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Abstract

While it is reasonable to assume that convex combinations on the level of random vari-
ables lead to a reduction of risk (diversification effect), this is no more true on the level
of distributions. In the latter case, taking convex combinations corresponds to adding a
risk factor. Hence, whereas asking for convexity of risk functions defined on random vari-
ables makes sense, convexity is not a good property to require on risk functions defined
on distributions. In this paper we study the interplay between convexity of law-invariant
risk functions on random variables and convexity/concavity of their counterparts on dis-
tributions. We show that, given a law-invariant convex risk measure, on the level of
distributions, if at all, concavity holds true. In particular, this is always the case under
the additional assumption of comonotonicity.
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1 Introduction

The concept of risk is nowadays used to describe and capture many phenomena, different both
by nature and for the context in which they arise. Therefore, when talking of risk measurement,
one should first specify to which framework one refers. A risk measure is usually intended as a
function f defined on the set X of the accordingly identified risky elements, associating to each
element € X a value f(z) which expresses the riskiness of the “situation” described by z.
Here we consider the case where X is intended to model the set of all possible financial positions.
The two most prominent approaches to describe these positions are either by random variables
on some probability space, or by probability distributions, usually referred to as lotteries in
decision theory. To be in line with the traditional notation, to indicate the elements in X', we
will use X, Y, ... to denote random variables, and u, v, . .. for distributions. One property which
is often required on risk measures defined on random variables is the so-called law-invariance,
meaning that positions sharing the same distribution are equally risky. We have for example in
mind expected losses, certainty equivalents, law-invariant coherent and convex risk measures
as introduced by Artzner, Delbaen, Eber and Heath [2, 3] and by Follmer and Schied [8] and
Frittelli and Rosazza Gianin [11], deviation measures in the sense of Rockafellar, Uryasev and
Zabarankin [14], and quantile-based measures. Under the paradigm of law-invariance, there
is a one-to-one relation between risk functions defined on some space of random variables
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and risk functions defined on the corresponding space of distributions. Nevertheless, some
care is needed when translating features from one setting to the other. In particular, we will
illustrate how the properties of convexity and concavity are not transferable between the two
settings. The reason is that the randomization aux + (1 — a)uy of the lotteries px and
wy corresponding to the laws of the random variables X and Y under a probability measure
generally differs from the lottery fi, x4 (1—a)y corresponding to the law of the state-wise convex
combination aX + (1 — «)Y. A prominent example is the Value at Risk, which is not quasi-
convex on random variables, while the corresponding risk measure on distributions is. On this
matter we recall that Frittelli, Maggis and Peri [10] prove that convexity is not compatible
with translation invariance on the space of probability distributions, which is the reason why
they require quasi-convexity. However, note that concavity is compatible with translation
invariance.

On the level of random variables it is well understood that convex combinations corre-
sponding to a diversification in the portfolio should reduce the overall risk. However, on the
level of distributions a convex combination corresponds to an additional randomization. In-
deed, ap+ (1 —a)v can be interpreted as the sampling of a lottery between p and v, depending
on the outcome of a simultaneous independent toss with probabilities @ and (1 — «). Hence,
we have an additional factor of risk coming from the toss. Thus requiring that a risk function
¢ on distributions be (quasi-) convex has not the diversification interpretation, and is not
necessarily a natural property.

This paper is meant to analyze the interplay between convexity of law-invariant risk func-
tions on random variables and convexity/concavity of their counterparts on distributions. We
show that, given a law-invariant convex risk measure, on the level of distributions, if at all,
concavity holds true. This is for example always the case under the additional assumption
of comonotonicity; see Section 3. Under the assumption of translation invariance, Frittelli et
al. [10], Drapeau and Kupper [6] study quasi-convex risk measures over lotteries, as counter-
parts to convex risk measures on random variables, providing robust representations. Our
analysis shows that replacing quasi-convexity on distributions by concavity (these properties
do not exclude each other) could probably be more appropriate. Of course this would also
provide nicer robust representations. Our results are illustrated by several examples using
well-know risk functions.

The remainder of the paper is organized as follows. In Section 2 we specify our setting
and prove how, in general, a risk measure ¢ defined on distributions is not convex (Proposi-
tion 2.1). To the contrary, under positive homogeneity we show a weak form of concavity for ¢
(Proposition 2.3). Moreover, we provide a dual characterization of concavity of ¢. In Section 3
we work under the assumption of comonotonicity, and show that in this case concavity of ¢ is
automatically satisfied.

2 Setup and first results

Let (2, F,P) be a non-atomic standard probability space. For any random variables X, Y

and a distribution u, we write X 2 Y to indicate that X and Y are equally distributed under
P, and X ~ p to indicate that the distribution of X under P is u. We do our analysis on
L' := LY(Q,F,P). It will be obvious form the results and proofs that most of them carry
over to any law-invariant Banach spaces of (equivalence classes of) random variables, such as
the LP := LP(Q, F,P) spaces for p € [1,00] equipped with the p-norm | - ||, := E[| - |P]/? for



p€l,0) and ||+ |l := inf{m € R | P(|-| > m) = 0} for p = c0. Let ® : L' — [—00, +0]
be a law-invariant function, that is, ®(X) = ®(Y) for all X,Y € L' with YV’ < X. Then @
induces a function ¢ : M; — [—00, +00] on the set M of all Borel probability measures on R
with finite first moment by

(2.1) o(p) = ®(X) for any X with X ~ pu.

Vice versa, any function ¢ : M; — [—00,+00] induces a law-invariant function on L! by
(2.1). Our main aim is to study how convexity properties of ® on L! are related to convexity
properties of ¢ on Mj. Throughout this paper we will always treat the case that ® is (quasi-)
convex. This corresponds to the risk measurement point of view. The corresponding results for
utility criteria, i.e. (quasi-) concave ®, are then obvious. @ is said to be lower semicontinuous
(Isc) if the level sets Ey := {X € L' | ®(X) < k}, k € R, are all closed in (L}, | - ||1). This is
equivalent to ®(X) < liminf, ., ®(X,,) whenever (X, )neny C L' is a sequence converging to
X in (LY || |l1)- Tt is shown in [7] that, for a law-invariant convex risk function ® on L!, Isc (in
contrast to continuity) is a natural property. Indeed, in most examples that we have in mind,
such as convex risk measures, ®| is Isc (even continuous) with respect to the convergence in
the || - ||oo-norm. Then it is shown in [7] that there exists a canonical Isc extension of @z to
L. Thus requiring Isc basically means that ® should equal its canonical Isc extension from L>
to L'. As a lsc convex function which takes the value —oo cannot take any finite value, and as
the value —oo does not make much sense from a risk perspective, we reduce our studies to the
case @ : L' — (—o0,+0oc].t For the remainder of this paper ® : L! — (—o0, o] will always be
a law-invariant function and the relation between the function ® and ¢ : M1 — (—o0, +0]
will be given by (2.1).
Prominent examples of law-invariant risk functions are

e expected losses E[l(—X)] or certainty equivalents [~'(E[l(—X)]) where the loss function
[ :R — R is convex and strictly increasing;

e convex risk measures, that is, convex functions which also are antitone (i.e. X > Y P-a.s.
implies ®(X) < ®(Y)) and translation invariant: ®(0) € R and ®(X +z) = &(X) — =
for all x € R;

e coherent risk measures, that is, convex risk measures which are also positively homoge-
neous: ®(tX) =t®(X) for all £ > 0;

e quantile-based risk measures;

e deviation measures, that is, convex, positively homogeneous functions which are positive
on non-constants, and constant-absorbing: ®(X + z) = ®(X) for all x € R.

2.1 In general ¢ is not convex

Let us recall the definition of the convex order >: for X,Y € L',

(X»Y) < (E[e(X)] > E[c(Y)] for every convex function ¢ : R — R).

!'Note that an infinitely risky position makes sense, as it is can be interpreted to be so bad that it cannot
be hedged at any finite cost. Whereas to assume that there is a position which is infinitely good (risk —oo) is
clearly not reasonable since it would imply that we could withdraw any amount of money and still face no risk.



It is proved in [4, Theorem 4.1] that if ® is Isc, convex and law-invariant, then it is automatically
preserving the convex order (see also [15]), which means that ®(X) > ®(Y') whenever X > Y.
Hence, when considering convex ®, it is also natural to assume that ® is =-preserving. As
X > Y only depends on the distributions of X and Y, we may also see > as an order on Mj.
Clearly, ® is =-preserving if and only if ¢ is =-preserving. Another natural request on a risk
function (on discounted payoffs) is to be invariant on constants, that is, ®(x) = —x for every
x € R C L'. Indeed, when there is no risk involved, i.e., when we are facing a deterministic
scenario X ~ 4, (where J, denotes the Dirac-measure), it seems natural to assign it the value
x, thus the risk —x. For instance translation invariant risk functions are, apart from the
constant ®(0), invariant on constants.

Having the mentioned typical properties of risk functions in mind, the message of the
following proposition is that convexity is not a good property to require on ¢.

Proposition 2.1. The following are equivalent:

(i) @ is lsc, =-preserving, invariant on constants (resp. translation invariant), and ¢ is
convex;

(ii) ®(X) = —E[X], i.e. p(p) = — [zdp (resp. ®(X) = &(0) — E[X]).

Proof. We only prove the case when @ is invariant on constants. The proof in case of trans-
lation invariance follows similarly. Clearly (i) = (¢). In order to show (i) = (i),
recall that F[X] < X. As ® is »=-preserving and invariant on constants, we have ®(X) >
®(E[X]) = —E[X]. For 21,...,2, € R, a1,...,, > 0such that " | a; = 1, and a partition
Ay, ..., A, € F of Q with P(4;) = o, we have that > | x;14, ~ > | ;0,, and

¢ (Zn: Oéi%-) = o (Zn: xilAi> > -E Zn:%'lAi]
i=1 i=1 i=1
= D awm = D aid@) = > aip(b)
i=1 i=1 i=1

As ¢ is convex, the inequality in the computation must be an equality. Hence, ¢(X) = —FE[X]
for all simple random variables X. Now let X € L' be arbitrary and choose a sequence of
simple random variables (X, ),en converging to X in (L, ]| - ||1). Then

—E[X] = lim —E[X,] = liminf ®(X,) > ®(X) > —E[X],

n—o0 n—o0
where the first inequality follows by lsc of ®. O

Proposition 2.1 shows that in many typical cases, such as convex risk measures, ¢ will either
be concave (including the linear case) or be neither convex nor concave. Also notice that if ®
is a deviation measure, then X — E[—X]| + ®(X) is translation invariant. Hence, supposing
that the deviation measure ® is Isc, =-preserving and that ¢ is convex, Proposition 2.1 implies
that ®(X) = ©(0).

As mentioned in the introduction, many authors require quasi-convexity when they define
risk measures on M. The following Lemma 2.2 shows that starting form a quasi-convex and
>-preserving ¢ on M also ® must be quasi-convex, and thus even convex if ¢ and thus also ®
is translation invariant (see e.g. [9, p. 178]). This further justifies our approach to study the the



convexity /concavity problem through the lens of a (quasi-) convex ®. In order to prove this
result we fix two independent sub-c-algebras Gy, Fo of F such that (2, Gp,P) and (2, Fo, P)
are non-atomic standard probability spaces. In particular, for any X,Y € L'(Q, F,P) there

exist Go-measurable X, Y such that (X,Y) 4 (X,Y). Moreover, for any a € (0,1) there is
A € Fy such that P(A) = «, and thus if X and Y are Gy-measurable with X ~ u, Y ~ v, then

(2.2) IaX +1a4Y ~apu+(1—a)y and aX + (1 —a)Y = E[14X + 14Y | Gol.
Relation (2.2) will turn out to be useful throughout the paper.

Lemma 2.2. If ¢ is (quasi-)conver and =-preserving, then ® is (quasi-)convez.

Proof. Let ¢ be quasi-convex. Fix X, Y € L! and o € [0, 1], and let (X, 57) be a Gyp-measurable

random vector such that (X,Y) 4 (X,Y), and thus also aX + (1 — )Y 2 aX + (1—a)Y.
Moreover, let A € Fy be such that P(A) = a. Using that for any random variable X we have
E[X | Go] = X, and that with ¢ also ® must be >-preserving, we obtain

PaX+(1-a)Y) = ®aX+(1-a)Y) = O(B[1aX +14Y |G
< D(14X +14Y) = olap+ (1—a))
< o) Vvol) = S(X)Ve().
The case of ¢ convex follows in a similar way. O

In particular, this implies that the quasi-convex risk measures on distributions studied by
Frittelli et al. in [10] either correspond to quasi-convex risk measures on random variables or
they are not >-preserving.

Consider the Value at Risk at level A, i.e.

O(X)=VaR\(X) =inf{m e R|P(X +m <0) <A}, where A € (0,1).

It is easily verified that the corresponding risk measure ¢ on distributions is quasi-convex (see
[10]). Since it is also well-known that ® is not quasi-convex, Lemma 2.2 implies that VaR)
cannot preserve >=. So in particular there are payoff profiles X,Y such that every expected
utility agent prefers X to Y, but under VaR) the profile Y is strictly less risky than X.
Indeed, recall that a utility function is a concave and increasing function. Then note that
X > Y implies X <yn; Y, where the uniform order >,,; is defined as follows: for X,Y € L',

(X i Y) <= (Pu(X)] > Elu(Y)] for every utility function u : R — R).

From this we see that since VaR) does not preserve =, it cannot be =,;-reverting (X =<un; Y
implies ®(X) > ®(Y)). Hence, if the agents’ behaviors in a market correspond to - or are
modeled by means of - expected utility preferences, then a risk assessment via VaR, does not
make sense. The same is true for any other risk measure which does not preserve >.

2.2 A weak form of concavity for ¢

The next proposition shows that a weak form of concavity holds for ¢ when ® is coherent in
the sense that ® is convex and positively homogeneous. In what follows we write A L o(X)
to indicate that o(A) is independent of o(X).



Proposition 2.3. Let ® be Isc, convex and positively homogeneous, then

P(14X) >®(X) foral X eL' and A L o(X) with P(A) > 0.

(2.3) a2

In the positively homogeneous case (where automatically ®(0) = ¢(dg) = 0), condition (2.3)
can be seen as a weak form of concavity of ¢ since it implies that ¢(au + (1 — a)dy) > ad(p)
for all p € My and « € [0,1]. However, Example 2.7 shows that there are coherent ® which
are not ‘truly’ concave.

Proof. Being law-invariant, Isc, convex and positively homogeneous, ® may be represented as

®(X)=sup E[ZX]|= sup E[ZX],
ZeQ ZeQ|X

where Q C L' isa o(L!, L*)-closed convex set (see e.g. [5]),and Q | X :={E[Z | X]| Z € Q}.
Note that by law invariance it follows that Q | X C Q; see [12, Lemma 4.2]. Thusif A 1 o(X)
we obtain:

®(14X) > sup E[laZX]| = P(A) sup E[ZX] = PAPX).
ZeQ|X ZeQ|X

From the proof of Proposition 2.3 it is also clear that ¢ is actually concave in case
Z1a+Z1ae € Q forall Z e Q|XandZE Q|YwithX,Y€L1.

Note that (2.3) is a reasonable property because conditional on A the random variable
X =X1 4 has the same distribution as X. Thus the conditional risk q)](Pl(%() should be at least
®(X). If there is no ambiguity aversion involved, i.e. ®(-) = E[:], then we have equality in
(2.3). Otherwise 14X may seem ‘more ambiguous’ than X since even with full knowledge of

X the payoff 14X is inaccessible given that A is independent of X.

2.3 Dual characterization of the concavity of ¢

In this section we provide an alternative way to check concavity of ¢ by looking at the dual
side. This approach turns out to be useful in the case when the Fenchel-Legendre transform
®* of ® is easier to study than ® itself. In what follows, gx(s) := inf{z € R | P(X < z) > s},
s € (0,1), denotes the (left continuous) quantile function of a random variable X.

Proposition 2.4. Let ® be Isc and convex. Then ¢ is concave if and only if ¢* : Mo —
(—o00, 0] is convex, where

1
(2.4) 0 (0) = @'(2) = swp [ ax(@az(dt— 8(X) for Z
XelLlJo

and My := {pn € M1 | u has compact support}.



Proof. The equality in (2.4) for the dual function ®* of ® holds by law-invariance, like in [9,
Theorem 4.59]. In particular, ®* is itself a law-invariant convex function on L.

Being a law-invariant, Isc, convex function, ® may be represented as

P = Zelr BlgXl-eg) = ZELEou(p(X))E[ZX]_(I)*(Z)
= sup E[h(X)X]— ®*(h(X)),
heMy,

where M}, denotes the set of measurable and bounded h : R — R. Here we used that E[Z | X] <
X and that the Isc convex law-invariant function ®* is automatically >-preserving. Similarly,

using [7, Theorem 2.2] for the second equality, we also derive the following representation for
P*:

" (Z) = )?EIL)IE[ZX] -o(X) = XS;IPOO E[ZX] - ®(X)
= sup E[ZX]-®(X) = sup E[Zh(Z)]—-®(h(Z)), Z e L™.
XeL>(o(2)) heMy,

Now suppose that ¢ is concave and let p, v € My and « € [0, 1]. Choose the random variables
X,Y and A € Fp as in (2.2). Then

P (ap+ (1—a)y) = P (14X +14Y)
= hsul\ﬂ) El(14X +14Y)R(14X +14Y)] — ®(h(14X + 14cY))
hseul\ﬁ) aE[Xh(X)]+ (1 —)E[YR(Y)] — ®(h(X)1a + h(Y)1ac)
hSeul\EI)b aE[Xh(X)]+ (1 —a)E[YR(Y)] — a®(h(X)) + (1 —a)®(h(Y))

< a®'(X)+ (1-a)®*(Y) = a¢™ () + (1 —a)é™(v),

IN

where we used the concavity of ¢ in the first inequality since
h(X)1a+ h(Y)1lge ~ alaw(h(X)) + (1 — a)law(h(Y))

where law(Z) denotes the distribution of a random variable Z.
Suppose that ¢* is convex and let u,v € My, a € [0,1], X,Y € L' and A € Fy be as in
(2.2). In this case we have

dlap+(1—a)w) = D1AX + 1Y)
> sup B[(LaX + 1LaeY)(1Lah(X) + Laeg(¥))] = & (La(X) + Lacg(Y)
> Sup aE[XhX)]+ (1 -a)E[Yg(Y)] — a®"(h(X)) — (1 — a)2"(g9(Y))
= a®(X)+(1-a)2Y) = a¢(p)+(1—-a)(v),

where we used the convexity of ¢* in the second inequality. O

So if ® is convex and ¢ is concave then the primal ordering is as follows:

P(aX + (1 -a)Y) <a®(X)+ (1 -a)®(Y) = ad(u) + (1 — a)p(v) < dlap+ (1 - a)v),



whereas for the dual we have

IN

" (aX + (1 - a)Y) P lap+(1—a) < ad’(p)+ (1 —-a)p(v)

= a®"(X)+ (1 —a)®*(Y).
If ® is Isc and coherent, then

0, if p € dom ¢*

00, else,

6" () = 3(4 | dom ¢*) = {

where dom ¢* = {u € My | 3Z € dom ®* : Z ~ pu}; see for instance [9, Corollary 4.19].
Hence, we obtain:

Corollary 2.5. If ® is lsc and coherent, then ¢ is concave if and only if dom ¢* is convez.

In general, not requiring coherence, convexity of ¢* is of course equivalent to convexity of

epi 6" i= {(1,a) € Moo x R | ¢"(1) < a},

which corresponds to (147 + 14cZ,ca + (1 — a)b) € epi ®* whenever (Z,a), (Z,b) € epi ®*
and A 1 0(Z,Z) with P(A) = a.

Examples 2.6. 1. The entropic risk measure: ®(X) = vIn E[exp(—X/7v)], v > 0. In this
case it is known that ¢*(u) = v [(—z)log(—z)u(dz) whenever u € Mo, has support on R_
and [zp(dr) = —1 (i.e. p is apart from the sign the distribution of a probability density), and
¢*(u) = oo otherwise. Being linear on its convex support, ¢* is convex on M, and thus ¢ is
concave which is of course also easily verified directly.

2. The Average Value at Risk: ®(X) = AVaR,(X) := —% fOA gx(t)dt, A € (0,1]. In this case
dom ¢* is the set of all 4 € My, which have support on [—1/X,0] and satisfy [ zu(dx) = —1.
Clearly, dom ¢* is convex, so ¢ is concave.

3. The mean-variance evaluation principle: ®(X) = —FE[X] + dVar(X), 6 > 0. In this
case ¢*(u) = ﬁ (f #*u(dx) — 1) whenever p has support on R_, finite second moment and
Jzp(dz) = —1, and ¢*(u) = oo otherwise. Hence ¢* is convex, and so ¢ is concave. <&

In the following example we construct coherent risk measures ® for which the corresponding
functions ¢ are not concave.

Example 2.7. Let p, v € My be nondegenerate such that [ zu(dx) = —1 and [ zv(dz) = 0.
In particular, neither y > v nor v > u, because either of the relations would imply equal
expectation. Let C(u) := {Z € L*® | law(Z) = u} and define C(v) analogously. Recalling
that the convex order is indeed an order on the distributions clarifies the definition of C(u)
and C(v). Note that the convex sets C'(u) and C(v) seen as subsets of L are weakly compact
(see e.g. [15]) and thus the convex hull C' := co(C(u) U C(v)) is weakly closed (even weakly
compact) in L'; see [1, Lemma 5.29]. As C is a convex set it must also be closed in the norm
topology on L!. This also implies that C is closed in (L, || - ||s) and thus, as a convex set,
also in o(L*°, L'). Now
®(X):=sup E[ZX], XeL'
zeC

is Isc, law-invariant, and coherent. The law invariance follows from the law invariance of the
set C see [9, Theorem 4.59]. Moreover, we have that ®* = §(- | C), thus dom ®* = C. In the



following we will show that dom ¢* = {n € M | 3Z € C : Z ~ n} is not convex. Suppose it
were, then there would exist a convex combination AZ + (1 — )\)Z € C, with Z and Z being
elements of C(u) or C(v), such that Z := AZ + (1 = \)Z ~ $(1+ v). Apparently it cannot
happen that Z and Z are both in C(y) or both in C(v), as F(p+v)Zpand L(u+v) A
Therefore, we may assume that Z € C(p) and Z € C(v). Computing the expectation of Z and
noting that E[Z] = —1 and E[Z] = 0, we deduce that A = 1/2. Without loss of generality we
may assume that Z, 7 are Go-measurable. Otherwise we find a two dimensional Gy-measurable
random vector with the same distribution as (Z, Z ) and such that the corresponding convex
combination has the same distribution as Z. Then, for A € Fy with P(A) = 1/2, we have
that Z = E[14Z + 14¢Z | Go, and Jensen’s inequality for strict convex functions shows that
7 < 14Z + 14¢Z but not Z = 147 + 14cZ. This fact contradicts Z ~ %(u + v), since
IaZ + 14cZ ~ %(u + v). Hence dom ¢* is not convex, which in turn implies that ¢ is not
concave by Corollary 2.5.

Similarly, we can also construct a lsc, translation invariant, and coherent ®, i.e. a coherent
risk measure, such that ¢ is not concave. To this end, choose nondegenerate p, v € My, such
that the support of 1 and v is contained in R_ and such that [2u(dz) = [av(dx) = —1, but
neither p = v nor v > u. Construct ® as above, and suppose that there are elements Z and
Z of C(pn) or C(v), such that Z := AZ + (1 — \)Z ~ (1 +v). Again we may assume that
Z € C(p) and Z € C(v). For any convex function ¢ : R — R we obtain that

L / e(x)ulde) + / (@) = Fle(Z) < MEZ)]+ (1 NE[e(2)

2
< /\/c(a:)u(dx)-i- (1—/\)/c(x)1/(d1‘).

As there must exist some convex functions ¢, ¢co : R — R such that

/ o1 (@)u(dz) < / c1(@)v(dz) and / eo(@)pl(da) > / ea(2)(de),

we conclude that A\ = 1/2. Finally, the same arguments as above show that dom ¢* is not
convex. <O

3 The comonotonic case

In many situations the risk of a combined position X +Y turns out to be lower that the sum of
the risks given by the individual positions. This is due to the fact that one position may serve
as a hedge against unfavorable outcomes of the other. However, if this hedge is not possible
because the two random variables are perfectly positively correlated, then the situation looks
very different. This concept is what is captured by the so-called comonotonicity property. ® is
said to be comonotonic if it is linear on comonotone elements, that is (X +Y) = &(X)+2(Y)
whenever XY satisfy (X (w) — X(«"))(Y(w) =Y (w')) > 0 for all (w,w’) P x P-a.s.

The main message of this section is that under comonotonicity, concavity of ¢ is completely
determined by the preservation of the convex order (Proposition 3.5).

Lemma 3.1. If ® is comonotonic and =-preserving, then ¢ is concave.

Proof. Suppose that ® is comonotonic and >-preserving. Let pu,v € M; and a € [0,1].
Moreover, let U be a Gp-measurable (0, 1)-uniform random variable, and set X := ¢, (U) ~



and Y := ¢, (U) ~ v, so that X,Y are Gp-measurable and comonotone. Here ¢,(s) := inf{z €
R | n(—o0,z] > s}, s € (0,1), is the quantile function of the distribution 1. Moreover, take
A € Fy such that P(A) = a. Then we obtain

plap+(1—-a)y) = S(IaX +14Y) > P(E[14aX + 14V | Go))
= P(aX+(1-)Y) = a®(X)+(1—-a)®})
= ag(p) + (1 —a)e(v)
where the comonotonicity of ® enters in the second but last equality. O

Remark 3.2. It follows from Lemma 3.1 that for every law-invariant comonotonic convex
risk measure ® the corresponding risk measure ¢ on M;j is concave. However, Kusuoka’s
representation of law-invariant convex risk measures shows what goes wrong in the general
non-comonotone case:

(3.1) B0 = swp [ AVaRy(X)u(d) - aln),
peM(0,1] J(0,1]

where M(0, 1] is the set of all probability measures on (0,1], and « is the Fenchel-Legendre
transform of ® seen as a function on M(0, 1]. On the level of distributions we see that the
building blocks f(O,l] AVaR ) (X)pu(dA) in (3.1) are all comonotonic and >-preserving, so the
corresponding risk measures on distributions are concave according to Lemma 3.1. However,
when taking the supremum, the concavity of the function ¢ corresponding to ® does not
necessarily follow. )

The following lemma translates convexity of ® to a property (3.2) of ¢. It will prove to be
useful later on.

Lemma 3.3. Let ® be =-preserving. Then the following are equivalent:
(i) ® is conver;

(ii) For all p € My, f,g: R — R increasing such that po f~', pog=' € My, and o € [0, 1],
the following holds:

(3.2) p(po(af+(1—a)g) ™) <ap(po f)+(1—a)p(uog™).

Proof. (i) = (ii): Let the random variable X € L' have distribution p. Moreover, let f,g :
R — R be measurable functions such that f(X),g(X) € L' and let € [0,1]. Then f(X) ~
pof~1 g(X)~pog™t and af(X)+ (1 —a)g(X) ~ (po (af + (1 —a)g)~!). Now it is clear
how (3.2) follows from the convexity of ®.

(ii) = (i): Let X,Y € L' and a € [0,1]. Let U be a Gg-measurable (0, 1)-uniformly distributed

random variable and call g = law(U). Then we have X 4 gx(U) and Y 4 gy (U), thus

a®(X)+ (1-a)®(Y) = ad(pogy)+(1—a)p(uogy’) > ¢(uo(agy + (1 —a)y)™")
= Blogx (D) + (- )ay() > B(aX +(1-a)Y),

where the last inequality follows from the fact that
aX+(1-aY <2aX4+(1—a)Y*

for all X€¢ Y comonotone such that X°¢ 4x ,Y¢ 4 Y’; see Kaas et al. [13, Theorem 6| and
references therein. O
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From the proof of Lemma 3.3 it is clear that if one replaces convexity with quasi-convexity,
then (3.2) needs to be replaced by

d(po(af +(L—a)g)™) < dluo fH)Vo(uog™).

The Value at Risk is an example which shows that the request of being >-preserving in
Lemma 3.3 cannot be removed. Indeed, Var) is comonotone and thus satisfies (3.2) according
to the following Lemma 3.4. However Var) is not >-preserving and not convex.

Lemma 3.4. Let ® be positively homogeneous. Then, ® is comonotonic if and only if ¢
satisfies (3.2) with equality.

Proof. The ‘only if’ implication is clear from the first part of the proof of Lemma 3.3 since for
increasing f and g the random variables f(X) and g(X) are comonotone . Now, let X, Y € L!
be comonotone and U be a random variable which is uniformly distributed on (0, 1) such that
gx(U) =X and ¢y (U) =Y. Then

P(aX+(1—-a)Y) = P(agx(U)+(1—a)gy(U)) = é(uo(agx +(1—a)gy) ")
= ap(poay)+(1—a)p(pogy') = a®(X)+(1—a)d(Y).

O]

Note that if ® is comonotonic, then automatically ®(rX) = r®(X) for all rational numbers
r > 0. Thus under some continuity condition on ® positive homogeneity automatically follows.

Proposition 3.5. Let ® be Isc and comonotonic. Then the following are equivalent:
(i) ® is positively homogeneous and »-preserving;
(i) ® is coherent and ¢ is concave.

Proof. (i) = (ii): ® is convex by Lemmas 3.3 and 3.4 and thus coherent as it is also positively
homogeneous. ¢ is concave by Lemma 3.1.

(79) = (4): This is again the fact that law-invariant lsc convex functions are automatically
~-preserving; see e.g. [4, Theorem 4.1] or [15]. O

Remark 3.6. Proving that the Average Value at Risk is convex is typically not an easy task;
see e.g. [9, Theorem 4.52]. However, by applying Proposition 3.5 we can deduce the con-
vexity of the AVaR quickly. Indeed, AVaR is »=n;-reverting by [9, Theorem 2.57: (a)<(e)],
hence it preserves the convex order. Moreover, it is continuous, comonotonic, and positively
homogenous. Thus AVaR is coherent by Proposition 3.5. Therefore, it admits dual repre-
sentation, and the definition of the Fenchel-Legendre transform easily excludes measures with
Radon-Nikodym derivatives greater than 1/\. In this way the well-known dual representation
AVaR)\(X) = sup{Eg[—X] : dQ/dP < 1/A} readily follows (cf. [9, Theorem 4.52]). <&
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