {σ = 1} ∩ {X̃2 > 1} the stopped claim Hσ is strictly smaller than H2 whereas
always Hσ ≤ H2. Therefore we obtain that τ̂ = 2. However, one can find a sequence of equivalent
martingale measures (Qn)n∈N such that EQn [Z | F1]→ 1 as n→∞. Consequently, this yields

U↓1 = ess inf
Q∈M

ess sup
τ∈T ,τ≥1

EQ[Hτ | F1] = H1.

Therefore τ↓ = 1 < 2 = τ̂ . In addition we have that Hτ↓ = S1 is replicable, whereas Hτ̂ is not, so
π(H) is not an arbitrage-free price by Theorem 3.7. ♦
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