On the minimization of area
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Abstract. In this paper we study the problem of minimizing the area
for the chord-convex sets of given size, that is, the sets for which each
bisecting chord is a segment of length at least 2. This problem has been
already studied and solved in the framework of convex sets, though
nothing has been said in the non-convex case. We give here the relevant
definitions and show some first properties.
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1. Introduction and setting of the problem

Consider the convex planar sets with the property that all the bisecting chords
(i.e., the segments dividing the set in two parts of equal area) have length at
least 2. A very simple question is which is the set in this class which minimizes
the area. Surprisingly enough, the answer is not the unit disk, as one would
immediately guess, but the so-called “Auerbach triangle”, shown in Figure 1
left.

The story of this problem is quite old: already in the 1920’s Zindler
posed the question whether the disk is the unique planar convex set having
all the bisecting chords of the same length (see [4]), while few years later
Ulam asked if there are other planar convex sets, besides the disk, which
have the floating property, that can be described as follows. Assume that the
set has density 1/2 and it is immersed in the water (hence, half of the set
remains immersed while the other half stays out of the water): the set is said
to have the “Ulam floating property” if the floating position is of equilibrium,
and if this remains true after an arbitrary rotation of the set. For instance, of
course the disk has the Ulam floating property, while any other ellipsis does
not: indeed, only two floating position of the cilinder are of equilibrium (those
for which the water is parallel to one of the two symmetry axes of the ellipsis),
while all the other positions are not of equilibrium. In the 1930’s, Auerbach
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showed (see [1]) that the two problems above are equivalent, and that there
is a whole class of sets having these two properties (we call such sets “Zindler
sets”, and for instance the Auerbach triangle is a Zindler set). In his paper,
Auerbach considered also the question of which Zindler set minimizes the
area, among those for which the length of every bisecting chord is the same,
say 2: he was able to show that the answer is not given by the disk, and he
conjectured that the solution should have been the triangle that has then
been called Auerbach triangle, whose area is ~ 3.11, thus just more or less
1% less than that of the unit disk.

In the last years the problem addressed above was finally solved in [3, 2].
In particular, Fusco and the second author proved in [3] the Auerbach con-
jecture, that is, the Auerbach triangle minimizes the area among the Zindler
sets. Then, Esposito, Ferone, Kawohl, Nitsch and Trombetti in [2] proved
that the convex set with minimal area (among those with all the bisecting
chords of length at least 2) must be a Zindler set, and thus it is the Auerbach
triangle.

Up to now, nothing has been said in the non-convex case, and the aim
of this paper is to start working on this more general problem. We can im-
mediately notice that the Auerbach triangle is no longer the solution if we
allow other sets to be considered: for instance, consider the “Zindler flower”,
shown in Figure 1 right. As it appears evident from the figure, the boundary
of this set is contained in the union of three equal arcs of circle, each of which
covers an angle of 120°. It can be easily calculated that the area of this set
is & 2.54, then much smaller than both the area of the unit disk, and that of
the Auerbach triangle.

In this paper, we consider the class of the “chord-convex sets”, see Def-
inition 2.1: roughly speaking, these sets are not necessarily convex, but have
the property that all the bisecting chords are actually segments. We will be
able to prove some preliminary interesting properties of these sets, and also
to give some counterexamples.

FIGURE 1. The “Auerbach triangle” and the “Zindler flower”.
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2. Definitions and results

In this section we give all the relevant definitions and we prove our results:
it would be impossible to give first the definitions and then present and
prove the results, because most of the definitions would not make sense if
some properties have not been preliminarly proved: hence, we have to give
definitions and results together. We divide these definitions and results in
three groups: the uniqueness of the bisecting chords, the properties of the
extremes of the bisecting chords and of the intersections between chords,
and the Zindler sets. First of all, we can define the class of sets that we will
consider.

Definition 2.1. Let £ C R? be an open set of finite measure with the property
that F = Int E. The line r is called a bisecting line if the intersection of F
with each of the two half-spaces in which R? is subdivided by 7 has area
exactly |E|/2. The set E is called chord-convez if the intersection of E with
each bisecting line is a closed segment, which will be called bisecting chord.
The size of a chord-convex set is the minimal length of a bisecting chord.

Through all the paper, we will always consider chord-convex sets of size
at least 2. The main problem that one wants to consider is the minimization
of the area among the chord-convex sets of size at least 2. For instance, the
unit disk of area 7 is such a set, as well as the Auerbach triangle, which has
area =~ 3.11, and as the Zindler flower, which has area &~ 2.54: the first two
sets are also convex, while the third is only chord-convex.

2.1. Uniqueness of the bisecting chords of given direction

The first property that we want to investigate is the uniqueness of the bisect-
ing chord of a given direction, to which we will devote the present section.
Indeed, it is obvious by continuity that for every direction there is some bi-
secting chord of that direction, but the uniqueness is not clear, since it is
not obvious that a chord-convex set is connected. Actually, as we will see in
Theorem 2.6 and Example 2.1, the closure of a chord-convex set is always
connected (and even simply connected), but a chord-convex set need not to
be connected. However, the uniqueness of the bisecting chord of any given
direction is ensured by Theorem 2.6. Before proving that, we need a couple
of technical results and of definitions. Throughout this section, E will always
denote a chord-convex set.

Definition 2.2. Let 2, y € E. We say that 2 and y are connected if there is a
path in E connecting = and y. If b is a bisecting chord, we say that  and b
are connected if there is some y € b such that x and y are connected. Notice
that, by definition, if = and b are connected then z is connected to every
point y € b.

Lemma 2.3. Let E be a chord-convex set, and b be a bisecting chord of di-
rection 6 € $1, and let x € ENb. Then there exists € > 0 such that for all
0 € (0 —¢,0+¢) there is a unique bisecting chord b() of direction 6, and
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this chord is connected to x. Moreover, the distance between the chords b and
b(0) is arbitrarily small, as soon as € has been chosen small enough.

Proof. Since E is open and z € FE, we can take a square centered in z,
with two sides parallel to 7, entirely contained in E. Let now z* be two
points in the interior of the square, contained in the two opposite halfspaces
defined by the bisecting line 7 containing the chord b, and let also r* be
the two lines parallel to r passing through x*. The situation is depicted in
Figure 2. Let us now define H, the halfspace “below” the line r, that is, the

<

FIGURE 2. The situation in Lemma 2.3.

one containing 7~. We also call H, the halfspace “below” : this makes sense
for every line v with a direction close to that of . Since r is a bisecting line,
we have |[E N H,| = 1/2, thus |[EN H,-| < 1/2 < |E N H,+| because the
square is entirely contained in E. By continuity, there is € > 0 such that
|ENH,- )| <1/2<|ENH,+@)]|forall € (§—e,0+c), where r*(§) and
r~(6) are the lines of direction 6 passing through z+ and 2~ respectively. By
continuity, and recalling again that the square is contained in E, we deduce
that there is a unique bisecting line of direction 6, which lies between r+(6)
and r~(0), and thus intersects the square. Since E is chord-convex, we deduce
the existence and uniqueness also of a bisecting chord b(6). Since this chord
intersects the square, we derive also the closeness of b(f) to b, as well as the
fact that b(#) is connected to x. O

Lemma 2.4. Let r, s be two different bisecting lines of a chord-convex set E,
let T be one of the four corresponding open regions, and let v € TNE. Then,
there exists a bisecting line passing through x, whose direction belongs to the
open interval in St corresponding to T.

Proof. Let us call, as in Figure 3, r, and s, the two lines passing through =
and parallel to 7 and s respectively, and let us also denote, as in the proof of
Lemma 2.3, by H, the half-space “below” v for any line v having direction
between those of r and of s. Then, by construction |ENH, | < |[ENH,| =1/2,
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Ty

FIGURE 3. The situation in Lemma 2.4.

since z € T and 7 is a bisecting line. Moreover, since x belongs to F, then in
fact it must be |[E N H,_| < 1/2, and in the very same way |[E N H,_ | > 1/2.
By continuity, there is clearly a line passing through z, with direction in the
open interval of S! corresponding to 7', and which is bisecting. ([

Definition 2.5. We say that the sequence of lines {r,},en converges to the
line r if the directions of 7, converge in S! to the direction of r, and for any
ball B big enough the segments r, N B converge in the Hausdorff sense to
the segment r N B.

We are finally in position to prove the main result of this section.

Theorem 2.6. Let E be a chord-convex set. Then, E is connected and simply
connected, and there is a unique bisecting chord for every direction in S'.

Proof. We will divide the proof of this result in four steps, for the sake of
simplicity.

Step 1. Fvery sequence of bisecting lines converge to a bisecting line up to a
subsequence.

Let {r,} be a sequence of bisecting lines: first of all, up to a subsequence
we can assume that the directions of the lines r,, converge to some 6 € S!.
Then, we will obtain the existence of a line r such that the sequence {r,}
converge to  (up to a subsequence, of course) as soon as we show the existence
of a ball B which has non-empty intersection with all the lines r,. Let then B
be a ball centered at the origin and with the property that |E'N B| > |E|/2,
which clearly exists since this is true if the radius of the ball is big enough.
We have that BN, # (), which follows immediately from the fact that r,, is
a bisecting line and thus, as pointed out above, we derive the existence of a
line r such that a suitable subsequence of {r,} converges to r. To conclude
this step, we only have to show that r is a bisecting line, but this is in turn
obvious by continuity and since so are all the lines r,,.

Step II. If r and s are two bisecting lines such that there exists x € ENr\ s,
then for each of the four open regions T;, 1 < i < 4 determined by r and s
one has |T; N E| > 0.
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Let us assume, without loss of generality, that x belongs to the closures
of Ty and T, and that T3 (resp., Ty) is the region opposite to T; (resp.
T5). Then we have by construction that |E N Ty| = |E N T3/, and in turn
|ENTyi| > 0 because x belongs to the open set E. The same argument shows
also |[ENTy| = |ENTy| >0, then the step is completed.

Step III. The set E is connected and there is a unique bisecting chord for
each direction.

Take a generic point z € F, and let r be a bisecting line passing through
x. Without loss of generality, let us assume that the line r is horizontal. Define
now

0 = max {u € [0,7] : V0 < 0 < v, I bisecting chord b(6)
of direction 6, and b(0) is connected to x ¢ .

Of course, if we show that # = 7 then we have proved at once the uniqueness
of the bisecting chords for any direction, and the connectedness of E (since
any two points of F are connected to z, and then they are connected among
themselves).

FIGURE 4. The situation in Step III: the region T is shaded.

Let us then assume by contradiction that # < =, and notice that
Lemma 2.3 ensures that § > 0. Pick now a bisecting line s of direction 6
—we still do not know whether this bisecting line is unique, or connected to
x, but the existence is obvious. The point x cannot belong to s, because oth-
erwise Lemma 2.3 would give a contradiction to the maximality of 0. Let us
call T the region (shaded in Figure 4) determined by r and s corresponding
to the angles between 0 and # and not containing z in its closure. By Step II
we have [T'N E| > 0, so in particular there is some point y € TN E. Applying
Lemma 2.4 to this point y and the region T', we find a bisecting line passing
through y and with direction 6 € (0,6). By definition of 8, we know that this
line is the unique bisecting line with direction 8, and that its intersection b(é)
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with E is connected to =. Thus, there is some path v C E starting from y
and ending at x, and this path must clearly intersect s.

As in Figure 4, let us call s* two lines parallel to s, lying on the opposite
hyperplanes defined by s. We can choose the lines very close to s, so in
particular neither y nor x is between them, and hence v must cross both
sT. Recalling that 7 is contained in E, and calling again H,+ the half-space
“below” s*, we deduce

|[ENH,-| < |ENH,| :%< |ENHg|.

Arguing exactly as in Lemma 2.3, we obtain then the existence and unique-
ness of a bisecting line of direction 6 for any 6 € (6 — ¢,0 + ¢), and the
corresponding bisecting chord b(8) must surely be connected to z, since it
intersects the path 7. Since this is in contrast with the definition of 6, we
have obtained § = 7 which —as noticed above— concludes this step.

Step IV. The set E is simply connected.

To conclude the proof of the theorem, we only need to check that the
set E is simply connected. If this were not true, there would exist a closed
curve v C E enclosing some small ball B C R? \ E. Pick any point 2 € B,
and take any bisecting line r passing through x: by construction, each of the
two halflines contained in r and having x as endpoint intersect ~, thus E.
Since this implies that r N E is not a segment, the contradiction comes from
the fact that F is chord-convex. O

We can immediately observe two simple consequences of the above The-
orem.

Corollary 2.7. The claim of Lemma 2.4 is valid for any x € T, not only for
the points x € TN E.

Proof. Let us call, as in the proof of Lemma 2.4, H,, Hy, H,, and H,, the
four half-spaces determined by the lines r and s, and by the lines r,, and s,
parallel to r» and s but passing through =z.

Again, we know that |[EN H, | < |ENH,| = 1/2 since H,, C H,.
There are now two possibilities: either |E N H, | =1/2, or |[ENH, | <1/2.
The first case can be excluded because otherwise r and r, would be two
different parallel bisecting lines, which is impossible by Theorem 2.6; then,
|ENH,|<1/2, and in the very same way |E N Hy_ | > 1/2. The conclusion
follows then exactly as in Lemma 2.4. O

Corollary 2.8. In any chord-convex set E, every two bisecting chords inter-
sect.

Proof. Suppose that there exists two bisecting lines, 7 and s, such that the
corresponding bisecting chords b(r) and b(s) do not intersect. As in Figure 5,
let us then call T and T two of the regions in which r and s divide the plane,
so that b(r) and b(s) belong to the closure of T, and T is opposite to T'. Since
both 7 and s are bisecting lines, we have |[T'N E| = |T N B.



8 B. Acciaio and A. Pratelli

/// \ C(s
o) (s)
T
r .8

FIGURE 5. Situation in Corollary 2.8.

Now, if [T N E| > 0 then there is some z € T'N E, but this is impossible
because this z would not be connected with the two chords: indeed, a curve
connecting = with b(r) should somewhere exit from the region T', and this
would happen at some point in 7 \ b(r), or in s\ b(s), against the definition
of bisecting chords. On the other hand, if |T'N E| = 0, then also |T'N E| = 0,
and we run into the same contradiction, because then the two chords b(r)
and b(s) would not be connected with each other. O

In the above Theorem 2.6, to get the simply connectedness it was nec-
essary to consider the closure E of E. In fact, there exist chord-convex sets
which are not simply connected (but their closure is of course simply con-
nected, by Theorem 2.6). An example is shown below.

Ezample. Let us present now an example of a chord-convex set which is not
simply connected. As in Figure 6, let AD be a segment, and let the points
C' and B divide it in three equal parts. Then, let P and @ be two points
on the circle centered at C' and passing through A and B, such that the
segment P(Q passes through C. Analogously, let R and S be two points on

FIGURE 6. Example 2.1: the set F is shaded.

the circle centered at B passing through C' and D, so that the segment RS
passes through B. Let finally F be the bounded set whose boundary is the
union of the segments AC, BD, PC and BS, the arcs of circle :473, /5227 CR
and @, and some convex curve connecting R and @ as in the Figure. Of
course, a suitable choice of this curve and the other parameters allows us to
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consider that the different parts of E as sides either 1, or «, or 1 — « for
some 0 < o < 1, as indicated in Figure 6. As a consequence, it is very quick
to understand that this set E is chord-convex, but it is not connected (as
already said, of course E is connected, according to Theorem 2.6).

2.2. Properties of the extreme points and of the intersections between chords

Thanks to Theorem 2.6, we have the uniqueness of the bisecting chords of
any direction. This allows us to give the following definition.

Definition 2.9. Let E be a chord-convex set. For any 6 € S!', we denote by
7(6) the unique bisecting line of F with direction 6, and by L(#), M (6) and
R(0) the left extreme, the center and the right extreme, respectively, of the
corresponding bisecting chord, that we denote by b(#). As a consequence,
b(0) = r(0) NE = [L(0), R(9)].

Notice that of course
MO+ )= M), L0+ m)=R(), RO+ m) = L(O).

Moreover, for any 6 € S, we will call my the projection on the bisecting line
r(0), and define

L*(6) = lim mg(L(e)), R™(0) :=lim 7y(R(c))
a—6
while, by definition,
L(9) = lim mp(L()), R(9) = lim mo(R(a)).
a—0

Proposition 2.10. Let E be a chord-convex set with size 2. Then, for every
0ecS',

LOR-(0) > 2, LT (O)R(0) > 2.

Proof. By symmetry, it is enough to show the first inequality. Let us also
assume for simplicity of notation that 8 = 0, and assume that L(0)R~(0) <
2. By definition of R~, we can find directions & arbitrarily close to 0 with
mo(R(€)) < R™(0) + &; on the other hand, if £ is close enough to 0, then
mo(L(§)) > L(0) — €. Let then & <« 1 be a direction for which both the
inequalities hold: one has then

mo(R(E)) — mo(L(E)) _ LO)R™(0) + 2¢
cosé - cosé

L(ER(E) = <2
where the last inequality is true as soon as both ¢ and |£| are small enough.
This gives a contradiction with the fact that the size of E is at least 2, and
this concludes the thesis. ]

)

Let us now prove that the intersection between any two bisecting chords
is always in the “internal part” of both, that is, between L+ and R™.

Lemma 2.11. Let E be a chord-conver set. Then, for any 0 # ¢ € S, one has
b(0) Nb(g) € [LT(9), R™(0)].
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Proof. Let us assume for simplicity that § = 0, and assume also that the claim
is false. Hence, there exists some £ # 0 such that b(0) N b(€) € [L(6), LT(0)).
By definition of LT, we can find an arbitrarily small a with L(a) very close
to LT(6), in particular mo(L(a)) > b(0) N b(&). Since we can choose such a
direction satisfying |a| < |£|, we obtain that the bisecting chords b(«) and
b(&) do not intersect, which is absurd by Corollary 2.8. O

We can now deduce that the segments [L, L] belong to the boundary
of E.

Lemma 2.12. For any 0 € St, we have b(§) N E C (L*(0), R~ (0)), which in
particular implies that the interval [L(0), LT (0)] belongs to OF.

Proof. As usual, let us take # = 0 and write L = L(0) and Lt = L*(0) for
simplicity of notations. By definition, it is clear that L € OF, hence there
is nothing to prove if L = LT; moreover, since dF is closed, it is enough to
exlude the presence of some point of E in the open interval (L, LT). Suppose
then that such a point exists, thus there exists some small ball contained
in £ and centered at a point of (L, L*) N E, as in Figure 7. Any point of

L ﬁQ:U\\L"‘ ba

R

b1

FiGURE 7. The situation in Lemma 2.12.

this ball if of course contained in some bisecting chord; if we take points
arbitrarily close to the center, we get that the corresponding bisecting chords
become very close to be horizontal: otherwise, we would find a bisecting chord
b(€) for some £ # 0 which intersects b(0) in the center of the ball, against
Lemma 2.11.

Let us then take two points of the ball, x and y, respectively above and
below b(0), and consider two bisecting chords b and bs passing through x and
y, which have of course respectively a negative and a positive direction, since
they must intersect b(0). Again by Lemma 2.11, we know that both these
chords intersect b(0) at some point in [L*, R™]; since E is simply connected
by Theorem 2.6, we obtain that E contains the open region R shaded in
Figure 7, which is the union of the ball and the triangle with extremes x, y
and the intersection between b; and by. Since LT is the limit of left extremes,
it belongs to OF: thus, at least one between b; and b, must pass through LT,
for instance the figure depicts a situation where L™ € by but LT ¢ b,.

Let us use again that fact that LT is the limit of points L(6;) for a
suitable sequence §; — 0. Take some 6; such that |0;| is smaller than both
the directions of b and of by, and consider the point L(6;): it cannot belong
to R, because it belongs to OF while R C E. On the other hand, if it does
not belong to IR then the chord b(6;) cannot intersect both by and by, which
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is absurd: we deduce that L(6;) belongs to one of the two segments z L™ and
yL* (in particular, one which is part of by or bs). However, this also leads
to a contradiction, because since |0;| < 1 then the bisecting line r(6;) would
enter inside R before the left extreme L(6;), which is a contradiction with
the definition of bisecting chord. We have thus concluded the proof. O

It is now useful to introduce the further notation.

Definition 2.13. A point x € [L(#), R(0)] is said to be above E (resp. below E)
if there is a ball B(z, p) of center x and radius p such that B(xz, p) N H,) € E
(resp. B(z, p) N Hy, C E). An interval I C [L(6), R(0)] is said to be above
E (resp. below E) if is made of points which are all above E (resp. below E).

Lemma 2.14. Let E be a chord-convex set and assume that for some § € St
there exists a point z € [L(A), LT (0)) which is below E. Then the whole
segment (z, L1 (0)) is below E, and there is no point in [L(0), LT (6)) which
is above E.

Proof. The proof follows with the very same argument as in Lemma 2.12.
Indeed, assume as usual that § = 0 and take a point z € [L(0), L*(0)) below
FE: by definition, this means that there is a small ball centered at z whose
upper half ball belongs to E. As in the proof of Lemma 2.12, we can take some
point x in this ball very close to z, so that a bisecting chord passing through z
must have a negative slope close to 0 and cross b(0) in a point which belongs
to [LT(0), R=(0)]. As a consequence, the simply connectedness of E given by
Theorem 2.6 ensures that the whole open triangle xzL*(0) is contained in
E, and this implies that every point of the segment (z, LT(0)) is below FE,
which concludes the first part of the proof.

The second part follows immediately: if some point in [L(0), LT (0))
were above E, by the first part there would be points in [L(0), L*(0)) which
are at the same time above an below FE. hence which are inside F. And in
turn, this gives a contradiction with Lemma 2.12, because the whole segment
[L(0), L*(0)] must be in OF. O

We can now characterize the intersection b(f) N E for any angle 0. Let
us be more precise: fix for simplicity # = 0, and write again L, L™, R~ and R
in place of L(0), L*(0), R~(0) and R(0). Define then, for any 6 # 0, P(6) as
the intersection between b(0) and b(6); moreover, define the following points
in [LT, R™],

Fo=1lim P(), Qr :=lim P(6), QF:=1lim P(#), Q. :=Ilim P(6).
Qf = PO). Q= lim PO, Q= [ PO). Q= lim PO
Arguing exactly as in Lemma 2.12 and Lemma 2.14, we can prove that

(L*,Q;") and (Q; -, R™) are below E,
while (LT, Q;') and (Q; , R™) are above E.

Indeed, for any € > 0 we can find some 0 < —f < 1 such that mo(L(6)) <
Lt +¢ and mo(P(6)) > Q;F —e. Since the function 8(0) = m; ' (LT +¢)Nb(6)

(2.1)
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is well defined and continuous near 0, we deduce that the vertical segment
connecting L™ +¢ to 3(0) is entirely contained in E, thus again Theorem 2.6
ensures that the triangle of vertices L* +&, 8(6) and P(f) is inside F, and in
turn this implies that all the points of (LT +¢, er —¢) are below E, which by
letting ¢ — 0 implies that the interval (LT, Q?‘) is below E. The very same
argument shows also the claims about the other three intervals, so (2.1) is
established. As a consequence, if we set

Q+ = min{Qva Q:_}7 Q = maX{Q;7 Qr_}a

we know that F contains the open intervals (L*, Q%) and (Q~, R™). There
are now two possible cases: if QT > @7, then the whole interval (L1, Q™) is
inside E. Instead, if QT < Q~, then we know only that E contains (LT, Q™)
and (Q~, R™); the points in (Q*, Q™) are then all above E but not necessarily
below E (if Q] < Qf = QY < Q™ = Q; < @), or all below E but
not necessarily above E (if Q; < QF = QT < Q= = @Q; < Q). All
these observations become particularly useful in a specific case, namely, if
the functions L and R are continuous at = 0: indeed, in this case, obviously
L=L"and R= R, and it easily follows that the four points Qri , coincide
all with the middle point of b(0) (this follows from Lemma 2.16 below). We
can then summarize what we found in the following result.

Lemma 2.15. Let E be a chord-convex set such that the functions L and R
are continuous. Then, the interior of any bisecting chord b(0) is contained
inside E, except possibly the middle point M(0).

Let us now show what we just mentioned, that is, the intersection be-
tween bisecting chords converges to their middle point when L and R are
continuous.

Lemma 2.16. Let E be a chord-convex set such that L and R are continuous.
Then, for any 6 € S*, the point b(0) N b(E) converges to M(0) when & — 6.

Proof. Let us call £ the length of the chord b(f). For any & € S', since both
b(#) and b(§) are bisecting chords then we know that |T'N E| = |T' N E|,
where T and T’ are two opposite regions in which R? is divided by the two
lines 7(0) and r(&). In particular, let £ = 6 + 1 be very close to 6, and let
T and T" the two opposite “small” regions, that is, those corresponding to
the small corner n <« 1. Since L and R are continuous, we know that the
extremes of any bisecting chord of directions between 6 and £ are at most a
distance € apart from those of b(6); as a consequence, if the point b(6) Nb(§)
is at distances d and ¢ — d from the extremes of b(f), we have

d—e)? d+e)?

(TE)MISITHEIS%IHL
{—d—¢e)? {—d+e)?
Cod =y < gy < 200y,

and it follows that d converges to £/2 when n — 0, that is the thesis. O
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We can conclude this section with an important result, which states
that the intersection point between any two bisecting chords cannot be an
extreme point for both them.

Theorem 2.17. Let E be a chord-convex set. Then, two bisecting chords cannot
intersect at a point which is extreme point for both them.

Proof. Let us suppose that the claim is false. In particular, we can assume
that L := L(0) = L(#) for some 0 < 6 <  (if for such a # one has L(0) = R(0)
then a very similar argument would work).

We observe then that, for every 0 < £ < 6, the bisecting chord b(§)
must pass through L, since it must cross both b(0) and b(#). By definition of
R~, we can now take some 0 < £ < @ such that mo(R(£)) > R~ — ¢ for every
0 < & < &. As a consequence, for every 0 < £ < & we have that

LR(&) > Lmg(R(§)) >R™ —L—e>2—¢,

where the last inequality comes by Proposition 2.10, assuming without loss
of generality that the size of E is 2. We call for brevity n:= R~ — L —¢ > 0.
Let us now fix any two directions 0 < &1 < & < &, and call T and T’ the two

T/

FIGURE 8. The situation in Theorem 2.17.

regions determined by the bisecting lines r(£;) and r(&:), as in Figure 8. By
construction we have

2¢
|EﬁT\:\EﬂT’|2M,

and this implies that there is some point x € ENT with mo(z) < L — 7.
By construction, a bisecting chord passing through x must have direction
between 0 and 6; but then, it must pass through L, and so its direction is
actually between &; and &. Summarizing, for any choice of 0 < & < &3 < 0
we have found a direction £ € (&1, &2) such that mo(L(€)) < L —n. If we now
send both &; and &; to 0, so does also £, and this implies that

L=lim mo(L(§) <L—1,
£§—0

which is absurd. This concludes the proof. ([l
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Notice that the above Theorem does not say that the intersection point
of two bisecting chords is always in the interior of both them, but only that
it cannot be extreme for both them. For instance, in the case of the Zindler
flower of Figure 1, the left extreme L(7/2) is the intersection point of b(w/2)
with b(0): in particular, this point is left extreme of a bisecting chord, and
middle point of the other one. We can immediately observe that this is always
the case, at least when L and R are continuous functions.

Corollary 2.18. Let E be a chord-convez set such that L and R are continuous.
Then, if the intersection of two bisecting chords is an extreme point of one
of them, it must be the middle point of the other one.

Proof. This immediately follows from Theorem 2.17 and Lemma 2.15. Indeed,
assume that = = b(6) N b(&) coincides with L(6) for some § # ¢ € S’
Theorem 2.17 ensures that z is neither L(&) nor R(§), hence x € (L(§), R(£)).
On the other hand, z € JE, and the only point of (L(£), R(£)) which can be
in OF is the middle point, according to Lemma 2.15. (]

2.3. Zindler sets and their properties

In this last section we define the Zindler sets and we prove their main prop-
erties.

Definition 2.19. Let E be a chord-convex set. We say that E is a Zindler set
if all the bisecting chords have the same length.

As we said in the introduction, the Zindler sets play an important role
in the problem of minimizing the area among the convezr set of given size:
roughly speaking, it is very easy to guess (but hard to show!) that a minimizer
of the area must be a Zindler set. In fact, the proof of the minimality of the
Auerbach triangle was done in two steps, by different authors: it was first
proved that the Auerbach triangle minimizes the area among the (convex)
Zindler sets, and then that a minimizer among the convex sets (which trivially
exists by compactness) must be Zindler.

The general situation of the chord-convex sets that we are considering
now seems even more complicated, though there are common points. First of
all, it is not obvious whether a minimizer of the area among the chord-convex
sets exists, since while the class of convex sets is compact, the class of the
chord-convex sets is not so. Moreover, it is again extremely reasonable to
guess that, if a minimizer exists, then it must be a Zindler set: we are not
able to show this result in full generality, but we can prove a particular case
in Theorem 2.23.

We can immediately observe that, for a Zindler set, the functions L
and R are automatically continuous, hence in particular Lemma 2.15 and
Corollary 2.18 always apply for a Zindler set.

Lemma 2.20. Let E be a Zindler set. Then, the functions L and R are con-
tinuous.
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Proof. This comes readily from Proposition 2.10. Indeed, assuming without
loss of generality that the size of E is 2, for any # € S! we know on one
side that L(0)R(6) = 2 because E is a Zindler set, and on the other hand
that L(6)R—(6) > 2 by Proposition 2.10. It follows that R~ (¢) = R(6), and
similarly that LT (0) = L(#). By definition of L™ and R™, the continuity of
L and R is then obvious. (]

Recall now that Corollary 2.18 tells us that, for a Zindler set, the in-
tersection between two bisecting chords has two possibilities: either it is an
internal point of both chords, or it is at the same time extreme point of one
of them, and middle point of the other one. Of course the second case is
more peculiar, and we will call “edge angle” any of the two directions. More
precisely, it is useful to give the next definition.

Definition 2.21. For any chord-convex set E, the sets £, R, ML and MR
are defined as

L= {0 cS':3ne[0—n/2,0+r/2] such that L(0) = M(n)},

R — {9 eS':3nef—n/2,0+ /2] such that R(0) = M(n)

b

i

ML = {9 eS':3ne [0 — /2,0 +m/2) such that M(0) = L()

MR = {9 eS':3nef—n/2,0+ /2 such that M(8) = R(n)

N N

If 0 belongs to any of the above sets, we call it an edge angle.

We can immediately notice a technical property of the intervals which
are contained in one of the above sets. We state it for ML, but of course the
analogous results for the other sets are also valid.

Lemma 2.22. Let E¥ be a chord-convex set such that L and R are continuous,
assume that I C ML for some interval I C S' and define v : I — St the
function such that M(0) = L((0)) for any 8 € I. Then, the function ¥ is
decreasing.

Proof. First of all, observe that the function v is well-defined, since by The-
orem 2.17 it is not possible that two different directions have the same
left extreme. Let us assume without loss of generality that I = (0,6) and
0<¥(0) <.

We claim that for any 6 € I the middle point M () is below r(0): indeed,
since the function 1 is clearly continuous, then 0 < % (0) < =, and then if
M(6) = L(¢(6)) is above r(0) the two bisecting chords b(0) and b(¢(6))
do not intersect, which is absurd by Corollary 2.8. Analogously, since b(6)
must intersect b((0)), then by construction b(6) N b(y(0)) € (M (), R(9)).
Finally, since M (0) = L(4(0)) and b(¢(8)) must intersect b(¢/(0)), it follows
0 < () < ¢(0). The monotonicity of the function ¢ then follows. O

As we said above, it is reasonable to expect that the intersection of two
bisecting chords is usually an internal point for both of them, and that the
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edge angles are quite rare: for instance, the Zindler flower of Figure 1 has
six edge angles (corresponding to three “bad” pairs of chords), and a simple
modification —namely, a flower with n petals instead of 3— gives an example
with 3n edge angles. In particular, if the edge angles are finite or countably
many, we can show that a minimizer of the area —if it exists— must be a
Zindler set. It is actually enough something even weaker, namely, that the
edge angles do not fill any open interval.

Theorem 2.23. Assume that E minimizes the area among the chord-convex
sets of size 2. Assume in addition that L and R are continuous, and that the
directions which are not edge angles are dense (for instance, this is true if
the edge angles have zero length in S*). Then, E is a Zindler set.

Proof. Let us assume that E is not a Zindler set: then, there must be a
direction such that the corresponding bisecting chord has length strictly more
than 2. Actually, the same remains true for all the directions in a small
neighborhood, because L and R are continuous, and so is then also the length
of the bisecting chords. Since the non-edge angles are dense, we can then
assume the existence of a direction (say, 0) which is a non-edge angle and for
which the bisecting chord has length 2¢ > 2 + 6a, for some strictly positive
a.

Let us now apply Lemma 2.16 to get the continuity of the function
7: St xSt — R? defined as 7(6,€) = b(0)Nb(€) for 6 # &, and 7(0,0) = M (6).
Since 0 is not an edge angle, L(0) and R(0) do not belong to the image of 7,
hence we can assume, possibly up to decrease a, that

7(0,€) ¢ B(L(0),6a) UB(R(0),6a)  V0,(eS". (2.2)
By the continuity of L and R, there exists # > 0 such that
max {L(9)L(0), R(O)R(0)} <a VO e (-0,0). (2.3)

Let us now call z = 7(—6, 6): again by Lemma 2.16, up to decrease # we have
also

xM(0) < a. (2.4)
Let us now consider the four regions in which R? is subdivided by the bisecting
lines 7(6) and r(—@), and call T and T" the two small ones, corresponding to
the directions between — and 6: as usual, we know that [T N E| = |T' N E|.
Putting together (2.3) and (2.4), we have that for any 6 € (-, ) both the
points L(#) and R(f) have distance at least £ — 2a from z. Thus, recalling

that E is simply connected by Theorem 2.6,
B(z,t—2a)N (TUT') CE. (2.5)

We define now the competitor set

E:=(E\(TUT))U(B(z,¢ —3a) N (TUT")).
By (2.5) we know that Eis strictly contained in F, so it has a strictly smaller

volume: we will conclude the proof by showing that E is also a chord-convex
set of size at most 2.
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First of all, observe that by construction |T'N E\ =|T'nN E|, hence

}(E\E) ﬁT’ = ](E\E) ﬂT’].
This implies that the lines () and 7(—0) are bisecting lines also for E, and
in turn this ensures that, for every # € (—@,0), the unique bisecting line of
direction 6 is the one crossing x, whose intersection with Eisa segment of
length 2(¢ — 3a) > 2. To conclude that E is chord-convex and has size at
most 2, it is then sufficient to show that for any 6 ¢ (—6,0) the line r(0) is a
bisecting line also for E, and its intersection with the closure of E coincides
with b(0) (and it is then a segment of length at least 2). Actually, since we
already checked that 7(46) are bisecting lines for E, it is enough to consider
directions 6 ¢ [0, 0].

Let then 6 be such an angle; notice that the intersection of r(6) with the
region TUT" is a segment PQ, and the points P and Q coincide by definition
with 7(6, ) and 7(0, —0), so they are both in b(#) and in b(+6). By (2.2) and
a trivial geometrical argument, both P and @ are inside the ball B(z, ¢ — 3a),
so the segment PQ is entirely inside E and the proof is concluded. O
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