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Chapter 1

Introduction

The utility theory suggests that, in case of risk or uncertainty, the decision maker relies on

her preferences when choosing. In particular, a compelling, widely applied way to represent

preference relations is via the expected utility. A classical problem of financial economics is

based on this ground: an agent invests her initial capital in a security market with the aim

of maximizing the expected utility of her terminal wealth. In the context of continuous-

time models, this problem was first studied by Merton [61, 62]. Therefore, the introduction

in the Eighties of the notion of equivalent martingale measures, created the possibility for

a new approach to portfolio management by martingale duality methods (see Pliska [65],

Karatzas et al. [52], Cox and Huang [14, 15] for the case of complete markets; He and

Pearson [43, 44], Karatzas et al. [53] in incomplete markets, as well as the more recent

works of Kramkov and Schachermayer [56, 57], Schachermayer [69], Biagini and Frittelli [7],

among others). Moreover, the powerful tool of the expected utility also leads to different

answers to the problem of pricing and hedging contingent claims in incomplete markets (see,

e.g., Föllmer and Schweizer [31], Delbaen et al. [23], El Karoui and Rouge [27], Frittelli

[34], Hugonnier et al. [46], Musiela and Zariphopoulou [63], Davis [19], among many others)

as well as to applications in the framework of the risk exchange theory (see, e.g., Kaluszka

[51], Dana and Scarsini[18], and the references therein).

It was only at the end of the Nineties that, due to the pioneering work of Artzner

et al. [3], a new axiomatic approach to the measures of risk/utility was developed, in

order to quantify the riskiness of positions as a capital requirement (see, e.g., Delbaen
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[20, 21], Föllmer and Schied [32, 30, 33], Frittelli and Rosazza Gianin [35, 36, 37]). These

new measures also allow applications within the framework of pricing/hedging (see, e.g.,

Delbaen [22], Barrieu and El Karoui [5], Klöppel and Schweizer [54], Xu [72]) and optimal

risk sharing (see, e.g., Barrieu and El Karoui [4, 5], Jouini et al. [49]).

In this thesis we consider two distinct problems, both concerning the utility theory, where

some usual assumptions are weakened. In Part I (Chapters 3-5) we study the problem of

optimal sharing of risk among several economic agents, using the above-mentioned new

axiomatic approach. For example, this problem arises when an agent wants to insure a

certain risky position and therefore aims at sharing her initial exposition with an insurer;

or in the case of the sharing of health costs between the patient and the hospital; or when a

company must assign liabilities to its daughter companies. We consider the generic situation

of an aggregate of n economic agents, for any n ≥ 2, which agree on exchanging risks,

provided that each of them improves her own level of satisfaction by passing from the initial

position to the new one. In order to formalize that, we regard each agent as characterized

by an initial risk endowment ξi (representing her future financial position) and a choice

functional Ui (modelling her preferences and defined on the space of all admissible financial

positions). In formulating and solving our optimization problems we are strongly inspired

by the recent work of Jouini, Schachermayer and Touzi [49], where the considered choice

functionals are, up to the sign, convex risk measures in the sense of Föllmer and Schied [33].

In particular, in the paper cited above, concavity, monotonicity and translation-invariance

are all required on the involved choice criterions, whereas here we weaken these conditions,

allowing these functionals to be non-monotone. This will lead us to include, in our study,

well known preference criterions as the mean-variance and the standard-deviation principles

(see the seminal paper of Markovitz [60] for the portfolio selection problem, and Bühlmann

[11, §4] for the premium calculation problem). On the other hand, in this way we incur

the drawback of violating one of the most acknowledged economic principles, expressed as

“more is preferred to less”. This means that pathological situations may occur, in the sense

that a certain payoff can be preferred to a bigger one. Nevertheless, with regard to the

problem of re-sharing the aggregate risk X =
n∑

i=1

ξi among the agents, we provide results

of the existence and the characterization of optimal solutions analogous to those given in

[49]. In particular, our interest moves in two directions: firstly, we aim at maximizing the
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overall utility (common welfare); secondly, we do not want any of the agents to suffer a loss in

changing her financial position (individual incentive). This yields a constrained optimization

problem, which consists in the sup-convolution of the involved choice functionals, under side

constraints depending on the initial risk endowment of the agents (individual rationality

(IR) constraints). At this point the property of translation-invariance induces a remarkable

simplification, as stressed in [49]. Indeed, we can first solve the unconstrained optimization

problem, which produces the Pareto optimal allocations (POAs) of the total risk X. In

other words, by doing so we obtain such redistributions of X that do not allow any other

allocation which is better for each agent. Afterwards, we impose the IR constraints which

select, among all the POAs, those that make each agent willing to enter into the contract.

Note that, for every Pareto optimal allocation (X1, . . . , Xn) we can arbitrarily rebalance

the cash without changing the aggregate utility
n∑

i=1

Ui(Xi). Therefore, the solutions to the

unconstrained sup-convolution problem define how to re-share the total risk, but not the

(right) price for this exchange. On the other hand, by imposing the individual rationality

constraints, a set of suitable prices is singled out. In this way we have characterized what

we call optimal risk sharing (ORS) rules: POAs fulfilling the IR constraints. All these

results hold independently of the fact that the involved criterions (Ui)n
i=1 are or are not

monotone. However, it is interesting to point out if the preferences of the agents do or do

not satisfy this property, in order to compare the problem that we must solve with the one

which only involves “ad hoc” monotone functionals. Therefore, for any functional Ui we

consider its best monotone-adjusted version, based on Maccheroni et al. [59], and study

the new problem that arises. Besides these general results, we also study particular sup-

convolution problems which involve well-known choice functionals and provide the explicit

calculation of their optimal solutions. These examples also reveal peculiar attitudes of

the agents characterized by such preference criterions: the conservative behaviour of the

entropic-agent, as well as the inclination of the AV @R-agent towards taking extreme risks.

Another problem considered in this thesis is the first one mentioned above, that is,

the problem of an agent who trades in a financial market so as to maximize the expected

utility of her terminal wealth. We study it in Part II (Chapters 6-8), where we work in

a security market consisting in d risky assets whose discounted prices are described by a
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Rd−valued locally-bounded semimartingale process S. We allow the wealth to be negative,

hence taking utility functions defined on the entire real line. We assume the same context

as Schachermayer [69], which ensures the existence and uniqueness of the solution to this

optimization problem (that we call the primal problem). As many authors do, we use the

powerful tool of convex duality theory in order to formulate the associated dual problem that,

in this case, is expressed in terms of local-martingale measures and admits a unique solution

as well (see [6]). Proceeding in this way, two mutually exclusive situations are singled out:

the optimal martingale measure Q̂ (unique solution to the dual problem) is equivalent to the

objective probability measure P, or Q̂ is just absolutely continuous with respect to P. Thus

we say that we are in the equivalent case or in the absolutely-continuous case, respectively.

In the former, the optimal terminal wealth X̂ (unique solution to the primal problem) is

shown to be perfectly replicable, that is, achievable by optimally investing in the market

(see [69, Theorem 2.2]). Therefore, X̂ can be represented as the final value of a stochastic

integral with respect to the price process S. Otherwise, if Q̂ is only absolutely continuous

with respect to P, there exists no self-financing trading strategy which perfectly replicates

the optimal wealth, hence we lose the integral representation. Whereas some authors assume

the equivalent case, either directly or by giving sufficient conditions to ensure its occurrence

(see, e.g., [41], [34], [23] and, in particular, [69] when showing the integral representability),

we go in the opposite direction. Our results hold true in both cases and become significant

in the absolutely-continuous one. Therefore we often emphasize this anomalous case, where

the optimal measure Q̂ is not equivalent to P, and the optimal wealth X̂ is infinite with

strictly positive probability. In order to approximate the solution to the original problem, we

introduce a sequence of optimization problems and prove that they fit in with the equivalent

case. The solutions of these auxiliary problems are shown to be convergent to the solution

of the original one, so that X̂ results to be attainable as the limit of terminal values for some

self-financing trading strategies. In particular this means that, by trading in the market,

we can achieve a wealth that is as big as desired in a set of positive probability. We also

show that the absolutely-continuous case may occur for any utility function fulfilling our

requests, so that our study is not in vain. For all the results in Part II, compare the recent

paper of the author [1].

* * * * *
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The thesis is organized as follows.

In Chapter 2 we fix our notations and recall some results of convex analysis that we

strongly use in the thesis. We introduce the concept of utility as a tool that allows us to

represent agents’ preferences, emphasizing the fact that this can be expressed in several

ways. A brief discussion on some characterizing properties of choice functionals concludes

this introductive part.

Part I (§ 3-5) is dedicated to the problem of optimal risk sharing, and the approach we

adopt is the same as Barrieu and El Karoui [4, 5], Jouini et al. [49]. In particular:

In Chapter 3 we define and study the family of functionals that we admit as agents’ choice

criterions. To start with we introduce the class of monetary utility functionals, for which

we recall some known results and, especially, their representability in terms of probability

measures under the Fatou property. The cases of the Average Value at Risk, the entropic

and the semi-deviation utilities, are specifically studied with particular regard to their dual

formulation. Afterwards, we relax the requirements made on the choice functionals, allowing

non-monotone preferences as well. We extend some of the results given for monetary utility

functionals to this wider class of criterions, and we especially prove that the representation

in terms of σ−additive measures holds under the Fatou property. In particular we present

and accurately study the two most famous and useful non-monotone choice criterions: the

mean-variance and the standard-deviation principles. Chapter 3 ends with the introduction

of the best monotone approximation of non-monotone preference functionals.

In Chapter 4 we formulate our optimization problem, which is a constrained sup-

convolution problem. Existence results for the solutions to this problem are given under

the assumption of law-invariance for all the involved choice functionals. Once this is done,

we study optimal risk sharing problems involving the best monotonicity-adjusted versions

of the non-monotone preference criterions.

In Chapter 5 we consider and explicitly solve problems of optimal sharing of aggregate

risks among agents endowed with well known preference relations. We also characterize the

solutions of problems involving agents with particular attitudes, such as strict risk-aversion

conditionally on any event.

Part II (§ 6-8) deals with the expected utility maximization problem, hence the charac-

terization of the optimal investment process. In particular:
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In Chapter 6 we formalize the problem: given an agent whose preferences are represented

by a utility function u defined on R, we aim at maximizing the expected utility of the

wealth she can achieve, at time horizon T , by trading in the market. By means of the

dual formulation of this problem, which consists in minimizing the generalized entropy

among all absolutely continuous local-martingale measures, we characterize the two cases:

“equivalent” and “absolutely-continuous”.

In Chapter 7 we focus our attention on the absolutely-continuous case, where the optimal

martingale measure is not equivalent to the historical probability measure. In this setting

we introduce and study a sequence of optimization problems, defined on some random

trading intervals contained in [0, T ], whose solutions converge to the solution of the original

problem.

In Chapter 8 we conclude the thesis with the construction of a security market model

where the martingale measure minimizing the generalized entropy is not equivalent to the

historical probability, hence our analysis becomes significant.
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Chapter 2

Preliminaries

2.1 Set Up and Notations

Consider two dates: today t = 0, where everything is known, and a fixed future date

T ∈ (0,+∞], where a probability space (Ω,F , P) is given. Here the set Ω describes all

possible scenarios, the σ-algebra F models our knowledge at time T , and the probability

measure P on (Ω,F) is the so-called historical (or objective) probability. If no trading is

possible between 0 and T , we are in a stating situation and, precisely, in the simple model

consisting of these two dates. This is, for example, the situation considered in Chapters

3-5, where we study the problem of optimal sharing of risk among several economic agents.

On the other hand, if trading is possible at any time t in a given time index set T ⊆ [0, T ),

0 ∈ T , then we are in a dynamic setting and we need to supply the probability space

(Ω,F , P) with a filtration (Ft)t∈T . In this case we consider FT = F , whereas Ft can be seen

as the information available at time t, for any t ∈ T . As usual, the filtration is assumed to

satisfy the conditions of saturatedness and right continuity. This is the situation of Chapters

6-8, where we discuss the problem of maximizing the expected utility in a continuous-time

market model, thus allowing trading at any date between today and the time horizon T :

T = [0, T ).

We write L0 := L0(Ω,F , P) for the class of all F-measurable random variables, and

Lp := Lp(Ω,F , P), with 1 ≤ p < ∞, for the family of all elements in L0 with finite p-

norm ‖.‖Lp = (E[|.|p])1/p (we use ‖.‖ instead of ‖.‖L1 when it does not generate confusion).

8
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L∞ := L∞(Ω,F , P) is the space of all essentially bounded random variables, that is, all ele-

ments in L0 with finite L∞-norm ‖f‖L∞ = ess supω |f(ω)|. With (L∞)∗ := L∞(Ω,F , P)∗ ≡
ba(Ω,F , P) we mean its topological dual, i.e., the set of all bounded, finitely additive mea-

sures µ with the property that P(A) = 0 implies µ(A) = 0. Notice that the inclusion

L1 ⊆ (L∞)∗ holds, by identification of σ-additive measures with their Radon-Nikodym

derivatives.

We denote P as the collection of all probability measures on (Ω,F) which are absolutely

continuous with respect to P, and Z as the set of their Radon-Nikodym derivatives with

respect to P:

P := {Q : Q probability measure, Q � P}, Z := {Z ∈ L1
+ : E[Z] = 1}. (2.1)

Analogously, we call Pσ the collection of all σ-additive measures absolutely continuous with

respect to P and normalized to 1, and Zσ the relative set in L1:

Pσ := {µ : µ σ-additive measure, µ � P, µ(Ω) = 1}, Zσ := {Z ∈ L1 : E[Z] = 1}. (2.2)

2.2 Some Necessary Functional Analysis

In this section we briefly recall some classical results of convex duality and differential theory

(see, e.g., [28], [10], [67]) which we will frequently use of throughout the thesis. For the

sake of simplicity, we introduce them in a version which may not be the most general, but

certainly the most suitable for our later use.

Definition 2.1. Let E be a topological vector space (TVS). A function f : E → [−∞,+∞]

is said lower semi-continuous (l.s.c.) if

lim inf
x→x0

f(x) ≥ f(x0), ∀x0 ∈ E,

whereas it is said upper semi-continuous (u.s.c.) if

lim sup
x→x0

f(x) ≤ f(x0), ∀x0 ∈ E.

Moreover, we say that f is proper if dom(f) := {x ∈ E : f(x) ∈ R} 6= ∅.
From now on, consider a real Banach space (E, ‖.‖E) and its topological dual

E∗ := {f : E → R : f continuous and linear}.
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Definition 2.2. Let ϕ : E → [−∞,+∞[ be a proper concave function. Define ϕ∗ : E∗ →
]−∞,+∞], the Fenchel-Legendre transform of ϕ, as

ϕ∗(µ) := sup
x∈E

{ϕ(x)− 〈µ, x〉}, ∀µ ∈ E∗. (2.3)

Note that ϕ∗ is a proper, convex and σ(E∗, E)−l.s.c. function on E∗, also called the

convex conjugate of ϕ. Moreover, we can define the concave function ϕ∗∗ : E → [−∞,+∞[,

conjugate of ϕ∗, as

ϕ∗∗(x) := inf
µ∈E∗

{ϕ∗(µ) + 〈µ, x〉}, ∀x ∈ E. (2.4)

It follows that ϕ∗∗ is σ(E,E∗)−u.s.c. and ϕ∗∗ ≥ ϕ.

Theorem 2.3 (Fenchel-Moreau). If ϕ is proper, concave and σ(E,E∗)−u.s.c., then ϕ∗∗ = ϕ.

In this case we say that ϕ and ϕ∗ are 〈E,E∗〉-conjugate.

We can immediately see that

〈µ, x〉 ≥ ϕ(x)− ϕ∗(µ), ∀x ∈ E, ∀µ ∈ E∗, (2.5)

i.e., the so-called Fenchel’s inequality holds for any proper concave function ϕ and its con-

jugate ϕ∗.

Let f : E → [−∞,+∞[ be a concave function. The superdifferential (or simply differ-

ential, when it does not generate confusion) of f at x ∈ E, is defined as follows

∂f(x) = {t ∈ E∗ : f(y) ≤ f(x) + 〈t, y − x〉, ∀y ∈ E}, (2.6)

and each element in ∂f(x) is said a supergradient of f at x. Let f : E →] −∞,+∞] now

be a convex function. The subdifferential (or differential) of f at x ∈ E, is

∂f(x) = {t ∈ E∗ : f(y) ≥ f(x) + 〈t, y − x〉, ∀y ∈ E}, (2.7)

and each element in this set is called a subgradient of f at x.

Proposition 2.4. Let f be a proper, concave (resp. convex) and u.s.c. (resp. l.s.c.)

function on E. Then f is also σ(E,E∗)−u.s.c. (resp. σ(E,E∗)−l.s.c.).

As consequence of this proposition, we have that the Fenchel-Moreau theorem is still

true if we replace the upper semi-continuity w.r.t. the weak topology with the upper semi-

continuity w.r.t. the strong topology, easier to check.
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The following theorem will ensure the existence of solutions to some optimization prob-

lems considered in Part I of this thesis.

Theorem 2.5. Let f be a proper, concave (convex) and continuous function on E. Then,

for every x ∈ E, ∂f(x) 6= ∅.

Consider ϕ and ϕ∗ as in Definition 2.2 and fulfilling the Fenchel-Moreau theorem. We

point out that the graphs of the multifunctions

∂ϕ(x) = {µ ∈ E∗ : ϕ(y) ≤ ϕ(x) + 〈µ, y − x〉, ∀y ∈ E} (2.8)

and

∂ϕ∗(µ) = {x ∈ E : ϕ∗(ν) ≥ ϕ∗(µ) + 〈ν − µ, x〉, ∀ν ∈ E∗}, (2.9)

characterize the pairs (x, µ) and (−x, µ) respectively, such that Fenchel’s inequality (2.5)

is actually an equality for (x, µ). In fact, we have a stronger result stated in the following

theorem.

Theorem 2.6. Consider ϕ and ϕ∗ as above. Then, for any x ∈ E and µ ∈ E∗,

µ ∈ ∂ϕ(x) ⇐⇒ x ∈ −∂ϕ∗(µ) ⇐⇒ ϕ(x) = ϕ∗(µ) + 〈µ, x〉. (2.10)

In particular, whenever ∂ϕ(x) 6= ∅, then

∂ϕ(x) = arg min µ{ϕ∗(µ) + 〈µ, x〉},

and whenever ∂ϕ∗(µ) 6= ∅, then

∂ϕ∗(µ) = − arg max x{ϕ(x)− 〈µ, x〉}.

Theorem 2.7. Let ϕ be a proper concave function. For x /∈ dom(ϕ), ∂ϕ(x) is empty. For

x ∈ ri(dom(ϕ)), ∂ϕ(x) is not empty and ϕ(x) = ϕ∗∗(x).

The following notion of differentiability will permit us to give a necessary and suffi-

cient condition to reduce the differential of a function to a singleton. Consider a function

f : E → [−∞,+∞]. If the following limit

Jf (x; y) := lim
ε→0

f(x + εy)− f(x)
ε

(2.11)

exists, we call it the Gateaux differential of f at x with perturbation y. Moreover, if

(2.11) define a linear functional Jf (x; .) on E, then f is said Gateaux differentiable (or just

differentiable) and we denote by ∇f(x) := Jf (x; .) the Gateaux differential of f at x.
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Theorem 2.8. Let f : E → [−∞,+∞] be a concave (resp. convex) proper function, and

let x ∈dom(f). Then

(i) if f is differentiable at x, then ∇f(x) is the unique supergradient (reps. subgradient)

of f at x: ∂f(x) = {∇f(x)},

(ii) if f has a unique supergradient (reps. subgradient) at x, then f is differentiable at x.

Theorem 2.9. An u.s.c. (resp. l.s.c.) proper concave (resp. convex) function is essentially

strictly concave (resp. convex) if and only if its conjugate is essentially differentiable.

Proposition 2.10. Let B ∈ L∞ be a convex set. Then B is σ(L∞, L1)−closed iff for

each n ∈ N, the set Bn := {X : X ∈ B, ‖X‖L∞ ≤ n} is closed w.r.t. the convergence in

probability.

2.3 Functionals Modelling Preferences

Financial positions in the future date T are described by elements in L0(Ω,F , P). Now we

want to evaluate them by means of functionals fulfilling suitable properties. In order to do

this, we fix a set X ∈ L0 as the collection of all admissible payoff profiles at time T . The

preferences of an economic agent can be expressed by means of a binary relation “ . ” on

X , satisfying the two following properties:

(i) completeness: for all X, Y ∈ X , either X . Y or Y . X or both are true,

(ii) transitivity: if X . Y and Y . Z, then also X . Z.

At this point, we say that a functional U : X → R represents a preference relation “ . ”, if

U(X) ≤ U(Y ) ⇐⇒ X . Y. (2.12)

We call it choice functional or preference functional, and consider the value it associates to

a financial position as an indicator of the level of satisfaction/riskiness derived from this

position. More precisely, relating to (2.12), we indistinctly say that payoff Y is preferred to

payoff X, or that X is riskier than Y . Different preference relations clearly lead to different

choice functionals with different characteristics. The appropriate one depends of course on

the economics of the situations it is used for.
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As already mentioned in the Introduction, a classical way to evaluate financial positions

is to consider the expected utility. In this case the preferences of an investor are expressed

as follows:

U(X) := E[u(X)], ∀X ∈ X , (2.13)

for some utility function u defined on an interval I ⊆ R (usually R or R+), which is strictly

concave, strictly increasing and continuous on I. This is exactly our point of view in

Chapters 6-8, where we discuss the problem of constructing a portfolio which maximizes,

under a given budget constraint, the expected utility of the resulting payoff.

On the other hand, by means of the expected utility, we can also introduce another

interesting type of choice functionals. Consider a utility function u on R and define the

family of positions with expected utility bounded from below by the threshold u(x), for

some x ∈ R:

A(u) := {X ∈ X : E[u(X)] ≥ u(x)}. (2.14)

To regard the convex set A(u) as the class of acceptable financial positions from the point

of view of a supervising agency, leads to the following definition:

U(X) := sup{m ∈ R : X −m ∈ A(u)}, (2.15)

which characterizes a choice functional satisfying desirable properties, so that it belongs to

the remarkable class of monetary utility measures (see §3).

However, as well argued in [40], there is no set of properties which is suitable for all types

of risky situations: according to the case considered, there will be characteristics that are

preferable to other ones. Therefore at this point we are deliberately vague on the properties

we will require for preference functionals and only a brief comment will be given on some

of these. We refer to [3], [33] and [36] for a broader discussion.

Fix X = L∞(Ω,F , P) and consider the following axioms for a proper functional U :

L∞(Ω,F , P) → R:

(ph) positive homogeneity: U(αX) = αU(X), ∀X ∈ L∞, α ≥ 0;

(c) concavity: U(αX + (1− α)Y ) ≥ αU(X) + (1− α)U(Y ), ∀X, Y ∈ L∞, α ∈ (0, 1);
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(sl) super-linearity: U(X + Y ) ≥ U(X) + U(Y ), ∀X, Y ∈ L∞;

(ci) cash-invariance: U(X + c) = U(X) + c, ∀X ∈ L∞, c ∈ R;

(n) normalization: U(0) = 0;

(m) monotonicity: U(X) ≥ U(Y ), ∀X, Y ∈ L∞ s.t. X ≥ Y ;

(li) law-invariance: U(X) = U(Y ), ∀X, Y ∈ L∞ with the same distribution.

Positive homogeneity makes U linear on proportional payoffs, ignoring the problem of

liquidity and, therefore, the fact that the risk often increases more than linearly with the

losses. Under this property we have the equivalence of the other two: concavity, which

expresses the incentive to the diversification of the risk; and super-linearity, which means

that a merger cannot create extra risk. This last axiom indicates that a position can decrease

the riskiness of another one, which may or may not be desirable. For example, if two payoffs

“go in the same direction”, there shouldn’t be any reason to assume super-additivity, as

well argued in Section 3.4 with regard to the mean-variance principle. In particular, we

may want the opposite situation to occur, i.e. sub-linearity, when dealing with affiliated

companies, in order to allow the reduction of the risk when sharing it among them.

The axiom of cash-invariance (or translation-invariance) is new with respect to the

classical theory of risk. For example (ci) is not satisfied by the expected utility, but we

can get it back by considering a functional of type (2.15) instead of (2.13). Translation-

invariance means that the increment of U obtained by adding a deterministic quantity, just

equals this quantity, and this allows us to consider U(X) as expressed in monetary terms

(in particular, in the same unit in which X is expressed). This characteristic fully conforms

with the interpretation of −U(X) as the capital requirement needed to make X acceptable

from the point of view of a supervising agency, and this leads to the characterization of

U(X) in terms of a certain set of acceptable future positions (the so-called acceptance set).

If U(X) is negative, then it is the minimal extra cash to be added to the prospect X to

make it acceptable. If, on the other hand, it is positive, it represents the maximal amount

which the investor can withdraw from her portfolio X without changing the acceptability

of this position. In Chapters 3-5 we assume this property satisfied, and this allows us to

consider, without loss of generality, that the condition of normalization also holds true, by

possibly adding a constant to U .
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This request for invariance also favours another type of discussion regarding the desir-

ability of property (ph), often confused with currency independence. Obviously the required

capital should not depend on the currency in which payoffs and choice functionals are ex-

pressed. However, this independence has nothing to do with positive homogeneity, as can

be seen by the argument presented in Section 3.4. For a further understanding of this topic,

we refer to a discussion presented in Goovaerts et al. [40].

With regard to the monotonicity, it seems to be the most natural requirement for a

functional associated to a preference relation. Indeed it appears reasonable to assume that

any rational individual prefers “more” to “less”. Nevertheless, in the problem of optimal

risk sharing, we drop this assumption in order to study a wider class of criterions.

Lastly, invariance with respect to distribution is a fundamental property used in our

study. To require that a choice criterion satisfies (li), means that the degree of satisfac-

tion/riskiness of a future financial position does not depend on where the payoff takes its

values, but only on its law under P. The importance of this axiom derives from the fact

that it leads to an easier dual representability (see §3) and ensures the existence of solutions

to particular optimization problems (see §4).



Part I

Optimal Risk Sharing with

Non-Monotone Choice Criterions
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Chapter 3

Representation of Choice

Functionals

In this chapter (as in §4 and §5) we consider the situation where the set X of possible

financial positions occurring in T , consists of all essentially bounded measurable functions

on (Ω,F , P). Therefore, we deal with choice functionals defined on L∞(Ω,F , P) which fulfil

suitable properties. Following the axiomatic approach of Artzner et al. [3], we first introduce

the class of monetary utility functionals (Definition 3.1) and recall some fundamental results,

capturing their properties. We then enlarge this class to the family of choice criterions

characterized by Assumption 3.20. This fact permits us to include in our study agents

endowed with non-monotone preference relations and to generalize some known results.

The probability space (Ω,F , P) is assumed to be standard, which in particular means

that it is non-atomic, i.e., it is support of continuous random variables.

3.1 Monotone Choice Functionals

Let us call to mind the axioms introduced in the previous chapter.

Definition 3.1. A proper functional U : L∞(Ω,F , P) → R, with U(0) = 0, is called

monetary utility measure or monetary utility functional (m.u.f.) if it is concave, monotone

and cash-invariant.

Note that, by switching from a m.u.f. U to the associated loss functional ρ := −U ,

17
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we get back the so-called convex risk measures, in the sense of Föllmer-Schied [33]. From

this it is clear that, by imposing on U the additional axiom of positive homogeneity, we

obtain a coherent utility measure (with the meaning that the corresponding loss functional

is a coherent risk measure, as introduced in [3]). We make the choice to deal with utility

measures, instead of risk measures, in order to immerse our study in the classical utility

theory.

Remark 3.2. The axioms of monotonicity and cash-invariance ensure that U is Lipschitz-

continuous with respect to the supremum norm on L∞.

This regularity leads to the application of important results of functional analysis. In

particular, given U : L∞(Ω,F , P) → R monetary utility functional and V : L∞(Ω,F , P)∗ →
[0,∞] its Fenchel-Legendre transform:

V (µ) = sup
X∈L∞

{U(X)− 〈µ,X〉}, ∀µ ∈ (L∞)∗, (3.1)

the Fenchel-Moreau theorem ensures that U and V are 〈L∞, (L∞)∗〉-conjugate. As a con-

sequence U can be represented in the following way:

U(X) = inf
µ∈(L∞)∗

{V (µ) + 〈µ,X〉}, ∀X ∈ L∞, (3.2)

and we can study its properties by means of the convex dual function V . In literature V is

often called minimal penalty function of U and clearly satisfies:

(i) V (µ) = +∞, for any µ such that µ(1) 6= 1,

(ii) V (µ) = +∞, for any µ not positive,

where we say that a measure µ is “positive” if it produces 〈µ, Y 〉 ≥ 0 whenever Y ≥ 0.

Assertion (i) follows by cash-invariance property, since

V (µ) = sup
X∈L∞

{U(X)− 〈µ,X〉} ≥ sup
c∈R

{U(c)− 〈µ, c〉}

= sup
c∈R

{c(1− µ(1))} = +∞,

for any µ ∈ (L∞)∗ with total mass different from 1. On the other hand, monotonicity of U

leads to (ii): let Y ∈ L∞ be a non-negative random variable, and µ ∈ (L∞)∗ be such that
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〈µ, Y 〉 < 0, then

V (µ) = sup
X∈L∞

{U(X)− 〈µ,X〉} ≥ sup
c∈R+

{U(cY )− 〈µ, cY 〉}

= sup
c∈R+

{U(cY )− c〈µ, Y 〉} = +∞,

as previously declared.

3.1.1 Some Representation Results

The representation theory of convex risk measures on L∞ was developed by Delbaen [21, 20]

and successively extended by Föllmer and Schied [32, 33], Frittelli and Rosazza Gianin

[35, 36], among others. Here we present some results which we later use and extend upon.

In particular, the following theorem provides a characterization of a particular class of

monetary utility functionals, for which the dual representation in (3.2) is still true if we

minimize over L1 instead of the whole dual space (L∞)∗. This means that U can be

described in terms of probability measures, as indicated in (3.3), where linear functionals

take the form of expectations under these measures.

Theorem 3.3 ([20, 32]). Let U : L∞ → R be a monetary utility functional and V : (L∞)∗ →
[0,∞] its convex conjugate. Then the following statements are equivalent:

(i) U can be represented by V restricted to the set of measures P (defined in (2.1)):

U(X) = inf
Q∈P

{V (Q) + EQ[X]}, ∀X ∈ L∞, (3.3)

(ii) U is continuous from above: if Xn ↘ X P-a.s. then U(Xn) ↘ U(X),

(iii) U satisfies the Fatou property: for any bounded sequence (Xn)n converging P-a.s. to

some X, then U(X) ≥ lim supn U(Xn).

By identifying a probability measure Q with its Radon-Nikodym derivative
dQ
dP

, we can

analogously write

U(X) = inf
Z∈Z

{V (Z) + E[ZX]}, (3.4)

where Z is the set of densities defined in (2.1).
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The dual formulation of U in L1 clearly leads to more manageable situations than those

arising when dealing with (L∞)∗, especially if one wants to explicitly solve particular opti-

mization problems, as the case in Chapter 5. Therefore, it is important to recognize when

duality works in L1, as for example under the assumption of law-invariance (compare [48]).

Moreover, for a m.u.f. satisfying the law-invariance property, we have an interesting charac-

terization in terms of quantile functions (obtained by Kusuoka [58] and further extended in

[37] and [48]), which we present in Theorem 3.5. It relies on Lemma 3.4, which also allows us

to extend this characterization to the class of non-monotone functionals (see Theorem 3.23).

Let us first recall that, for any random variable X : Ω → R, the (lower-)quantile function

is defined as qX (α) = inf{x ∈ R : FX(x) ≥ α}, for all α ∈ (0, 1], where FX(x) = P(X ≤ x)

is the cumulative distribution function associated to X.

Lemma 3.4 ([33]). For X ∈ L∞ and Y ∈ L1, we have∫ 1

0
qX (t)qY (t)dt = sup

eX=dX

E[X̃Y ], (3.5)

where X̃ =d X means that X̃ and X have the same distribution.

Theorem 3.5. Let U be a law-invariant monetary utility functional and let AU be the

associated set of acceptable positions (the so-called acceptance set of U), given by

AU := {X ∈ L∞ : U(X) ≥ 0}. (3.6)

Then we have the following representation for U :

U(X) = inf
Z∈Z

{
−

∫ 1

0
q−Z (t)qX (t)dt + V (Z)

}
, ∀X ∈ L∞, (3.7)

and the following one for its dual transform V :

V (Z) = sup
X∈L∞

{
U(X) +

∫ 1

0
q−Z (t)qX (t)dt

}
= sup

X∈AU

{∫ 1

0
q−Z (t)qX (t)dt

}
, ∀Z ∈ Z. (3.8)

Here we have used the fact that law-invariant monetary utility functionals automatically

satisfy the Fatou property, as shown in Jouini et al. [48].

We point out that the convex conjugates of positively homogeneous functions are indi-

cator functions of convex sets, in the sense of the convex analysis. This means that, for any
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coherent utility measure (m.u.f. satisfying axiom (ph)), the associated penalty function V

takes the form:

V (µ) = χC ≡

 0, if µ ∈ C,
+∞, otherwise,

(3.9)

for a given convex set C ⊆ (L∞)∗, which leads to the following dual representation for U :

U(X) = inf
µ∈C

{〈µ,X〉}, ∀X ∈ L∞. (3.10)

We now introduce the concept of comonotonicity, referring to [26] for an overview of

this topic. For two financial positions it expresses a special type of dependency (we can say

that “they move in the same direction”), whereas for functionals defined on L∞ it indicates

linearity on such type of random variables (an assumption that for a m.u.f. is stronger then

positive homogeneity, see [33]).

Definition 3.6. Two random variables X and Y on (Ω,F , P) are called comonotone if

satisfying relation (X(ω0)−X(ω1))(Y (ω0)− Y (ω1)) ≥ 0, P⊗P-almost surely. A function

f : L∞ → R is said comonotone if f(X + Y ) = f(X) + f(Y ) for any pair (X, Y ) of

comonotone random variables.

In addition to that, we say that X and Y are anticomonotone if −X and Y are

comonotone.

Lemma 3.7. Let U be a law-invariant m.u.f. and let Z ∈ Z be in ∂U(X) for some

X ∈ L∞. Then X and Z are anticomonotone random variables.

Proof. Since ∂U(X) 6= ∅, we can write

∂U(X) = arg minf{V (f) + E[fX]}.

On the other hand, the dual conjugate V inherits the property of law-invariance and this

leads to

U(X) = inf
f∈Z

{V (f) + E[fX]} = inf
f∈Z

inf
g∈Z,g=df

{V (f) + E[gX]}

= inf
f∈Z

{V (f) + inf
g∈Z,g=df

E[gX]}.
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Therefore, Z ∈ arg minf{V (f)+E[fX]} is, among all the elements g in Z with g =d Z,

the one that minimizes E[gX]. On the other hand, for fixed X and law of g, E[gX] becomes

minimal for X and g anticomonotone (compare [33]), which completes the proof.

Consider the set D of all concave and non-decreasing functions f : [0, 1] → [0, 1] with

f(0) = 0 and f(1) = 1, which in particular contains elements of type −
∫ .
0 q−Z (s)ds for any

Z ∈ Z.

Theorem 3.8 ([58]). For a law-invariant monetary utility functional, the following condi-

tions are equivalent:

(i) U is comonotone,

(ii) there exists a unique fU ∈ D such that for any X ∈ L∞ we have

U(X) =
∫ 1

0
qX (t)f ′

U
(t)dt = inf

{∫ 1

0
qX (t)f ′(t)dt : f ∈ D and f ≤ fU

}
. (3.11)

In particular, the concave function fU characterizing U in the sense of (3.11), permits a

simple description of the gradients of U , as stated in the following lemma, due to Jouini et

al. [49] (which formulate it in a more general form).

Lemma 3.9. Let U be a law-invariant comonotone m.u.f., characterized by the concave

function fU ∈ D. Then, for any X ∈ L∞ and Z ∈ Z, we have Z ∈ ∂U(X) if and only if

−
∫ t

0
q−Z (s)ds ≤ fU (t) and qX is constant on

{
−

∫ t

0
q−Z (s)ds < fU (t)

}
. (3.12)

3.1.2 Additional Properties

Here we recall two concepts given on functionals defined on L∞ (introduced in [49] and

[48] respectively). They allow us to characterize particular types of choice criterions and to

solve optimization problems involving them.

Definition 3.10. A choice functional U defined on L∞ is said to be strictly risk-averse

conditionally on any event if it satisfies the following property:

(S) U(X) < U(X1Ac + E[X|A]1A) for any A ∈ F and X ∈ L∞ with P(A) > 0 and

essinfAX < esssupAX.
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This means that, if an economic agent is characterized by such a choice functional, then

she strictly prefers for averaging any event where the financial position is not a.s. constant.

For functionals satisfying property (S) we can give a result analogous to that shown in [49]

for law-invariant monetary utility functionals which are strictly risk-averse conditionally on

lower tail events.

Lemma 3.11. Let U be a concave functional on L∞, strictly risk-averse conditionally on

any event. For any pair (X, Z) ∈ L∞ × L1 s.t. Z ∈ ∂U(X), and any set A ∈ F s.t.

P(A) > 0 and Z constant on A, then X is a.s. constant on A as well.

Proof. If such a pair (X, Z) ∈ L∞ × L1 with Z ∈ ∂U(X) and Z constant with positive

probability does not exist, then there is nothing to prove. Otherwise, consider any pair

(X, Z) satisfying these hypothesis, and assume that the thesis is not true, i.e., X is not

constant on A := {Z = z}, for some z ∈ R such that P(A) > 0. Since U satisfies property

(S) and X is not constant on A, then

U(X) < U(X) where X := X1Ac + E[X|A]1A. (3.13)

On the other hand, by definition (2.6) of superdifferential and noting that E[ZX] = E[ZX],

we obtain

U(X) ≤ U(X) + E[Z(X −X)] = U(X),

which is in contradiction to (3.13).

Definition 3.12. We say that a function f defined on L∞ satisfies the Lebesgue property

if for any bounded sequence (Xn)n converging P-a.s. to some X, then lim
n→∞

f(Xn) = f(X).

This property is clearly stronger than the Fatou property, that is the continuity from

above. Moreover, for a monetary utility functional U , it is shown to be just equivalent to the

continuity from below (see [33]): for every sequence (Xn)n ∈ L∞ increasing monotonically

to X ∈ L∞, then limn U(Xn) = U(X).

Theorem 3.13 ([48]). Let U : L∞ → R be a monetary utility functional and V : (L∞)∗ →
[0,+∞] its convex conjugate. Then

(i) if U satisfies the Lebesgue property, then dom(V ) = {V < ∞} ⊆ L1,
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(ii) U satisfies (li) and the Lebesgue property if and only if V satisfies (li) and represen-

tation (3.4), and {Z ∈ Z : V (Z) ≤ c} is uniformly integrable for all c > 0.

This means more than just representability in L1: under the Lebesgue property the

infimum in (3.3) is actually a minimum.

3.2 Examples of Monetary Utility Functionals

We separately study some useful monetary utility functionals, focusing our interest on the

characterization of their convex conjugate functions and their differentials, since we need

them to explicitly solve optimization problems (in §5). Note that any of these functionals

is law-invariant and satisfies the Lebesgue property, which allows us to deal with the space

Z of densities instead of the dual space (L∞)∗ and makes everything easier.

3.2.1 The Average Value at Risk

The most representative monetary utility functional among the comonotone ones, is the

so-called Average Value at Risk (taken with the opposite sign) introduced in [3]:

Uλ := −AV @Rλ(X) =
1
λ

∫ λ

0
qX (t)dt, λ ∈ (0, 1], (3.14)

where the Value at Risk is defined as V @Rt(X) = −q+
X

(t) = − inf{x ∈ R : FX(x) > t} (we

recall that qX (t) = q+
X

(t), with the exception of at most countably many t in (0, 1]). Note

that we cannot consider −V @Rλ as choice criterion since it fails concavity, hence it does

not yield convex optimization problems and leads to pathological situations in the optimal

risk sharing problem.

On the other hand, the AV @R-criterion (3.14) recovers concavity property and allows

several interesting interpretations. In particular, since we work in a non-atomic probability

space, it satisfies

−AV @Rλ(X) = inf{E[X|A] : P(A) > λ},

that is, it coincides with the so-called worst conditional expectation. If, moreover, we con-

sider a payoff X having continuous distribution, we also obtain equivalence with the concept
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of tail conditional expectation (or expected shortfall):

−AV @Rλ(X) = E[X|X ≤ qX (λ)].

For any λ ∈ (0, 1], Uλ is a coherent utility measure and representation (3.10) holds with

characterizing set Pλ consisting of those probability measures with density bounded by λ−1:

Pλ =
{

Q ∈ P : 0 ≤ dQ
dP

≤ 1
λ

}
.

This means that its Fenchel-Legendre transform Vλ equals χPλ
, which leads to

−AV @Rλ(X) = inf
Q∈Pλ

EQ[X], λ ∈ (0, 1]. (3.15)

In line with this representation, we can also define

U0 := −AV @R0(X) = inf
Q∈P

EQ[X],

which represents the worst-case utility measure, that is, the most conservative monetary

utility measure.

Here we study the differential of Uλ in the interesting case λ ∈ (0, 1]. Theorem 3.8

applies with fλ(t) := t
λ ∧ 1 as the unique function in D such that

−AV @Rλ(X) =
∫ 1

0
qX (t)f ′λ(t)dt, ∀X ∈ L∞. (3.16)

At this point Lemma 3.9 gives us the characterization of the gradients of Uλ: for any

X ∈ L∞, ∂Uλ(X) consists of such measures Q ∈ Pλ for which −
∫ t
0 q−Z (s)ds ≤ fλ(t), with

Z = dQ
dP , and such that X is constant when this inequality holds strictly. Then a generic

element Z in ∂Uλ(X) can be written as

Z =


1/λ, on {X < qX (λ)},
∈ [0, 1/λ], on {X = qX (λ)},
0, on {X > qX (λ)},

such that E[Z] = 1.

It is now easy, by means of Theorem 2.6, to capture the gradients of the dual function

Vλ. Consider any Z ∈dom(Vλ) = Pλ. Roughly speaking, a position X in ∂Vλ(Z) takes

its biggest values where Z = 1/λ, the smallest ones where Z = 0, and it is constant on

{Z ∈ (0, 1/λ)}.
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3.2.2 The Entropic Utility

The functional U en
γ : L∞(Ω,F , P) → R given by

U en
γ (X) := −γ lnE

[
exp

(
−X/γ

)]
, γ > 0, (3.17)

is called entropic utility function. It clearly satisfies all the axioms characterizing a monetary

utility functional, and some of them are strictly verified. The strict monotonicity is shown

in [49], where the property of strict risk-aversion conditionally on any event is also proved.

Here we show the strict concavity of U en
γ on L∞0 := {X ∈ L∞ : E[X] = 0}. Without loss

of generality we proceed with γ = 1. Fix α ∈ (0, 1) and consider the function f : R+
0 → R

defined by

f(t) = 1− α + αt− tα.

This function admits a unique minimum in t = 1, where f(1) = 0. Therefore, f ≥ 0 on R+
0

and the equality holds iff t = 1. For any pair of random variables X, Y ∈ L∞0 , X 6≡ Y , we

define

t := exp(−X + Y ) · E[exp(−Y )]
E[exp(−X)]

.

Since X 6≡ Y , we have that β := P(t 6= 1) > 0. By the positivity of f , we get

exp(−αX + αY )
(

E[exp(−Y )]
E[exp(−X)]

)α

≤ α exp(−X + Y )
E[exp(−Y )]
E[exp(−X)]

+ 1− α,

which we can rewrite as follows

exp(−αX − (1− α)Y ) ≤ α exp(−X)
(

E[exp(−Y )]
E[exp(−X)]

)1−α

+

(1− α) exp(−Y )
(

E[exp(−Y )]
E[exp(−X)]

)−α

,

where the strict inequality holds with probability β > 0. By taking the expectation of both

sides we obtain

E[exp(−αX − (1− α)Y )] < (E[exp(−X)])α(E[exp(−Y )])1−α

and, by passing to the logarithm, we have the desired result:

lnE[exp(−(αX + (1− α)Y ))] < α lnE[exp(−X)] + (1− α) lnE[exp(−Y )].
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Note that we can obtain the choice functional defined in (3.17) by relying on the classical

exponential utility function uγ : R → R−, given by

uγ(x) = − exp (−x/γ), γ > 0.

Indeed, if we define the set A(uγ) as in (2.14):

A(uγ) := {X ∈ L∞ : E[uγ(X)] ≥ −1}

and the relative utility functional as in (2.15):

Uγ(X) := sup{x ∈ R : X − x ∈ A(uγ)},

then we get U en
γ = Uγ on L∞, and A(uγ) as the acceptance set (3.6) associated to U en

γ .

Remark 3.14. By dominated convergence, one can easily verify that the functional defined

in (3.17) satisfies the Lebesgue property. Then, by Theorem 3.13, the effective domain of

its convex conjugate V en
γ is contained in L1 and, in particular, in Z, by the argument that

follows (3.2).

Recall that, for any probability measure Q on (Ω,F), the relative entropy w.r.t. P is

given by

H(Q; P) =

 E
[dQ
dP

ln
(dQ

dP

)]
, if Q � P,

+∞, otherwise.
(3.18)

In the following theorem we state a strict link between this function and the entropic

utility function, which gives a justification for the name of the latter.

Proposition 3.15. Let H(. ; P) be the relative entropy (3.18) and Q any measure in P.

Then we have the equality:

H(Q; P) = sup
X∈L∞

{− lnE[exp(−X)]−EQ[X]} (3.19)

which, for any γ > 0 and U en
γ (X) defined in (3.17), can be rewritten as

γH(Q; P) = sup
X∈L∞

{U en
γ (X)−EQ[X]}. (3.20)
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From Remark 3.14 and relation (3.1), we have that (3.20) completely describes the dual

conjugate V en
γ of the entropic utility. In fact, we can draw it out from the following theorem

which provides a full description of the duality between U en
γ and V en

γ .

Theorem 3.16. Let U en
γ : L∞(Ω,F , P) → R be the m.u.f. defined in (3.17) and V en

γ :

L∞(Ω,F , P)∗ → [0,∞] its convex conjugate function. Then

(i) V en
γ (Z) = γH(Q; P), where Z =

dQ
dP

, for all Z ∈ Z,

(ii) ∂U en
γ (X) =

{
exp(−X/γ)
‖ exp(−X/γ)‖

}
, for all X ∈ L∞,

(iii) ∂V en
γ (Z) = {γ lnZ + c, ∀c ∈ R}, for all Z ∈ dom(V en).

Therefore, we can write the dual representation formula for U :

U en
γ (X) = inf

Q∈P

{
γEQ

[
ln

(dQ
dP

)]
+ EQ[X]

}
. (3.21)

Proof. From Remark 3.14, we know that the duality works in L1. Moreover, strict concavity

of U en
γ on L∞0 implies, by Theorem 2.9, that the differential of V en

γ at any Z in its domain

is a singleton in L∞0 . This means that ∂V en
γ (Z) consists of a unique element in L∞ up to

an additive constant, and the recipe to find it, is

∂V en
γ (Z) = −arg maxX∈L∞{U en

γ (X)−E[ZX]}.

For Z ∈ Z, the functional f on L∞ given by

f(X) := U en
γ (X)−E[ZX]

is well defined, concave and Gateaux differentiable, with differential

∇f(X) = −Z +
exp(−X/γ)
‖ exp(−X/γ)‖

.

Noticing that XZ := −γ lnZ solves ∇f(XZ) = 0 and that f attains its maximum at XZ ,

we obtain (iii). Now, by Theorem 2.6 and E[Z] = 1, (ii) immediately follows and we are

able to compute the dual transform

V en
γ (Z) = U en

γ (XZ)−E[ZXZ ] = γE[Z lnZ], ∀Z ∈ dom(V en
γ ),

as stated in (i).

Proof. [Proposition 3.15] It directly follows from Theorem 3.16, restating the duality rela-

tion between U en
γ and V en

γ .
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3.2.3 The Semi-Deviation Utility

Consider, for any 1 ≤ p ≤ ∞, the functional Up
δ : L∞(Ω,F , P) → R defined as follows:

Up
δ (X) := E[X]− δ‖(X −E[X])−‖Lp , 0 < δ ≤ 1. (3.22)

It is called semi-deviation utility and, for any 1 ≤ p ≤ ∞, it is a positively homogeneous

monetary utility functional (see, e.g., [29]), comonotone if and only if p = ∞. Therefore,

its Fenchel-Legendre transform V p
δ is the indicator function of some convex set Cp ⊆ Z, in

the sense of the convex analysis:

V p
δ (Z) = χCp , (3.23)

which leads to the following representation:

Up
δ (X) = inf

Z∈Cp
E[ZX].

In particular we are interested in the case 1 < p < ∞, where Up
δ exhibits properties such

as strict monotonicity and strict risk-aversion conditionally on lower tail events (see [49]):

for any X ∈ L∞ and A ∈ F such that P(A) > 0 and essinfAX < esssupAX ≤ essinfAcX,

then Up
δ (X) < Up

δ (X1Ac + E[X|A]1A). Moreover it satisfies the Lebesgue property, as we

can see by just applying the dominated convergence theorem, and therefore Cp is a subset

of Z, by Theorem 3.13. In fact, as shown in an example in [21], Up
δ can be obtained by the

set of probability measures with density in

{
1 + δ(g −E[g]) : g ≥ 0, ‖g‖Lq ≤ 1

}
, (3.24)

where q = p/(p − 1) is the conjugate of p. Here we especially consider the case p = 2, for

which we characterize the gradients of U2
δ and V 2

δ as follows:

Theorem 3.17. Let U2
δ : L∞(Ω,F , P) → R be the semi-deviation utility with parameters

p = 2 and δ ∈ (0, 1], and let V 2
δ : L∞(Ω,F , P)∗ → [0,∞] be its convex conjugate function.

Define

h(X) :=
(X −E[X])− − ‖(X −E[X])−‖L1

‖(X −E[X])−‖L2

, ∀X ∈ L∞ \ {c : c ∈ R}.

Then we have:
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(i) for any X ∈ L∞,

∂U2
δ (X) =

 dom(V 2
δ ), if X = const,

{1 + δh(X)}, otherwise,

(ii) for any Z ∈ dom(V 2
δ ),

∂V 2
δ (Z) = {c : c ∈ R} ∪ {X ∈ L∞ : Z = 1 + δh(−X)}. (3.25)

In particular,
{
1 + δh(X) : X ∈ L∞ \ {c : c ∈ R}

}
is the minimal set C ⊆ Z which

allows us to represent U2
δ in the following form:

U2
δ (X) = min

Z∈C
E[ZX], ∀X ∈ L∞.

Proof. For any Z ∈ Z we know that

V 2
δ (Z) = sup

X∈L∞
{E[X(1− Z)]− δ‖(X −E[X])−‖L2} (3.26)

= 0 ∨ sup
X∈L∞,X 6=const

{E[X(1− Z)]− δ‖(X −E[X])−‖L2}. (3.27)

In order to solve the last optimization problem, we construct the Lagrangian function L

(where condition “X 6=const” can be written as “‖(X − E[X])−‖L2 > 0”) and impose the

Kuhn-Tucker optimality conditions ∇L = 0, thus obtaining

1− Z + δ · (X −E[X])− − ‖(X −E[X])−‖L1

‖(X −E[X])−‖L2

= 0, (3.28)

since E[Z] = 1.

Now, for Z ∈ Z admitting a payoff X ∈ L∞ which solves (3.28), the maximization over

non-constant prospects yields zero as result:

E[X(1− Z)]− δ‖(X −E[X])−‖L2 = E[(X −E[X])(1− Z)]− δ‖(X −E[X])−‖L2

= −δE[(X −E[X])(X −E[X])−]
‖(X −E[X])−‖L2

− δ‖(X −E[X])−‖L2

= 0,

so that X solves the problem in (3.26) as well. Therefore, we have that such Z lies in

dom(V 2
δ ) and

X ∈ arg max
ξ∈L∞

{U2
δ (ξ)−E[Zξ]}, (3.29)
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which is equivalent to say X ∈ −∂V 2
δ (Z). On the other hand, if a density Z in dom(V 2

δ ) does

not admit any payoff X which solves (3.28), then ∂V 2
δ (Z) just contains the constant payoffs.

This concludes the proof of (ii) and, by Theorem 2.6, statement (i) holds as well.

We note that, for any Z ∈ Z s.t. there exists X ∈ L∞ which solves (3.28), the differential

in (3.25) can be rewritten as follows:

∂V 2
δ (Z) =

{E[Y ]
1− z

Z − Y + c : c ∈ R, Y ∈ L∞+ and Y 1{Z 6=z} ≡ 0
}

, (3.30)

where L∞+ := {M ∈ L∞ : M ≥ 0} and z := minω Z(ω) < 1, with P(Z = z) > 0 and

1− z =
√

δ2 −Var(Z).

Remark 3.18. The semi-deviation utility is a classical one-sided measure, hence it results

to be a good choice, for example, in calculating the solvency margins. A different situation

arises for the standard-deviation principle (3.39) (see Remark 3.25).

3.3 Non-Monotone Choice Functionals

So far we have considered preference functionals under the classical assumption of monotonic-

ity. Here we drop this assumption in order to include in our study some well known,

widely used non-monotone choice criterions: the mean-variance principle and the standard-

deviation principle. The fact that such principles are employed in several financial fields

(e.g., in the portfolio selection problem as well as in the premium calculation problem),

shows how properties often taken for granted as being desirable (as monotonicity for pref-

erence criterions) are in fact not so obvious. In particular, the theory we develop for these

functionals will allows us to include them in the study of the optimal risk sharing.

3.3.1 A Wider Class of Choice Criterions

The behaviour of an agent endowed with a choice functional failing the property of monotonic-

ity, results, to some extent, in contrast with the economic principle “more is better than

less”. Therefore, in this case, pathological situations may occur, as clearly shown in Sec-

tion 3.4.
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Remark 3.19. When monotonicity is lacking, we also lose the property of Lipschitz-

continuity with respect to the supremum norm, which is automatically satisfied in the case

of monetary utility functionals (see Remark 3.2).

On the other hand we will see that, in order to develop a theory of risk exchange based on

convex analysis, we will need some regularity condition on the involved choice functionals.

In view of this, throughout Part I of the thesis we will consider functionals fulfilling the

following assumption:

Assumption 3.20. U is a proper, concave and cash-invariant functional on L∞(Ω,F , P)

with U(0) = 0. Moreover it is continuous with respect to the supremum norm (we equiva-

lently say that it is L∞−continuous or ‖.‖L∞−continuous).

All monetary utility functionals automatically satisfy this condition, but, clearly, As-

sumption 3.20 characterizes a wider family, also containing non-monotone functionals. At

this point, for a generic element in this class we cannot directly apply the results stated

in Section 3.1 as far as monetary utility functionals are concerned. In spite of that, we

obtain similar results which allow us to work in L1(Ω,F , P) instead of the whole dual space

L∞(Ω,F , P)∗, as shown in Theorem 3.22.

3.3.2 Some Representation Results

Lemma 3.21. Let U be a functional satisfying Assumption 3.20, and let AU be its ac-

ceptance set. Then the following representation holds for its convex conjugate function V

(defined as in (3.1)):

V (µ) =

 sup
X∈AU

{−〈µ,X〉}, if µ(1) = 1,

+∞, otherwise.
(3.31)

Proof. If µ(1) 6= 1, then V (µ) = +∞ readily follows from the cash-invariance, as in Section

3.1. Now let µ be such that µ(1) = 1. Clearly V (µ) is greater than or equal to the supremum

in (3.31), as U |AU
≥ 0 by definition. On the other hand, (Y − U(Y )) ∈ AU for any Y in

L∞, by cash-invariance, thus giving

sup
X∈AU

{−〈µ,X〉} ≥ −〈µ, Y − U(Y )〉 = U(Y )− 〈µ, Y 〉, ∀Y ∈ L∞,

that completes the proof.
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Once again, by ‖.‖L∞-continuity of U , U and V are 〈L∞, (L∞)∗〉-conjugate and U has the

dual representation (3.2). In addition to this, we can state a result analogous to that given

in Theorem 3.3 when dealing with monetary utility functionals. As the intuition suggests,

the set P (equiv. Z) that allows representation (3.3) (equiv. (3.4)) is here replaced by Pσ

(equiv. Zσ).

Theorem 3.22. Let U : L∞(Ω,F , P) → R be a functional satisfying Assumption 3.20

and V : L∞(Ω,F , P)∗ → [0,∞] its convex conjugate. Then the following statements are

equivalent:

(i) U can be represented by V restricted to the set Pσ (defined in (2.2)):

U(X) = inf
Q∈Pσ

{V (Q) + EQ[X]}, ∀X ∈ L∞, (3.32)

(ii) U satisfies the Fatou property (see Theorem 3.3).

Once again, by identification of σ-additive measures Q with their derivatives
dQ
dP

, we

can rewrite representation (3.32) as

U(X) = inf
Z∈Zσ

{V (Z) + E[ZX]}, ∀X ∈ L∞, (3.33)

with Zσ defined in (2.2).

Proof. (ii) ⇒ (i): Assume (ii) to hold and define Û(X) := inf
Z∈Zσ

{V (Z) + E[ZX]} for any

X ∈ L∞. Obviously U ≤ Û , so that we have only to prove the inverse inequality to obtain

the dual representation (3.33). By the translation-invariance property, this is equivalent

to show that U(X − Û(X)) ≥ 0, i.e. (X − Û(X)) ∈ AU , for all X ∈ L∞. Suppose, on

the contrary, that there exists X̄ ∈ L∞ such that (X̄ − Û(X̄)) /∈ AU . The Fatou property

ensures that the acceptance set AU is closed w.r.t. the weak∗ topology σ(L∞, L1), by

Proposition 2.10, and we can apply the Hahn-Banach theorem to separate (X̄ − Û(X̄))

from this set. In this way we obtain a continuous linear functional F on (L∞, σ(L∞, L1))

such that

inf
X∈AU

F (X) > F (X̄ − Û(X̄)). (3.34)

Since L1 is the dual of L∞ when L∞ is equipped with the σ(L∞, L1)-topology, the functional

F takes on the following form

F (X) = E[XZ], for some Z ∈ L1. (3.35)
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It follows that E[Z] > 0. Indeed, if E[Z] = 0 then F (X + c) = F (X), for any X ∈ L∞,

c ∈ R, thus giving

F (X̄ − Û(X̄)) = F (X̄ − Û(X̄) + (Û(X̄)− U(X̄))) ≥ inf
X∈AU

F (X),

which is in contradiction with (3.34). On the other hand, if E[Z] < 0 then F (X + c) =

F (X) + cE[Z], for any X ∈ L∞, c ∈ R. In particular, for X ∈ AU and c ∈ R+ we have

(X + c) ∈ AU and

F (X + c) → −∞ as c → +∞,

once again in contradiction with (3.34). This proves that E[Z] > 0, as previously declared,

hence making Z∗ :=
Z

E[Z]
∈ L1 well defined such that E[Z∗] = 1. By Lemma 3.21 we get

V (Z∗) = sup
X∈AU

{−E[Z∗X]} = − 1
E[Z]

inf
X∈AU

E[ZX]

= − 1
E[Z]

inf
X∈AU

F (X).

Therefore

E[Z∗X̄]− Û(X̄) = E[Z∗(X̄ − Û(X̄))] =
F (X̄ − Û(X̄))

E[Z]

<
1

E[Z]
inf

X∈AU

F (X) = −V (Z∗),

by (3.34). This gives us Û(X̄) > E[Z∗X̄] + V (Z∗), in contradiction with the definition of

Û , thus showing that U ≤ Û . In this way we get the desired equality U = Û on L∞(P),

which means that (3.33) is satisfied and proves assertion (i).

(i) ⇒ (ii): We now assume (3.33) to hold for any essentially bounded random variable.

Consider a bounded sequence (Xn)n on L∞, converging P-a.s. to some X. The dominated

convergence theorem implies that E[ZXn] → E[ZX] for any Z ∈ L1 and, in particular, for

any Z ∈ Zσ. Hence, by representation (3.33),

U(X) = inf
Z∈Zσ

{V (Z) + lim
n→∞

E[ZXn]}

≥ lim sup
n→∞

inf
Z∈Zσ

{V (Z) + E[ZXn]}

= lim sup
n→∞

U(Xn),

that completes the proof.
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For the most meaningful non-monotone criterions (the mean-variance and standard-

deviation principles), we really obtain a stronger result than that of the previous theorem.

Indeed, for any payoff X ∈ L∞, we will show that the infimum in (3.32) is obtained for

some σ-additive measure Q = Q(X), hence it is a minimum (see Section 3.4).

Another result for which we can give the adjusted version in this new setting is The-

orem 3.5, where the quantile representation is proved under the additional assumption of

law-invariance.

Theorem 3.23. Let U be a law-invariant functional satisfying Assumption 3.20. Then the

following representations hold:

U(X) = inf
Z∈Zσ

{
−

∫ 1

0
q−Z (t)qX (t)dt + V (Z)

}
, ∀X ∈ L∞, (3.36)

and

V (Z) = sup
X∈L∞

{
U(X) +

∫ 1

0
q−Z (t)qX (t)dt

}
= sup

X∈AU

{∫ 1

0
q−Z (t)qX (t)dt

}
, (3.37)

for any derivative Z ∈ Zσ.

We do not present its proof since it is exactly the same as that of Theorem 3.5, where

the desired representations readily follow by applying Lemma 3.4 (compare [33]).

3.4 The Mean-Variance and the Standard-Deviation Princi-

ples

Born as a method to solve the portfolio selection problem (see the seminal paper of Markovitz

[60]), the mean-variance approach is widely used to shape the choices of economic agents

when there is uncertainty. An agent with mean-variance preferences is characterized by the

choice functional Umv
δ : L∞ → R given by

Umv
δ (X) := E[X]− δVar(X), for all X ∈ L∞, (3.38)

where δ > 0 is an index of the agent’s uncertainty aversion. This criterion is a clear

expression of the principle of diversification and it doesn’t only control the risk on the down

side: it also bounds the possible gain on the up side. This leads to anomalous situations

where a smaller payoff is preferred to a bigger one, as shown in the following example.
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Example 3.24. Consider two financial positions X and Y as illustrated in the table below:

states of the world ω1 ω2

probabilities α 1− α

prospect X 0 0

prospect Y 0 y

with y ∈ R+ = (0,+∞) and α ∈ (0, 1).

In this case, any rational agent should prefer position Y to X, since it gives a higher payoff

in any state of nature. However, for an agent endowed with a choice criterion of type (3.38),

we have

Umv
δ (X) = 0 and Umv

δ (Y ) = y(1− α)(1− δαy).

Therefore, for any y >
1
δα

we get Umv
δ (Y ) < 0, and the mean-variance agent considers

X as being strictly better than Y . This means that, if someone offers her a lottery ticket

Y with probability 1 − α of a “too-big” winning y, then the Umv
δ -agent does not accept

it. The reason for this arises from the following fact: a big winning clearly increases the

mean payoff, but it also makes the financial position more spread out, thereby increasing

the variance. The result is: for a sufficiently large value of y, the increment in variability is

not compensated by the increment on mean, thus leading the mean-variance agent to refuse

the offer.

A similar situation arises when we consider the standard deviation instead of the variance

in (3.38), thus obtaining the so called standard-deviation principle:

U sd
δ (X) := E[X]− δVar(X)1/2, δ > 0. (3.39)

The δ intervening here has the same meaning as the δ in the definition of the mean-variance

principle, although they have different dimensions. Indeed, the parameter in (3.39) is

dimension-free, whereas the dimension of the parameter in (3.38) is 1/currency, in order to

have Umv
δ expressed in monetary units. This fact implies that a change of currency also

adjusts the parameter appearing in the mean-variance functional, whereas this is not the
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case for the standard-deviation one. Let us consider two currencies, e.g. $ and £, with an

exchange rate r > 0, i.e. 1$ = r£. When passing from $ to £, the parameter in (3.38)

has to suffer a change of scale 1/r: it passes from δ to δ/r. In this way, by indicating in

parenthesis the currency in which quantities are expressed, we obtain

U
mv,($)
δ (X($)) = rU

mv,(£)
δ/r (X(£)),

and the amount of required capital does not result to be affected by the choice of currency,

which is the desired independence we mentioned in Section 2.3.

Remark 3.25. At this point, the first comparison that comes to mind is between the semi-

deviation utility (3.22) with p = 2, and the standard-deviation principle (3.39). We consider

the same parameter δ ∈ (0, 1] for both these choice functionals, and point out that they only

differ for the discrepancies which contribute to the risk: only the negative ones for U2
δ ,

and both negative and positive for U sd
δ . Once again there is not one definite choice which

is the best in any situation. It depends on what we are interested in, and on the type of

risk considered. In the problem of economic capital allocation we have to calculate solvency

margins and therefore we may prefer a one-sided measure, hence U2
δ . On the other hand, if

we aim at having a choice criterion linked to the stability of the payoffs we might choose a

two-sided measure, hence U sd
δ .

Let us now go back to the reason why we introduced the standard-deviation principle.

Together with the mean-variance criterion, it is the most representative functional in the

class of the non-monotone ones. Indeed, as in the preceding case, by means of a simple

example we can see that the property of monotonicity is lacking.

Example 3.26. Consider the same payoffs as in the previous example:

states of the world ω1 ω2

probabilities α 1− α

prospect X 0 0

prospect Y 0 y

with y ∈ R+ and α ∈ (0, 1).
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In this case we obtain

U sd
δ (X) = 0 and U sd

δ (Y ) = y
√

1− α(
√

1− α− δ
√

α).

Therefore, for α ∈ (0, 1) such that
1− α

α
< δ2 we get U sd

δ (Y ) < 0, hence the standard-

deviation agent strictly prefers Y to X. As for the mean-variance principle, here we find

situations in which the agent seems to choose in contradiction with the rational economic

behaviour.

On the other hand, in spite of the lack of monotonicity, the functionals Umv
δ and U sd

δ are

“good” choice criterions on L∞ in the sense of Assumption 3.20, as stated in the following

proposition.

Proposition 3.27. The mean-variance principle (3.38) and the standard-deviation prin-

ciple (3.39) are law-invariant functionals satisfying Assumption 3.20. Moreover, they are

both strictly risk-averse conditionally on any event.

Proof. We readily see that Umv
δ and U sd

δ are both normalized, cash and law invariant.

Moreover, dominated convergence readily implies the Lebesgue property, which is a regu-

larity condition stronger than the ‖.‖L∞−continuity. Now let us prove concavity, that for

the mean-variance criterion is strictly satisfied on L∞0 ∩dom(Umv
δ ). To show this, let us fix

α ∈ (0, 1) and a pair X, Y of random variables in L∞ such that E[X] = E[Y ] = 0 and

X 6≡ Y . We get

(αX + (1− α)Y )2 ≤ αX2 + (1− α)Y 2,

where the strict inequality holds in a non-vanishing set, since X and Y are not identical.

Taking the expectation of both sides we obtain:

Var(αX + (1− α)Y ) = E[(αX + (1− α)Y )2] < E[αX2 + (1− α)Y 2]

= αE[X2] + (1− α)E[Y 2] = αVar(X) + (1− α)Var(Y ),

hence Umv
δ (αX + (1− α)Y ) > αUmv

δ (X) + (1− α)Umv
δ (Y ), as announced. We now prove

concavity for the standard-deviation criterion which, by positive homogeneity property, is

equivalent to super-additivity. We want the following inequality to hold:

E[X]− δ
√

Var(X) + E[Y ]− δ
√

Var(Y ) ≤ E[X + Y ]− δ
√

Var(X + Y ),
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for any X, Y ∈ L∞. This means
√

Var(X) +
√

Var(Y ) ≥
√

Var(X + Y ) or, equivalently,

Var(X) + Var(Y ) + 2
√

Var(X)
√

Var(Y ) ≥ Var(X) + Var(Y ) + 2Cov(X, Y ),

i.e.
Cov(X, Y )√

Var(X)
√

Var(Y )
≤ 1, which is always true. Then U sd

δ satisfies axioms (sl) and

(c), which completes the proof of the first statement. On the other hand, observe that

U sd
δ fails strict concavity, since for X ≡ 0 and Y 6≡ 0 we obtain U sd

δ (αX + (1 − α)Y ) =

αU sd
δ (X) + (1− α)U sd

δ (Y ), by positive homogeneity.

In order to end the proof, there still remains to show that Umv
δ and U sd

δ satisfy property

(S). Let us first consider the mean-variance principle. For any X ∈ L∞ and A ∈ F such

that P(A) > 0 and X is not a.s. constant on A, we have

Umv
δ (X1Ac + E[X|A]1A) = E[X]− δVar(X1Ac + E[X|A]1A)

= E[X] + δE[X]2 − δE[(X1Ac + E[X|A]1A)2]

= E[X] + δE[X]2 − δ(E[X21Ac ] + E[E[X|A]21A])

> E[X] + δE[X]2 − δ(E[X21Ac ] + E[E[X2|A]1A])

= E[X] + δE[X]2 − δ(E[X21Ac ] + E[X21A])

= Umv
δ (X),

by Jensen’s inequality. This shows that Umv
δ satisfies property (S). In particular, we have

Var(X1Ac + E[X|A]1A) < Var(X),

which, by passing to the square root, implies that

U sd(X1Ac + E[X|A]1A) > U sd(X),

thus making the proof complete.

This places Umv
δ and U sd

δ in the class of functionals which we deal with in the problem

of optimal risk sharing. Moreover, the Lebesgue property ensures that the Fatou property

holds as well, thus allowing dual representation in L1, as stated in Theorem 3.22.

We have shown that the standard-deviation functional satisfies super-additivity. On the

other hand, we observe that a completely different situation occurs when dealing with the

mean-variance criterion. In particular, Umv
δ exhibits sub-linearity on positively correlated
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risks, when there is no reason to assume that a position compensates the other one. More-

over, it is linear on incorrelated risks and super-linear on negatively correlated risks. In

this last situation it seems reasonable that a position may reduce the riskiness of the other

one, which brings us back to the concept that a merger does not create the need for extra

capital.

3.4.1 The Mean-Variance Principle and the Fenchel Duality

We now study the mean-variance principle and its representability via its dual function

V mv
δ : L∞(Ω,F , P)∗ → [0,∞], given by:

V mv
δ (µ) = sup

X∈L∞
{Umv

δ (X)− 〈µ,X〉}, for any µ ∈ (L∞)∗. (3.40)

According to the Fenchel-Moreau theorem, Umv
δ and V mv

δ are 〈L∞, (L∞)∗〉−conjugate and,

as before pointed out, the Fatou property implies representability in L1:

Umv
δ (X) = inf

Z∈Zσ

{V mv
δ (Z) + E[ZX]}, for any X ∈ L∞. (3.41)

We will prove a stronger result: the infimum in (3.41) is attained in L1 and therefore it is

a minimum. This means that, for every X ∈ L∞, there exists a signed measure Q ∈ Pσ

which verifies the equality Umv
δ (X) = V mv

δ (Z) + E[ZX], where Z is the Radon-Nikodym

derivative
dQ
dP

. Using tools of calculus of variations, we prove this fact and provide an

explicit formulation for the Fenchel transform V mv
δ .

Theorem 3.28. Let Umv
δ : L∞(Ω,F , P) → R be the mean-variance functional defined in

(3.38), and V mv
δ its Fenchel-Legendre transform (3.40). Then

(i) V mv
δ (Z) = max

X∈L∞
{Umv

δ (X)−E[ZX]} =
V arZ

4δ
, ∀Z ∈ dom (V mv

δ ) = Zσ ∩ L2,

(ii) ∂Umv
δ (X) = {1− 2δ(X −E[X])}, ∀X ∈ L∞,

(iii) ∂V mv
δ (Z) =

{ Z

2δ
+ c, ∀c ∈ R

}
, ∀Z ∈ dom (V mv

δ ).

In particular the following representation holds for Umv
δ :

Umv
δ (X) = min

Z∈Zσ

{V mv
δ (Z) + E[ZX]} = min

Z∈Zσ

{E[Z2]
4δ

+ E[ZX]
}
− 1

4δ
, ∀X ∈ L∞. (3.42)
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Proof. Since Umv
δ is concave and continuous w.r.t. the supremum norm, ∂Umv

δ (X) is not

empty for each X in L∞, by Theorem 2.5. Let us now prove that it is in fact a singleton

for any X ∈ L∞, by Gateaux differentiability and Theorem 2.8. For any pair of prospects

X, Y ∈ L∞ and ε > 0, we have

Umv
δ (X + εY ) = E[X + εY ]− δVar(X + εY )

= E[X] + εE[Y ]− δ(Var(X) + ε2Var(Y ) + 2Cov(X, εY ))

= Umv
δ (X) + εE[Y ]− δ(ε2Var(Y ) + 2εCov(X, Y ))

and therefore, by (2.11), the Gateaux differential of Umv
δ at X with perturbation Y is given

by

Jδ(X;Y ) := lim
ε→0

Umv
δ (X + εY )− Umv

δ (X)
ε

= E[Y ]− 2δCov(X, Y ))

= E[Y (1− 2δ(X −E[X]))].

As seen in Section 2.2, linearity of the functional Jδ(X; .) = ∇Umv
δ (X) means the differen-

tiability of Umv
δ with

∂Umv
δ (X) = {∇Umv

δ (X)} = {1− 2δ(X −E[X])}, (3.43)

which is exactly (ii). Here we have identified the linear functional ∇Umv
δ (X) on L∞, with

the Radon-Nikodym derivative

ZX := 1− 2δ(X −E[X]) ∈ L1, E[ZX ] = 1.

At this point, strict concavity of Umv
δ on L∞0 implies the existence of a unique gradient

of V mv
δ on L∞0 for any element in the domain of V mv

δ , by Theorem 2.9. That is, for any µ ∈
dom(V mv

δ ), there exists Xµ ∈ L∞ such that ∂V mv
δ (µ) = {Xµ + c : c ∈ R}. By Theorem 2.6

we know that Xµ ∈ ∂V mv
δ (µ) implies µ ∈ ∂Umv

δ (−Xµ) and, by (3.43), we get µ ∈ Zσ. This

fact leads to

dom(V mv
δ ) ⊆ Zσ

and

∂V mv
δ (Z) =

{ Z

2δ
+ c : c ∈ R

}
, ∀Z ∈ dom(V mv

δ ),



42

as stated in (iii). Moreover we have

∂V mv
δ (Z) = −arg max

X∈L∞
{Umv

δ (X)−E[ZX]},

by (2.10), and for any XZ ∈ −∂V mv
δ (Z) we obtain

V mv
δ (Z) = Umv

δ (XZ)−E[ZXZ ] = E[XZ(1− Z)]− δVar(XZ)

= E
[
− Z

2δ
(1− Z)

]
− δV ar

(
− Z

2δ

)
=

Var(Z)
4δ

,

which shows (i) and completes the proof.

3.4.2 The Standard-Deviation Principle and the Fenchel Duality

In the same way we study the standard-deviation principle, obtaining the following result:

Theorem 3.29. Let U sd
δ : L∞(Ω,F , P) → R be the standard-deviation principle defined in

(3.39) and V sd
δ : L∞(Ω,F , P)∗ → [0,∞] its convex conjugate function. Then

(i) for any X ∈ L∞,

∂U sd
δ (X) =


dom(V sd

δ ), if X = const,{
1− δ

X −E[X]√
Var(X)

}
, otherwise,

(ii) for any Z ∈ dom (V sd
δ ),

∂V sd
δ (Z) = {c : c ∈ R} ∪

{
X ∈ L∞ : Z = 1 + δ

X −E[X]√
Var(X)

}
.

In particular,
{

1 − δ
X −E[X]√

Var(X)
: X ∈ L∞ \ {c : c ∈ R}

}
is the minimal set C which

allows us to represent U sd
δ in the following form:

U sd
δ (X) = min

Z∈C
E[ZX], ∀X ∈ L∞.
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Proof. Since U sd
δ is positively homogeneous, we know that V sd

δ is equal to zero on its domain

and, in particular, for any Z ∈ Zσ we have

V sd
δ (Z) = sup

X∈L∞
{E[X(1− Z)]− δ‖X −E[X]‖L2} (3.44)

= 0 ∨ sup
X∈L∞,X 6=const

{E[X(1− Z)]− δ‖X −E[X]‖L2}. (3.45)

As in the case of the semi-deviation utility, we solve the last optimization problem by con-

structing the Lagrangian function L (where “X 6= const” can be written as “‖X −E[X]‖L2>

0”) and imposing the Kuhn-Tucker optimality conditions ∇L = 0. In this way we obtain

1− Z − δ · X −E[X]√
Var(X)

= 0. (3.46)

Therefore, if Z ∈ Zσ admits a payoff X which solves (3.46), then Z ∈ L∞ with Var(Z) = δ2,

and the maximization over non-constant prospects yields zero as result:

E[X(1− Z)]− δ
√

Var(X) = E[(X −E[X])(1− Z)]− δ
√

Var(X)

=
δ√

Var(X)
E[(X −E[X])2]− δ

√
Var(X) = 0.

From this fact it follows that X solves the problem in (3.44) as well, that is

X ∈ arg max
ξ∈L∞

{U sd
δ (ξ)−E[Zξ]}, (3.47)

which means that X ∈ −∂V sd
δ (Z). Note that in this case we can write any solution of (3.44)

as X = d1Z +d2, with d1 ≤ 0 and d2 ∈ R. On the other hand, if an element Z in dom(V sd
δ )

does not admit any payoff X which solves (3.46), then ∂V sd
δ (Z) just contains the constant

payoffs. This reasoning shows (ii) and, by Theorem 2.6, statement (i) is also proved.

3.5 From Non-Monotone to Monotone Criterions

For any element in the class of criterions characterized by Assumption 3.20, we want to

give the “best possible” approximation in the smaller class of monetary utility functionals,

where the axiom of monotonicity is satisfied. This is the unique property we have to get

back and therefore our “correction” goes in this direction. In order to do this, we follow

the same reasoning as Maccheroni, Marinacci, Rustichini and Taboga [59], where the best
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monotone approximation of non-monotone preferences is introduced to solve a portfolio

selection problem.

First we characterize the set of financial positions in L∞ where a non-monotone agent

behaves monotonically.

Definition 3.30 ([59]). Let U : L∞(Ω,F , P) → R be a functional satisfying Assump-

tion 3.20. We call domain of monotonicity of U the following subset of L∞:

M(U) := {X ∈ L∞ : ∂U(X) ∩ (L∞)∗+ 6= ∅}, (3.48)

where (L∞)∗+ is the collection of all positive measures of (L∞)∗.

M(U) consists of all random variables in L∞ where U admits al least one positive

gradient and, as this definition suggests, functional U restricted to M(U) is monotone.

Indeed, let M(U) 6= ∅ and X, Y ∈ M(U) such that X ≤ Y . We prove that U(X) ≤ U(Y ).

By hypothesis there exists µY ∈ ∂U(Y ) ∩ (L∞)∗+, which gives us 〈µY , ξ〉 ≥ 0 whenever

ξ ≥ 0. By the Fenchel-Moreau theorem we get

U(X) = inf
µ∈(L∞)∗

{V (µ) + 〈µ,X〉} ≤ V (µY ) + 〈µY , X〉

= V (µY ) + 〈µY , Y 〉 − 〈µY , Y −X〉 = U(Y )− 〈µY , Y −X〉

≤ U(Y ),

as desired.

Consider, for example, the mean-variance principle Umv
δ . From (3.43) we obtain

M(Umv
δ ) = {X ∈ L∞ : ∇Umv

δ (X) ∈ Z} =
{

X ∈ L∞ : X −E[X] ≤ 1
2δ

}
.

This means that the mean-variance functional is monotone on the set of prospects with

sufficiently small variability in the right hand side of the distribution, that is, when the

highest values of the payoff are not too spread out. On the other hand, for the standard-

deviation principle U sd
δ , we have

M(U sd
δ ) = {X ∈ L∞ : ∂U sd

δ ∩ Z 6= ∅} = {X = const} ∪
{

X ∈ L∞ :
X −E[X]√

Var(X)
≤ 1

δ

}
.

This indicates that U sd
δ is monotone on the set of prospects with standardized version

bounded from above. Therefore, we don’t want the variability of the right hand side of the

distribution to be too high with respect to the variance of the entire payoff.
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At this point, we introduce the same monotone adjusted-version proposed in [59]: for

any non-monotone criterion we consider the monotone functional that coincides with the

former on its domain of monotonicity and that better approximates it among all monetary

utility functionals. In this purpose, let us fix a functional U : L∞(Ω,F , P) → R satisfying

Assumption 3.20, with M(U) 6= ∅. We can observe that, for example, this is the case when

U is law-invariant, since we have V (1) = 0 (compare [49]), 1 ∈ ∂U(c) for any c ∈ R, hence

{c : c ∈ R} ⊆ M(U). The idea is to define a m.u.f. Um by means of the convex conjugate

V : L∞(Ω,F , P)∗ → [0,∞] of U . Calling to mind that U can be represented in the following

way:

U(X) = inf
µ∈(L∞)∗

{V (µ) + 〈µ,X〉}, ∀X ∈ L∞,

we consider the monetary utility functional Um : L∞(Ω,F , P) → R given by

Um(X) := inf
µ∈(L∞)∗+

{V (µ) + 〈µ,X〉}, ∀X ∈ L∞. (3.49)

Theorem 3.31 ([59]). Let Um : L∞(Ω,F , P) → R be the monetary utility functional defined

in (3.49). Then the following assertions hold:

(i) Um is the minimal monotone functional that dominates U , that is

Um(X) = sup{U(Y ) : Y ∈ L∞ and Y ≤ X}, ∀X ∈ L∞, (3.50)

(ii) for any X ∈ L∞, X ∈ M(U) if and only if U(X) = Um(X),

(iii) let V m : L∞(Ω,F , P)∗ → [0,∞] be the dual conjugate of Um and µ ∈ (L∞)∗, then

V m(µ) =

 V (µ), if µ ∈ (L∞)∗+,

+∞, otherwise.
(3.51)

This theorem states that Um is the most conservative monetary utility functional that

extends U outside its domain of monotonicity, and in this sense it is the best possible

monotone approximation.

Representation (3.50) of Um is in full agreement with the intuition and with the usual

procedures in utility maximization. We look for the highest possible level of satisfaction we

can obtain from a given payoff, and therefore if we can benefit from withdrawing money from
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our portfolio, then we do it. By Proposition 3.32 we see that in the case of mean-variance

preferences this corresponds to a truncation from above of the payoffs.

Recalling that the mean-variance principle Umv
δ can be written as

Umv
δ (X) = min

Z∈Zσ

{V mv
δ (Z) + E[ZX]} = min

Z∈Zσ

{Var(Z)
4δ

+ E[ZX]
}

,

its natural corrected version (the monotone mean-variance principle) is given by

Ummv
δ (X) := inf

Z∈Z

{Var(Z)
4δ

+ E[ZX]
}

, ∀X ∈ L∞. (3.52)

Moreover, the infimum in (3.52) is attained in Z, since Ummv
δ satisfies the Lebesgue property,

hence it is a minimum.

Proposition 3.32 ([59]). Let Umv
δ be the mean-variance criterion and Ummv

δ its best

monotone approximation. Then

Ummv
δ (X) =

 Umv
δ (X), if X ∈ M(Umv

δ ),

Umv
δ (X ∧ kX), otherwise,

where kX = max{t ∈ R : X ∧ t ∈ M(Umv
δ )}.

Example 3.33. Consider the same payoffs as in Example 3.24. We have Y ∈ M(Umv
δ ) if

and only if

0− (1− α)y ≤ 1
2δ

and y − (1− α)y ≤ 1
2δ

,

that is, if and only if

y ≤ 1
2δα

.

Therefore, for a prospect Y of this shape, we have truncation at level kY =
1

2δα
.

Once again, let us consider the interpretation of Y as a lottery ticket. Whereas we have

seen that a Umv
δ -agent only accepts poor-lottery tickets, a Ummv

δ -agent behaves in a more

rational way. Indeed, she accepts tickets of any lottery, even if she considers lottery tickets

with winnings y ≥ kY as being equivalent.

A different situation arises when considering the lottery example for the standard-

deviation principle.
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Example 3.34. Consider the same payoffs as in Example 3.26. Here we get Y ∈ M(U sd
δ )

if and only if

0− (1− α)y
y
√

α(1− α)
≤ 1

δ
and

y − (1− α)y
y
√

α(1− α)
≤ 1

δ
,

that is, if and only if

α

1− α
≤ 1

δ2
,

independently of the winning y.



Chapter 4

Optimal Sharing of Aggregate

Risks

Consider an aggregate of n economic agents, for some n ∈ N, endowed with initial risks

ξ1, . . . , ξn ∈ L∞ and characterized by choice functionals U1, . . . , Un defined on L∞. This

means that, if today their situation remains unchanged, then tomorrow agent i will have

to face her risky position ξi. Now the question that arises is if the agents may re-share the

total risk

X =
n∑

i=1

ξi

in order to make their situation better. Clearly here “better” has the meaning of “more

satisfactory” in the sense of the choice criterions (Ui)n
i=1, hence this problem is directly

linked to the agents’ preferences.

As we have said in the Introduction, this concept captures various situations with very

different characteristics and purposes. Among these it’s worthy of note the case of risk

exchange in insurance and reinsurance contracts, a problem investigated since the early

work of Arrow [2] and Borch [9] (see also [38], [39], [12]). It’s fundamental to note that

we can indistinctly consider any case in which there is an aggregate of economic agents

willing to enter into a contract to better their position. The distinction will be made

when considering the respective initial risk endowments and, above all, when choosing the

appropriate preference criterions for the involved agents.

48
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In this chapter we study the optimal sharing of aggregate risks with a double purpose:

collective and individual satisfaction. First, we aim at maximizing the sum of the utilities

that agents assign at their own share of risk, i.e., we consider the optimization problem

(4.1) which jointly involves all agents. Successively, we take into consideration the individual

point of view of each agent, looking for a contract that everyone agrees to sign. Basically, we

extend the results of Jouini et al. [49] on the existence and the characterization of optimal

solutions to these problems, to a more general setting. In the above-mentioned paper, two

agents with monotone preferences are considered. Here we deal with any number of agents

endowed with more general choice criterions, as those introduced in the previous chapter.

This will also allow us to compare the behaviour of monotone and non-monotone agents in

facing the risk sharing problem and to show that, under suitable conditions, the optimal

redistribution of a given aggregate risk is not affected by the presence of agents failing

monotonicity property.

4.1 The Sup-Convolution Problem

To formalize our problem, we introduce the set of admissible sharings of an essentially

bounded risk.

Definition 4.1. Given an aggregate of n agents and a risk X ∈ L∞, we define the set of

attainable allocations as the following collection of n-tuples:

An(X) := {(X1, . . . , Xn) ∈ L∞ × · · · × L∞ :
n∑

i=1

Xi = X}.

Since it seems to be reasonable to require each quota of risk to rise with the total risk,

we also introduce the set of admissible allocations which increase with the corresponding

aggregate risk:

A↑n(X) := {(X1, . . . , Xn) ∈ An(X) : Xi ↗ X, ∀i = 1, . . . , n},

where Xi ↗ X means Xi = φi(X) pointwise, for some non-decreasing function φi : R → R.

As pointed out before, we first consider the “common welfare” by solving the sup-

convolution problem:
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U1� · · ·�Un(X) := sup
(X1,..,Xn)∈An(X)

n∑
i=1

Ui(Xi), (4.1)

which provides solutions jointly optimal for the agents, without regard to their individual

level of satisfaction.

Remark 4.2. We essentially deal with choice functionals Ui characterized in Assump-

tion 3.20, which, in general, don’t satisfy monotonicity. However we often refer to Ui(Xi)

as the utility that agent i obtains from position Xi, and to
∑n

i=1 Ui(Xi) as the overall utility.

We will see that the solutions to the maximization problem (4.1), if they exist, provide

such allocations which do not allow a better position for all agents. Nevertheless, the re-

sharing suggested by a solution of (4.1) may worsen some agents’ situation, thus making

the introduction of some constraints on such an optimization problem necessary, in order

to avoid these unpleasant occurrences. Before that, we must fix some notations and simple

results linked to the sup-convolution problem.

Here and throughout this chapter, we consider a collection of choice functionals U1, . . . , Un

satisfying Assumption 3.20. By means of these, we define another functional U on L∞, which

is the result of their sup-convolution:

U(X) := U1� · · ·�Un(X), for any X ∈ L∞. (4.2)

Since Ui : L∞ → R are concave and finite functionals, then U is also concave and satisfies

U > −∞ on L∞. In this way we get U : L∞ → R ∪ {+∞}, with either U ≡ +∞ or

dom(U) = L∞, from the concavity property.

Denote by V, V1, . . . , Vn : (L∞)∗ → [0,+∞] the convex conjugate functions of U,U1, . . . , Un

respectively. Then we obtain V ≡ +∞ if U ≡ +∞, and

V =
n∑

i=1

Vi, with dom(V ) =
n⋂

i=1

dom(Vi), (4.3)

if U is proper. Indeed, for any µ ∈ (L∞)∗, we have

V (µ) = sup
X∈L∞

{U(X)− 〈µ,X〉} = sup
X∈L∞

sup
(Xi)i∈An(X)

{ n∑
i=1

Ui(Xi)− 〈µ,X〉
}

= sup
Xi∈L∞

n∑
i=1

(Ui(Xi)− 〈µ,Xi〉) =
n∑

i=1

Vi(µ).



51

To avoid the worthless case U ≡ +∞, we make the following assumption on the dual

functions Vi’s, which is equivalent to have U proper with dom(U) = L∞.

Assumption 4.3. The convex conjugate functions V1, . . . , Vn are s.t.
n⋂

i=1

dom(Vi) 6= ∅.

Under this condition we study some of the properties U inherits from functionals Ui’s.

Cash-invariance is immediate. Moreover, since dom(U) = L∞, Theorem 2.7 ensures that

∂U(X) 6= ∅ for all X ∈ L∞, and that (U, V ) are 〈L∞, (L∞)∗〉− conjugate.

Remark 4.4. We stress the fact that, under law-invariance property for Ui’s, Assump-

tion 4.3 is automatically satisfied, seeing that Z ≡ 1 lies in the effective domain of Vi, with

Vi(1) = 0, for any i = 1, . . . , n (compare [49]). This also guarantees the normalization

property for U , by relation (4.3).

In the following lemma we present further stability properties for our preference criterions.

Lemma 4.5. Let (Ui)n
i=1 be choice criterions satisfying Assumption 3.20 and Assump-

tion 4.3, and let U be the functional defined in (4.2). Then the following implications hold:

(i) Uj monotone for some j ∈ {1, . . . , n} ⇒ U monotone,

(ii) (Ui)n
i=1 law-invariant ⇒ U law-invariant,

(iii) (Ui)n
i=1 law-invariant and satisfy property (S) ⇒ U satisfies property (S),

(iv) (Ui)n
i=1 law-invariant and Uj strictly monotone for some j ∈ {1, . . . , n} ⇒ U strictly

monotone.

On the contrary, as seen in a counter-example reported in [22], we have that the Fatou

property is not stable for the sup-convolution.

Proof. [Lemma 4.5-(i),(ii)] Statement (ii) being immediate, we assume Uj to be monotone

for some j ∈ {1, . . . , n} and prove statement (i). To show that U is monotone as well, let us

consider two prospects X, Y ∈ L∞ such that X ≤ Y . Let (Xm
1 , . . . , Xm

n )m∈N be a maximiz-

ing sequence in An(X) for the sup-convoultion problem, that is U(X) = lim
m→+∞

n∑
i=1

Ui(Xm
i ),

and define the allocations (Y m
1 , . . . , Y m

n )m∈N in An(Y ) given by
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Y m
i =

 Xm
j + (Y −X), if i = j,

Xm
i , if i 6= j.

At this point, by definition of U and monotonicity of Uj we have

U(Y ) ≥ lim
m→+∞

n∑
i=1

Ui(Y m
i ) ≥ lim

m→+∞

n∑
i=1

Ui(Xm
i ) = U(X).

This makes U a monetary utility functional and, in particular, L∞-Lipschitz continuous.

Proof of statements (iii)-(iv) will be given after Theorem 4.11.

4.1.1 Characterization of Pareto Optimal Allocations

We now study the sup-convolution problem, showing that it is the recipe to find the Pareto

optimal allocations, in the sense of the definition below.

Definition 4.6. An n-tuple (X1, . . . , Xn) ∈ An(X) is said a Pareto Optimal Allocation

(POA) if for all (ξ1, . . . , ξn) ∈ An(X) such that Ui(ξi) ≥ Ui(Xi) ∀ i = 1, . . . , n, then

Ui(ξi) = Ui(Xi) ∀ i = 1, . . . , n.

This means that there exists no other redistribution of the aggregate risk X such that

each agent is better off with at least one strictly better.

Remark 4.7. Due to the translation invariance, Pareto optimality is true up to con-

stants summing up to zero. That is, for any POA (X1, . . . , Xn) ∈ An(X) of a given

aggregate risk X, and any choice of constants c1, . . . , cn ∈ R s.t.
n∑

i=1

ci = 0, then also

(X1 + c1, . . . , Xn + cn) is a POA of X.

The following theorem provides a characterization of Pareto optimal allocations as so-

lutions to the sup-convolution problem and by means of convex analysis tools (see [49,

Theorem 3.1] for the case of two agents endowed with monetary utility functionals).

Theorem 4.8. Let U1, . . . , Un be preference functionals satisfying Assumption 3.20 and

Assumption 4.3, with associated dual convex functions V1, . . . , Vn defined on (L∞)∗. For a

given risk X ∈ L∞ and an allocation (ξ1, . . . , ξn) ∈ An(X), the following statements are

equivalent:
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(i) (ξ1, . . . , ξn) is a Pareto optimal allocation,

(ii) U1� · · ·�Un(X) =
n∑

i=1

Ui(ξi),

(iii) there exists µ ∈ (L∞)∗ s.t. Ui(ξi) = Vi(µ) + 〈µ, ξi〉 ∀i = 1, . . . , n,

(iv) there exists µ ∈ (L∞)∗ s.t. µ ∈ ∂Ui(ξi) ∀i = 1, . . . , n,

(v) there exists µ ∈ (L∞)∗ s.t. −ξi ∈ ∂Vi(µ) ∀i = 1, . . . , n.

Proof. (ii) ⇒ (i) is trivial, and (iii) ⇔ (iv) ⇔ (v) directly follow from Theorem 2.6, since

(Ui, Vi) are 〈L∞, (L∞)∗〉−conjugate for each i. Let us prove the other implications.

(i) ⇒ (ii): Let’s assume (i) and e(ii), that is, (ξ1, . . . , ξn) POA with
n∑

i=1

Ui(ξi) <
n∑

i=1

Ui(ζi),

for some (ζ1, . . . , ζn) ∈ An(X). Define

αi := Ui(ζi)− Ui(ξi), ∀i = 1, . . . , n and α :=
n∑

i=1

αi > 0.

Put I := {1, . . . , n}, J := {j ∈ I : αj 6= 0} 6= ∅ and let m > 0 be the cardinality of J . The

cash can be rebalanced to obtain the allocation (X1, . . . , Xn) as follows:

Xi =

 ζi, for all i ∈ I \ J,

ζi − αi +
α

m
, for all i ∈ J.

Obviously
n∑

i=1

Xi =
n∑

i=1

ζi = X, so that (X1, . . . , Xn) ∈ An(X). Moreover we get

Ui(Xi) =

 Ui(ξi), for all i ∈ I \ J,

Ui(ξi) +
α

m
> Ui(ξi), for all i ∈ J,

which is in contradiction with the Pareto optimality of (ξ1, . . . , ξn), and therefore (ii) holds

whenever (i) holds.

(ii) ⇒ (iii): Recall that, under our assumptions, ∂U(X) 6= ∅ ∀X ∈ L∞. At this point there

exists a measure µ ∈ (L∞)∗ such that U(X) = V (µ) + 〈µ,X〉, and from (ii) and (4.3) we

obtain
n∑

i=1

Ui(ξi) =
n∑

i=1

Vi(µ) +
〈
µ,

n∑
i=1

ξi

〉
. (4.4)
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On the other hand, by duality relations we have

Ui(ξi) ≤ Vi(µ) + 〈µ, ξi〉, for all i = 1, . . . , n,

hence (iii) follows from (4.4).

(iii)⇒ (ii): Clearly
n∑

i=1

Ui(ξi) =
n∑

i=1

Vi(µ) +
〈
µ,

n∑
i=1

ξi

〉
= V (µ) + 〈µ,X〉. By duality relation

and (4.2), it follows that U(X) ≤ V (µ) + 〈µ,X〉 =
n∑

i=1

Ui(ξi) ≤ U(X), which implies (ii)

and completes the proof.

Proposition 4.9. Let U be defined in (4.2). For any X ∈ L∞, the following implications

hold true:

(i) µ ∈ ∂U(X) ⇒ µ ∈
n⋂

i=1

∂Ui(Xi) for any POA (Xi)n
i=1 ∈ An(X),

(ii) µ ∈
n⋂

i=1

∂Ui(Xi) for some (Xi)n
i=1 ∈ An(X) ⇒ µ ∈ ∂U(X).

Proof. (i): Let µ ∈ ∂U(X) and let (Xi)n
i=1 ∈ An(X) be a POA of X. By the Fenchel duality

relation we have

U(X) = V (µ) + 〈µ,X〉 =
n∑

i=1

Vi(µ) +
〈
µ,

n∑
i=1

Xi

〉
≥

n∑
i=1

Ui(Xi), (4.5)

as Vi(µ) + 〈µ,Xi〉 ≥ Ui(Xi) for any i = 1, . . . , n. Now, since U(X) =
∑n

i=1 Ui(Xi), the

inequality in (4.5) results to be an equality and therefore Vi(µ) + 〈µ,Xi〉 = Ui(Xi) for any

i=1,. . . ,n, which is the stated result.

(ii): Let (Xi)n
i=1 be an admissible allocation of X and µ a measure such that µ ∈ ∂Ui(Xi) ∀i =

1, . . . , n. Theorem 4.8 implies that (Xi)n
i=1 is a POA and we obtain

U(X) =
n∑

i=1

Ui(Xi) =
n∑

i=1

Vi(µ) +
〈
µ,

n∑
i=1

Xi

〉
= V (µ) + 〈µ,X〉,

which ensures that µ lies in ∂U(X) and makes the proof complete.

The following lemma shows that the problem of sup-convolution can be given in terms

of allocations increasing with the total risk.
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Lemma 4.10. Let U1, . . . , Un be law-invariant choice criterions satisfying Assumption 3.20.

Then

sup
(Xi)n

i=1∈An(X)

n∑
i=1

Ui(Xi) = sup
(Xi)n

i=1∈A↑n(X)

n∑
i=1

Ui(Xi). (4.6)

Proof. By Lemma 6.1 in [49], we know that the result is true in the case n = 2, even con-

sidering choice criterions satisfying Assumption 3.20 instead of monetary utility functionals

(the property of monotonicity doesn’t take part in the proof). Now we proceed by induction

to show that it holds for any number n ∈ N of agents. The basis of the induction is n = 2,

and the hypothesis is that (4.6) holds for a number m ∈ N of agents. We have to prove

that it is still true for m + 1 agents. Consider functionals Ui, i = 1, . . . ,m + 1, satisfying

Assumption 3.20, and let X ∈ L∞. We have

U1� · · ·�Um+1(X) ≡ sup
(Xi)

m+1
i=1 ∈Am+1(X)

m+1∑
i=1

Ui(Xi)

= sup
ζ∈L∞

{
sup

(Xi)m
i=1∈Am(ζ)

m∑
i=1

Ui(Xi) + Um+1(X − ζ)
}

= sup
(ζ,(X−ζ))↗X

{
sup

(Xi)m
i=1∈Am(ζ)

m∑
i=1

Ui(Xi) + Um+1(X − ζ)
}

= sup
(ζ,(X−ζ))↗X

{
sup

(Xi)m
i=1∈A↑m(ζ)

m∑
i=1

Ui(Xi) + Um+1(X − ζ)
}

= sup
(Xi)

m+1
i=1 ∈A↑m+1(X)

m+1∑
i=1

Ui(Xi),

using both the basis and the hypothesis of the induction. The last equality is true by the

fact that, if Xi ↗ ζ and ζ ↗ X, then obviously Xi ↗ X. This completes the inductive

procedure, showing that equality (4.6) is true for any number n of economic agents.

4.1.2 Existence of Pareto Optimal Allocations

In Theorem 4.11 we give sufficient conditions to ensure that the set of Pareto optimal

allocations is not empty, a fact that is not true in general (see [49, Section 6.3] for a
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counterexample). Note that, in view of Theorem 4.20, this also guarantees the existence

of optimal risk sharing rules (Definition 4.19). The unique extra-property that we need on

our choice criterions is the invariance in law, which is usually very simple to check.

Theorem 4.11. Let Ui, i = 1, . . . , n, be law-invariant choice functionals satisfying As-

sumption 3.20. Then, for any X ∈ L∞, the set of Pareto optimal allocations in A↑n(X) is

non-empty.

Proof. Following, step by step, the same arguments used in [49], we consider a maximizing

sequence {(Xk
1 , . . . , Xk

n)}k∈N of the sup-convolution problem (4.1), which can be chosen in

A↑n(X) by Lemma 4.10. Hence we have Xk
i = ϕk

i (X) for some non-decreasing functions

ϕk
i : [x, x] → R, for each i = 1, . . . , n and k ∈ N, where [x, x] := [ess inf X, ess supX]. By

possibly adding some constants to Xk
i , we may assume essinf Xk

i = 0 for any i = 1, . . . , n−1

and k ∈ N. Since
∑n

i=1 Xk
i = X, it follows that 0 ≤ Xk

i ≤ x − x, ∀i = 1, . . . , n − 1, and

x ≤ Xk
n ≤ x. Therefore, for any i = 1, . . . , n− 1 and k ∈ N,

ϕk
i ∈ B := {f : [x, x] → R : |f | ≤ (x− x) and f, (Id− f) are non-decreasing}.

Note that B is composed of 1-Lipschitz continuous functions, thus it is a bounded, closed,

equicontinuous family. The Ascoli-Arzelà theorem ensures that, by possibly passing to a

subsequence, ϕk
i converge to some ϕi ∈ B as k → ∞, for each i = 1, . . . , n − 1, uniformly

on [x, x]. This implies

ϕk
n = Id−

n−1∑
i=1

ϕk
i → Id−

n−1∑
i=1

ϕi =: ϕn as k →∞

uniformly on [x, x]. Now we can check that (ϕ1(X), . . . , ϕn(X)) ∈ A↑n(X) is the max-

imizer we are looking for. Indeed, we have U1� · · ·�Un(X) = limk→∞
∑n

i=1 Ui(Xk
i ) =∑n

i=1 Ui(limk→∞ ϕk
i (X)) =

∑n
i=1 Ui(ϕi(X)), by assumption of L∞-continuity of Ui, for any

i = 1, . . . , n.

Remark 4.12. Note that the existence of POAs implies, in particular, that the functional

U defined in (4.2) is proper, with dom(U) = L∞ and
⋂n

i=1dom(Vi) 6= ∅.

We can now complete the proof of Lemma 4.5.
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Proof. [Lemma 4.5-(iii),(iv)] Let (Ui)n
i=1 be law-invariant functionals satisfying property

(S). In order to prove statement (iii), we fix X ∈ L∞ and A ∈ F s.t. P(A) > 0 and X is

not constant on A. By Theorem 4.11 we know that there exists a POA (Xi)n
i=1 ∈ An(X),

so that U(X) =
∑n

i=1 Ui(Xi). The fact that X is not constant on A implies that, for some

j ∈ {1, . . . , n}, Xj is not constant on A as well. By property (S) we have

U(X) =
n∑

i=1

Ui(Xi) <

n∑
i=1

Ui(Xi1Ac + E[Xi|A]1A)

≤ U(X1Ac + E[X|A]1A),

which means that U is strictly risk-averse conditionally on any event and proves (iii). Now

let (Ui)n
i=1 be law-invariant functionals, with Uj strictly monotone for some j ∈ {1, . . . , n}.

In order to prove statement (iv), we fix X, Y ∈ L∞ such that X ≤ Y and P(X < Y ) > 0.

Consider a POA (X1, . . . , Xn) ∈ An(X), which exists by Theorem 4.11, and the allocation

(Y1, . . . , Yn) of Y given by:

Yi =

 Xj + (Y −X), if i = j,

Xi, if i 6= j.

This produces

U(X) =
n∑

i=1

Ui(Xi) <
n∑

i=1

Ui(Yi) ≤ U(Y ),

which implies that U is strictly monotone and concludes the proof of Lemma 4.5.

In the next chapter we strongly use a result proved in [49] for the case of two monetary

utility functionals, which can be easily generalized to a more general context:

Lemma 4.13. Let U1, . . . , Un be choice functionals satisfying Assumption 3.20 and As-

sumption 4.3. Then the following statements are equivalent:

(i) ∀X ∈ L∞, there exists a POA (X1, . . . , Xn) ∈ An(X),

(ii) ∀µ ∈ (L∞)∗, ∂V (µ) ≡ ∂
( n∑

i=1

Vi

)
(µ) =

n∑
i=1

∂Vi(µ).

Note how the assumption of law-invariance for all choice criterions (Ui)n
i=1 ensures the

existence of Pareto optimal allocations, by Theorem 4.11, and therefore (ii) also holds true.
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Proof. (i) ⇒ (ii): Fix any measure µ ∈ (L∞)∗. The inclusion
∑

i ∂Vi(µ) ⊆ ∂(
∑

i Vi)(µ)

being always true, we must show the opposite one. If ∂V (µ) = ∅, there is nothing to

prove. So, let’s assume ∂V (µ) 6= ∅ and consider X ∈ −∂V (µ), which is equivalent to say

µ ∈ ∂U(X). From (i) there exists (Xi)n
i=1 ∈ An(X) Pareto optimal and Proposition 4.9

applies, giving µ ∈ ∂Ui(Xi) for all i = 1, . . . , n, that is Xi ∈ −∂Vi(µ). This fact implies

X =
n∑

i=1

Xi ∈ −
n∑

i=1

∂Vi(µ),

thus concluding the first part of the proof.

(ii) ⇒ (i): We have seen that Assumption 4.3 implies ∂U(X) 6= ∅ for any X ∈ L∞.

Therefore, there exists some measure µ in ∂U(X), that is

X ∈ −∂V (µ) = −
n∑

i=1

∂Vi(µ).

Therefore, there exists an allocation (Xi)i of X such that Xi ∈ −∂Vi(µ) for all i = 1, . . . , n,

and Theorem 4.8 ensures that it is Pareto optimal.

4.1.3 Some Examples of Sup-Convolution Problems

For the sake of completeness, we now state the natural extension to the case of any number

n of agents, for some of the results given in [5] and [49] in the case of two agents, when

dealing with functionals satisfying particular properties. For example, we can consider

an aggregate of agents all working with the same kind of preferences, in the sense of the

following definition.

Definition 4.14. Given n agents endowed with choice criterions U1, . . . , Un, we say that

they have dilated utility measures (compare [5]) if, for any i = 1, . . . , n, we can write

Ui(X) = αiŪ
(X

αi

)
, ∀X ∈ L∞, (4.7)

for some parameters αi > 0, i = 1, . . . , n, and some functional Ū fulfilling Assumption 3.20.

Such agents have preference functionals of the same type, except for the risk-tolerance

coefficient αi, and this leads to the following result:



59

Proposition 4.15. Let (Ui)n
i=1 be dilated utility measures. Then, for any aggregate risk

X ∈ L∞, we have

U1� · · ·�Un(X) = αŪ
(X

α

)
, where α =

n∑
i=1

αi. (4.8)

In particular, we obtain that (X1, . . . , Xn) ∈ An(X) given by

Xi =
αi

α
X, for all i = 1, . . . , n,

is a Pareto optimal allocation, corresponding to the linear quota-sharing of X proportional

to the risk-tolerance coefficients. As we have said, we know that this result is true in the

particular case n = 2 (see [5], where the monotonicity property does not intervene). From

this fact, and by the induction method, it clearly follows that relation (4.8) holds true for

any number n of agents, calling to mind that the sup-convolution operator is associative.

Corollary 4.16. Given an aggregate of n agents, which are all endowed with the same

choice functional U , then

U� · · ·�U(X) = nU
(X

n

)
, ∀X ∈ L∞,

and the allocation that gives the same share
X

n
of the total risk X to any agent, is Pareto

optimal.

Moreover, if functional U in Corollary 4.16 is positively homogeneous, then

U� · · ·�U(X) = U(X), ∀X ∈ L∞,

and any proportional sharing

(β1X, . . . , βnX), with βi ≥ 0 and
n∑

i=1

βi = 1,

is Pareto optimal.

Now we introduce the following notion, given in [49], which allows us to formulate the

proposition below.

Definition 4.17. Let f, g be functions belonging to D (see Section 3.1) such that f ≤ g. A

non-decreasing function q on [0, 1] is called flat on {f < g} if it is almost surely constant

on {f < g} and (q(0+)− q(0))(g − f)(0+) = 0.
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Proposition 4.18. Let (Ui)n
i=1 be law-invariant, comonotone monetary utility functionals,

with associated concave functions fi ∈ D as in Theorem 3.8. Then

(i) U := U1� · · ·�Un is a law-invariant, comonotone m.u.f., with associated concave

function f :=
n∧

i=1

fi ∈ D;

(ii) (Xi)n
i=1 ∈ A↑n(X) is a POA if and only if qXi

is flat on {fi > f} ∩ {dqX > 0}.

Once again, the fact that this result holds in the case n = 2 ([49]) makes the proof easy in

the general case of any number n of agents. Therefore, we present just a sketch of it based,

as before, on the induction method: assuming the result to hold for m agents, we have to

prove that it remains true for m+1 agents. In this way statement (i) readily follows, whereas

with regard to statement (ii) we note that, given an allocation (Xi)m+1
i=1 ∈ A↑m+1(X) which

is Pareto optimal for (U1, . . . , Um, Um+1), then the allocation (Xi)m
i=1 ∈ A↑m(X − Xm+1)

is Pareto optimal for (U1, . . . , Um). We also recall that, for Xi comonotone, the equality

q
(X1+···+Xm)

= qX1
+ · · ·+ qXm

holds, so that q
(X1+···+Xm)

is flat if and only if qXi
is flat for

any i = 1, . . . ,m.

4.2 Constraints on the Sup-Convolution Problem

As already pointed out, the solutions to the maximization problem (4.1), i.e., the Pareto

optimal allocations, are jointly optimal for the agents, but do not pertain to the satisfaction

of each agent individually. Indeed, it may occur that some agent worsens her position by

passing from the initial risk endowment to a new one suggested by a POA. At this point,

since we want each agent to be satisfied by the redistribution of the aggregate risk, we

introduce the following notions:

Definition 4.19 ([49]). Consider n agents endowed with choice functionals U1, . . . , Un and

initial risky positions (ξ1, . . . , ξn) ∈ L∞ × · · · × L∞. Let (X1, . . . , Xn) ∈ An(X) be an

allocation of the total risk X =
∑n

i=1 ξi. Then we say that

(i) (X1, . . . , Xn) satisfies the Individual Rationality constraints, if

(IR) Ui(Xi) ≥ Ui(ξi), for all i = 1, . . . , n;
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(ii) (X1, . . . , Xn) is an Optimal Risk Sharing (ORS) rule, if it satisfies both the Pareto

optimality and the individual rationality constraints.

Condition IR seems to be the most natural request in order to have all agents agree on

how to modify their initial risk endowment, since in this way anyone has an incentive to

enter into the contract, and this leads to the following theorem (see [49] for the case of two

agents endowed with monetary utility functionals).

Theorem 4.20. Consider n agents characterized by choice functionals (Ui)n
i=1 satisfying

Assumption 3.20, and initial endowments (ξ1, . . . , ξn) of the total risk X. Let (X1, . . . , Xn) ∈
An(X) be a POA and pi := Ui(Xi)−Ui(ξi), i = 1, . . . , n, the utility increments experienced

by the agents. Then the following statements hold:

(i)
n∑

i=1

pi ≥ 0;

(ii) let π1, . . . , πn be constants s.t.
∑n

i=1 πi = 0, then allocation (X1 − π1, . . . , Xn − πn)

is an ORS rule if and only if πi ≤ pi, ∀i = 1, . . . , n.

Proof. From the Pareto optimality we have

n∑
i=1

pi =
n∑

i=1

Ui(Xi)−
n∑

i=1

Ui(ξi) = sup
(ζi)n

i=1∈An(X)

n∑
i=1

Ui(ζi)−
n∑

i=1

Ui(ξi) ≥ 0,

which proves statement (i). Let us now show (ii). For any choice of constants (πi)n
i=1

summing up to zero, (X1−π1, . . . , Xn−πn) is a POA of X, as seen in Remark 4.7. Therefore,

by definition, it is an ORS rule if and only if Ui(Xi − πi) ≥ Ui(ξi), ∀i = 1, . . . , n, which is

equivalent to have

πi ≤ Ui(Xi)− Ui(ξi) = pi, ∀i = 1, . . . , n,

from the cash-invariance property.

This theorem ensures the existence of optimal risk sharing rules of a given aggregate

risk, provided the existence of a Pareto optimal allocation. We actually get more than

this. To any PAO we have associated a set of prices (πi)n
i=1 which make the IR constraints

satisfied. We call p1, . . . , pn indifference prices, or indifference pricing rules, since agents

are indifferent, from their utility point of view, to either carrying out this transaction at
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these prices or not carrying it out at all. We note that price pi corresponds to the maximal

amount agent i is willing to pay to enter into the contract, i.e., to change her position from

the initial one ξi to the new one Xi.

Remark 4.21. If the initial risk endowment is already optimal in the sense of Pareto, then

for any other POA we consider, we have a unique vector of prices making it an ORS rule.

Indeed, using the notation of Theorem 4.20, we get
∑n

i=1 pi = 0 and the only possibility to

price the contract is via the indifference prices, i.e. πi = pi, ∀i = 1, . . . , n. Since in this

case each agent maintains her own level of satisfaction, then it is convenient to do nothing.

Otherwise, if the initial endowment does not constitute a solution to the sup-convolution

problem, then any POA admits an infinite set of suitable prices, which form the polyhedral

space {(πi)n
i=1 :

∑n
i=1 πi = 0, πi ≤ pi}. At this point, it is the market power of the economic

agents involved in the problem that determines the unique vector of prices of an optimal

contract.

For example, if there is an agent, say i, with the power to decide the price of the contract

for any agent (ultimatum game), then the problem to solve is the maximization of her utility,

under the individual rationality constraints for the other agents:

(Pi)

 supUi

(
X −

∑
j 6=i(Xj − πj)

)
Uj(Xj − πj) ≥ Uj(ξj), j 6= i.

In solving problem (Pi), we obtain ORS rules (X1−π1, . . . , Xn−πn), where obviously Xi and

πi are defined by Xi = X−
∑

j 6=i Xj and πi = −
∑

j 6=i πj . In particular, we get all the POAs

(X1, . . . , Xn) with associated prices uniquely determined by πj = Uj(Xj)− Uj(ξj) = pj ,

∀j 6= i. This means that for each agent j 6= i we consider her indifference price pj , so

that for agent i we have her best possible (i.e. minimal) price πi = −
∑

j 6=i pj . Therefore,

agent i achieves the maximum utility that she is eligible for in an ORS rule, given by

Ui(Xi − πi) = U(X)−
∑
j 6=i

Uj(ξj).

Remark 4.22. In an ultimatum game this is the rational solution suggested by the theory,

that is, for the proposer to offer the biggest possible prices (pj)j 6=i (or rather (pj − εj)j 6=i for

some small quantities εj > 0 s.t. −
∑

j 6=i(pj − εj) ≤ pi), and for the responders to accept
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them. In spite of that, we empirically have a different situation since, most frequently, we

observe fair prices (see [13], [45] and [64] for a justification).

4.3 Monotone Approximations in the ORS Problem

So far, in this chapter, no distinction is made between choice functionals which do or do not

satisfy monotonicity. In this section, on the contrary, we just emphasize if the criterions

involved in the ORS problem have or haven’t got this property. In line with the notation

of the preceding chapter, for any non-monotone criterion U : L∞ → R we denote by Um its

best monotone version (3.49), which in particular is a monetary utility functional.

Let us start with a preparatory result, which will allow us to make a comparison between

problems involving non-monotone criterions, and the associated ones which only involve

monetary utility functionals.

Lemma 4.23. Let U1, . . . , Un be choice functionals satisfying Assumption 3.20 and As-

sumption 4.3, and let at least one of these be monotone. Then, for any POA (X1, . . . , Xn) ∈
An(X),

Xi ∈ M(Ui), ∀i = 1, . . . , n, (4.9)

where M(Ui) is the domain of monotonicity of Ui (see Definition 3.30).

This means that, in an optimal redistribution of the total risk, each agent will always

take upon herself a risky position which lies in the set where she behaves monotonically.

Proof. Let (X1, . . . , Xn) ∈ An(X) be a POA of the total risk X. Theorem 4.8 ensures

the existence of a measure µ ∈ (L∞)∗ such that µ ∈ ∂Ui(Xi), for any i = 1, . . . , n. By

hypothesis there exists an agent, say j for some j ∈ {1, . . . , n}, which satisfies the axiom of

monotonicity. The argument that follows (3.2) implies ∂Uj(Xj) ⊆ dom(Vj) ⊆ (L∞)∗+, so

that µ is a positive measure and (4.9) readily follows by (3.48).

For a collection of functionals U1, . . . , Un on L∞(Ω,F , P), we denote by (P ) and (Pm) re-

spectively, the sup-convolution problems of the original criterions and of their best monotone

approximations:
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(P ) U1� · · ·�Un(X) = sup
(X1,...,Xn)∈An(X)

n∑
i=1

Ui(Xi),

(Pm) Um
1 � · · ·�Um

n (X) = sup
(X1,...,Xn)∈An(X)

n∑
i=1

Um
i (Xi).

Moreover, we call U and Ũ the concave functionals on L∞(Ω,F , P) obtained from these

problems:

U(X) := U1� · · ·�Un(X), Ũ(X) := Um
1 � · · ·�Um

n (X) (4.10)

and V , Ṽ their convex conjugate functions defined on L∞(Ω,F , P)∗.

Theorem 4.24. Let U1, . . . , Un be as in Lemma 4.23. Then U and Ũ introduced in (4.10)

describe the same monetary utility functional on L∞(Ω,F , P):

U(X) = Ũ(X), ∀X ∈ L∞. (4.11)

Proof. The fact that U and Ũ are monetary utility functionals is an immediate consequence

of Lemma 4.5 and the arguments that precede it, which also imply that (U, V ), as well as

(Ũ , Ṽ ), are 〈L∞, (L∞)∗〉− conjugate. From relation (4.3) we have

V (µ) =
n∑

i=1

Vi(µ), where dom(V ) =
n⋂

i=1

dom(Vi) ⊆ (L∞)∗+,

since dom(Vj) ⊆ (L∞)∗+ for some j ∈ {1, . . . , n}. On the other hand, by (3.51) we obtain

Ṽ (µ) =
n∑

i=1

V m
i (µ) =


∑n

i=1 Vi(µ), on
⋂n

i=1 dom(Vi)
⋂

(L∞)∗+,

+∞, elsewhere,

so that V = Ṽ on (L∞)∗, and therefore U = Ũ on L∞.

Equality (4.11) means that the consideration of criterions (U1, . . . , Un) or (Um
1 , . . . , Um

n )

leads, for any aggregate risk, to the same maximal overall utility, although it does not say

anything about which allocations realize or approximate this supremum. Let us now take

into account exactly such allocations, that is, how the total risk can be optimally re-shared

among the involved agents, which is the subject matter of this chapter. The following result

is just a first answer in this direction.
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Corollary 4.25. Let U1, . . . , Un be as in Lemma 4.23. Then, for any aggregate risk

X ∈ L∞, any solution to problem (P ) is also a solution to problem (Pm).

By Theorem 4.8 this means that, for each X ∈ L∞, the following relation between the

sets of Pareto optimal allocations holds true:

{POAs for (U1, . . . , Un)} ⊆ {POAs for (Um
1 , . . . , Um

n )}.

Therefore, provided that some agent has monotone preferences, for any other agent involved

in the redistribution of the risk it does not matter if she behaves monotonically or not.

Indeed, the optimal allocations we find by solving the problem w.r.t. the original criterions

(Ui)n
i=1 are also optimal w.r.t. their adjusted versions (Um

i )n
i=1.

Proof. If problem (P ) admits no solutions, then there is nothing to prove. So, let’s assume

there exists an allocation (X1, . . . , Xn) ∈ An(X) which is Pareto optimal w.r.t. the choice

functionals (Ui)n
i=1. Lemma 4.23 implies Xi ∈ M(Ui) for any i = 1, . . . , n, thus we have

Ui(Xi) = Um
i (Xi) by Theorem 3.31. At this point, Theorem 4.24 gives us

Ũ(X) = U(X) =
n∑

i=1

Ui(Xi) =
n∑

i=1

Um
i (Xi),

which makes (X1, . . . , Xn) Pareto optimal w.r.t. the monotone functionals (Um
i )n

i=1 as

well.

Corollary 4.26. Let U1, . . . , Un be as in Lemma 4.23, and let (X1, . . . , Xn) ∈ An(X) be a

solution of both problems (P ) and (Pm). Then, any vector of prices that agents characterized

by Um
i ’s are willing to pay for this contract, is also optimal for agents characterized by Ui’s.

Proof. Theorem 4.20 is the recipe to find all ORS rules associated to a given Pareto optimal

allocation. It only uses increments of utility that agents experience by passing from the

initial endowment (ξ1, . . . , ξn) of the total risk X, to such a POA. We assume the same

notation for the utility increments w.r.t. the original choice functionals U1, . . . , Un:

pi := Ui(Xi)− Ui(ξi), ∀i = 1, . . . , n,

and denote as follows the relative set of acceptable prices:

Π := {(πi)n
i=1 ∈ Rn :

n∑
i=1

πi = 0, πi ≤ pi, ∀i = 1, . . . , n}.
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In the same way we define

pm
i := Um

i (Xi)− Um
i (ξi), ∀i = 1, . . . , n,

as the utility increments w.r.t. the monotone adjusted versions (Um
i )n

i=1, and

Πm := {(πm
i )n

i=1 ∈ Rn :
n∑

i=1

πm
i = 0, πm

i ≤ pm
i , ∀i = 1, . . . , n}

as the relative set of acceptable prices. With this notation, the statement we are going

to prove can be formulated as Πm ⊆ Π. Whereas we have seen that agents with choice

criterions Ui and Um
i give the same value to the optimal share Xi, this is no longer true

with regard to the initial risk share ξi. Indeed it may happen that ξi /∈ M(Ui) and in this

case Um
i (ξi) > Ui(ξi). Therefore, in general, we can only say that Um

i (ξi) ≥ Ui(ξi), which

gives the following relation between the indifference prices:

pm
i ≤ pi. (4.12)

Hence, for any ORS rule (Xi − πm
i )n

i=1 w.r.t. the functionals Um
i ’s, that is, for any

(πm
i )n

i=1 ∈ Πm, we have πm
i ≤ pm

i ≤ pi, which yields (πm
i )n

i=1 ∈ Π and makes (Xi − πm
i )n

i=1

an ORS rule w.r.t. Ui’s as well.

Let us now focus our attention on non-monotone choice functionals of “mean-variance”

type (3.38). In this case we can state more interesting results, by relying on Proposition 3.32

which, for any mean-variance functional Umv
δ , yields the characterization of the relative

monotone-mean-variance functional Ummv
δ and ensures, ∀X ∈ L∞, the existence of a payoff

Y ∈ L∞ such that Y ≤ X and Umv
δ (Y ) = Ummv

δ (X).

Theorem 4.27. Let U1, . . . , Un be functionals satisfying Assumption 3.20 and Assump-

tion 4.3, such that at least one is strictly monotone, and the non-monotone ones are of type

(3.38). Then, for any aggregate risk X ∈ L∞, problems (P ) and (Pm) admit the same set

of solutions, that is

{POAs for (U1, . . . , Un)} = {POAs for (Um
1 , . . . , Um

n )}. (4.13)



67

Proof. The inclusion in one sense being immediate by Corollary 4.25, let us prove the other

inclusion in (4.13). In order to do this, let’s assume (X1, . . . , Xn) ∈ An(X) to solve problem

(Pm). If Xi ∈ M(Ui) for any i = 1, . . . , n, it is easy to see that (X1, . . . , Xn) solves

problem (P ) as well, by the same argument used to prove Corollary 4.25. Now suppose

Xj /∈ M(Uj) for some j ∈ {1, . . . , n}, which in particular implies that Uj is non-monotone,

hence a mean-variance functional by assumption. We know that, by hypothesis, there is

an agent, say k, with strictly monotone preferences, where obviously k ∈ {1, . . . , n} \ {j}.
Since Xj /∈ M(Uj), Theorem 3.31 implies Um

j (Xj) > Uj(Xj), and Proposition 3.32 ensures

that the supremum in (3.50) is actually a maximum for Uj . Therefore, there exists a payoff

Y ∈ L∞ such that Y < Xj and Um
j (Y ) = Uj(Y ) = Um

j (Xj). Let us consider the allocation

(ζ1, . . . , ζn) ∈ An(X) given by

ζi =


Y, if i = j,

Xk + (Xj − Y ), if i = k,

Xi, ∀ i ∈ {1, . . . , n} \ {j, k}.

Strict monotonicity of Uk implies Um
k (ζk) = Uk(ζk) > Uk(Xk) = Um

k (Xk), so that
n∑

i=1

Um
i (ζi) >

n∑
i=1

Um
i (Xi) = Um

1 � · · ·�Um
n (X),

which clearly contradicts the definition of sup-convolution.

This is interesting from an economic point of view: whereas in Chapter 3 we have seen

how the lack of monotonicity may lead to pathological situations, here we have that the

optimal risk sharing does not take into account the fact that some (but not all!) choice crite-

rions may fail this property. On the other hand, whereas the Pareto optimal redistribution

of the total risk is not affected by the possible lack of monotonicity by some agents, this is

no longer true for the price of the contract. Indeed, by imposing the individual rationality

constraints and looking for ORS rules, we have only the inclusion in one sense among the

sets of optimal solutions, as stated in the following corollary:

Corollary 4.28. Let U1, . . . , Un be as in Theorem 4.27. Then we have the following relation

between the solutions to the ORS problem w.r.t. the functionals Ui’s and the solutions to

the ORS problem w.r.t. the functionals Um
i ’s:

{ORS rules for (Um
1 , . . . , Um

n )} ⊆ {ORS rules for (U1, . . . , Un)}. (4.14)
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Proof. It readily follows from Theorem 4.27 and Corollary 4.26.

From the proof of Corollary 4.26 it becomes clear that, in general, the maximal price that

a non-monotone agent is willing to pay to enter into a contract is higher than that accepted

by her monotone approximation, thus making the inverse inclusion in (4.14) untrue. On the

other hand, if the initial risk endowment ξi ∈ M(Ui) for any i = 1, . . . , n, then the equality

holds in (4.12) for any agent, yielding the same ORS rules for the agents characterized by

(U1, . . . , Un) and for those characterized by (Um
1 , . . . , Um

n ), which implies the coincidence of

the sets in (4.14).

Example 4.29. Theorem 4.27 applies, e.g., to the problem of sharing an aggregate risk

between a mean-variance agent and an agent with entropic utility (see Proposition 5.1 and

compare also Proposition 5.7) or between a mean-variance agent and an agent with semi-

deviation utility with p 6= +∞ (see Subsection 5.1.4).

Remark 4.30. We obtain a result as that stated in Theorem 4.27, also when considering

an entropic and a standard-deviation choice criterion, since the strict concavity of the first

one and the strict convexity of its dual transform imply the existence of a unique (up to a

constant) solution to both problems (P ) and (Pm).



Chapter 5

Explicit Characterization of

Optimal Risk Sharing Rules

In this chapter we formulate and solve some specific problems of optimal risk sharing. We

consider agents characterized by preference functionals as those introduced in the previous

chapters and provide optimal rules to share, among them, a generic aggregate risk X ∈
L∞(Ω,F , P). Recall that the choice criterions studied in Section 3.2 and in Section 3.4

satisfy law-invariance and Lebesgue property, thus allowing us to work with measures in

L1(Ω,F , P) and to apply other important results. Here we do not consider the initial risk

endowment of the agents, hence looking for Pareto optimal allocations without interest in

the prices of the contracts. This is motivated by the fact that, once we have a POA, only

simple calculations are required to find the suitable prices, as shown in Theorem 4.20.

5.1 Optimal Risk Sharing: the Case of Two Agents

In any case contemplated in this section we consider two agents, denoted by i = 1, 2, with

preferences modelled by some law-invariant choice functionals, say U1 and U2, satisfying

Assumption 3.20 (Assumption 4.3 is automatically satisfied). Denote by V1 and V2 the

respective convex conjugate functions, defined on the dual space L∞(Ω,F , P)∗, and recall

that, under the Lebesgue property, their effective domain is contained in L1(Ω,F , P). Let

69
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U : L∞(Ω,F , P) → R be the concave functional solution to the sup-convolution problem:

U(X) := U1�U2(X), ∀X ∈ L∞, (5.1)

and V : L∞(Ω,F , P)∗ → [0,∞] its Fenchel-Legendre transform:

V (µ) = V1(µ) + V2(µ), with dom(V ) = dom(V1) ∩ dom(V2) 6= ∅. (5.2)

Now the law-invariance property ensures the existence of Pareto optimal allocations by

Theorem 4.11, and the equality

∂V = ∂V1 + ∂V2 (5.3)

is also true by Lemma 4.13.

5.1.1 The Prudent Entropic-Agent

• Entropic vs Mean-variance.

Proposition 5.1. Let U1 be the entropic utility (3.17) with parameter γ > 0, and U2 the

mean-variance principle (3.38) with parameter δ > 0. Then, for any aggregate risk X ∈ L∞,

there exists a unique (up to a constant) Pareto optimal allocation (X1, X2) ∈ A↑2(X). In

particular, X1 (resp. X2) is, pointwise, a convex (resp. concave) function of the total risk.

In general this means that, if an agent with entropic utility and an agent with mean-

variance preferences optimally share an aggregate risk X, the former one especially takes

the lowest risks (corresponding to the biggest values of X), whereas the latter especially

takes the worst (corresponding to the smallest values of X).

Proof. Fix a risky position X ∈ L∞. We know that the set of Pareto optimal allocations

is not empty by the law-invariance of U1 and U2. Let us prove that, up to a constant, it

consists of a unique pair in L∞×L∞. By Theorem 4.8, for any POA (X1, X2) ∈ A2(X) there

exists an element Z ∈dom(V ) such that Xi ∈ −∂Vi(Z), that is, Z ∈ ∂Ui(Xi),∀i = 1, 2. In

particular this implies Z ∈ ∂U(X), for U defined in (5.1), by Proposition 4.9. On the other

hand, V inherits strict convexity (on its domain) from V1 and V2, thus leading to a unique

supergradient of U at X:

∂U(X) = {ZX}, for some ZX ∈ dom(V ) = Z ∩ L2,
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by Theorem 2.9. Therefore, Theorem 3.16 and Theorem 3.28 yield

X ∈ −∂V (ZX) =
{
− γ lnZX − ZX

2δ
+ c : c ∈ R

}
, (5.4)

with

X1 ∈ −∂V1(ZX) = {−γ lnZX + c : c ∈ R}

and

X2 ∈ −∂V2(ZX) =
{
− ZX

2δ
+ c : c ∈ R

}
.

Hence the uniqueness (up to a constant) of Pareto optimal allocations clearly follows and

we can show the last assertion of the proposition. From (5.4) we have

X = −γ lnZX − ZX

2δ
+ cX ,

for some constant cX univocally determined by the condition E[ZX ] = 1. Now the pointwise

relation between X and ZX can be written as

X = f(ZX), meaning that X(ω) = f(ZX(ω)),

where f : R+ → R is convex and decreasing. Since it is a one-to-one function, we can also

write

ZX = g(X),

again as a pointwise relation, with g : R → R+ convex and decreasing function. Therefore,

pointwise, we have

X1 = −γ lnZX + c1 = −γ ln(g(X)) + c1, for some c1 ∈ R,

convex and increasing function of X, and

X2 = −ZX

2δ
+ c2 = −g(X)

2δ
+ c2, for some c2 ∈ R

concave and increasing function of X, as previously declared.
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• Entropic vs Standard-deviation.

With the same reasoning as before, we can solve the sup-convolution problem for an entropic

and a standard-deviation agent, obtaining similar results. This time U2 is defined as in (3.39)

and we get

X ∈ {−γ lnZX − cZX + d : c ∈ R+
0 , d ∈ R},

for some ZX ∈ Z (which exists unique), with

X1 ∈ {−γ lnZX + c : c ∈ R}

and

X2 ∈ {−cZX + d : c ∈ R+
0 , d ∈ R},

by Theorem 3.16 and Theorem 3.29. In this way we obtain the unique (up to a constant)

POA (X1, X2) ∈ A↑2(X), given by

X1 = −γ ln(g(X)) + c1, for some c1 ∈ R,

and

X2 = −c2g(X) + c3, for some c2 ∈ R+
0 and c3 ∈ R,

where g is a convex and decreasing function. This means that, pointwise, X1 is a convex

and increasing function of the total risk X, whereas X2, if not constant, is a concave and

increasing function of X. It is clear that “X2 constant” corresponds to the case of the

entropic agent taking on all of the aggregate risk, a fact that, as we have seen, cannot occur

in the optimal sharing between an entropic and a mean-variance agent.

• Entropic vs Semi-deviation.

Let agent 2 be characterized by the semi-deviation utility (3.22) with p = 2. Once again,

for any X ∈ L∞ there exists a unique (up to a constant) POA (X1, X2) ∈ A↑2(X) charac-

terized by a unique ZX ∈ ∩i∂Ui(Xi). In particular, since X ∈ −∂V (ZX) = −
∑

i ∂Vi(ZX),

Theorem 3.16 and Theorem 3.17 produce one of the following situations: either ∂V2(ZX) =

{c : c ∈ R} and the risk X is totally charged to the entropic agent (X1 = X), or ∂V2(ZX)

takes the form (3.30) and therefore

X ∈ −∂V (ZX) =
{
− γ lnZX − E[Y ]

1− zX
ZX + Y + c : c ∈ R, Y ∈ L∞+ and Y 1{ZX 6=zX} ≡ 0

}
,
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with zX = minZX . More precisely, in the latter case we have

X1 ∈ −∂V1(ZX) = {−γ lnZX + c : c ∈ R}

and

X2 ∈ −∂V2(ZX) =
{
− E[Y ]

1− zX
ZX + Y + c : c ∈ R, Y ∈ L∞+ and Y 1{ZX 6=zX} ≡ 0

}
.

Lemma 3.7 ensures that −ZX and X are comonotone random variables, and therefore the

total risk X takes its biggest values on the set {ω : ZX(ω) = zX}, which characterizes an

interval of type [β, ess supX]. Clearly here X1 is constant, so that the entire risk is charged

to the semi-deviation agent. On the other hand, when X takes values in [ess inf X, β), for

X, X1 and X2 we find the same behaviour as in the previous examples, that is, X1 (resp.

X2) is a convex (resp. concave) increasing function of X. In particular, we have that the

agent who especially assumes the worst risks is the semi-deviation one.

Remark 5.2. The cases studied in this subsection show that an agent endowed with entropic

utility is prudent towards extreme risks. Indeed, in all these situations we have seen that, in

general, she especially takes the smaller risks, leaving the worse to the other agent, although

it may happen that she takes the entire risk. The same situation occurs when considering the

problem of sharing a risk between an entropic-agent and an AV @R-agent characterized by

a functional of type (3.14). In this case (see [49]) the AV @R-agent entirely takes the worst

risks and the resulting optimal sharing consists of a call option, written on the total risk

and offered to the entropic-agent. In this way the risk charged to the entropic-agent results

capped from below, thus producing a typical insurance contract (called stop-loss contract)

and confirming the conservative nature of such an agent.

5.1.2 AV@R-Agent vs Agent with Property (S)

Now we want to compare the AV @R-criterion defined in (3.14) with our most-representative

non-monotone functionals. With the following proposition we provide a more general result

which includes choice criterions (3.38) and (3.39) as particular cases.

Proposition 5.3. Let U1 be given by (3.14), and let U2 be a law-invariant functional

satisfying Assumption 3.20 and property (S) (see Definition 3.10). Then, for any aggregate
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risk X ∈ L∞, there exists a unique (up to a constant) POA in A↑2(X), given by

(X1, X2) := (−(X − l)− + (X − u)+, (l ∨X) ∧ u), for some l, u ∈ R. (5.5)

This means that the optimal sharing consists in the exchange of two European options

written on the total risk X. Once again what we obtain is a typical insurance contract

(called limited stop-loss contract), expressed by (5.5), where the insurer’s risk share (X2)

has floor l and is capped at level u.

Proof. Let (X1, X2) ∈ A↑2(X) be a POA of a given total risk X ∈ L∞. We want to show that

it has shape (5.5). Theorem 4.8 ensures the existence of a density Z in ∂U1(X1)∩∂U2(X2),

and the reasoning that follows (3.16) implies that 0 ≤ Z ≤ 1/λ, with

−
∫ t

0
q−Z (s)ds ≤ fλ ≡

t

λ
∧ 1, ∀t ∈ [0, 1],

and X1 constant on
{
Z ∈

(
0, 1

λ

)}
. On the other hand, Lemma 3.11 implies that X2 is

constant on the sets {Z = 0} and {Z = 1/λ}. Now (Z,X1), as well as (Z,X) and (Z,X2),

are anticomonotone random variables by Lemma 3.7, so that X1 takes its biggest values on

{Z = 0} and the smallest ones on {Z = 1/λ}. Therefore, since X1 and X2 increase with

X, we get

X1 = −(X − l)− + (X − u)+ and X2 = (l ∨X) ∧ u, (5.6)

for some thresholds l and u, as stated in (5.5).

At this point the uniqueness arises from the fact that the Pareto optimal allocations

constitute a convex space in which each element has to assume this form. Then, fix any

POA (Y1, Y2) ∈ A↑2(X) and assume it is different from (X1, X2), in the sense that they do

not differ only by a constant. From the first part of the proof, we know that it has the same

shape as (X1, X2), so that it is characterized by a pair (l̂, û) 6= (l, u). By convexity, for any

α ∈ (0, 1) the allocation given by ξi = αXi + (1− α)Yi, i = 1, 2, is Pareto optimal as well.

On the other hand, since (l̂, û) 6= (l, u), allocation (ξ1, ξ2) cannot have the desired shape,

thus leading to a contradiction.

Remark 5.4. Consider now a convex combination of AV @R-criterions with parameters

λj ∈ (0, 1], j = 1, . . . ,m, once again in convolution with a functional satisfying property (S).
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In this case, as optimal risk sharing rules we obtain allocations corresponding to a finite

sum of European options written on the total risk.

Indeed, for any αj ≥ 0 s.t.
m∑

j=1

αj = 1, U1 :=
m∑

j=1

αjUλj
is a law-invariant comonotone m.u.f.,

characterized by the concave function fU1 :=
m∑

j=1

αjfλj
, where (fλj

)m
j=1 satisfy (3.16). By

means of Lemma 3.9, for any POA (X1, X2) ∈ A2(X) and any density Z ∈ ∂U1(X1) ∩
∂U2(X2), we get

−
∫ t

0
q−Z (s)ds ≤

m∑
j=1

αjfλj
=

m∑
j=1

αj

( t

λj
∧ 1

)
, (5.7)

with qX1
constant where this inequality is strict. On the other hand, when the equality

holds in (5.7) then Z is constant, so that X2 is also constant by Lemma 3.11. At this point,

the announced form for the optimal sharing rules readily follows.

• AV@R vs Mean-Variance/Standard-deviation.

Both the mean-variance and the standard-deviation principles satisfy the conditions re-

quired in Proposition 5.3 on agent 2. This means that, for any risk X we consider, the

optimal sharing between an AV @R-agent and a mean-variance (or standard-deviation)

agent consists in the exchange of at the most two European options. In order to better

understand this fact, consider the interval [ess inf X, ess supX] of the essential oscillations

of X. Share it in three consecutive subintervals I1, I2, I3 identified by

J1 = {Z = 1/λ}, J2 = {Z ∈ (0, 1/λ)}, J3 = {Z = 0}, for some Z ∈ ∂U(X),

in the sense that, almost surely, ω ∈ Jk iff X(ω) ∈ Ik, k = 1, 2, 3. This produces the general

form of the contract we found in Proposition 5.3, where the AV @R-agent assumes the risk

whenever events occur in J1 or J3, whereas the second agent assumes the entire risk in

J2. However, it may happen that one or two of these intervals disappears, as shown in the

following example.

Example 5.5. Consider the particular case of Proposition 5.3 where agent 2 has mean-

variance preferences with parameter δ > 0. Let the aggregate risk X have essential oscilla-

tions bounded in the following way:

(esssupX − essinfX) <
1
2δ
∧ 1

2δ

( 1
λ
− 1

)
. (5.8)
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Then we find Z ∈ ∩i∂Ui(Xi), for some (Xi)i ∈ An(X), such that Z ∈ (0, 1/λ) P−a.s.. In

this case, by definition, intervals J1 and J3 disappear and the aggregate risk X is totally

charged to the mean-variance agent.

To prove what is stated in Example 5.5, observe that (5.8) in particular produces

X −E[X] ≤ ess supX − ess inf X <
1
2δ

and

X −E[X] ≥ −(ess supX − ess inf X) > − 1
2δ
∨ − 1

2δ

( 1
λ
− 1

)
≥ − 1

2δ

( 1
λ
− 1

)
.

Therefore, we have

− 1
2δ

( 1
λ
− 1

)
< X −E[X] <

1
2δ

, (5.9)

which is equivalent to say

0 < 1− 2δ(X −E[X]) <
1
λ

. (5.10)

Put Z := 1−2δ(X−E[X]) ∈ (0, 1/λ) and observe that Z ∈ ∂U1(0)∩∂U2(X). This implies

(0, X) to be a POA, by Theorem 4.8, and in fact it is the unique one (up to a constant),

by the previous proposition. This shape of the optimal re-sharing is not surprising if we

consider the fact that mean-variance preferences only penalize the variance of financial

positions. Therefore, when a payoff has a sufficiently small variability, a mean-variance

agent associates a high level of satisfaction to it, thus making it favourable for her to take

on the entire prospect.

In line with the reasoning that follows (5.5), we can consider the AV @R-agent as an

insurant and the mean-variance agent as an insurer. From this point of view, what we

obtain as optimal risk sharing under condition (5.8) is a full-insurance contract, where the

insurer takes the whole risk X.

5.1.3 Sup-convolution of Non-Monotone Agents

We now compare the behaviour of two non-monotone agents in the problem of sharing a

given total risk. We consider the most interesting cases, that is, the mean-variance and the

standard-deviation criterions.
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• Mean-variance vs Standard-deviation.

Proposition 5.6. Let U1 be the mean-variance principle (3.38) with parameter δ1 > 0,

and let U2 be the standard-deviation principle (3.39) with parameter δ2 > 0. Then, for any

aggregate risk X ∈ L∞, there exists a unique (up to a constant) POA (X1, X2) given by

(X1, X2) := (αX, (1− α)X), (5.11)

where

α =


δ2

2δ1

√
Var(X)

, if
√

Var(X) ≥ δ2

2δ1
,

1, otherwise.
(5.12)

This leads to the explicit calculation of the sup-convolution functional:

U(X) = U1�U2(X) =

 U2(X) +
δ2
2

4δ1
, if

√
Var(X) ≥ δ2

2δ1
,

U1(X), otherwise,
(5.13)

where U satisfies Assumption 3.20, law-invariance and property (S), by Lemma 4.5.

Proof. As before, V1 strictly convex implies V = V1 + V2 strictly convex on its effective

domain. Therefore, for any fixed X ∈ L∞, there exists ZX ∈ dom(V ) such that ∂U(X) =

{ZX}, which in particular implies

X ∈ −∂V (ZX) =
{
− ZX

2δ
− cZX + d : c ∈ R+

0 , d ∈ R
}

= {−cZX + d : c ∈ R+, d ∈ R},

so that ZX is, pointwise, a linear decreasing function of X. Therefore, for any POA

(X1, X2) ∈ A2(X),

X1 = −ZX

2δ
+ d1, for some d1 ∈ R,

and

X2 = −c2ZX + d2, for some c2 ∈ R+
0 and d2 ∈ R,

thus showing the uniqueness (up to a constant) of optimal solutions in A2(X). Moreover,

we have that pointwise X1 and X2 are linear and non-decreasing functions of the total risk
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X, which leads to (5.11) with α ∈]0, 1] (we exclude the trivial case where X is constant).

At this point, the optimal parameter α is drawn out from the problem

sup
α∈]0,1]

{U1(αX) + U2((1− α)X)} = sup
α∈]0,1]

{E[X]− δ1α
2Var(X)− δ2(1− α)

√
Var(X)},

which is equivalent to solve

min
α∈]0,1]

{δ1α
2
√

Var(X) + δ2(1− α)},

since X is not constant. This gives us exactly (5.12) and therefore

U(X) =


U1

( δ2X

2δ1

√
Var(X)

)
+ U2

((
1− δ2

2δ1

√
Var(X)

)
X

)
, if

√
Var(X) ≥ δ2

2δ1
,

U1(X), otherwise,

=

 U2(X) +
δ2
2

4δ1
, if

√
Var(X) ≥ δ2

2δ1
,

U1(X), otherwise.

Note that (5.11) is a classical type of contract of coinsurance (called quota-share con-

tract), where agents proportionally share the risk.

• Mean-variance vs Mean-variance.

The case of two (or more) agents endowed with mean-variance choice criterions (3.38) with

parameters δi > 0, is a particular case of dilated utility measures (4.7). Indeed, it is

sufficient to take as risk-tolerance coefficients αi = 1/δi and as functional Ū the mean-

variance principle with parameter δ = 1, to have

Umv
δi

(X) = αiU
mv
1

(X

αi

)
.

We know that, up to constants summing up to zero, there exists a unique solution (Xi)i to

the sup-convolution problem and, by Proposition 4.15, it is given by

Xi =
αiX∑

j αj
=

X∑
j δi/δj

, for any i.

This means that each agent i assumes a share of risk inversely proportional to her coefficient

δi of aversion to the variability.
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• Standard-deviation vs Standard-deviation.

We no longer have the same situation when considering two (or more) agents endowed

with standard-deviation choice functionals (3.39) with different parameters δi > 0. Here

optimization leads to charging the total risk to the agent with the smallest parameter δi. To

give a sketch of this, it is sufficient to note that, from relations X ∈ −∂V (Z) = −
∑

i ∂Vi(Z)

and Xi ∈ −∂Vi(Z), we get

X = −aZ + b and Xi = −aiZ + bi,

for some a, ai ∈ R+
0 and b, bi ∈ R with

∑
i ai = a and

∑
i bi = b. Moreover, Z ∈ ∩i∂Ui(Xi)

implies Var(Z) = δ2
i whenever Xi is not constant (i.e. ai 6= 0), by Theorem 3.29. Now,

since the parameters δi are different, for any possible choice of Z we have that the total risk

X is taken by the agent i∗ with parameter δ2
i∗ = Var(Z) (we exclude the trivial case where

X is constant). Therefore, the overall utility is equal to U(X) = �iUi(X) = Ui∗(X). From

this fact clearly follows that the unique (up to constants summing up to zero) POA is (Xi)i

such that Xi = 0 for any i with δi > minj δj .

5.1.4 Semi-Deviation Agent vs Non-Monotone Agents

• Semi-deviation vs Standard-deviation.

Let us consider the semi-deviation utility with p = 2 and parameter δ ∈ (0, 1], and the

standard-deviation principle with the same parameter δ. Once again we call them U1 and

U2 respectively, and we note that U1(ξ) ≥ U2(ξ) for any ξ ∈ L∞, where the equality holds if

and only if ξ is constant. From this fact and by the positive homogeneity of U1, we obtain

that the risk X is totally charged to the first agent. Indeed, for any POA (X1, X2) ∈ A2(X),

we get

U1�U2(X) = U1(X1) + U2(X2) ≤ U1(X1) + U1(X2)

≤ U1(X1 + X2) = U1(X),

the first inequality being strict whenever X2 is non-constant. Therefore, up to a constant,

the unique POA for any aggregate risk X, is (X1, X2) := (X, 0).
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• Semi-deviation vs Mean-variance.

Consider now the semi-deviation utility with p = 2 and parameter δ ∈ (0, 1], and the mean-

variance principle with the same parameter δ. Once again there exists a unique (up to a

constant) POA, characterized by one of the following situations: either the total risk is

entirely taken by the mean-variance agent or, by means of (3.30) and Theorem 3.28, we

have the interval [ess inf X, ess supX] shared in the two subintervals [ess inf X, β) (where

the risk is proportionally shared between the agents) and [β, ess supX] (where the risk is

totally charged to the semi-deviation agent).

5.2 Optimal Risk Sharing: the Case of Three Agents

After the discussions of the previous section, it becomes easier to solve sup-convolution

problems involving more than two agents. Here we present some cases involving three

economic agents, calling to mind that the sup-convolution operator is associative.

• AV@R vs Entropic vs Mean-variance.

Proposition 5.7. Let U1 be the AV @R-criterion (3.14) with parameter λ ∈ (0, 1], U2 the

entropic utility (3.17) with parameter γ > 0, and U3 the mean-variance principle (3.38)

with parameter δ > 0. Then, for any aggregate risk X ∈ L∞, there exists a unique (up to

constants summing up to zero) POA (X1, X2, X3), such that X1 = −(X − k)− and X2

(resp. X3) is a convex (resp. concave) function of X ∨ k, for some k ∈ R.

Proof. Let us consider this problem in the following way:

U1�U2�U3(X) = U1�(U2�U3)(X) = U1�U(X),

where functional U := U2�U3 results to be law-invariant, strictly monotone and strictly

risk-averse conditionally on any event, by Lemma 4.5. Proposition 3.2 in [49] provides the

unique (up to a constant) POA (ξ1, ξ2) of X with respect to (U1, U), which is given by

(ξ1, ξ2) = (−(X − k)−, X ∨ k), for some k ∈ R.

This means that the interval of essential oscillations of X, [ess inf X, ess supX], can be

shared in two subintervals [ess inf X, x], [x, ess supX], such that ξ2 is constant on the first
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one and ξ1 on the second one. Therefore, the AV @R-agent takes the worst risks (the

whole risk in [ess inf X, x]), whereas the others agents share the rest of the risk. Now

Proposition 5.1 gives us the recipe to optimally share the risk ξ2 = X ∨ k between an

entropic and a mean-variance agent. In conclusion, as POAs (X1, X2, X3) ∈ A3(X) w.r.t.

(U1, U2, U3), we obtain:

X1 = −(X − k)− + c1,

X2 = −γ ln(g(ξ2)) + c2 = −γ ln(g(X ∨ k)) + c2,

X3 = −g(ξ2)
2δ

+ c3 = −g(X ∨ k)
2δ

+ c3,

for some k ∈ R, g : R → R convex and decreasing function, and for any c1, c2, c3 ∈ R s.t.∑3
i=1 Xi = X.

• AV@R vs Mean-variance vs Semi-Deviation.

Consider the AV @R-criterion with parameter λ ∈ (0, 1], the semi-deviation utility with

p = 2 and parameter δ ∈ (0, 1], and the mean-variance principle with the same parameter

δ. As in the previous case, we can apply Proposition 3.2 in [49], since the sup-convolution

of the last two agents provides a monetary utility functional, strictly monotone and strictly

risk averse conditionally on lower tail events. In this way we obtain that the AV @R-agent

assumes the worst risks, whereas the other agents share the rest of the risk as described in

the previous section.

• AV@R vs Standard-Deviation vs Semi-Deviation.

Here we consider the same parameter δ for the standard-deviation principle and the semi-

deviation utility (with p = 2), and proceed with the same reasoning as before, associating

the last two agents in the first place. Once again the interval of the essential oscillations of

the total risk is shared in two parts: the worst risks are entirely taken by the AV @R-agent,

whereas the lowest risks are entirely taken by the semi-deviation agent.

• AV@R vs Mean-variance vs Standard-Deviation.

Proposition 5.8. Let U1 be the AV @R-criterion with parameter λ ∈ (0, 1], U2 the mean-

variance principle with parameter δ1 > 0, and U3 the standard-deviation principle with
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parameter δ2 > 0. Then, for any aggregate risk X ∈ L∞, there exists a unique (up to

constants summing up to zero) POA (X1, X2, X3), given by

(X1, X2, X3) := (−(X − l)− + (X − u)+, α((l ∨X) ∧ u), (1− α)((l ∨X) ∧ u)), (5.14)

for some l, u ∈ R and

α =


δ2

2δ1

√
Var((l ∨X) ∧ u)

, if
√

Var((l ∨X) ∧ u) ≥ δ2

2δ1
,

1, otherwise.

Proof. Once again, we associate in the following way:

U1�U2�U3(X) = U1�(U2�U3)(X) = U1�U(X),

where we know the explicit form of the functional U := U2�U3, described in (5.13), that

satisfies all the requirements necessary to apply Proposition 5.3. Therefore, the unique (up

to a constant) POA (ξ1, ξ2) for (U1, U) is given by

(ξ1, ξ2) := (−(X − l)− + (X − u)+, (l ∨X) ∧ u), for some l, u ∈ R.

This means that the AV @R-agent takes the extremal risks, whereas ξ2 = (l ∨ X) ∧ u is

charged to the mean-variance and the standard-deviation agents. From Proposition 5.6

we know that these agents share risks proportionally between themselves, thus producing

exactly (5.14).

Remark 5.9. In all the preceding cases involving AV @R-agents, we have seen that they

generally take the extreme risks, which reveals their non-conservative behaviour. This pro-

duces an opposite situation to that of the entropic-agents, which we have shown to be prudent

towards extreme risks (compare Remark 5.2).

• Entropic vs Mean-variance vs Standard-Deviation.

Proposition 5.10. Let U1 be the entropic utility with parameter γ > 0, U2 the mean-

variance principle with parameter δ1 > 0, and U3 the standard-deviation principle with

parameter δ2 > 0. Then, for any aggregate risk X ∈ L∞, there exists a unique (up to

constants summing up to zero) POA (X1, X2, X3), such that X1 is a convex function of X,

whereas X2 and X3 are concave functions of X.
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Proof. We proceed as in the preceding section, denoting U as the result of the convolution:

U(X) := U1�U2�U3(X), ∀X ∈ L∞,

and V1, V2, V3, V the convex conjugate functions of U1, U2, U3, U respectively, with

V (µ) = (V1 + V2 + V3)(µ), ∀µ ∈ (L∞)∗,

strictly convex on its effective domain. By the characterization of the differentials found in

the previous chapters, we obtain

X ∈ −∂V (ZX) = {−γ lnZX − cZX + d : c ∈ R+, d ∈ R},

where ZX is the unique element in ∂U(X). At this point, the POAs are given by

X1 = −γ ln(g(X)) + c1,

X2 = −g(X)
2δ1

+ c2,

X3 = −c3g(X) + c4,

for some c3 ∈ R+
0 , g convex and decreasing function, and for all c1, c2, c4 ∈ R such that∑3

i=1 Xi = X.

CONCLUSIONS

For choice functionals satisfying Assumption 3.20, we obtain the very same results as Jouini

et al. [49] for the existence and the characterization of the solutions to the optimal risk

sharing problem (i.e. Pareto optimal allocations and optimal risk sharing rules). In par-

ticular, due to the cash-invariance property, we can solve it in two separate steps: first we

maximize the overall utility which produces the Pareto optimal allocations (that is, how to

re-share the aggregate risk: the shape of the contract); successively, we impose the individ-

ual rationality constraints, which denote the incentive for any agent to change her initial

position and produce the indifference prices (that is, how much agents are willing to pay
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to enter into the transaction: the price of the contract). The introduction of the monotone

approximation of non-monotone functionals, allows us to compare non-monotone agents

with their monotone adjusted versions when facing this problem. In particular, provided

that one agent is characterized by monotone preferences, we find a strict link between the

solutions to the original ORS problem and the solutions to the new one only involving

monotone choice functionals. We especially obtain interesting results when dealing with

non-monotone agents having mean-variance preferences. In this situation, the Pareto op-

timal redistribution of the total risk is not sensitive to the lack of monotonicity by some

agents, that is, to solve the sup-convolution problem w.r.t. the mean-variance criterions

Umv
δi

’s or w.r.t. the monotone-mean-variance criterions Ummv
δi

’s turns out to be equivalent.

Furthermore, we prove that the optimal redistribution of the risk often leads to simple

contracts consisting in the exchange of European options written on the total risk or in a

proportional sharing of it. In this way we get typical forms of insurance contracts, such as

stop-loss and quota-share rules.
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Absolutely Continuous Optimal

Martingale Measures
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Chapter 6

Expected Utility Maximization

Problem

From now on, we consider the trading interval [0, T ], with T ∈ (0,+∞], as meaning that

trading is possible at any date t ∈ [0, T ). The financial market consists in (d + 1) traded

assets, whose prices at time t are described by the random variables S̃0
t , S̃1

t , . . . , S̃d
t , measur-

able with respect to Ft. The asset indexed by 0 is the riskless one (that we consider strictly

positive), and without loss of generality we make the choice to deal with the vector of dis-

counted prices St = (S1
t , . . . , Sd

t ), where Si
t = S̃i

t/S̃0
t (that is, we choose the cash account as

numéraire). In particular, we assume the Rd-valued stochastic process S = (St)0≤t≤T to be a

locally-bounded semimartingale based on the filtered probability space (Ω,F , (Ft)0≤t≤T , P)

(see §2).

Here a trading strategy is defined as a stochastic process H = ((H1
t , . . . ,Hd

t ))0≤t≤T in

Rd, where H i
t denotes the number of shares of asset i held in the portfolio at time t. In

order to rule out doubling strategies, we consider the following set of admissible trading

rules (introduced in [42], see also [24]):

H := {H : H predictable and S-integrable, H · S uniformly bounded from below},

where H · S denotes the stochastic integral of H with respect to S: (H · S)t :=
∫ t

0
HudSu

(for details on stochastic integration we refer to [47], [66], [68]).
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6.1 The Primal and the Dual Problem

At this point, for an agent with initial endowment x ∈ R and preferences described by

a utility function u, the expected utility maximization problem in the market S can be

written as follows:

w(x) := sup
H∈H

E[u(x + (H · S)T )]. (6.1)

We work in an incomplete market and allow the wealth processes to be negative, so

that the utility functions we consider are defined and finitely valued on the entire real line.

In this setting, basic results of existence and uniqueness of the optimal solution are given

in Schachermayer [69], to which we refer for a complete outline of the situation. In order

to apply these results, we need to make some assumptions on the market S and on the

utility function u. In particular, we assume the utility function to behave according to the

following technical requirements:

Assumption 6.1. u : R → R is a smooth, strictly increasing and strictly concave function

satisfying the following conditions:

(I) Inada conditions: lim
x→−∞

u′(x) = ∞ and lim
x→+∞

u′(x) = 0;

(II) Reasonable Asymptotic Elasticity (RAE) conditions:

lim inf
x→−∞

xu′(x)
u(x)

> 1 and lim sup
x→+∞

xu′(x)
u(x)

< 1.

Together with the classical assumption (I) on the marginal utility, we require (II) on the

ratio between the marginal and the average utility (suggested by economic intuition, see

[69] and [71] for the precise meaning and for a connection with the relative risk aversion)

since it is the crucial condition to ensure the existence of the optimal investment. We recall

that a typical example of function satisfying these conditions is the exponential utility

u(x) = − exp (−x).

Now we need to introduce two particular sets of probability measures. Therefore, we

denote by Ma(S) the family of absolutely continuous local martingale measures:

Ma(S) := {Q � P : Q is a probability measure and S is a local martingale under Q},
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and by Me(S) the family of equivalent local martingale measures (also called risk-neutral

measures):

Me(S) := {Q ∼ P : Q is a probability measure and S is a local martingale under Q}.

This allows us to formulate the classical assumption of “no riskless-profits available in

the market” in the following suitable version:

Assumption 6.2. The set Me(S) is not empty.

This condition insures that in the market modelled by S there are no possibilities of free

lunch with vanishing risk (NFLVR), which is a slight generalization of the no-arbitrage (NA)

condition and can be expressed as follows: there exists no sequence of terminal payoffs of

admissible integrands, fn = (Hn ·S)T , such that the negative parts f−n tend to 0 uniformly,

and such that fn tends almost surely to a non-negative function f0 satisfying P(f0 > 0) > 0

(see [24] for this version of the Fundamental Theorem of Asset Pricing).

Under this assumption, we know that a complete market S is characterized by the

existence of a unique element in Me(S). Every contingent claim is attainable here, that

is, there exists an admissible trading strategy which perfectly replicates it, and therefore

we have a simple pricing and hedging theory. In particular, since the price of a contingent

claim is uniquely determined by no-arbitrage arguments, there is no need to involve agents’

preferences. On the contrary, in incomplete markets we have many equivalent martingale

measures, which correspond to many linear pricing rules all compatible with the (NA)

condition, so that the problem that arises is how to select a measure among them (compare

[34] and the references therein). For example, one may choose to consider the so-called

minimax martingale measure (see [6], [34]), even though, in our framework, we obtain no

answers in this direction (compare Remark 7.3).

To exclude the trivial degenerate case, we make a further, intuitive requirement involving

both u and S:

Assumption 6.3. For any stopping time ρ ∈ [0, T ],

sup
H=H1]ρ,T ]

E[u((H · S)T )|Fρ] < u(∞) a.s. . (6.2)
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In particular this condition serves to insure the finiteness of the value function w in (6.1),

on all the real line.

As said in the Introduction, many authors solve maximization problems by using duality

methods. Here we make the same choice, and this leads to the characterization of the

maximizer in (6.1) in terms of the optimal solution to a dual variational problem. In order

to do this, we need to introduce the convex conjugate v : R+ → R of the utility function u:

v(y) = sup
x∈R

(u(x)− xy), ∀y > 0. (6.3)

Remark 6.4. Note that, since we are dealing with an increasing function u on R, the

duality automatically works in R+. Indeed, it is obvious that if we consider a negative y in

(6.3) we obtain v(y) = +∞.

Under our assumptions, v turns out to be a smooth and strictly convex function such

that

v(0) = u(+∞), v(+∞) = +∞ and v′(0) = −∞, v′(+∞) = +∞.

At this point, the optimal problem dual to (6.1) can be expressed in the following way:

ν(y) := inf
Q∈Ma(S)

E
[
v
(
y
dQ
dP

)]
, (6.4)

where the function ν : R+ → R is finite from Assumption 6.3. For example, for u(x) =

− exp (−x) we obtain v(y) = y(ln y−1) and ν(y) = v(y) + y inf
Q∈Ma(S)

H(Q; P). In this case,

the dual problem (6.4) provides the local martingale measure with the minimal relative

entropy (3.18) (compare [34]). We now define the generalized entropy with respect to P as

the function acting as follows:

Q 7−→ E
[
v
(dQ

dP

)]
,

for any measure Q absolutely continuous with respect to P. By means of this function we

can introduce two particular sets of local martingale measures for the market S:

Ma
f (S) :=

{
Q ∈Ma(S) : E

[
v
(dQ

dP

)]
< ∞

}
and

Me
f (S) := {Q ∈Me(S) : E

[
v
(dQ

dP

)]
< ∞},
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which allow us to formulate the dual problem (6.4) on Ma
f (S) instead of Ma(S).

In our setting we can apply a result of Bellini and Frittelli [6] which ensures that the

unique minimizer in (6.4) (the so-called minimax martingale measure) exists and belongs

to Ma
f (S). Define X̂T (x) as the optimal terminal wealth, unique solution to the primal

problem (6.1), and Q̂y as the minimal martingale measure, unique solution to the dual

problem (6.4). The basic idea of the dual approach is to solve the latter problem and then,

by convex duality, to solve the former one. The crucial formula which relates the respective

optimizers is given by

dQ̂y

dP
=

u′(X̂T (x))
y

, (6.5)

where y = w′(x) > 0 (see Theorem 7.1 below).

6.2 Equivalent Case and Absolutely-Continuous Case

Let us now outline the direction our study moves in. By solving the dual problem, two

mutually exclusive situations are singled out:

• equivalent case: Q̂ ∈Me(S);

• absolutely-continuous case: Q̂ ∈Ma(S) \Me(S).

Here and in what follows, where it does not generate confusion, we do not indicate the

dependence -of the optimal solutions- on the initial capital x that the agent is endowed

with.

Remark 6.5. Note that the absolutely-continuous case corresponds to have an optimal

terminal wealth which is infinite with strictly positive probability. Indeed, let A ∈ F denote

the maximal set such that Q̂(A) = 0. By relation (6.5) and the Inada conditions, we

have A =
{

dbQ
dP = 0

}
= {X̂T = +∞} P-almost surely. On the other hand, the absolutely-

continuous case clearly implies P(A) > 0, thus giving P({X̂T = +∞}) > 0.

As said in the Introduction, authors often assume the minimax martingale measure to

belong to Me(S), so that the results are given in the equivalent case. This is what happens,

for example, when in [69] the solution to the primal problem is shown to be equal to the
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final wealth of some self-financing strategy (Theorem 7.1 below). More precisely, supposing

to be in the equivalent case, we obtain the optimal wealth at the time horizon T as the

terminal value of a Q̂w′(x)-uniformly integrable martingale: X̂T (x) = x+(Ĥ(x)·S)T . On the

contrary, if the minimax martingale measure Q̂ is just absolutely continuous with respect

to P, we lose this characterization, in the sense that the integral representation of X̂T holds

true under the optimal measure only (i.e., Q̂-almost surely). In our study we focus on the

absolutely-continuous case and show how to reach the wealth optimal at time T by means

of new problems, which are defined in some random intervals contained in [0, T ] and fit in

with the equivalent case. Before doing so, we mention some known situations in which this

fact cannot occur, that is, some conditions which separately ensure that Q̂ ∼ P:

1. u(+∞) = +∞;

2. Me
f (S) 6= ∅;

3. finite-discrete-time market model.

In the first case we have v(0) = u(+∞) = +∞, and the formulation (6.4) of the dual problem

makes the minimizer Q̂ satisfying
dQ̂
dP

> 0 P-almost surely, i.e., the optimal measure lies in

the set Me(S).

On the other hand, if there exists an equivalent martingale measure with finite general-

ized entropy, since we have assumed the Inada conditions to hold, once again we obtain the

measure Q̂ to be equivalent to P (see Csiszar [16] for the exponential utility and Kabanov-

Stricker [50] for the general case).

Lastly, the case of a market model with finite discrete time always falls into one of the two

previous situations, thus fitting the equivalent case. Indeed, suppose v(0) = u(+∞) < +∞.

In this case the Dalang-Morton-Willinger theorem applies (see [17]), since we work under

the (NA) condition, yielding an equivalent martingale measure with bounded density. In

particular, this implies that this martingale measure lies in Me
f (S) and concludes what was

previously declared.



Chapter 7

Approximation of the Optimal

Wealth

In this chapter we study a characterization of the solution to the optimization problem (6.1)

by means of new problems obtained suitably stopping the original one. These auxiliary

problems allow us to give convergence results in Section 7.3. In particular, the optimal

wealth X̂T turns out to be achievable as the limit of terminal values for some self-financing

trading strategies.

7.1 The Original Problem

First it is convenient to state some known results we rely heavily on. In view of this, we

define the strictly decreasing function I : R+ → R given by

I(y) = (u′)−1(y) = −v′(y),

which produces v(y) = u(I(y))− yI(y).

Theorem 7.1. [69, Theorem 2.2] Let the locally-bounded semimartingale S = (St)0≤t≤T

and the utility function u : R → R satisfy Assumptions 6.1-6.3. Then

(i) The value functions w and ν defined in (6.1) and (6.4) are conjugate; they are finitely

valued, continuously differentiable, strictly concave (resp. convex) on R (resp. R+)

92
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and satisfy

w′(−∞) = −ν ′(0) = ν ′(+∞) = +∞, w′(+∞) = 0. (7.1)

(ii) The optimizers X̂T (x) and Q̂y in (6.1) and (6.4) exist, are unique and satisfy

X̂T (x) = I
(
y
dQ̂y

dP

)
or, equivalently,

dQ̂y

dP
=

u′(X̂T (x))
y

, (7.2)

where x ∈ R and y ∈ R+ are related via y = w′(x).

(iii) The following relations hold true:

xw′(x) = E[X̂T (x)u′(X̂T (x))], ν ′(y) = E
[dQ̂y

dP
v′

(
y
dQ̂y

dP

)]
. (7.3)

(iv) If Q̂y ∈Me(S) and x = −ν ′(y), then X̂T (x) equals the terminal value of a process of

the form X̂t(x) = x + (Ĥ(x) · S)t, where Ĥ is a predictable and S-integrable trading

strategy such that X̂(x) is a uniformly integrable martingale under Q̂y.

From these formulae we also obtain the following one:

w(x) = E[u(X̂T (x))] = xy + E
[
v
(
y
dQ̂y

dP

)]
, y = w′(x), (7.4)

that we use to formulate the primal problem (6.1) in a different way. In this order, we also

introduce a suitable version of a proposition proved by Biagini and Frittelli [7] in a more

general context:

Proposition 7.2. Let u satisfy Assumption 6.1 and Q be any measure in Ma
f (S). Then,

for x ∈ R, the optimal solution to

min
λ>0

λx + E
[
v
(
λ

dQ
dP

)]
(7.5)

is the unique solution to the first order condition

x + E
[dQ
dP

v′
(
λ

dQ
dP

)]
= 0. (7.6)

Noting that relation (7.4) makes y = w′(x) solving (7.6) for Q = Q̂y, we get w′(x) as

the optimizer to the problem

min
λ>0

λx + E
[
v
(
λ

dQ̂y

dP

)]
. (7.7)
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This allows us to rewrite the maximization problem (6.1) as

w(x) = min
λ>0,Q∈Ma

f (S)
λx + E

[
v
(
λ

dQ
dP

)]
, (7.8)

which admits unique solution (λ, Q) = (y, Q̂y), where as usual y = w′(x). In what follows

it will turn out to be convenient to consider this formulation of the primal problem (6.1),

which also involves the dual optimizer.

Let us now take a look at the integral representation in Theorem 7.1-(iv). What we

get is a perfect replicability of the optimal terminal wealth, by trading in the market in

accordance with a self-financing strategy Ĥ. As previously mentioned, this characterization

of the optimal wealth is submitted to the equivalence of Q̂ to P, whereas the non-equivalent

(i.e., the absolutely-continuous) case is left open. Our main goal here is to provide an

approximation of the optimal solution to the problem (6.1) by means of solutions to auxiliary

maximization problems, solutions which admit integral representation. Therefore we often

assume, or emphasize, the case where the minimax martingale measure is not equivalent

to the historical probability, which is the situation where our convergence results become

meaningful.

Remark 7.3. In the absolutely-continuous case, we lose not only the integral representabil-

ity of the optimal terminal wealth, but also the use of this dual approach as a methodology

to give an answer to the problem of selecting a (NA)-compatible pricing measure. Indeed,

in this case, the linear pricing rule given by E
bQ[.] is not positive and leads to arbitrage

opportunities.

We now impose a further requirement on our market model, bearing in mind that this

condition is satisfied, for example, by the brownian filtration.

Assumption 7.4. Every stopping time is (Ft)-predictable.

7.2 The Auxiliary Problems

As pointed out, we introduce a sequence of optimization problems which lead to the approx-

imation of the optimal wealth X̂T in terms of final values of stochastic integrals. Obviously

this becomes significant in the absolutely-continuous case, where X̂T is infinite with strictly

positive probability and does not admit integral representation.
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Denoting by (Ẑt)0≤t≤T the density process corresponding to the optimal martingale

measure Q̂:

Ẑ0 ≡ 1, Ẑt = E
[dQ̂
dP

∣∣∣Ft

]
, ∀t ∈ (0, T ), ẐT = Ẑ =

dQ̂
dP

, (7.9)

we can define the following stopping times:

τ = inf{t > 0 : Ẑt = 0}, τn = inf{t > 0 : Ẑt ≤ n−1}, ∀n ∈ N, (7.10)

where we put inf ∅ = +∞ and Ẑ∞ = Ẑτ = ẐT .

7.2.1 Announcing Stopping Times

By Assumption 7.4 τ is a predictable time, hence there exists a sequence (σn)n≥1 of stopping

times announcing it:

σn increasing, σn < τ, ∀n ∈ N, and lim
n→∞

σn = τ .

We can show that τ is announced exactly by (τn)n≥1 on {τ < ∞}.

Proposition 7.5. Let us define the stopping times

τn = τn1{τn<∞} + n1{τn=∞}. (7.11)

Under Assumption 7.4, the sequence (τn)n announces τ .

Proof. By (7.10) and (7.11) we have τn increasing and τn ≤ τn ≤ τ . Moreover τn < τ

clearly holds on {τ = ∞} (which equals Ω P-a.s. if we are in the equivalent case). We now

consider the absolutely-continuous case and prove that the strict inequality is also true in

the set {τ < ∞}. If not, there exists B ⊂ {τ < ∞} with P(B) > 0 and τn = τn = τ on

B. Since (Ẑt)t is a uniformly integrable martingale, the optional-sampling theorem and the

martingale convergence theorem give us

Ẑτ− = lim
n

Ẑσn = lim
n

E[Ẑτ |Fσn ] = E[Ẑτ |∨nFσn ] = E[Ẑτ |Fτ−] = 0

on {τ < ∞}, τ being Fτ−-measurable. On the other hand, since τn > 0, we have Ẑτn− ≥
n−1 by definition. We then obtain

0 = Ẑτ−1B = Ẑτn−1B ≥ n−11B
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and this contradiction proves τn < τ a.s. on Ω. In order to end the proof, there still remains

to show that τn (or, equivalently, τn) converges to τ . By monotonicity, η = lim
n

τn ≤ τ is

well defined and, of course, η ≥ τn. Let us show that this limit just equals τ . Since on

{η = ∞} this is clearly true, we consider the set {η < ∞} (where, ∀n ∈ N, τn < ∞ too).

The optional-sampling theorem gives us

E[Ẑη1{τn<∞}] = E[Ẑτn1{τn<∞}] ≤ n−1,

since on {τn = ∞} we have η = τn = ∞ and Ẑη = Ẑτn = ẐT . Therefore, by applying

Chebyshev’s inequality, P({Ẑη1{τn<∞} ≥ c}) ≤ (cn)−1 for any constant c > 0 we fix. This

yields

lim
n→∞

P({Ẑη1{τn<∞} ≥ c}) = 0, ∀c > 0,

that is, Ẑη1{τn<∞} tends to 0 in probability. It follows from the dominated convergence

that

‖ Ẑη1{τn<∞} ‖L1(P)→ 0 as n →∞,

hence we get Ẑη1{η<∞} = 0, since E[Ẑη1{η<∞}] ≤ E[Ẑη1{τn<∞}]. This fact leads us to

conclude that η = τ by (7.10), and makes our proof complete.

This proposition clearly states the continuity of the density process (Ẑt)t at τ . Indeed,

the right continuity of the filtration yields the right continuity of any uniformly integrable

martingale process, and the assertion of the proposition gives us

lim
t↑τ

Ẑt = lim
n→∞

Ẑτn = Ẑτ .

We point out that, in the proof of Proposition 7.5, we actually do not use the specific fact

that (Ẑt)t is the density process of the dual minimizer, and this allows us to reformulate the

proposition in a more general way. By doing so, we obtain the following result, interesting

by itself.

Proposition 7.6. Let M = (Mt)0≤t≤T be a non-negative uniformly integrable martingale

in a filtered probability space (Ω, (Ft)0≤t≤T , P), with T ∈ (0,∞] and (Ft)0≤t≤T satisfying
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the usual conditions. Let ρ be the first time in which M reaches zero and assume that it is

a predictable stopping time. Then ρ is announced by the sequence of stopping times

ρn = ρn1{ρn<∞} + n1{ρn=∞}, n ∈ N, (7.12)

where

ρn = inf{t > 0 : Mt ≤ n−1}. (7.13)

Remark 7.7. In addition to what we have concluded above, it is not unworthy to underline

that X̂T (x), ẐT ∈ L0(Ω,Fτ−, P) and relation

wτ−(x) := sup
H

E[u(x + (H · S)τ−)] = w(x) (7.14)

holds true. This means that we can visualize the optimization problem (6.1) in [0, T ], as

it was defined in the random interval [0, τ [. Of course, the optimizers of the relative dual

problems coincide as well:

ντ−(y) := inf
Ma(Sτ−)

E
[
v
(
y
dQ
dP

)]
= ν(y),

where y = w′(x) = w′τ−(x) and Ma(Sτ−) refers to the stopped process (Sτ−
t )0≤t≤T =

(St∧τ−)0≤t≤T . Therefore, from now on, we regard problems (6.1) and (7.14) as indistin-

guishable.

7.2.2 Primal and Dual Problems

Let us consider the trading random interval [0, τn], for any n in N. We define the expected

utility maximization problem relative to it:

wn(x) := sup
H∈H

E[u(x + (H · S)τn)], x ∈ R, (7.15)

as well as the associated dual one:

νn(y) := inf
Q∈Ma(Sτn )

E
[
v
(
y
dQ
dP

)]
, y ∈ R+, (7.16)

where Ma(Sτn) refers to the stopped process (Sτn
t )0≤t≤T = (St∧τn)0≤t≤T . Of course (wn)n

is increasing and wn ≤ w. Note that (7.15) can be reformulated in the following equivalent

ways:

wn(x) = sup
H∈H

E[u(x + (H · Sτn)T )] = sup
H∈H

E[u(x + (H1[0,τn] · S)T )].
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From now on we will use the notation X
(n)
T (x) = X

(n)
τn (x) and Q(n)

y respectively, for the

terminal wealth solving the primal problem (7.15) and for the martingale measure solving

the dual problem (7.16) (the dependence on x or y being dropped when it does not generate

confusion). It visibly follows that the optimal solutions relative to the problems in [0, τn],

satisfy relations analogous to those in (7.2):

X
(n)
T (x) = I

(
yn

dQ(n)
yn

dP

)
and

dQ(n)
yn

dP
=

u′(X(n)
T (x))
yn

, (7.17)

where yn = w′n(x) = E[u′(X(n)
T (x))].

The following lemma is a simple observation and a key point in view of our convergence

results.

Lemma 7.8. The optimal martingale measure Q(n)
yn is equivalent to P for any n in N.

Proof. As mentioned in Section 6.2, under the Inada conditions, if there exists an equivalent

martingale measure with finite generalized entropy, then the optimal measure is equivalent

to the historical probability. We can show that, in fact, this is the case for the optimization

problem in [0, τn]. To this end it is sufficient to prove that the measure Q̂y (optimal solution

to the dual problem in [0, T ]) restricted to the σ-algebra Fτn :

dQ̂y

dP

∣∣∣
Fτn

= E
[dQ̂y

dP

∣∣∣Fτn

]
,

belongs to Me
f (Sτn). We clearly have

dQ̂y

dP

∣∣∣
Fτn

> 0 a.s. by definition of τ and Proposi-

tion 7.5. Moreover, by Jensen’s inequality we have

E
[
v
(
y
dQ̂y

dP

∣∣∣
Fτn

)]
= E

[
v
(
E

[
y
dQ̂y

dP

∣∣∣Fτn

])]
≤ E

[
v
(
y
dQ̂y

dP

)]
< ∞,

as claimed.

Therefore, the unique solution to the optimal problem (7.16) can be written in the

following way

X(n)
τn

(x) = x + (Hn · S)τn , (7.18)
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by Theorem 7.1. Here X
(n)
τn (x) is finite P-a.s., Hn = Hn1[0,τn] is a predictable Sτn-integrable

process, and (Hn · S)0≤t≤τn is a Q(n)
yn -uniformly integrable martingale. It is exactly this

characterization of X
(n)
τn (x) that makes the convergence results proved in the next section

interesting, as well argued after the statement of Theorem 7.9.

7.3 Convergence Results

Our main theorem in this setting can be stated as follows.

Theorem 7.9. Assume u : R → R and (St)0≤t≤T to satisfy Assumptions 6.1-6.3, 7.4. Then

the following relations between the solutions to the original problems and the auxiliary ones

hold true:

(i) wn(x) −→
n

w(x);

(ii) X
(n)
T (x) P−→

n
X̂T (x) and

dQ(n)
yn

dP
L1(P)−→

n

dQ̂y

dP
.

This theorem states that the optimal wealth X̂T (solution to the original problem formu-

lated in [0, T ]) can be approximated through the optimal wealths X
(n)
T (reachable by trading

up to the random times τn only). Clearly the interesting case is the absolutely-continuous

one, where X̂T admits integral representation only Q̂-almost surely. At this point it is of

fundamental importance to consider Theorem 7.9 in conjunction with Lemma 7.8, that is,

with characterization (7.18) of the optimal wealths X
(n)
τn , which makes X̂T attainable as the

limit of suitable-portfolios terminal values.

Before proving Theorem 7.9, we need some preparatory results. Let us introduce the

sequence of positive measures

(ynZ(n))n∈N,

where Z(n) :=
dQ(n)

yn

dP
. We want to prove that we can extract a sequence of convex combi-

nations of them which converges to yẐ = w′(x)
dQ̂y

dP
in probability, where as usual y and

yn are the first derivatives of the value functions w and wn at a fixed point x ∈ R. This is

just a preliminary result, and it is only in the next subsection that we will be able to show

that the sequence (ynZ(n))n itself converges to yẐ.
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Recall that functions u, w,wn are increasing, concave, and finite valued on R, and that

sequence (wn)n is increasing too. Moreover, relation u ≤ wn ≤ w, ∀n ∈ N, is clearly

satisfied. Hence, for any fixed x ∈ R, (yn)n = (w′n(x))n is a bounded sequence, say yn ≤
ξ ∈ R ∀n ∈ N, where of course ξ = ξ(x). It follows that (ynZ(n))n is a bounded sequence as

well, lying in L1
+(Ω,F , P), and we can make use of an appropriate version of Komlos’ theorem

(see [55] and [25]). This produces a sequence (gn)n∈N of positive measures converging in

probability to some g ∈ L1
+(Ω,F , P). More precisely we have

gn =
∞∑

k=n

αn
kykZ

(k) ∈ conv (ynZ(n), yn+1Z
(n+1), . . .), n ∈ N, (7.19)

with 0 ≤ αn
k ≤ 1,

∞∑
k=n

αn
k = 1, and gn

P→ g ∈ L1
+(Ω,F , P).

It is convenient to introduce the probability measures related to these random variables:

dRn

dP
=

gn

E[gn]
=

gn

γn
,

dR
dP

=
g

E[g]
=

g

γ
, γn, γ ∈ (0,∞). (7.20)

As an immediate consequence of the boundedness of (yn)n, we have that (γn)n is bounded

too. Indeed Fatou’s lemma gives us

γn = E
[ ∞∑

k=n

αn
kykZ

(k)
]
≤

∞∑
k=n

E[αn
kykZ

(k)] =
∞∑

k=n

αn
kyk ≤ ξ (7.21)

and also

γ = E[lim
n

gn] ≤ lim
n

E[gn] = lim
n

γn ≤ ξ. (7.22)

Moreover, since the function v is convex and bounded from below (v ≥ u(0) by (6.3)),

we obtain

E[v(gn)] = E
[
v
(

lim
p

p∑
k=n

αn
kykZ

(k)
)]
≤

∞∑
k=n

αn
kE[v(ykZ

(k))], (7.23)

once again by Fatou’s lemma. Combining inequalities (7.21) and (7.23) we get

xγn + E
[
v
(
γn

dRn

dP

)]
≤

∞∑
k=n

αn
k(xyk + E[v(ykZ

(k))])

=
∞∑

k=n

αn
kwk(x) ≤ xy + E[v(yẐ)] = w(x),

(7.24)
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where we have used representation (7.4) for the optimization problem in [0, T ] as well as for

the ones in [0, τk], k ∈ N. It is now easy to extend this formula from
(
γn,

dRn

dP

)
to

(
γ,

dR
dP

)
in this way:

xγ + E
[
v
(
γ

dR
dP

)]
≤ lim

n

(
xγn + E

[
v
(
γn

dRn

dP

)])
≤ w(x). (7.25)

We use these inequalities to prove the following proposition, which is a fundamental

step in the direction of our convergence results. Here we consider only the interesting case,

i.e., the absolutely-continuous one.

Proposition 7.10. Under the hypothesis of Theorem 7.9, the following assertions hold

true:

(i) The sequence (gn)n is P-uniformly integrable;

(ii) Rn ∈Ma(Sτn) and R ∈Ma(Sτ−);

(iii) g = yẐ = w′(x)
dQ̂y

dP
.

Proof. (i) Recall that, under the Inada conditions, the RAE condition on the limit to −∞
can be given in terms of the function v (see [69, Proposition 4.1]): there exist ζ0 > 0 and

C > 0 such that

ζv′(ζ) ≤ Cv(ζ), for ζ > ζ0. (7.26)

Let us fix K > 0 constant and consider the quantity E[gn; gn ≥ K]. If K > ζ0 and

v′(K) > 0, from (7.26) we get

gn ≤
Cv(gn)
v′(gn)

≤ Cv(gn)
v′(K)

, ∀gn ≥ K,

where the last inequality holds because v′ is increasing. In this case we have

E[gn; gn ≥ K] ≤ C

v′(K)
E[v(gn); gn ≥ K],

and it is sufficient to prove the uniform boundedness of E[v(gn); gn ≥ K], n ∈ N, to obtain

the uniform integrability of (gn)n. Indeed, if

E[v(gn); gn ≥ K] < η ∀n ∈ N,
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for any ε > 0 we clearly find a constant K = Kε sufficiently large such that
Cη

v′(K)
< ε.

Since the function v is continuous and strictly convex on R+ with v(0) = u(∞) < ∞ (we

are in the absolutely-continuous case), it is bounded on [0,K]. Therefore, to show that

(E[v(gn); gn ≥ K])n is bounded or that (E[v(gn)])n is bounded, turns out to be equivalent.

On the other hand, by (7.24) we have

E[v(gn)] = xγn + E[v(gn)]− xγn ≤ w(x)− xγn

and, since 0 ≤ γn ≤ ξ < ∞, the desired result follows.

(ii) Since S is assumed to be locally bounded, there exists (σm)m∈N increasing sequence

of stopping time such that σm ↑ ∞ and |Sσm | ≤ Cm P-a.s., for some Cm constant, ∀m ∈ N.

We now show that, ∀n, m ∈ N, Sσm∧τn is a Rn-martingale and Sσm∧τ− is a R-martingale.

Let us fix n, m ∈ N and 0 ≤ s ≤ t < T (or, eventually, permit t = T if T < ∞). Since

(ykZ
(k))k is uniformly integrable from (i), we have

ERn [Sσm∧τn
t |Fs] =

E[gnSσm∧τn
t |Fs]

E[gn|Fs]
=

E[limp
∑p

k=n αn
kykZ

(k)Sσm∧τn
t |Fs]

E[limp
∑p

k=n αn
kykZ(k)|Fs]

=
∑∞

k=n αn
kykE[Z(k)Sσm∧τn

t |Fs]∑∞
k=n αn

kykE[Z(k)|Fs]
=

∑∞
k=n αn

kykZ
(k)
s Sσm∧τn

s∑∞
k=n αn

kykZ
(k)
s

= Sσm∧τn
s ,

by the fact that Sσm∧τn
t bounded implies (ykZ

(k)Sσm∧τn
t )k and (

∑p
k=n αn

kykZ
(k)Sσm∧τn

t )n

uniformly integrable, for any 1 ≤ n ≤ p < ∞ we fix. Here we have used the L1-convergence

of uniformly integrable sequences converging in probability and, in a similar way, we also

obtain

ER[Sσm∧τ−
t |Fs] =

E[gSσm∧τ−
t |Fs]

E[g|Fs]
=

E[limn gnSσm∧τn
t |Fs]

E[limn gn|Fs]

= lim
n

E[gnSσm∧τn
t |Fs]

E[gn|Fs]
= Sσm∧τ−

s ,

as claimed.

(iii) As was emphasized in Remark 7.7, the equivalence of the optimal problem in [0, T ]

to the one in [0, τ [ holds true and, in particular, wτ−(x) = w(x) ∀x ∈ R. Hence, using (ii)
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together with (7.25), the optimality of R immediately follows:

R = Q̂y and γ = y = w′(x), so that g = yẐ, (7.27)

by formulation (7.8) of the original problem. What we have proved is that every convergent

sequence
(
γn

dRn

dP

)
n

of convex combinations of {ynZ(n), n ∈ N}, admits yẐ as limit. More

precisely, by statement (i), as n →∞ we have

γn → y,
dRn

dP
P→ dQ̂y

dP

and

xγn + E
[
v
(
γn

dRn

dP

)]
→ xy + E[v(yẐ)] = w(x). (7.28)

This proves the last assertion of the proposition and concludes the proof.

Proof. [Theorem 7.9] The first statement follows from (7.24) and (7.28), since (wn)n is

increasing and satisfies wn ≤ w.

(ii) It will first be shown that

yn
dQ(n)

dP
P−→ y

dQ̂
dP

.

In this purpose it is sufficient to prove that (ynZ(n))n is a sequence with the property to

be “Cauchy in probability”. We use the fact that the function v is strictly convex, hence

uniformly strictly convex on compacts:

∀a > 0, K ∈ R+ there exists β > 0 s.t. ∀ δ1, δ2 with δ1 ∈ [0,K] and |δ1 − δ2| ≥ a, then

v(δ1) + v(δ2)
2

> v
(δ1 + δ2

2

)
+ β. (7.29)

Suppose that (ynZ(n))n is not Cauchy in probability, i.e., there exists α > 0 s.t. ∀N ∈ N

∃m = mN , p = pN > N with

P{|ymZ(m) − ypZ
(p)| > α} > α. (7.30)

On the other hand, since (ynZ(n))n is uniformly integrable, there exists K > 0 such that

P{Z(n) > K} <
α

2
, ∀n ∈ N.
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Let us fix N ∈ N and m, p > N satisfying (7.30), and define the sets

Ω̃ = {ω ∈ Ω : |ymZ(m) − ypZ
(p)| > α}, Ωm = {ω ∈ Ω : Z(m) ≤ K}, Ω̃m = Ω̃ ∩ Ωm.

It immediately follows that P(Ω̃) > α, P(Ωm) ≥ 1− α/2 and P(Ω̃m) ≥ α/2. Since in Ω̃m

(7.29) holds true, then we get

x
(ym + yp

2
)

+ E
[
v
(ymZ(m) + ypZ

(p)

2
)]
≤

x
(ym + yp

2
)

+ E
[v(ymZ(m)) + v(ypZ

(p))
2

1Ω̃c
m

]
+ E

[(v(ymZ(m)) + v(ypZ
(p))

2
− β

)
1Ω̃m

]
= x

(ym + yp

2
)

+ E
[v(ymZ(m)) + v(ypZ

(p))
2

]
− βP(Ω̃m)

≤ 1
2
[
xyn + E[v(ynZ(n))] + xyp + E[v(ypZ

(p))]
]
− β

α

2
.

Hence, putting

ηN =
ym + yp

2
, ηN

dMN

dP
=

ymZ(m) + ypZ
(p)

2
,

we have

lim sup
N→∞

{
xηN + E

[
v
(
ηN

dMN

dP

)]}
≤ xy + E[v(yẐ)]− β

α

2
.

Now, by possibly passing to a convergent sequence
(
γ̄k

dQ̄k

dP

)
k

of convex combinations of{
ηN

dMN

dP
, N ∈ N

}
(if

(
ηN

dMN

dP
)
N∈N results not to be convergent), for any k in N we get

xγ̄k + E
[
v
(
γ̄k

dQ̄k

dP

)]
≤ xy + E[v(yẐ)]− β

α

2
< w(x),

with the same arguments used to obtain (7.24). On the other hand, by (7.28) we have

xγ̄k + E
[
v
(
γ̄k

dQ̄k

dP

)]
→
k

w(x),

in contradiction with the preceding inequalities. This proves that (ynZ(n))n is Cauchy in

probability and therefore it also converges in probability. From the uniform integrability,

this limit also holds in the L1(P)-sense and, by Proposition 7.10, it equals yẐ. What we

have shown is the convergence

ynZ(n) L1(P)−→ yẐ, or Z(n) L1(P)−→ Ẑ,
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and by (7.2) and (7.17) we also have

X
(n)
T (x) P−→ X̂T (x),

as claimed.

As noted before, plugging (7.18) into Theorem 7.9 we obtain an approximation of the

optimal terminal wealth X̂T (x) via self-financing trading strategies. Therefore, in the

absolutely-continuous case, an economic agent can realize a wealth as large as she wants with

strictly positive probability (greater than or equal to P(A), with A defined in Remark 6.5).



Chapter 8

Absolutely-Continuous Case: An

Example

In this chapter we construct a class of examples which show how the absolutely-continuous

case may occur for any utility function fulfilling our requests.

Let u : R → R be a utility function satisfying Assumption 6.1. We construct a real-

valued (locally) bounded semimartingale S = (Sn)n∈N0 based on and adapted to a filtered

probability space (Ω,F , (Fn)n∈N0 , P), which describes the discounted price process of a risky

traded asset. Since we are in discrete time, Assumption 7.4 holds automatically true. We

shall give conditions on P and u in order to make the financial market modelled by S

satisfying Assumptions 6.2, 6.3 and fitting in with the absolutely-continuous case. This

means that, for an economic agent investing in this market, the optimization problem (6.4)

produces a martingale measure lying in Ma(S) but not in Me(S). Moreover, the optimal

terminal wealth will have the nice representation (Ĥ · S)∞ = (1 · S)∞ = lim
n→∞

Sn where this

limit exists, otherwise it will be equal to +∞.

8.1 The Market Model

To simplify the notation we fix the initial endowment at x = 0, so that the primal problem

takes the form

w(0) = sup
H∈H

E[u((H · S)∞)]. (8.1)

106
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In order to define the asset price process S, we choose a trinomial tree model in which, at

every step n, one can “go up”, “go down” or remain at the same level. To this end, we

consider two sequences (an)∞n=0 and (bn)∞n=1 of real numbers such that a1 = 0, sgn(an) =

sgn(bn) = (−1)n ∀n ∈ N, |bn| > |an| and |an| (so |bn| too) increases to +∞ as n → +∞. Let

us put S0 = 0 in Ω =: C0, then split C0 in tree sets, say A1 (where S remains at the same

level 0), B1 (where the process goes down at b1) and C1 (where it goes up at a2). In the

same way, for any n in N, we put Sn = Sn−1 in
⋃n−1

k=1(Ak ∪Bk), whereas Cn−1 is split into

three sets, say An, Bn and Cn, where we define Sn equal to an, bn and an+1, respectively.

Therefore, at time n with n even (resp. odd), the process can go up, if Bn (resp. Cn)

occurs, it can go down, if Cn (resp. Bn) occurs, or remain at the same level, in the sets

A1, . . . , An, B1, . . . , Bn−1. In this way the process we have constructed works as follows, for

any n ∈ N:

Sn =


ak, on Ak, k = 1, . . . , n,

bk, on Bk, k = 1, . . . , n,

an+1, on Cn.

Moreover, as n goes to +∞, S admits path-wise limit on
⋃∞

n=1(An ∪ Bn), whereas it

oscillates between +∞ and −∞ on C∞ =
⋂∞

n=0 Cn. Since we will put C∞ not null under

the historical probability, the limit of the process is not almost surely well defined and it

becomes convenient to introduce the random variable

S∞ = lim
n

Sn1Cc
∞ .

This construction follows an analogue pattern such as the one in [70] and here we can give

a similar interpretation of the asset price process. Indeed, we may consider S as the value

of a player suitably-stopped portfolio, when the game consists of a sequence of independent

experiments with the three outcomes:


un : to go up in the nth trial,

mn : to remain at the same level in the nth trial,

dn : to go down in the nth trial.



108

The value of the game at n = 0 is fixed equal to zero, and the increments we consider are:

ηn =


an+1 − an, if un and n odd, or dn and n even, occurs,

0, if mn occurs,

bn − an, if dn and n odd, or un and n even, occurs.

Hence, as long as the player continues the game, his portfolio value at time n ∈ N is

Mn =
n∑

k=1

ηk.

Now the idea is to play as long as experiments have outcomes of up-type when n odd and

of down-type when n even, while the game stops at the first time in which this does not

occur. Let us introduce the stopping times

θ := inf{n : mn occurs}, σ := inf{n : dn and n odd, or un and n even, occurs}, ρ := θ ∧ σ.

If we define our sets as follows:

An = {n = θ < σ}, Bn = {n = σ < θ}, Cn = {ρ > n} and C∞ = {ρ = ∞},

and allow the gambler to play up to the random time ρ, his portfolio value turns out to be

modelled by the stopped process

Mρ
n = Sn.

After this comment, let us come back to the definition of our model and denote by

(Fn)n∈N0 the natural filtration generated by S:

F0 = {∅,Ω} is the trivial algebra,

Fn = σ(Sn) = σ({A1, . . . , An, B1, . . . , Bn, Cn}),∀n ∈ N and

F = F∞ =
∨

nFn = σ({(An)n∈N, (Bn)n∈N, C∞}).

8.2 Probability Measures

8.2.1 Characterization of the Martingale Measures

The unique condition needed on the sequences (an)n and (bn)n will be obtained from the

characterization of the martingale measures for the process S (and independently of the
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utility function u we consider). Therefore, before we introduce the assumption on the

historical probability P, we proceed to identify the set Ma(S). Of course every measure

Q ∈Ma(S) has to satisfy the martingale property

Q(Bn)(bn − an) + Q(Cn)(an+1 − an) = 0, ∀n ∈ N, (8.2)

that is

Q(Bn)
Q(Cn)

=
an − an+1

bn − an
=: ξn, ∀n ∈ N. (8.3)

To have Me(S) 6= ∅, we need a probability measure Q satisfying (8.3) and such that

Q ∼ P. This measure clearly satisfies lim
n

Q(Bn) = 0 and, requiring P(C∞) > 0, also

lim
n

Q(Cn) > 0, so that ξn →
n

0. More precisely, at every step n we can rewrite:

Q(Bn) = ξnQ(Cn) and Q(An) = γnQ(Cn)

for some γn, so that Q(Cn−1) = (1 + γn + ξn)Q(Cn). Now, since we want

0 < Q(C∞) = lim
n

Q(Cn) = lim
n

n∏
k=1

1
1 + γk + ξk

=
∞∏

n=1

1
1 + γn + ξn

,

we need the following condition to hold:

∞∑
n=1

(
1− 1

1 + γn + ξn

)
< ∞,

or equivalently:

γn + ξn

1 + γn + ξn
� 0.

Here, given two sequences (fn)n ⊂ R and (gn)n ⊂ R r {0}, by the notation
fn

gn
� 0 or

fn � gn we mean that
∞∑

n=1

fn

gn
< ∞, whereas by fn ≈ gn we indicate that

fn

gn
∈ [c−1, c],

asymptotically, for some c > 1. Arranging things such that Q(An) tends to zero sufficiently

quickly (γn � ξn), we can relax the last requirement to the following one:

∞∑
n=1

(
1− 1

1 + ξn

)
=

∞∑
n=1

an − an+1

bn − an+1
< ∞. (8.4)

We then obtain that the corresponding martingale measure Q lies in Me(S).
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Note that, in order to have (8.4) satisfied, it is sufficient to take

|an+1| � |bn|, (8.5)

so we may and do assume this condition holds true. In this way Assumption 6.2 turns out

to be satisfied. Requirement (8.5) is the only one we make on the sequences (an)n and

(bn)n, and we point out that it does not depend on the utility function u describing the

agent preferences. To give an example, a good choice for these parameters is

an ≈ (−1)nn and bn ≈ (−2)n.

8.2.2 The Historical Probability

We now put some conditions on the historical probability P, to make the solution of (8.1)

having the announced representation. What we want is the optimal wealth to be equal to

(Ĥ · S)∞ = (1 · S)∞ = S∞ on Cc
∞, and to +∞ on C∞ (where P(C∞) > 0). This result

motivates the following requirements:

(P1) P(An)u′(an) � 0 and P(Bn)u′(bn) � 0;

(P2) P(An+1)u′(an+1) ≈
∞∑

k=n+1

(
P(Ak)u′(ak) + P(Bk)u′(bk)

)
;

(P3) P(Bn)u′(bn) = ξn

∞∑
k=n+1

(
P(Ak)u′(ak) + P(Bk)u′(bk)

)
,

so that, if (P2) holds, P(Bn)u′(bn) ≈ ξnP(An+1)u′(an+1);

(P4) |an|P(An)u′(an) � 0,

which, if (P2) and (P3) hold, implies |bn|P(Bn)u′(bn) � 0, by (8.5);

(P5) P(An)u(−|an|) � 0 and P(Bn)u(−|bn|) � 0;

(P6)
∞∑

n=1

(
P(An) + P(Bn)

)
< 1 (i.e. P(C∞) > 0, as mentioned earlier).

Note that, since |an| and |bn| increase to +∞, (P4) is clearly stronger than (P1) and therefore

the requirements we make on P are just (P2)−(P6). In the next subsection it will become

clear why we require these conditions. Here we only give an example in the significant case

of the exponential utility.
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Example 8.1. Consider the preferences of the agent as modeled by the exponential utility

function u(x) = − exp (−x) and, as before, put an ≈ (−1)nn and bn ≈ (−2)n. In this

setting, a good choice for the measure P is

P(An) ≈ exp (−2n + an) and P(Bn) ≈ n2−n exp (−2n+1 + bn),

which makes (P2)−(P6) satisfied.

8.2.3 The Minimax Martingale Measure

Let us define a measure Q̃ absolutely continuous with respect to P, in the following way:

dQ̃
dP

=
u′(X∞)

c
, where X∞ =

 S∞, on Cc
∞

+∞, on C∞
(8.6)

and c = ‖u′(X∞)‖L1(P) < ∞ by (P1). We obtain

Q̃(An) = c−1u′(an)P(An), Q̃(Bn) = c−1u′(bn)P(Bn) and Q̃(C∞) = c−1u′(∞)P(C∞) = 0,

so that, in particular, Q̃ is not equivalent to P. Moreover, by (P3),

Q̃(Bn) = ξn

∞∑
k=n+1

(
Q̃(Ak) + Q̃(Bk)

)
= ξnQ̃(Cn), (8.7)

i.e., Q̃ satisfies the martingale property (8.3). It follows that Q̃ is a good candidate to be

the minimax martingale measure Q̂c and we will show that, under our assumptions, this

will be the case. Before proving the optimality of Q̃, we show the following properties:

(i) X∞ ∈ L1(Q̃) with E
eQ[X∞] = 0;

(ii) X∞ ∈ L1(Q) with EQ[X∞] = 0, ∀Q ∈Ma
f (S).

By (8.6) and (P4) we clearly have

E
eQ[|X∞|] = E

eQ[|S∞|] =
∞∑

n=1

(
|an|Q̃(An) + |bn|Q̃(Bn)

)
< ∞

and also

E
eQ[|X∞ − Sn|] −→

n→∞
0, i.e. Sn

L1(eQ)−→ X∞,
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by approximation in (P2). This yields (Sn)n uniformly integrable with respect to Q̃, with

E
eQ[X∞|Fn] = E

eQ[S∞|Fn] = Sn and E
eQ[X∞] = E

eQ[S∞] = 0, (8.8)

as claimed. Let now Q be any measure in Ma
f (S). Since

E
[
v
(dQ

dP

)]
=

∞∑
n=1

{
v
(Q(An)

P(An)

)
P(An) + v

(Q(Bn)
P(Bn)

)
P(Bn)

}
+ v

(Q(C∞)
P(C∞)

)
P(C∞)

is a finite quantity and the function v is bounded from below, we have

v
(Q(An)

P(An)

)
P(An) � 0 and v

(Q(Bn)
P(Bn)

)
P(Bn) � 0.

Therefore, using (6.3) for y =
dQ
dP

and xn = −|an| or −|bn|, we obtain

|an|Q(An) ≤ v
(Q(An)

P(An)

)
P(An)− u(−|an|)P(An) � 0

and

|bn|Q(Bn) ≤ v
(Q(Bn)

P(Bn)

)
P(Bn)− u(−|bn|)P(Bn) � 0,

by assumption (P5). This yields the integrability of X∞ with respect to every Q in Ma
f (S),

with EQ[X∞] = EQ[S∞] = 0, and in particular Q(C∞) = 0 (so that Q � Q̃). Now we

are able to prove the optimality of the measure Q̃ in the set Ma(S). Indeed, for any given

probability measure Q ∈Ma
f (S), we have

E
[
v
(
c
dQ
dP

)
− v

(
c
dQ̃
dP

)]
≥ E

[
v′

(
c
dQ̃
dP

)(
c
dQ
dP

− c
dQ̃
dP

)]
= cEQ

[
− (u′)−1

(
c
dQ̃
dP

)]
− cE

eQ

[
− (u′)−1

(
c
dQ̃
dP

)]
= cEQ[−X∞]− cE

eQ[−X∞] = 0,

by the convexity of v. Consequently Q̃ turns out to be the optimal solution Q̂c to the

dual problem. On the other hand, by (7.3) we have w′(0) = (−ν ′)−1(0) = c. Then the

measure Q̃ ∈ Ma(S) we have defined is the optimal martingale measure Q̂w′(0) and its

density is proportional to the marginal utility of X∞. Moreover, by (8.6) and (P6) we

know that this martingale measure is not equivalent to the probability measure P. By

this fact and guided by relation (7.2), we obtain that the optimal terminal wealth X̂∞(0)

equals X∞, which is infinite with strictly positive probability by (P6). Then (8.1) produces

w(0) = E[u(X∞)] < ∞ by assumption (P5).
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8.3 On the Approximation of the Optimal Wealth

We can observe that a sequence (Km)m∈N of admissible trading strategies permitting the

approximation of the optimal wealth, is given by Km = 1[0,2m−1]. In this way, we obtain

processes Y m := (Km · S) such that

Y m
∞ = (Km · S)2m−1 = S2m−1 →

m
X̂∞(0)

and also

E[u(Y m
∞ )] →

m
E[u(X̂∞(0))] = w(0).

On the contrary, we can easily see that

X̂n(0) := E
bQ[X̂∞(0)|Fn] = Sn 9

n
X̂∞(0).

Also regarding the auxiliary optimization problems introduced in Section 7.1, we get

X(n)
∞ (0) = (Hn · S)τn →n X̂∞(0),

by our main theorem, but

X̂τn(0) := E
bQ[X̂∞(0)|Fτn ] 9

n
X̂∞(0).

Let us consider the initial interpretation of S as a player portfolio value, in order to rein-

terpret the processes Y m now defined. For any n in N, we have

Y m
n = Sn∧(2m−1) = Mρ∧ρm

n ,

where ρm is the deterministic stopping time ρm = 2m− 1. Hence, we can approximate the

optimal terminal wealth through portfolio values of players which stop at time ρ ∧ ρm the

game described at the beginning. In other words, playing this game (i.e., trading in our

market S) we can obtain a wealth that with strictly positive probability (> P(C∞)) is as

large as we want.

Remark 8.2. About the choice of the time horizon +∞, we point out that it is not relevant.

To have the same examples in a finite trading horizon T , it is sufficient to consider the time

scale T n
n+1 instead of n.
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Remark 8.3. Regarding the unboundedness of the asset price process, we can see how to

drop it, leaving unchanged the optimal wealth process X̂(0). Let us define a new process

Sb = (Sb
n)n∈N as follows:

Sb
0 = 0 and Sb

n − Sb
n−1 = ∆Sb

n = cn∆X̂n(0) = cn∆Sn.

Of course, for arbitrary constants cn 6= 0, the optimal wealth process obtained by trading

in the market Sb is the same as the one obtained by trading in S. So we can choose some

constants cn such that Sb is a uniformly bounded process, for example cn = 2−(n+1)

|bn+1| , which

gives us |Sb
n| ≤ 1− 2−n, ∀n ∈ N, and also |Sb

∞| ≤ 1.

CONCLUSIONS

For any utility function satisfying our assumptions, we have shown how the absolutely-

continuous case may occur. In such a situation, we lose the representability of the op-

timal wealth X̂T as the final value of a trading strategy. However, since X̂T (x) solves

(6.1), we know that there exists a sequence (Kn)n∈N of admissible strategies such that

E[u(x + (Kn · S)T )] converges to E[u(X̂T (x))]. In addition to this, by solving problems

(7.15) we get a sequence (Hn)n of self-financing strategies, characterized in (7.18), which

are not necessarily admissible, but such that

u(x + (Hn · S)T ) P−→ u(X̂T (x)),

by Theorem 7.9. This result taken in conjunction with representation (7.18) produces

X̂T (x) = x + lim
n→∞

(Hn · S)τn , (8.9)

when the limit is taken in probability. Therefore, although the optimal terminal wealth is

not perfectly replicable, we obtain it as the limit of portfolio values attainable by trading

in the market.
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timal risk sharing”, Astin Bulletin 34/1, 27-48.

[52] I. Karatzas, J.P. Lehoczky, S.E. Shreve (1987). “Optimal portfolio and consumption

decisions for a “small investo” on a finite horizon”, SIAM Journal of Control and

Optimization, 25, 1557-1586.

[53] I. Karatzas, J.P. Lehoczky, S.E. Shreve, G.L. Xu (1991). “Martingale and duality

methods for utility maximization in an incomplete market”, SIAM Journal of control

and Optimization, 29/3, 702-730.
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