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Abstract

We consider the problem of sharing pooled risks among n economic
agents endowed with non-necessarily monotone monetary functionals.
In this framework, results of characterization and existence of opti-
mal solutions are easily obtained as extension from the convex risk
measures setting. Moreover, the introduction of the best monotone
approximation of non-monotone functionals allows us to compare the
original problem with the one which involves only ad hoc monotone
criterions. The explicit calculation of optimal risk sharing rules is pro-
vided for particular cases, when agents are endowed with well known
preference relations.

Key words: risk measures, convex duality, risk sharing
JEL Classification: D81, G22
Mathematics Subject Classification (2000): 91B30, 46N10, 91B28

1 Introduction

The optimal exchange of risk between economic agents is a concept that
captures situations with very different characteristics and purposes: the risk
sharing in insurance and reinsurance contracts; the assignment of liabilities
by a company to its daughter companies; the individual hedging in an in-
complete market etc. Since the early work of Arrow [2] and Borch [7] (see
also Gerber [22, 23], Biihlmann [10] and Goovaerts et al. [24]) many authors
have considered this problem, and the predominant method by which this
has been accomplished is via expected utility. However, the introduction of
notions as coherent and convex risk measures (see Artzner et al. [3], Del-
baen [15, 16], Féllmer and Schied [19, 20]) has recently led several authors to
study the risk sharing problem by using a new kind of approach (see Barrieu



and El Karoui [4, 5, 6], Jouini et al. [27], Filipovi¢ and Kupper [18], Burg-
ert and Riischendorf [11, 12]). For some of the large number of references
on optimal risk allocation, we refer to Dana and Scarsini [14], Burgert and
Riischendorf [12] and the references therein.

In this paper we adopt this new approach to the measures of risk /utility
and weaken the requests made on choice criterions in order to consider non-
monotone preferences as well. This will allow us to include, in our analysis,
both the monetary utility functions and some widely used non-monotone
criterions, such as the mean-variance and the standard-deviation principles.
Of course in this framework we have that pathological situations may occur,
where agents seem to choose in contradiction with the rational economic be-
haviour. Nevertheless, with regard to the risk sharing problem, fundamental
results of existence and characterization of optimal solutions (as those given
in [27] for the case of two monetary utility functions) are easily extended
to our more general setting. In the first part of the paper we formalize
these natural extensions and introduce, for any non-monotone functional,
its best monotone-adjusted version, based on Maccheroni et al. [29]. This
will lead us to give comparison results on the behaviour of monotone and
non-monotone agents when facing the risk sharing problem, which consti-
tute the first main contribution of the present paper. In particular, provided
that at least one agent is characterized by monotone preferences, we show
that there is a strict link between the solutions to the original optimal risk
sharing problem and the solutions to the new one only involving “ad hoc”
monotone choice criterions. We especially obtain interesting results when
dealing with agents having mean-variance preferences. Indeed, in this situ-
ation we find that the Pareto optimal redistribution of the total risk is not
sensitive to the lack of monotonicity by some agents.

The second contribution of the paper consists in providing the explicit
solutions to some concrete risk exchange problems. We consider some widely
used choice criterions and also characterize the solutions of problems where
the agents have particular attitudes, such as the strict risk-aversion condi-
tionally on any event. What stems from the cases studied here is that the
optimal redistribution of the risk often leads to simple contracts consisting
in the exchange of European options written on the total risk or in a propor-
tional sharing of it. In this way we get typical forms of insurance contracts,
such as stop-loss and quota-share rules. These examples also reveal peculiar
attitudes linked to the respective preference relations: the conservative be-
haviour of the entropic-agent, as well as the inclination of the AVQR-agent
towards taking extreme risks.

The paper is organized as follows. In Section 2 we define our family of



choice criterions and recall some fundamental properties. In Section 3 we
formulate our optimization problem. Here we first give easy generalizations
of some well known results, and then compare the original problem with an
associated one which only considers monotone functionals. In Section 4 we
explicitly solve some risk sharing problems involving particular choice func-
tionals, whose dual transforms and differentials are studied in Appendices
A, B.

2 Choice Criterions and Related Properties

2.1 Set Up and Notations

We work in a simple model consisting of two dates: today, where every-
thing is known, and a fixed future date (say tomorrow), where a stan-
dard probability space (2, F,P) is given. With L*>® := L*°(Q,F,P) we
mean the collection of all essentially bounded random variables, and with
(L*°)* := L>(Q, F,P)* its topological dual space, i.e., the set of all bounded
finitely additive measures p absolutely continuous w.r. to P. We write P
(resp. P,) for the collection of all probability measures (resp. o-additive
measures normalized to 1) on (£, F) absolutely continuous w.r. to P, and
Z (resp. Z,) for the set of their Radon-Nikodym derivatives.

Throughout the paper we will frequently make use of classical results
from duality theory, for which we remind the reader to [31] and [8]. Here
we just recall that, given ¢ and ¢* (resp. concave and convex functions)
(L, (L*>)*)-conjugate, their gradients (resp. supergradient and subgradi-
ent) are defined as follows:

0p(X) ={pe (L) : oY) < p(X)+ (1, Y — X), VY € L™},

9" (1) ={X € L= :¢7(n) = " () + {n — p, X), ¥ € (L)},
A standard result of convex analysis states, for any (X, u) € (L%, (L>®°)*),
the equivalences

1€ dp(X) <= X € —0¢" (1) <= ¢(X) = ¢ (1) + (1, X). (1)

Here we consider L™ as space of possible financial positions occurring to-
morrow, and we evaluate them by means of functionals representing agents’
preferences and fulfilling suitable properties. Following the axiomatic ap-
proach of Artzner et al. [3], we first introduce the class of monetary utility
functions (that, up to the sign, are exactly the convex risk measures in the
sense of [20]).



Definition 2.1. A functional U : L (Q, F,P) — R, with U(0) = 0, is called
monetary utility function (m.u.f.) if it is concave, cash-invariant (U(X +
) =U(X)+¢,VX € L®,c € R) and non-decreasing w.r. to the order of
Lee.

This is exactly the family of functionals considered in [5], [27] and [12]
when studying the optimal risk exchange problem, and in particular it in-
cludes the Average Value at Risk (taken with the opposite sign), as well
as the entropic and the semi-deviation utilities (see Appendix A). Here we
enlarge the class of functionals admitted to represent agents’ preferences,
by dropping the request of monotonicity. However, by doing so we lose the
Lipschitz-continuity with respect to the supremum norm ||.||o (ensured for
m.u.f.’s), and in order to develop a theory of risk exchange based on con-
vex analysis we need to require some regularity condition. For that reason
throughout the paper we will consider choice criterions under the following
assumption:

Assumption 2.2. U : L>*(Q, F,P) — R, with U(0) = 0, is a concave and
cash-invariant functional, L -continuous (i.e., continuous w.r. to ||.||ec )

The request of L*-continuity guarantees the applicability of important
results of functional analysis. In particular, denoting by V' : L*°(Q, F,P)* —
[0, oo] the convex conjugate function (also called penalty function) of U, i.e.

V(p) = sup {U(X) = {u, X)}, Vi € (L), (2)
XeL>®
the Fenchel-Moreau theorem ensures that U and V are (L>°, (L*°)*)-conjugate,

and hence the following representation holds for U:

UX)= inf {V(u)+ {u, X)}, VX € L. (3)
RE(L>)*
Assumption 2.2 obviously embraces the class of monetary utility func-
tions, and it also allows to consider agents characterized by non-monotone
preference criterions, as the mean-variance one:

UmM(X) = E[X] — 6Var(X), &> 0, (4)

which is widely used to shape the choice of economic agents when there is
uncertainty (see, e.g., Markovitz [30] for the portfolio selection problem, as
well as Bithlmann [9, §4] for the premium calculation problem).



Example 2.3. Consider X =0 andY € L s.t. Y =y > 0 with probability
a € (0,1) and Y = 0 otherwise. For these financial positions, U™ (X) =0
and U§™(Y) = ay(1 — dy(1 — «)). Therefore, for any y > 1/(6(1 — a)) we
have U§™(Y') < 0, and the mean-variance agent considers X as being strictly
better than Y. This means that, if someone offers her a lottery ticket with
probability o of a “too-big” winning y, then the Uf""-agent does not accept
it.

Similar anomalous situations can arise when considering the standard-
deviation principle:

UsY(X) := E[X] — 6Var(X)'/2, >0, (5)

that, however, is a “good” choice criterion, in the sense that it satisfies
Assumption 2.2 as well. We just note that, thanks to positive homogeneity,
concavity is equivalent to super-additivity, which follows as a straightforward
application of the Cauchy-Schwarz inequality.

2.2 Representation Results and Additional Properties

Some fundamental results can be easily extended from the class of mone-
tary utility functions to the wider family resulting from Assumption 2.2.
Among them, notably, the possibility to formulate representation (3) over
L' instead of the whole dual space (L°°)* (where the inclusion L' C (L>°)*
holds by identification of o-additive measures with their Radon-Nikodym
derivatives), which clearly leads to more manageable situations, especially if
one wants to explicitly solve particular optimization problems (as the case
in Section 4). The following remark goes exactly in this direction and it can
be obtained as standard result from convex duality theory (see for instance
[15] and [19] for coherent and convex risk measures, as well as [1] for its
statement in this framework).

Remark 2.4. A functional U satisfying Assumption 2.2 admits the follow-
ing dual representation over the set of o-additive measures Py:

U(X) = inf {V(Q)+ BolX]}, VX € L™, (6)

if and only if it satisfies the Fatou property, i.e., for any bounded sequence
(Xn)nen € L™ converging P-a.s. to some X, then U(X) > limsup,, U(X,,).

We recall, for instance, that the Fatou property is satisfied by any U law-
invariant, i.e., that satisfies U(X) = U(Y) whenever X and Y have the same



distribution (see [26, Theorem 1.3]). The law-invariance is a crucial property
since it also ensures the existence of solutions to the optimization problem
studied in this paper (Theorem 3.7), and allows a dual representation in
terms of quantile functions (obtained by Kusuoka [28] and further extended
in [21] and [26] as far as m.u.f.’s are concerned, see [1] for its statement in
this more general setting).

Another concept stronger than the Fatou property is the following.

Definition 2.5. A functional U : L — R is said to satisfy the Lebesgue
property, if for any bounded sequence (X, )neny € L™ converging P-a.s. to
some X, then lim U(X,,) = U(X).

n—oo

This concept has been introduced in [26], where the authors show that
a functional U (satisfying our Assumption 2.2) has the Lebesgue property
if and only if the domain of its convex conjugate is contained in L' (and
therefore the infimum in (6) is actually a minimum). This ensures that
the AV@R-criterion fulfils this property (see Appendix A), as well as the
other choice functionals mentioned so far (by just applying dominated con-
vergence).

Definition 2.6 ([27]). A functional U defined on L™ is said strictly risk-
averse conditionally on any event if it satisfies the following property:

(S) UX) <U(X14c+E[X|A]14) for any A € F and X € L™ s.t. P(A) >
0 and essinfa X < esssupsX.

For example, this property is satisfied by both U™ and Ugd, by applying
Jensen’s inequality, as well as by the entropic utility, as shown in [27].

Remark 2.7. For any concave functional U satisfying property (S), we can
easily extend a result given in [27, Lemma 5.1]: ¥(X,Z) € L x L' such
that Z € OU(X) and Z is constant on some set A € F (with P(A) > 0),
then X is a.s. constant on A as well.

2.3 Monotone Adjusted Version of Non-Monotone Criteri-
ons

For each element in the family of criterions satisfying Assumption 2.2, we
want to give an approximation in the smaller class of monetary utility func-
tions, where the axiom of monotonicity is satisfied. By doing that we follow
[29], where the best monotone approxzimation of non-monotone functionals is
introduced in order to solve a portfolio selection problem. Let us first char-
acterize the set of financial positions where an agent behaves monotonically.



Definition 2.8 ([29]). Let U : L>®°(Q, F,P) — R be a functional satisfying
Assumption 2.2, and let (L)% = {p € (L*>)* : (1, X) > 0 whenever X >
0} be the collection of all positive measures. We call domain of monotonicity
of U the following subset of L*°:

M(U) = {X € L : 0U(X) N (L®)*. # 0}. (7)

As the definition suggests, for X, Y € M(U) s.t. X <Y, we get U(X) <
U(Y). Indeed, by hypothesis there exists py € OU(Y) N (L*)%, and by
the equivalences in (1) and representation (3) we obtain U(X) < V(uy) +
(uy, X) =U(Y) — (uy,Y — X) < U(Y). Consider, for example, the mean-
variance principle (4). In this case from Appendix B we obtain

MUM™) = {X € L® : VU™ (X) € 2} = {X € L®: X —E[X] < 2%}
Let now fix any functional U satisfying Assumption 2.2 and s.t. M(U) # ()
(e.g., U law-invariant, since in this case V(1) = 0, hence {¢ : ¢ € R} C
M(U)). We define the best monotone approximation of U as the most
conservative m.u.f. that extends it outside M (U):

U™(X) =sup{U(Y):Y € L® and Y < X}, VX € L*. (8)
By [29] we have that, for any X € L™, X € M(U) if and only if U(X) =
U™(X). Moreover, denoting V™ : (L*°)* — [0, o0] as the dual conjugate of
U™, then for pp € (L>)* we have

oy [ V), i pe (L),
v (,u)_{ 400, otherwise. (9)

Remark 2.9. From (10) and (11) we have that U™ defines the same concave
functional as UOU,,, where Uy (X) 1= 611% Eg|[X] is the worst-case (i.e. the
€

most conservative) m.u.f.

Example 2.10. In the case of mean-variance preferences U§", this mono-
tone approximation corresponds to a truncation of the payoffs from above

(see [29]):
mmv(yy — J Us (X)), if X € M(U§™),
U (X) = { U™ (X Nkx), otherwise,
for any X € L>, where kx = max{t € R: X ANt € M(U")}. Now, if
we consider the same payoffs as in Example 2.3, we have Y € M(U;™)
if and only if y < 1/(20(1 — «)), and then Y is truncated at level ky =

1/(26(1 — «)). Therefore, unlike the U§""-agent, the U™ -agent behaves in
a “more rational”’ way, accepting tickets of any lottery.



3 Optimal Sharing of Aggregate Risks

Consider an aggregate of n economic agents, for some n € N, characterized
by choice functionals (U;)?_; satisfying Assumption 2.2, and endowed with
initial risky positions (&), € L°°. The problem that arises is whether
the agents may re-share the total risk X = )" | & in order to make their
situation better, where “better” has the meaning of “more satisfactory” in
the sense of the choice criterions (U;)_;. We study the optimal exchange of
risk proceeding in two steps: first we maximize the joint level of satisfaction
of the agents; next we take into consideration the individual point of view
of each agent, looking for a contract that everyone agrees to sign.

3.1 The Sup-Convolution Problem

Definition 3.1. Given an aggregate of n agents and a risk X € L>*, we
define the set of attainable (resp. increasing) allocations as the following
collection of n-tuples:

An(X) = {(Xi)?zl e L™ iX - X}

(resp.A;(X) = {(X)"y € Ap(X): X; 1 X, W}) ,

where X; T X means X; = ¢;(X) pointwise, for some non-decreasing func-
tion ¢; : R — R.

The first problem we consider is the sup-convolution of the involved
functionals:

n

(P) U(X):=U10---00,(X) = sup > Ui(Xy),  (10)
(le--an)EAn(X) =1

which provides solutions jointly optimal for the agents and define a func-
tional U on L*°. Since U; : L*° — R are concave and cash-invariant,
so does U, and it also satisfies U > —oo on L*°. In this way we get
U:L*® — RU{+oo}, with either U = +00 or dom(U) = L, by concavity.
Denote by V,Vi,...,V, : (L>®)* — [0, +00] the convex conjugate functions
of U,Uy, ..., U, respectively. Then we obtain V = +o0 if U = 400, and

V=)V, with dom(V)=[]dom(V;), (11)
=1 i=1



if U is proper. Now, to avoid the worthless case U = 400, we make the
following assumption on the dual functions V;’s, which is equivalent to have
U proper with dom(U) = L*°.

Assumption 3.2. The convexr conjugate functions Vi,...,V, are such that
n

ﬂ dom(V;) # 0.

i=1

We remark that this condition is closely related to Pareto equilibrium
(see [11], [12], [25]), and it is equivalent in the case of coherent risk measures.
Under Assumption 3.2 we have OU(X) # 0 VX € L*°, and (U,V) are
(L, (L*>)*)-conjugate. Moreover, when all the U;’s are law-invariant, this
condition is automatically satisfied since Z =1 lies in the effective domain
of V; (with V;(1) = 0) for all 4, which also guarantees the normalization
property for U by relation (11). We now study some stability properties of
the preference criterions.

Lemma 3.3. Let (U;)l, be choice criterions satisfying Assumption 2.2
and Assumption 3.2, and let U be the functional defined in (10). Then the
following implications hold:

(i) Uj monotone for some j € {1,...,n} = U monotone;

(i1) (Ui)iy law-invariant and satisfy property (S) = U satisfies property
(S5);

110 i)y law-invariant and U; strictly monotone for somej € {1,...,n
i) (U;)iy law-i jant and U; strictl tone f ' 1
= U strictly monotone.

Proof. [Lemma 3.3-(1)] Assume U; to be monotone for some j € {1,...,n}
and fix X, Y € L* such that X <Y. Let (X{",..., X]”")men be a maximiz-
ing sequence in A, (X) for the sup-convolution problem, and consider the

allocations (Y™, ..., Y, )men € Ay (Y) given by

ym _ [ X+ (Y = X), ifi=j,

! X7, if i # j.
Then U(Y') > limy, Y, U;(Y;™) > limy, >, U;(X]") = U(X), by monotonic-
ity of U;. ]

The proof of statements (iii)-(iv) will be given after Theorem 3.7. Now we
recall some classical results from economic theory, well known from several
references (see, e.g., the recent work [27]), that are still valid in our unusual
non-monotone setting.



Definition 3.4. An n-tuple (X;); € A,(X) is said a Pareto Optimal
Allocation (POA) if for any (&)1, € Ap(X) such that U;(&;) > U;(X;) Vi,
then UZ(&) = U1<XZ) Vi.

Note that, due to cash invariance, Pareto optimality is defined up to
constants summing up to zero. That is, for any POA (X;)!"; € A,(X) and
any choice of constants (¢;)I; € R s.t. >, ¢; = 0, then the allocation
(Xi + ¢)q of X is Pareto optimal as well.

A standard result that goes back to Gerber [22], is the equivalence be-
tween minimal risk and Pareto optimality. Here it can be expressed in
the following form (and proved, for instance, by induction from [27, Theo-
rem 3.1]).

Theorem 3.5. Let (U;)!'_, be preference functionals satisfying Assump-
tion 2.2 and Assumption 3.2, with associated dual convex functions (V;)I',.
For a given risk X € L™ and an allocation (&), € Ap(X), the following
statements are equivalent:

(i) (&1,-..,&n) is a Pareto optimal allocation,
(i) UhO- - OUW(X) = 321, Ui(&),
(iii) there exists a measure p € (L°)* s.t. Ui(&) = Vi(p) + (p, &) Vi =

1,...,n.

Remark 3.6. By using this theorem it can easily be shown that, for any
X e L™,
(a) pedU(X) = pe(i, 0Ui(X;), for any POA (X;)P, € Ap(X);
(b) pe N, 0Ui(X;), for some (X;)Py € Ap(X) = pedU(X).
Several authors (see [13], [27] and [12] among others) rely on monotonic-
ity results in order to prove existence of optimal solutions. Here we have
that the law-invariance property leads to express the optimization problem

(10) in terms of increasing allocations, ensuring the existence of POAs (a
fact not true in general, see [27] or [17] for a counterexample).

Theorem 3.7. Let (U;)!_, be law-invariant functionals satisfying Assump-
tion 2.2. Then

n

n
sup Y Ui(Xy) = sup Y Ui(X5). (12)
(Xi)im €An(X) 55 (X)) eAL(X) i=1
Moreover, for any X € L*°, the set of Pareto optimal allocations in A,[L(X)
18 non-empty.

10



Note that the existence of POAs implies, in particular, that the func-
tional U defined in (10) is proper, with ;" ,dom(V;) # 0. We can now
complete the proof of Lemma 3.3.

Proof. [Lemma 3.5-(ii),(111)] (ii): Let (U;)I'_; be law-invariant functionals
satisfying property (5), and let X € L*™° and A € F be s.t. P(A) > 0 and X
is not constant on A. By Theorem 3.7 there exists a POA (X;)", € A, (X),
and we must have X; not constant on A for some j € {1,...,n}. Therefore
we get
n n
U(X) = Z Ui(Xi) < Z Ui(Xilae + E[X;|A]14) < U(X1ac + E[X]A]14).
i=1 i=1

(ili): Let (U;)i; be law-invariant, with Uj strictly monotone for some j €
{1,...,n}, and let X, Y € L*> be such that X <Y (i.e. X <Y with P(X <
Y) > 0). Consider a POA (X;)? ; € A, (X), which exists by Theorem 3.7,
and the allocation (Y;)"_; of Y given by:

v [ X+ =X), iti=j

' Xi if i £ j.
Then U(X) = > Ui(X;) < >, Ui(Y:) < U(Y) and the proof is com-
plete. O

3.2 Constraints on the Sup-Convolution Problem

As pointed out before, the POAs are jointly optimal for the agents but do
not pertain to the individual level of satisfaction of the agents. Therefore,
by solving the optimization problem (10), we obtain the feasible designs
of an optimal contract but not the (right) price. At this point we impose
some constraints (a concept already introduced in [22]), which will lead us
to single out a set of suitable prices for these risk exchanges.

Definition 3.8 ([27]). Consider n agents endowed with choice criterions
(Ui)?_, and initial risky positions (&), € L*. Let (X;)'y € Ap(X) be
a POA of the total risk X = Y. &. Then we say that (X;)!, is an
Optimal Risk Sharing (ORS) rule, if it satisfies the Individual Rationality
(IR) constraints: U;(X;) > U;(&;), for alli=1,...,n.

Theorem 3.9. Let (U;)}_, be choice functionals satisfying Assumption 2.2,
and let (&)1, € L. Consider a Pareto optimal allocation (X;)?_; € Ap(X)
of the total risk X = > | & and define p; := U;(X;) — Ui (&) Vi. Then the
following statements hold:

11



(i) >ie1pi > 0;

(ii) let m,..., T, be constants s.t. > | m =0, then the allocation (X1 —
Tlyeoo, Xy —Tp) s an ORS rule if and only if m; <p; Vi=1,...,n.

Proof. (i) readily follows from the Pareto optimality, since > i | p; = U(X)—
Yo Ui(&). (ii): For any choice of constants (m;)!_; summing up to zero,
(X; —m;), is Pareto optimal as well. Therefore, by definition, it is an ORS
rule iff U;(X; —m;) > U;(&;) for all 4, that is m; < U;(X;) — Ui(&) = pi, from
the cash-invariance property. ]

This theorem ensures the existence of optimal risk sharing rules of a
given aggregate risk, provided the existence of Pareto optimal allocations
(see [27] for the case of two m.u.f.’s). We call p1,...,p, indifference prices,
since agents are indifferent to either carrying out this transaction at these
prices or not carrying it out at all.

Remark 3.10. If the initial risk endowment is already Pareto optimal, then
for any POA there is a unique vector of prices making it an ORS rule (the
indifference prices). Otherwise, any POA admits an infinite set of suitable
prices which form the polyhedral space

n
IT:={(m)j=, € R": Zm =0andm <p;Vi=1,...,n},
i=1

and it is the market power of the agents that determines the unique price of
a contract.

3.3 Monotone Approximations in the ORS Problem

So far, in this section, no distinction is made between choice functionals
which do or do not satisfy monotonicity. Now we just want to emphasize if
the involved criterions have or have not this property, in order to compare
the behaviour of monotone and non-monotone agents when facing the risk
sharing problem.

Lemma 3.11. Let (U;)], be choice functionals satisfying Assumption 2.2
and Assumption 3.2, and let at least one of these be monotone. Then, for
any POA (X;)P, € Ay (X),

XZ'EM(Ui), Vi=1,...,n, (13)

where M (U;) is the domain of monotonicity of U;, defined in (7).

12



Proof. For a POA (X;), € A,(X), Theorem 3.5 ensures the existence of
a measure p € (L>®)* s.t. p € 0U;(X;), for any ¢ = 1,...,n. On the other
hand, by hypothesis there is a functional U}, for some j € {1,...,n}, which
is monotone. Therefore i € OU;(X;) C dom(V;) C (L*)7%, and (13) readily
follows from (7). O

Let us now consider problem (P) given in (10) and introduce the asso-
ciated problem involving the best monotone versions U;"’s of the original
criterions U;’s (see (8)):

n

(P™) ﬁ(X) =Ur0.---OUuT™(X) = sup U, (14)
(Xl)yxn)GAn(X)z 1

Of course this problem is equivalent to maximize Y, ; U;(X;) over the n-
tuples (X;)I, such that Y ;" | X; < X.

Theorem 3.12. Let Uy, ...,U, be as in Lemma 3.11. Then U and (7, mntro-
duced in (10) and (14) respectively, describe the same monotone functional
on L>®(Q, F,P):

UX)=U(X), VX € L™, (15)

Proof. We call V the convex conjugate function of U, defined on L (Q, F,P)*.
As immediate consequence of Lemma 3.3 and the arguments that precede
it, we have that U and U are concave and cash-invariant functionals satisfy-
ing monotonicity. Moreover (U, V), the same as (U, V), are (L, (L>®)*)—
conjugate. Now from (11) and (9) we have

S NSy = [ i Vilw), on (VL dom(Vi) (L),

Vi) = Z;VZ () = { +00, elsewhere.
On the other hand, dom(V) = N ,;dom(V;) C (L*>)%, since dom(V;) C
(L)% for some j € {1,...,n}, so that V. =V on (L*)*, and U = U on
L™ as well. O

Equality (15) means that the consideration of criterions (U;)j, or (U/™),
leads, for any aggregate risk, to the same maximal overall level of satisfac-
tion, although it does not say anything about which allocations realize or
approximate this supremum. Let us now take into account exactly such al-
locations, that is, how the total risk can be optimally re-shared among the

involved agents. The following result is just a first answer in this direction.
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Corollary 3.13. Let Uy, ..., U, be as in Lemma 3.11. Then, for any aggre-
gate risk X € L, any solution to problem (P) is also a solution to problem

(P).

By Theorem 3.5 this means that, for each X € L*°, the following relation
between the sets of Pareto optimal allocations holds true:

{POAs for (Uy,...,U,)} C {POAs for (U",...,U")}.

Proof. If problem (P) admits no solutions, then there is nothing to prove.
So, let us assume (X1,...,X,) € A,(X) Pareto optimal w.r. to (U;)};.
Lemma 3.11 implies X; € M (U;) for any 4, and then U;(X;) = U™ (X;). At
this point Theorem 3.12 gives us

UX)=UX) =) _U(X)) = > U"(Xy),
=1 =1

which makes (X;)?_, Pareto optimal w.r. to the monotone functionals
(U™, as well. O

()

Corollary 3.14. LetUy,...,U, be as in Lemma 3.11, and let (X1,...,X,) €
A (X) be a solution of both problems (P) and (P™). Then, any vector of
prices that agents characterized by U™ ’s are willing to pay for this contract,
1s also optimal for agents characterized by U;’s.

Proof. Let (&), be the initial endowments of the total risk X and define
pt = UM™(X;) — UM™(&), for i = 1,...,n, as the indifference prices w.r. to
the monotone adjusted versions (U;™) ;. Lemma 3.11 ensures that agents
with choice criterions U; and U;™ give the same value to the optimal share
X, whereas for the initial risk share &; we can only say that U™ (&) > U;(&;).

This fact produces the inequalities p}* < p; and concludes the proof. ]

Let us now focus our attention on non-monotone choice functionals of
mean-variance type (4). In this case we can state more interesting results,
by relying on Example 2.10.

Theorem 3.15. Let Uy,...,U, be functionals satisfying Assumption 2.2
and Assumption 3.2, such that at least one is strictly monotone, and the
non-monotone ones are of type (4). Then, for any aggregate risk X € L,
problems (P) and (P™) admit the same set of solutions:

{POAs for (Ui,...,Uy)} = {POAs for (UT",...,U")}.

n
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Proof. The inclusion in one sense being immediate by Corollary 3.13, let
us prove the other one. Assume (X;)7; € A,(X) to solve problem (P™).
If X; € M(U;) for any 4, then (X;)",; solves problem (P) as well. Now
suppose X; ¢ M(U;) for some j € {1,...,n}, which in particular implies
that U; is non-monotone, hence a mean-variance functional by assumption.
By hypothesis there is an agent, say k, with strictly monotone preferences,
where of course k € {1,...,n}\ {j}. Since X; ¢ M(Uj), then U"(X;) >
U;(X;), and Example 2.10 ensures that the supremum in (8) is actually
a maximum for U;. Therefore there exists ¥ € L™ s.t. Y < Xj; and
Un(X;) =U;(Y) =Uj"(Y). Let us consider the following allocation of X:

Y, ifi=j
G = Xk—l—(XJ—Y), le:kZ,
X, Vie {10} \ {j k).

Strict monotonicity of Uy, implies U (Cx) = Ur(C) > Up(Xk) = UM(Xk),
and then >, U™(&) > >, UM™(X;) = U(X), which yields the desired con-
tradiction. O

Example 3.16. Theorem 3.15 applies, e.g., to the problem of sharing risks
between a mean-variance agent and an agent with entropic utility or semi-
deviation utility (for any p # +00).

This fact is interesting from an economic point of view: whereas in
Section 2 we have seen how the lack of monotonicity may lead to pathological
situations, here we have that the optimal risk sharing does not take into
account the fact that some (but not alll) choice criterions may fail this
property. On the other hand, whereas the Pareto optimality is not affected
by the possible lack of monotonicity by some agents, this is no longer true
for the price of the contract. Indeed, by imposing the (IR) constraints and
looking for ORS rules, we have only the inclusion in one sense among the
sets of optimal solutions.

Corollary 3.17. Let Uy,...,U, be as in Theorem 3.15. Then we have
the following relation between the solutions to the ORS problem w.r. to the

functionals U;’s and the solutions to the ORS problem w.r. to the functionals
UM ’s:

{ORS rules for (UT",...,U")} € {ORS rules for (Ui,...,Uy)}. (16)
Proof. 1t readily follows from Theorem 3.15 and Corollary 3.14. O
Observe that, if the initial risk endowment & € M(U;) for any agent,
then the equality p/” = p; holds for all i, and the two sets in (16) coincide.
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4 Explicit Characterization of Optimal Risk Shar-
ing Rules

In this section we formulate and explicitly solve some concrete problems
of optimal risk sharing, where the economic agents are characterized by
law-invariant choice functionals. In this case Assumption 3.2 is automati-
cally satisfied and, as far as duality is concerned, we are allowed to work
in L' instead of the whole dual space (L*)*, by Remark 2.4. Moreover,
the existence of Pareto optimal allocations (Theorem 3.7) gives the equality
(X Vi) (p) = Y0, 0Vi(p) for all p € (L™®)* (see [27]). Here we do
not consider the initial risk endowment of the agents since, once we have a
Pareto optimal allocation, only simple calculations are required to find the
suitable prices, as shown in Theorem 3.9.

4.1 AV@R-Agent vs Agent with Property (S)

Proposition 4.1. Let U; be the AVQRy-criterion given in (19) and let
Us be a law-invariant functional satisfying Assumption 2.2 and property
(S). Then, for any aggregate risk X € L, there exists a unique (up to a
constant) POA in A;(X), given by

(X1, X2) = (—-(X =)+ (X —uw)",(IVX)Au), forsomel,ucR.(17)

This means that the optimal sharing consists in the exchange of at the
most two European options written on X, thus producing a typical insurance
contract (the so-called limited stop-loss contract) where the insurer’s risk
share X5 has floor [ and is capped at level wu.

Proof. Let (X1,X2) € A;(X) be a POA of a given aggregate risk X €
L. Since U; satisfies the Lebesgue property, then Theorem 3.5 implies the
existence of a density Z € 9U;(X;) N 0Uz(X2), which by Appendix A is
such that Z € [0,1/)] and X7 is constant on {Z € (0,})}. On the other
hand Remark 2.7 ensures that X, is constant on the sets {Z = 0} and
{Z = 1/A}. Now, thanks to [27, Lemma 4.1], we have that (Z, X1), as well
as (Z,X) and (Z, X3), are anticomonotone random variables and therefore
X1, the same as X, takes its biggest values on {Z = 0} and the smallest
ones on {Z = 1/\}. At this point, since X; and X increase with X, they
assume the shape declared in (17), for some thresholds ! and u. Now the
uniqueness stems from the fact that the set of Pareto optimal allocations
is a convex space in which each element has this form. Indeed, let us fix
any POA (Y1,Y3) € A;(X) and assume it is different from (X1, X2), in the
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sense that they do not differ just by a constant. From the first part of the
proof, the allocation (Y7,Y3) is characterized by a pair (I,4) # (I,u) and,
by convexity, the allocation ({1, &2) given by & = aX; + (1 — @)Y;, i = 1,2,
a € (0,1), is Pareto optimal as well. On the other hand, since (I,4) # (I, u),
(&1, &2) cannot have the desired shape, thus leading to a contradiction. [

Both the mean-variance and the standard-deviation functionals, as well
as the entropic utility, satisfy the conditions required in Proposition 4.1
on agent 2. Therefore, when considering the sharing of an aggregate risk
between one of such agents and an AV @QR-agent, we have that the latter one
takes on the extreme risks, thus revealing her non-conservative behaviour.
However, the shape of the optimal contract in (17) may degenerate, in the
sense of the following example.

Example 4.2. Let agent 2 in Proposition 4.1 have mean-variance func-
tional (4) with parameter 6 > 0, and let the aggregate risk X have essential
oscillations bounded as follows:

1 1 /1
X —essinfX) < > A (5 —1). 1
(esssup essinfX) < 55 A 55 (18)
Then the optimal sharing corresponds to totally charge the aggregate risk to
agent 2.

Indeed, the bound in (18) in particular produces

X — E[X] SesssupX—essian<2i6 and
1 1,1 1,1

“25 Y Tas(x U Z (57
so that Z := 1 — 25(X — E[X]) € (0,1/)). Note that Z € 9U;(0) N OUz(X)
(see Appendices A, B), which implies that (0, X) is a POA, by Theorem 3.5,
and in fact the unique one (up to a constant), by the previous proposition.
This shape of the optimal re-sharing is not surprising if we consider the fact
that the mean-variance principle only penalizes the variance of financial
positions. Therefore, when a payoff has a sufficiently small variability, a
mean-variance agent associates a high level of satisfaction to it, thus making
it favourable for her to take on the entire prospect. In line with the reasoning
that follows (17), we can consider the AV@QR-agent as an insurant and the
U™"-agent as an insurer. From this point of view, what we obtain as optimal
risk sharing under condition (18) is a full-insurance contract, where the
insurer takes on the whole risk.

X —E[X] > —(esssup X —essinf X) >
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4.2 Entropic vs Mean-variance vs Standard-Deviation

Proposition 4.3. Let Uy be the entropic utility (20) with parameter v > 0,
Us the mean-variance principle (4) with 6; > 0, and Us the standard-
deviation principle (5) with 62 > 0. Then for any aggregate risk X € L™
there exists a unique (up to constants summing up to zero) POA (X1, X2, X3)
A;(X), such that X1 is a convex function of X, whereas Xo and X3 are con-
cave functions of X, with Xo proportional to Xs.

This means that, when optimally sharing an aggregate risk X among
such agents, the entropic one especially takes the lowest risks. An analogous
situation occurs in the optimal exchange of risk between an entropic and a
semi-deviation agent, which confirms that an agent endowed with entropic
utility is prudent towards extreme risks. On this subject we recall that, in
the problem of sharing a risk between an entropic-agent and an AV QR-agent
(explicitly solved in [27]), the resulting optimal contract consists of a call
option written on the total risk and offered to the entropic-agent (stop-loss
contract).

Proof. Fix X € L*> and consider any POA (X1, X2, X3) € A;(X). Here we
use the notation introduced in the preceding section, denoting U as the result
of the sup-convolution: U(X) = [0?_,U;(X), and Vy, Va2, V3,V = Z?:l V; as
the convex conjugate functions of Uy, Us,Us, U respectively. Once again,
Theorem 3.5 and the Lebesgue property imply that there exists a density
Z € M3_,0U;(X;), and therefore Z € OU(X) by Remark 3.6. On the other
hand V' inherits strict convexity on its effective domain from Vi, V5 (see
Appendices A, B), thus leading to a unique supergradient of U at X, by
duality theory: OU(X) = {Zx} for some Zx € Z. Now, by (1) we have
X € -9V (Zx) = -2 dVi(Zx), so that

X = —’)/anX —Csz+dX

for some constants cx € R* and dx € R univocally determined by E[Zx| =
1 (see Appendices A, B). Note that the pointwise relation between X and
Zx can be written as X = f(Zx) (meaning that X (w) = f(Zx(w)) for all
w € Q), for some convex and decreasing function f : Rt — R. Now, since
it is a one-to-one function, we can also write Zx = ¢(X), pointwise, with
g : R — R convex and decreasing. Therefore a generic Pareto optimal
allocation (X1, X, X3) takes the form:

Xi=—vInZx +c1 = —yIn(g(X)) + c1,
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Zx g(X)
X, — 22X _ _9\A)
2 20 €2 20 2

X3 =—caZx + c3 = —ca9(X) + c3,

for some ¢4 € R} univocally determined, and for any (¢;)?_; € R s.t.
SO X, =X, O

Besides that, we can also calculate the exact proportion between the
shares X5 and X3 of the mean-variance and the standard-deviation agents,
as shown in [1, Proposition 5.6].

Remark 4.4. In addition to the agents considered in Proposition 4.3, we
can introduce a further agent characterized by the semi-deviation utility (21),
with parameters p = 2 and 63 € (0,1]. By Theorem A.2, one of the follow-
ing situations occur: either the semi-deviation agent does not take any risk
(i.e., X4 =const and the other agents share the risk as described in Proposi-
tion 4.3), or she takes on a non-trivial share of the total risk. In the second
case the set {w : Zx(w) = minZx} (where the total risk X takes its biggest
values) characterizes a subinterval [3,ess supX| of [ess infX, ess supX],
where the risk is totally charged to the semi-deviation agent. On the other
hand, when considering the interval [ess infX,3), we find that the risk is
shared among all the agents and, in particular, the entropic-agent’s share of
risk is, pointwise, a conver function of X, whereas the other agents propor-
tionally share the rest of the risk (each one taking on a quota of risk which
is a concave function of X ).

Another consideration can be made with regard to the parameters char-
acterizing the involved choice functionals. Indeed, if in a problem of optimal
risk sharing there are a standard-deviation agent with parameter 4; > 0 and
a semi-deviation agent with parameters p = 2 and d2 € (0,1] s.t. d2 < 4y,
then the former one does not take any risk. In order to see that, denote
Uy and Uy the respective functionals, and fix any Xy, Xo € L*. Then,
by the positive homogeneity of Us, we clearly have Uj(X;) + U2(X2) <
Us(X1) + Uz(X32) = Us(X1 + Xo), the inequality being strict whenever X3
is non-constant.

4.3 AVQ@R vs Entropic vs Mean-variance vs Standard-Deviation

Proposition 4.5. Let Uy be the AVQR)-criterion (19), and let Uy, Us, Us
be as in Proposition 4.3. Then, for any X € L°°, there exists a unique
(up to constants summing up to zero) POA (X;)}_, € AL(X), such that
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Xo = —(X — k)~ for some k € R, whereas X1 (resp. X2,X3) is a convex
(resp. concave) function of (X V k), with Xa proportional to Xs.

Proof. By the associative property of the sup-convolution operator, we can
consider the problem [I?_,U;(X) as UgQOU(X), where the functional U =
D?ZlUi results to be law-invariant, strictly monotone and strictly risk-averse
conditionally on any event by Lemma 3.3. Now Proposition 3.2 in [27]
provides the unique (up to a constant) POA of X w.r. to (Up,U):

(&0,¢) = (—(X — k)", X VE), forsomekeR.

This means that the interval of essential oscillations of X can be shared
in two subintervals ([essinf X, k] and (k, esssup X]) such that £ is constant
on the first one whereas £y is constant on the second one. Therefore, the
AV @QR-agent takes the worst risks (i.e. the whole risk in [essinf X, k]),
whereas the others agents optimally share the rest of the risk as described
in Proposition 4.3. O

We can proceed in the same way to solve the optimal risk exchange
problem when considering a further agent endowed with the semi-deviation
functional. Once again we first apply Proposition 3.2 of [27], and then we
use the results given in Remark 4.4.

Remark 4.6. Consider the case of risk sharing when more agents of the
same type intervene. For example, if there are more agents of standard-
deviation (resp. AVQR) type, with parameters 6; (resp. X;), then the only
one among them that can take on a non-trivial (i.e. non-constant) share
of risk is the one with parameter §;« := min;d; (resp. Ay 1= max;\;) (see
[1]). A completely different situation occurs if we consider more agents of
mean-variance (resp. entropic) type, with parameters §; (resp. ;). These
are particular cases of dilated utility measures (see [5, 1]), where the optimal
risk sharing turns out to be proportional to the risk-tolerance coefficients 51._1

(resp. ;).

A APPENDIX: Dual Characterization of Mono-
tone Criterions

e The Average Value at Risk
The Average Value at Risk -taken with the opposite sign- is the most rep-
resentative coherent utility measure:

Ur(X) = —AV@R(X) = —i / CVaR(X)d Ae (0.1, (19)
0
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where the Value at Risk is defined as VQR;(X) = —¢%(t) = —inf{z € R :
Fx(z) > t}, for any t € [0,1), and Fx is the cdf associated to X. It is
known that its convex conjugate V) is the indicator function (in the sense
of the convex analysis) of the convex set Py := {@ eP:0< % < %}, and

this leads to the representation Uy(X) = infgep, Eg[X]. Moreover, for any
X € L™, a generic element Z in 0Uy(X) can be written as

1/, on {X < gx(N)},
7 — c [0’1/)\], on {X:C_IX()‘)}a
0, on {X > gx(N)},

such that E[Z] = 1 (see, e.g., [20]), where the lower-quantile function is
defined as ¢x(t) = inf{x € R : Fx(x) > t} V¢t € (0,1]. At this point the
relations in (1) give us the recipe to characterize the gradients of the dual
function. Roughly speaking, for any Z €dom(V)), a random variable X in
OV\(Z) takes its biggest values where Z = 1/A, the smallest ones where
Z =0, and it is constant on {Z € (0,1/\)}.

e The Entropic Utility

For any probability measure Q on (2, F), the relative entropy w.r. to P is
defined as H(Q;P) = E[%ln (%)] if Q < P, and H(Q;P) = 400 other-
wise. In the following theorem we state a strict link between this function
and the entropic utility function:

USM(X):=—ylmE[exp (- X/7)], >0, (20)
which gives a justification for the name of the latter.

Theorem A.1. Let U™ : L>=(Q, F,P) — R be the entropic utility defined in
(20) and V™ 0 L*°(Q, F,P)* — [0,00] its convex conjugate function. Then

(i) for any Z € Z, VX" (Z) = yH(Q; P), with aQ =7
dP

i o guen(x) = { - SPEX)

(ii) for any X € L, oUS™(X) = {Hexp(—X/fy)H}’

(iii) for any Z € dom(V"), OV (Z) = {yInZ + ¢, Ve € R}.

From this fact stems the dual representation:
dQ
(X) = inf {7Eq|n (55)] + EqlX]}.
U(X) = inf 17Ee| In (45 )| + EalX]
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Proof. The Lebesgue property ensures that the effective domain of Vi™ is
contained in Z. Now, since US" is strictly concave on Lg°, by duality theory
we know that the differential of V" consists, for any Z in its domain, of a
unique element in Lg®, with

OV (Z) = —argmax y e {US"(X) — E[ZX]}.

For Z € Z, the functional f(X) := Us"(X) — E[ZX] is well defined on
L*>, it is concave and Gateaux differentiable, with differential Vf(X) =
exp(=X/7)

lexp(=X/7)I|
with f that attains its maximum at Xz, and then (iii) holds. At this point

(ii) readily follows by (1) and E[Z] = 1, and we can compute

Now we have Xy := —v1In Z satisfying Vf(Xz) = 0,

VU (Z) = U (X ) — E[ZX 5] = vE[ZIn Z), VZ € dom(V<™),

which shows (i) and ends the proof. O

e The Semi-Deviation Utility
Consider now the semi-deviation utility (classical one-sided measure):

UP(X) :=E[X] - 6|(X —B[X]) |, 1<p<oo, 0<6<1,  (21)

Once again the positive homogeneity ensures that the convex conjugate
V{(Z) is the indicator function of some convex set CP C Z, leading to
the representation U} (X) = infzeer E[ZX]. Indeed, as shown in [16],
Uf; can be obtained by the set of probability measures with density in
{1+6(9g—Elg]) : g > 0,|lgllre < 1}, where ¢ = p/(p — 1) is the conju-
gate of p. Here we consider the particular case p = 2, and characterize the
gradients of U, 52 and V52 as follows:

Theorem A.2. Let U : L>®(Q,F,P) — R be the semi-deviation utility

(21) with p = 2 and § € (0,1], and let V¥ : L>°(Q, F,P)* — [0,00] be its

convex conjugate. On L™\ {c : ¢ € R} we define the following function:
(X — EX])” — [[(X — E[X])" ||

h(X) = . Then

(X — E[X])~ |2

dom(V2), if X = const,
{14+ 6h(X)}, otherwise,

(i) for any Z € dom(VZ), OVZ(Z) = {c:c € R}U{X € L* : Z =
14 0h(—X)}.

(i) for anyX € L™, QUZ(X) = {
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In particular, {14 6h(X) : X € L\ {c: ¢ € R}} is the minimal set
C C Z which allows us to represent UZ in the form UZ(X) = minzec E[ZX].
Proof. For any Z € Z we know that
Vi(Z) = XseuLpoo{E[X(l = 2)] = 0l(X —E[X])" |12} (22)
= 0v _ sup  {E[X(1-2)] - 4[|(X — E[X])"[|2}. (23)
XeL> X+#const

In order to solve the last optimization problem, we construct the Lagrangian
function L and impose the optimality condition VL = 0, thus obtaining Z =
14 0h(X). Now, for Z € Z admitting a payoff X € L™ s.t. Z =1+ dh(X),
the maximization over non-constant prospects yields zero as result, so that
X solves the problem in (22) as well (UZ coherent implies V2 equal to zero
on its domain). Therefore, such a Z lies in dom(V;?) and such a X belongs
to arg maxgc ro {UZ(£) —E[Z£]}, that is X € —OVZ(Z). In this case we have

Var(Z) < 6% and the differential of V? can be rewritten as follows:

VA(Z) = {I—Z—YJrc: cERY € LP and Yz, Eo}, (24)
where L3° := {M € L* : M > 0} and z := min,, Z(w) = 1—+/6%? — Var(Z),
with P(Z = z) > 0. On the other hand, if a density Z in dom(V}?) cannot be
written as Z = 14 6h(X), then OVZ(Z) just contains the constant payoffs.

This concludes the proof of (ii) and, by the equivalences in (1), statement
(i) holds as well. O

B APPENDIX: Dual Characterization of Non-Monotone
Criterions

e The Mean-Variance Principle

Theorem B.1. Let Uj™ : L*°(Q, F,P) — R be the mean-variance principle
(4), and Vi : (L>*(Q, F,P))* — R its dual transform. Then

. muv _ mu _ _ VarZz muv\ __
(i) Vi (2) = max {UF"™(X) = BZX]} = =55, VZ € dom (V™) =
ZyNL2;

(ii) QU™ (X) = {1 — 25(X — E[X))}, VX € L*;

Z
(iii) V™ (Z) = {2—5 +e Vee R}, VZ € dom (V5™).
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In particular the following representation holds:
U (X) = mi {E[Zz] +E[ZX]} !
RN 5 S QD 15
Proof. Given X and Y in L*°, the Gateaux differential of Uj" at X with
perturbation Y is

Umv(Xx Y)-U™(X
Js(X;Y) :=lim 7 (X +eY) ()

e—0 €

= E[Y (1 - 26(X — E[X]))].

By differential theory we know that linearity of the functional Js(X;.) =
VU (X) means differentiability of U™, with oUj™ (X) = {VU{"(X)} =
{Zx}, where Zx =1—26(X — E[X]) € Z,. At this point, strict concavity
of U™ on Lg® implies the existence of a unique gradient of V™" on Lg° for
any element in the domain of V™", and relation (1) gives us (iii). Moreover,
for any Xz € —0V{""(Z), we may calculate

Vi(Z) = UM (X5) — E[ZX ] :E[— %(1 —Z)} —5Var<— %) _ Vai((SZ).
O

e The Standard-Deviation Principle

Theorem B.2. Let U§?: L>°(Q, F,P) — R be the standard-deviation prin-
ciple defined in (5) and VE? : L°(Q, F,P)* — [0,00] its convex conjugate
function. Then
dom(V§?), if X = const,
(i) for any X € L™, dUH(X) = { {1 _ g X-EX]
Var(X)

}, otherwise,

(i) for any Z € dom(V§?), oVE4(Z) = {c:c € R} U {X e L>*®:Z=
X — E[X] }
VVar(X) )
. _ CX-E[X] . o [ : .
In particular, {1 0 T (5 XelL>*\{c:ce R}} is the minimal set
C which allows us to represent U§? in the form U§?(X) = minzec E[ZX].

Proof. Since U§d is positively homogeneous, we know that Vfd is equal to
zero on its domain and, in particular, for any Z € Z, we have

vel(z) = Xsetngo{E[X(l — Z)] = 0| X — E[X]|[ 12} (25)

= 0v sup  A{E[X(1-2)]-6[X - E[X][[2}. (26)
XeL> X #const
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As in the case of the semi-deviation utility, we solve the last optimiza-
tion problem by constructing the Lagrangian function L and imposing the
optimality condition VL = 0. In this way we obtain Z = 1 — §(X —
E[X])/y/Var(X). Therefore, if Z € Z, admits a payoff X s.t. Z can
be written in this way, then Z € L* with Var(Z) = 62, and the maxi-
mization over non-constant prospects yields zero as result. From this fact
it follows that X solves the problem in (25) as well, that is, it belongs to
arg maxec 1« {Us4(€) — E[Z¢]}, which means X € —9V54(Z). In this case
we have

OVENZ) = {d1Z 4+ dy : dy > 0,dy € R}.

On the other hand, for each Z Gdom(Vfd) that cannot be written as Z =
1-8(X —E[X])/y/Var(X), then dV$?(Z) just contains the constant payoffs.
This shows (ii) and, by (1), statement (i) is also proved. O
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