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EXISTENCE OF RADIAL SOLUTIONS FOR QUASILINEAR ELLIPTIC
EQUATIONS WITH SINGULAR NONLINEARITIES

BEATRICE ACCIAIO AND PATRIZIA PUCCI

Abstract. We prove the existence of radial solutions of the quasilinear elliptic equation
div(A(|Du|)Du) + f(u) = 0 in Rn, n > 1, where f is either negative or positive for small
u > 0, possibly singular at u = 0, and growths subcritically for large u. Our proofs use only
elementary arguments based on a variational identity. No differentiability assumptions are
made on f .
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1. Introduction

Recently, for the p–Laplacian equation when p > 1, under general conditions for the non-
linearity f , besides other properties Tang in [18] proved existence of crossing radial solutions
for f positive near at u = 0, while Gazzola, Serrin and Tang in [7] proved existence of radial
ground states in Rn for f negative near at u = 0. Montefusco and Pucci in [9] extended
the results of [7] to the general quasilinear case, considered here. The main purposes of
this paper are to extend the existence results of [7] and [18] to general quasilinear elliptic
problems, using a unified proof, and also to extend them and those of [9], introducing a new
subcritical condition on f at infinity that, in canonical cases, interesting in applications, is
more general than the subcritical condition used in [7], [18] and [9]. For instance, in the
case 1 < p < n, the two typical examples covered in our paper, but not in that of [7] and
[18], are given by f(u) = up∗−1 + log u and f(u) = up∗−1 + uq−1, with 1 < q < p∗, and for
u ∈ R+, where p∗ = np/(n− p).

In particular, we are interested in finding sufficient conditions for existence of radial
ground states of the quasilinear elliptic equation

div{A(|Du|)Du}+ f(u) = 0 in Rn, n > 1,(1.1)

when f < 0 near at u = 0. By a ground state we mean a non–negative non–trivial solution of
(1.1) which tends to zero at infinity. Moreover, with the same technique, we are also able to
prove the existence of a radial positive crossing solution of (1.1) in its maximal continuation
interval where u > 0 and u′ < 0, when f > 0 near at u = 0, already established in [18] for
the p–Laplacian equation.
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In addition to the ground state problem, when f < 0 near at u = 0, we can also
consider existence of non–trivial radial solutions of the homogeneous Dirichlet–Neumann
free boundary problem

div{A(|Du|)Du}+ f(u) = 0 in B(0, R) ⊂ Rn,

u > 0 in B(0, R), u =
∂u

∂ν
= 0 on ∂B(0, R).

(1.2)

For t > 0 we set Φ(t) = tA(t) and assume that

(Φ1) Φ is of class C1(R+), R+ := (0,∞),

(Φ2) Φ′(t) > 0 for t > 0, and Φ(t) → 0 as t → 0,

(Φ3) There exists a positive number 1 < p ≤ n such that t1−pΦ(t) is a non–decreasing
function on R+.

Note that (Φ3) is equivalent to

Φ′(t) ≥ p− 1
t

Φ(t), t > 0.(1.3)

As in [7], [18], [9], and more generally in natural existence settings, we are concerned with
subcritical nonlinearities f since 1 < p ≤ n. Specific hypotheses are given in the statements
of the main Theorems 5.1–5.4 below. Throughout the paper f is assumed of type

(f1) f ∈ C(R+) ∩ L1[0, 1].

Condition (f1) was first studied in [16] for the uniqueness problem, but without suitable
attention to the difficulties attendant on this type of singularity at u = 0. Only recently
in [6] a careful definition of solution for (1.1) under a singularity of type (f1) was given, in
order to avoid the undefined nature of f(u) at u = 0. We shall adopt that definition.

Moreover, putting F (u) =
∫ u
0 f(v)dv, in the main existence theorems we assume also

that either

(f3) there exists b > 0 such that F (u) < 0 for 0 < u < b, F (b) = 0 and f(b) > 0,

as in [7] and [9], or

(f4) there exists c > 0, possibly infinite, such that f(u) > 0 for 0 < u < c,

as in [18].

The behavior of f near 0 is of crucial importance for the existence results given in
Sections 5. We shall identify two mutually exclusive situations:
Regular case: f can be extended by continuity at u = 0, with f(0) = 0;
Singular case: f cannot be extended by continuity at u = 0, with f(0) = 0.

For a complete discussion on the wide background and literature concerning related
previous results, including as well the classical scalar field equation and the regular case
with f(0) = 0, we refer the reader to [5] and [7] and the references therein.

The paper is organized as follows: in Section 2 some preliminary qualitative properties for
solutions of (1.1) and (1.2) are given, including a necessary and sufficient condition in order
that a solution of (1.1) has compact support. In Section 3 we present and summarize the
main properties of solutions of the corresponding initial value problem. Section 4 is devoted
to prove the existence of crossing solutions and also to show the connections between the
subcritical growth condition
(Q1) The function Q(v) = pnF (v) − (n − p)vf(v), v ∈ R+, is locally bounded near v = 0

and there exist µ > d and λ ∈ (0, 1) such that Q(v) ≥ 0 for all v ≥ µ and

lim sup
v→∞

Q(λ1v)
[

vp−1

f(λ2v)

]n/p

= ∞ for all λ1 and λ2 in [λ, 1],
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used in [18] and [9], and the new condition
(Q) The function Q(v) = pnF (v) − (n − p)vf(v), v ∈ R+, is locally bounded near v = 0

and there exist µ > d and λ ∈ (0, 1) such that Q(v) ≥ 0 for all v ≥ µ and

lim sup
v→∞

Q(λ1v)[vp+1f(λ2v)]n/p = ∞ for every λ1, λ2 ∈ [λ, 1],

introduced in this paper, where in both conditions d = b under (f3) and d = 0 under
(f4). Section 4 ends with some remarks and examples proving the independence of the
two different growth hypotheses (Q) and (Q1), and the main fact that, under (f1) and
lim inf
u→∞

f(u) = k0 > 0, condition (Q1) is stronger than (Q), see Proposition 4.3. Finally, in
Section 5, we give some existence results, also using the further assumption

(Φ4) k = inf
t>0

Φ(t)
tp−1

> 0.

In particular: Theorem 5.3 is the analogue of Theorem 4.1 of [9] and Theorem 5.4 extends
Theorem 5.1 of [18]. While Theorems 5.1–5.2 give the same results under the new condition
(Q) and without assuming (Φ4).

2. General theory and behavior of solutions

We consider the quasilinear singular elliptic problem
div{A(|Du|)Du}+ f(u) = 0 in Rn, n > 1,

u ≥ 0, u 6≡ 0 in Rn,
(2.1)

under the following main structural assumptions. For t > 0 we set Φ(t) = tA(t), as said in
the Introduction, and assume the validity of (Φ1)–(Φ3) throughout the paper. Note that
Φ can be extended by continuity at t = 0 by (Φ1) and (Φ2), that is Φ ∈ C(R+

0 ) ∩ C1(R+),
with Φ(0) = 0. We introduce the function

H(t) = tΦ(t)−
∫ t

0
Φ(s)ds =

∫ t

0
sΦ′(s)ds, t > 0.(2.2)

Therefore, H is strictly increasing on R+
0 , with H(0) = 0. Moreover, by (Φ3), that is (1.3),

it is also evident that
p− 1

p
B(t) ≤ H(t) < B(t) for all t > 0,(2.3)

where

B(t) = tΦ(t), t ≥ 0,(2.4)

is strictly increasing on R+
0 , with B(0) = 0, by (Φ2), and moreover t−pB is non–decreasing

on R+ by (Φ3). Clearly Φ(t) → ∞ as t →∞ by (Φ3) and in turn both H(t) → ∞ and
H(t)

/
Φ(t) →∞ as t →∞ by (2.3).

Throughout the paper we also assume that f satisfies (f1), so that it is clear that F (u) =∫ u
0 f(v)dv is well defined and is of class C(R+

0 ) ∩ C1(R+), with F (0) = 0.

Since (2.1) is possibly singular when u = 0, it is necessary to carefully define the meaning
to be assigned to solutions of (2.1), and in analogy with [16] and [6], we introduce the
following:

Definition. A semi–regular non–negative (weak) radial solution u of (2.1) is a non–trivial
non–negative radial function of class C1(Rn \ {0}), which is a classical distribution solution
of (2.1) in the open (support) set Ω = {x ∈ Rn \ {0} : u(x) > 0}, and is bounded near
x = 0.

Of course non–negative semi–regular radial solutions are then of class C1(R+), bounded
near r = 0, and we shall see that satisfy

[rn−1A(|u′|)u′)]′ + rn−1f(u) = 0 in J = {r > 0 : u(r) > 0}.(2.5)
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As in [6] it will first be shown that the definition of non–negative semi–regular radial
solution is compatible with that of classical solution in the regular case, namely when f is
continuous in R+

0 with f(0) = 0.

Proposition 2.1. Let u = u(|x|) be a non–negative semi–regular radial solution of (2.1),
where f ∈ C(R+

0 ), with f(0) = 0. Then u is a classical C1 solution of (2.5) in R+.

Proof. If J = R+ there is nothing to prove. Otherwise let J ′ be any component of J =
{r > 0 : u(r) > 0}, let r, r′ ∈ J ′ and r0 < r1 be the endpoints of J ′. Then using standard
distribution arguments we get

rn−1A(|u′(r)|)u′(r)− (r′)n−1A(|u′(r′)|)u′(r′) = −
∫ r

r′
sn−1f(u(s))ds.(2.6)

Let r′ → r1 and observe that necessarily u(r1) = u′(r1) = 0 by definition of a semi–regular
non–negative solution. This gives

rn−1A(|u′(r)|)u′(r) = −
∫ r

r1

sn−1f(u(s))ds.(2.7)

Moreover, when r0 > 0 we may also let r → r0 in (2.7) and thus obtain∫ r1

r0

sn−1f(u(s))ds = 0.(2.8)

Now let r̄ be a fixed point of R+ \ J . Since f(0) = 0 it is easy to see that∫
I(r1,r̄)

sn−1f(u(s))ds =
∑

Ji⊂I(r1,r̄)

∫
Ji

sn−1f(u(s))ds = 0,(2.9)

where I(r1, r̄) is the interval with endpoints r1, r̄; the sum is taken over all the components
Ji of J contained in I(r1, r̄); and (2.8) is used at the second step.

Finally from (2.7) and (2.9) one gets

rn−1A(|u′(r)|)u′(r) = −
∫ r

r̄
sn−1f(u(s))ds.(2.10)

Here r can be any point in J and also by the computation of (2.9) it is clear that (2.10) is
also correct if r ∈ R+ \ J . That is (2.10) holds for all r ∈ R+. On the other hand, both
sides of (2.10) are continuously differentiable, so u satisfies (2.5) in R+, which was to be
proved. �

In analogy with [16] and [6] we give

Proposition 2.2. Let u = u(|x|) be a non–negative semi–regular radial solution of (2.1),
with

lim inf
r→0+

u(r) = α > 0.(2.11)

Then A(|u′|)u′ ∈ C1(J) and u is a solution in J of (2.5). Moreover,

lim
r→0+

u′(r) = 0 and lim
r→0+

u(r) = α.(2.12)

Proof. Let u be a non–negative semi–regular radial distribution solution of (2.1), so that u is
in particular of class C1(Rn \{0}). It is clear that u solves (2.5) in the sense of distributions
in J . By (f1) we have f ◦ u ∈ C(J). Hence, as in (2.6),

rn−1A(|u′(r)|)u′(r)− rn−1
0 A(|u′(r0)|)u′(r0) = −

∫ r

r0

sn−1f(u(s))ds,(2.13)

for any interval [r0, r] ⊂ J . Thus A(|u′|)u′ is actually of class C1(J), and (2.5) holds in J .
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To obtain (2.12), choose ε > 0 so small that f ◦ u ∈ L∞[0, ε]; this can be done since u
is positive and bounded near 0 by definition and (2.11), and also by (f1). Then, letting
r0 → 0+ in (2.13), we see that

lim
r0→0+

rn−1
0 A(|u′(r0)|)u′(r0) = `,(2.14)

where ` is a finite number. We claim that ` = 0. Assume for contradiction that ` 6= 0.
Then by (2.14) and (Φ3)

|u′(r0)| = Φ−1
(
|`|r−(n−1)

0

)
[1 + o(1)] ≥

[
|`|1/(p−1)Φ−1(1)

]
r
−(n−1)/(p−1)
0 [1 + o(1)]

as r0 → 0+ and so u cannot be bounded near 0, since 1 < p ≤ n, which is the required
contradiction. Hence ` = 0 in (2.14) and the claim is proved.

Now, letting r0 → 0+ in (2.13), we obtain

rn−1A(|u′(r)|)u′(r) = −
∫ r

0
sn−1f(u(s))ds, 0 < r < ε,

that is, Φ(|u′(r)|) ≤ Cr, where C > 0 is an appropriate constant, since f ◦ u ∈ L∞[0, ε] by
(2.11) and (f1). Hence (2.12) immediately follows. �

Remark. If Φ satisfies also condition (Φ4), given in the Introduction, then it is easily seen
that (2.12) holds in the stronger form

u′(r) = O
(
r1/(p−1)

)
and u(r)− α = O

(
rp/(p−1)

)
as r → 0+.(2.15)

Let u be a fixed semi–regular non–negative radial solution of either (2.1) or (1.2). In
order to unify the notation we shall define R = ∞ for (2.1) and clearly R < ∞ is the
positive radius given already in (1.2). By Proposition 2.2 then u is a non–negative classical
solution of (2.5) in J ⊂ (0, R) such that

u ∈ C1[0, R), A(|u′|)u′ ∈ C1(J),

u(0) = α > 0, u′(0) = 0, u ≥ 0.
(2.16)

It is useful to define w(r) = A(|u′(r)|)u′(r).

Lemma 2.3. The function w is of class C1[0, R) and is a solution of

(rn−1w)′ + rn−1f(u) = 0 on J.(2.17)

Moreover, denoting by r0 the first zero of u in (0, R), if any, or otherwise r0 = R, we have

w(r) = − 1
rn−1

∫ r

0
sn−1f(u(s))ds, 0 < r < r0,(2.18)

w(0) = 0, w′(0) = −f(α)
n

.(2.19)

Finally, putting ρ(r) = |u′(r)|, there holds

lim
r→0+

B(ρ(r))
r

= 0 and
B(ρ)

r
∈ C[0, R).(2.20)

Proof. Of course w(0) = 0, since u′(0) = 0 by (2.16); the function w is a solution of (2.17)
by (2.5). Integrating over [0, r], as long as r < r0, we get

rn−1w(r) = −
∫ r

0
sn−1f(u(s))ds,

so (2.18) holds. From (2.16) we have

w′(r) = −f(u(r)) +
n− 1
rn

∫ r

0
sn−1f(u(s))ds,
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and by L’Hôpital’s rule (2.19), as well as the C1 regularity of w at r = 0, follows at once.
Finally,

B(ρ(r))
r

= u′(r) · w(r)
r

,

and (2.20) follows at once by (2.19) and (2.16). �

Corollary 2.4. If u′(r) 6= 0 at some r, with 0 < r < r0, then u′′ exists at this point and
satisfies (2.5) in the form

Φ′(ρ)u′′ − n− 1
r

Φ(ρ) + f(u) = 0, ρ = |u′|.(2.21)

Proof. By (2.18) of Lemma 2.3 and the fact that u′(r) 6= 0 we have by (Φ2)

|u′(r)| = Φ−1

(∣∣∣∣∫ r

0

(s

r

)n−1
f(u(s))ds

∣∣∣∣) ,

since Φ(∞) = ∞ by (Φ3). Now the integral is not zero, so that the function on the right
hand side is differentiable at r by (Φ1). Hence u′′ exists at r and from (2.5) we get exactly
(2.21), since |u′(r)| = ρ(r) > 0. �

A natural energy function associated to semi–regular non–negative radial solutions u of
(2.1) is given by

E(r) = H(ρ(r)) + F (u(r)), ρ = |u′|.(2.22)

Lemma 2.5. The energy function E is of class C1(J), with

E′(r) = −n− 1
r

B(ρ(r)) in J.(2.23)

Proof. Obviously, by (f1) and (2.16)

dF (u(r))
dr

= f(u(r))u′(r),

this formula being valid only when u(r) > 0, namely in J . Moreover, by (2.2) and (Φ2),

H(ρ) =
∫ ρ

0
tdΦ(t) =

∫ Φ(ρ)

0
Φ−1(ω)dω

and, since Φ(ρ(r)) = [sgn u′(r)]w(r), we get

dH(ρ(r))
dr

= ρ(r)[sgnu′(r)]w′(r) = u′(r)w′(r).

Therefore, by (2.17), on J

E′(r) = u′(r)
[
w′(r) + f(u(r))

]
= −u′(r)

n− 1
r

w(r)

and (2.23) follows at once. �

Let now u be either a fixed semi–regular non–negative radial ground states of the problem
(2.1), namely a semi–regular non–negative radial solution of (2.1) in the sense above such
that

lim
|x|→∞

u(x) = 0,(2.24)

or a fixed semi–regular non–negative radial solution of the corresponding homogeneous
Dirichlet–Neumann free boundary problem (1.2).

With the respective end conditions at R = ∞ in (2.1), (2.24) and at R < ∞ in (1.2),
the problems (2.1), (2.24) and (1.2) can be unified again into the single statement (2.5) and
(2.16) in J ⊂ (0, R).

Theorem 2.6. If u(t0) = 0 for some t0 > 0, then u ≡ 0 on [t0, R).
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Proof. Since u ≥ 0, clearly u′(t0) = 0. Hence E(t0) = 0 by (2.22), (2.2) and (f1). Assume
for contradiction that there is t1, with t0 < t1 ≤ R such that again u(t1) = 0 and u(r) > 0
in (t0, t1). Then (t0, t1) ⊂ J and E′ ≤ 0 in (t0, t1) by (2.23). Clearly E(t1) = 0 when t1 < R,
and we claim that E(r) → 0 as r → t1 = R. Indeed, if R < ∞, the claim is obvious by the
boundary conditions of (1.2); while if R = ∞, since u(r) → 0 as r → ∞ by (2.24), then
F (u(r)) → 0 by (f1), and so E(r) decreases to a finite non–negative limit as r → ∞ by
(2.22) and (2.2). Consequently, u′(r) → limit= 0 as r →∞, since u(r) → 0 as r →∞, and
H is strictly increasing and positive by (2.2). Therefore E(r) → 0 as r → ∞, as claimed.
Hence E ≡ E′ ≡ 0 in (t0, t1) and so B(ρ) ≡ 0 on [t0, t1), by (2.23) namely u′ ≡ 0 on [t0, t1)
by (2.4). This contradiction completes the proof. �

By Theorem 2.6 it follows that any solution of (2.16) and (2.5), with the given end
conditions (2.24) and those in (1.2), has as its (open) support set J exactly an initial
interval (0, r0), with r0 ≤ R. In turn, one deduces that actually E ∈ C1[0, R), and that
(2.23) holds in the entire maximal interval [0, R). Therefore for any 0 ≤ s0 < r < R we
have

E(r)− E(s0) = −
∫ r

s0

n− 1
s

B(ρ(s))ds.(2.25)

Clearly E(0) = F (α) by (2.22) and (2.16). Thus, letting s0 → 0+ in (2.25), we obtain

E(r) = F (α)− (n− 1)
∫ r

0

B(ρ(s))
s

ds, 0 ≤ r < R.(2.26)

As in the proof of Theorem 2.6, if R = ∞ and u(r) → 0 as r → ∞, then u′(r) → 0 and
E(r) → 0 as r → ∞. Hence, by (2.24) or (1.2), the non–negative continuous function
B(ρ(s))/s is also integrable on [0, R), R ≤ ∞, with∫ R

0

n− 1
s

B(ρ(s))ds = F (α).(2.27)

In summary, a semi–regular non–negative radial ground state of (2.1), (2.24), or a semi–
regular non–negative radial solution of the corresponding free boundary problem (1.2), has
the property that

u(0) = α > 0, u′(0) = 0, u(R) = u′(R) = 0,(2.28)

where respectively R = ∞ or R < ∞. Furthermore, by (2.26) and (2.27)

E(r) =
∫ R

r

n− 1
s

B(ρ(s))ds ≥ 0,(2.29)

and clearly also

E(0) = F (α) =
∫ R

0

n− 1
s

B(ρ(s))ds > 0.(2.30)

Lemma 2.7. If s0 ≥ 0 is a critical point of u, with u(s0) > 0, then either u(r) ≤ u(s0) for
r > s0 and f(u(s0)) ≥ 0, or u(r) ≥ u(s0) for r > s0 and f(u(s0)) ≤ 0.

Proof. Let s0 ≥ 0 be a critical point of u. Assume for contradiction that there are two points
t1, t2 > s0 such that u(t1) > u(s0) and u(t2) < u(s0). Then, there is r in the interval, with
endpoints t1 and t2, such that u(r) = u(s0) and u is not constant on [s0, r]. Now by (2.25)
and (2.22)

H(ρ(r)) +
∫ r

s0

n− 1
s

B(ρ(s))ds = 0

and both terms are non–negative by (Φ2), (2.2) and (2.4). Thus in particular B(ρ) ≡ 0 on
[s0, r], so u′ ≡ 0 on [s0, r] by (2.4), which is impossible. Hence we have two cases: either
u(r) ≤ u(s0) for r > s0, or u(r) ≥ u(s0) for r > s0.
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In the first case, since u′(s0) = 0, then w(s0) = 0 by (Φ2), and by (2.17) and the regularity
of w established in Lemma 2.3 at r = s0 we have

f(u(s0)) = −w′(s0) ≥ 0.

Indeed, otherwise w′(s0) > 0, and so there is t3 > s0 such that w′(r) > 0 on [s0, t3]; in
turn w(r) > w(s0) = 0 and u′(r) > 0 on [s0, t3], which gives u(r) > u(s0) on [s0, t3], which
contradicts (2.28).

In the same way, in the second case, it follows that f(u(s0)) ≤ 0, completing the proof
of the lemma. �

It is convenient to introduce the following further condition on f .

(f2) There exists γ > 0, possibly infinite, such that F (u) ≤ 0 whenever both f(u) = 0 and
u ∈ (0, γ).

Clearly if (f2) holds for some γ > 0, then it continues to hold for all γ′ ∈ (0, γ). Conse-
quently there exists a maximal γ, possibly infinite, for which (f2) is valid. Without loss of
generality we can assume that γ in (f2) is maximal.

One can see also from (f2) that if F (u0) ≤ 0 at some point u0, 0 < u0 < γ, then F (u) ≤ 0
for all u ∈ [0, u0]. Conversely, it is evident that if F (u) ≤ 0 on some interval [0, u0], then
the maximal γ ≥ u0.

Furthermore if either (f3) or (f4) holds, where (f3) and (f4) are the main qualitative
conditions of f given in the Introduction, then (f2) is satisfied, with

γ = sup{v > d : f(u) > 0 for u ∈ (d, v)}, where d =

{
b, if (f3) holds,
0, if (f4) holds.

(2.31)

In this case γ > d ≥ 0 and γ = ∞ if f(u) > 0 for all u > d, while f(γ) = 0 if γ < ∞.

Proposition 2.8. Let u be a semi–regular non–negative radial ground state of (2.1), (2.24),
or a semi–regular non–negative radial solution of the corresponding free boundary problem
(1.2), so that (2.28) holds. Then r = 0 is a maximum of u and u′ ≤ 0 on [0, R); furthermore
f(α) ≥ 0 and F (α) > 0.

If (f2) holds, then also
(i) f(α) > 0, when 0 < α < γ,
(ii) u′(r) < 0 when r > 0 and 0 < u(r) < γ.

Proof. By Lemma 2.7 and the condition u′(0) = 0 one sees that u(r) ≤ u(0) for r > 0,
since otherwise u(r) ≥ u(0) = α > 0 for all r > 0, and so u cannot approach 0 as r → R−,
contradicting (2.28). The fact that f(α) ≥ 0 similarly follows from Lemma 2.7, and clearly
F (α) > 0 by (2.30).

Next assume for contradiction that u′(s0) > 0 for some s0 > 0. Since u(s0) ≤ u(0), as
shown above, there is a minimum s in (0, s0), with u(s) < u(s0), and so u(r) ≥ u(s) for
r > s by Lemma 2.7. If u(s) > 0, then u(r) cannot approach 0 as r → R−, contradicting
(2.28). Therefore u(s) = 0 with s > 0, and by Theorem 2.6 we get u ≡ 0 on [s,R): thus
u′(s0) = 0, which is again a contradiction. Hence u′(r) ≤ 0 on [0, R).

To show (i) it is enough to observe that if f(α) = 0 and 0 < α < γ, then F (α) ≤ 0 by
assumption (f2). This is impossible by (2.30), proving (i).

To obtain (ii), assume now for contradiction that there is a point s0 > 0 such that
u′(s0) = 0 and 0 < u(s0) < γ. Since u′(r) ≤ 0 for r ≥ 0, then both u(r) ≥ u(s0) for
0 ≤ r < s0 and u(r) ≤ u(s0) for s0 < r < R. Of course, w(s0) = 0 by (Φ2). We claim that
also w′(s0) = 0. Indeed, if w′(s0) > 0, then w would be strictly increasing at s0, namely
u′ would change sign at s0, which is impossible since u′(r) ≤ 0 on [0, R). Analogously, the
case w′(s0) < 0 also cannot occur.
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Since w is a C1[0, R) solution of (2.17) by Lemma 2.3, we get f(u(s0)) = 0. Also
0 < u(s0) < γ, so that F (u(s0)) ≤ 0 by (f2). Hence by (2.29) and (2.22), with r = s0,

0 ≤
∫ R

s0

n− 1
s

B(ρ(s))ds = E(s0) = F (u(s0)) ≤ 0,

which implies u′ ≡ 0 on [s0, R) by (Φ2) and (2.4). Thus u(r) ≡ u(s0) > 0 for s0 ≤ r < R,
again contradicting (2.28). This completes the proof of (ii). �

The next result gives a necessary and a sufficient condition for a semi–regular non–
negative radial ground state to have compact support.

Theorem 2.9. Let u be a semi–regular non–negative radial ground state of (2.1), (2.24),
with u(0) = α > 0.

(i) If F (u) ≤ 0 for all values 0 < u < δ, for some δ > 0, and∫
0+

du

H−1(|F (u)|)
< ∞,(2.32)

then u has compact support.
(ii) Conversely, assume there exists δ > 0 and a non–decreasing function G : [0, δ) → R,

with G(0) = 0, such that |F (u)| ≤ G(u) for all u ∈ [0, δ). If u has compact support, then∫
0+

du

H−1(G(u))
< ∞.(2.33)

Proof. Let u be a semi–regular non–negative radial ground state as in the theorem, so
R = ∞.

(i) Suppose (2.32) holds. We denote by rδ > 0 any point such that 0 ≤ u(r) < δ
on (rδ,∞). Condition (f2) clearly holds with γ ≥ δ, as noted above. Thus by Proposi-
tion 2.8 (ii) we have u′(r) < 0 for all r ∈ (rδ,∞) for which u(r) > 0. Hence by Theorem 2.6
either u ≡ 0 for all r sufficiently large, or u > 0 and u′ < 0 on (rδ,∞). In the first case we
are done. Otherwise, denoting by r = r(u) the inverse function on (rδ,∞), by (2.29) and
(2.22), we get on (rδ,∞)

H(ρ(r)) = −F (u(r)) +
∫ ∞

r

n− 1
s

B(ρ(s))ds > −F (u(r)),

or u′(r) < −H−1(|F (u(r))|) on (rδ,∞) by the assumption that F (u) ≤ 0 on [0, δ) and the
fact that H(∞) = ∞ by (Φ3). That is, writing r = r(u) and putting ε = u(rδ), we have

1
r′(u)

< −H−1(|F (u)|) for u ∈ u((rδ,∞)) = (0, ε),

since u(r) → 0 as r →∞. By integration over (u(r), ε), r > rδ,∫ ε

u(r)

du

H−1(|F (u)|)
> −

∫ u(rδ)

u(r)
r′(u)du = r − rδ.

Hence, letting r →∞, there results∫ ε

0

du

H−1(|F (u)|)
= ∞.

This contradicts (2.32) and completes the proof of part (i) of the theorem.
(ii) Let u have compact support. Then by Theorem 2.6 and the first part of Proposi-

tion 2.8 there is r0 > 0 such that u′(r) ≤ 0 and 0 < u(r) ≤ u(0) = α on (0, r0), while u ≡ 0
on [r0,∞). Let rδ ∈ (0, r0) be some fixed point such that 0 < u(r) < δ on (rδ, r0). By (2.25)
and (2.22) for 0 < rδ < r < r0 we have E(r0) = 0 and

H(ρ(r)) = −F (u(r)) +
∫ r0

r

n− 1
s

B(ρ(s))ds ≤ G(u(r)) + c1

∫ r0

r
H(ρ(s))ds,
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by assumption, (Φ3) and (2.3), with c1 = p′(n − 1)/rδ. Applying Gronwall’s inequality to
e−c1(rδ−r)

∫ r0

r H(ρ(s))ds, we obtain

H(ρ(r)) ≤ G(u(r)) + c1

∫ r0

r
G(u(s))ec1(s−r)ds.

Now G(u(r)) is non–increasing on (rδ, r0), since G is non–decreasing by assumption and u
is non–increasing on (rδ, r0). Hence

H(ρ(r)) ≤ CG(u(r)), with C = ec1(r0−rδ) > 1.

Therefore, since u′(r) ≤ 0,

−u′(r) ≤ H−1(CG(u(r))) on (rδ, r0).

We can now apply Lemma 1.3.3 of [5] since the main assumption (ii) in [5] is clearly satisfied.
Indeed, here p

∫ t
0 Φ(s)ds ≤ B(t) in the entire R+

0 by (2.4), (2.3) and (2.2). Consequently by
Lemma 1.3.3 of [5] there is a constant D > 0 such that

H−1(Ct) ≤ DH−1(t) for all 0 = G(0) < t < G(uδ),

where uδ = u(rδ) ≤ δ. Hence

−u′(r) ≤ DH−1(G(u(r))) on (rδ, r0).

Integrating on [s0, r], with rδ < s0 < r < r0, we get∫ u(s0)

u(r)

du

H−1(G(u))
= −

∫ r

s0

u′(s)
H−1(G(u(s)))

ds ≤ D(r − s0).

Letting r → r−0 , this yields ∫ u(s0)

0

du

H−1(G(u))
≤ D(r0 − s0),

that is (2.33) holds. This completes the proof of part (ii) of the theorem. �

As an immediate consequence of Theorem 2.9 we obtain

Corollary 2.10. Let u be a semi–regular non–negative radial ground state of (2.1), (2.24),
with u(0) = α > 0, and assume f ≤ 0 on (0, δ), for some δ > 0, and f 6≡ 0.
(i) Then u(r) > 0 for every r > 0 if and only if∫

0+

du

H−1(|F (u)|)
= ∞.(2.34)

(ii) In particular, u(r) > 0 for every r > 0 if∫
0+

du

|F (u)|1/p
= ∞.(2.35)

(iii) Furthermore, if Φ satisfies also

(Φ4) k = inf
t>0

Φ(t)
tp−1

> 0,

then u(r) > 0 for every r > 0 if and only if∫
0+

du

|F (u)|1/p
= ∞.

Proof. Statement (i) is a direct consequence of Theorem 2.9, with G = |F |. By (Φ3), (2.4)
and (2.3) it is clear that H(t) ≤ B(t) ≤ B(1)tp for all 0 ≤ t ≤ 1, with B(1) > 0. Hence
t ≤ H−1(B(1)tp) since H(∞) = ∞, and so H−1(s) ≥ cs1/p, where c = [B(1)]−1/p, for
0 ≤ s ≤ B(1). Consequently the validity of (2.35) implies (2.34), and the proof of (ii) is
complete.
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Furthermore, if (Φ4) holds, by (Φ4) and (2.3) again, we also have H(t) ≥ (p − 1)ktp/p

for all t ≥ 0. Consequently H−1(s) ≤ Cs1/p for every s ≥ 0, where C = [(p − 1)k/p]−1/p,
and H−1(s) ≥ cs1/p for 0 ≤ s ≤ B(1), as shown above in part (ii). Hence (2.35) is now
equivalent to (2.34), and this proves (iii) by (i). �

Remarks. To see that (Φ4) is not automatic under the assumption (Φ1)–(Φ3), note that
Φ(t) = tp−1(et − 1) verifies (Φ1)–(Φ3) but not (Φ4). Of course Φ(t) = tp−1et satisfies
(Φ1)-(Φ4), with k = 1.

Assume also (Φ4). If f is singular at u = 0, with |f(u)| ∼ uq as u → 0+, then by (f1) we
must have q ∈ (−1, 0). Hence |F (u)|1/p ∼ u(q+1)/p as u → 0+, and so

∫
0+ |F (u)|−1/pdu < ∞

and every semi–regular non–negative radial ground state of (2.1), with u(0) = α > 0, is
compactly supported on R+ by Corollary 2.10 (iii). While if f is regular at u = 0 and q > 0,
then

∫
0+ |F (u)|−1/pdu < ∞ when 0 < q < p− 1 and every semi–regular non–negative radial

ground state of (2.1), with u(0) = α > 0, is compactly supported on R+ by Corollary 2.10
(iii).

If again |f(u)| ∼ uq as u → 0+, with q > −1 by (f1), then by Corollary 2.10 (iii) and
Proposition 2.8 it holds that u(r) > 0, u′(r) < 0 for all r ∈ R+ if and only if q ≥ p− 1. In
this case, since p > 1, this means that f is continuous at u = 0, with f(0) = 0, namely we
are in the regular case.

For a more general wider discussion on the validity of the strong maximum and compact
support principles for solutions, radial or not, of quasilinear singular elliptic inequalities,
as well as on applications of these principles to variational problems on manifolds and to
existence of radial dead cores, we refer to [17]. See also [14].

3. Properties of solutions of the corresponding initial value problem

Semi–regular non–negative radial solutions u of (2.1), (2.24), or of (1.2), are also solutions
of the initial value problem{

[rn−1Φ(ρ(r))]′ − rn−1f(u(r)) = 0, r > 0,
u(0) = α > 0, u′(0) = 0,

(3.1)

by (2.28) and the first part of Proposition 2.8.
From now on, besides (Φ1)–(Φ3), we assume that either (f3) or (f4) holds, see the

Introduction, so that, as noted above, (f2) is also satisfied, with γ given by (2.31). Moreover,
from now on we also assume that
(f5) f ∈ Liploc(0, γ).

In this section we shall consider only solution of (3.1) under the further restriction

d < α < γ,(3.2)

where d and γ are given in (2.31).

Lemma 3.1. Problem (3.1) and (3.2) has a unique classical solution u in a neighborhood
of the origin. Moreover, u′(r) < 0 for r small and positive. The solution is unique as long
as it exists and remains in (0, γ).

Proof. Local existence and uniqueness of solution of the initial value problem (3.1) and (3.2)
follows from Proposition A4 of the Appendix of [5], since (Φ3) is equivalent to (1.3) and in
turn for 0 < t < p− 1

Φ′(t) ≥ Φ(t) > 0,(3.3)

which is the main condition of Proposition A4 of [5], in the special case µ = 1. Moreover
by Proposition 2.8 (i) and (ii) we have f(α) > 0 and u′(r) is negative for small r. �
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By Proposition 2.8, any semi–regular non–negative radial solution u of (2.1), (2.24), or
of (1.2), satisfying (3.2), remains a classical solution of (3.1) as long as it remains in (0, α].
Moreover, by Lemma 3.1 the unique local solution of (3.1) and (3.2) has the property that
u′ < 0 and u < α in some interval to the right of zero. We claim that the solution can be
continued either for all r > 0 with u(r) > 0 and u′(r) < 0, or else reaches a first point rα

where either u(rα) = 0 and u′(rα) ≤ 0, or u(rα) > 0 and u′(rα) = 0. To prove this note
first that by (2.25), with s0 = 0, and (2.22), since F > 0 and increasing on (d, γ) by either
(f3) or (f4), then

H(|u′(r)|) ≤ F (α)− F (u(r)) ≤ F (α) + max
v∈[0,d]

|F (v)| = Mα ∈ R+,

by (2.30). Therefore, since H(∞) = ∞ by (Φ3), we also obtain that |u′(r)| ≤ H−1(Mα) as
long as u exists and 0 < u(r) ≤ α. This shows the claim.

In what follows we assume that the solution u of (3.1) and (3.2) is continued exactly
until a first point rα is reached where either u(rα) = 0 and u′(rα) ≤ 0, or u(rα) > 0 and
u′(rα) = 0. If no such a point occurs, we put rα = ∞.

We denote by Jα the maximal domain of continuation of any semi–regular non–negative
radial solution u of (2.1), (2.24), or of (1.2), satisfying (3.2), where it is positive, namely
Jα = (0, rα), rα finite or not, is the maximal open interval of continuation under the
restriction

u > 0, −∞ < u′ < 0 in Jα.(3.4)

As mentioned earlier, the main purpose of this paper is to extend to the general problem
(2.1), (2.24) and to the corresponding free boundary problem (1.2), the recent existence
results given by Gazzola, Serrin and Tang in [7], under (Q1) and (f3), and by Tang in [18],
under (Q1) and (f4), for the p–Laplacian case, namely when Φ(t) = tp−1, p > 1, in (Φ1)–
(Φ3), to the general setting of [9] on Φ, under the slightly more general growth condition
(Q), when the natural assumption (f1) holds, and using a unified technique. We shall also
completely generalize the existence results of [9].

Lemma 3.2. Let u be a solution of (3.1) and (3.2), and let Jα = (0, rα) be the corresponding
maximal interval of definition in the sense of (3.4).

(i) The limit

`α = lim
r→r−α

u(r)(3.5)

belongs to [0, b) if (f3) holds, and `α = 0 if (f4) is satisfied. Moreover if `α > 0,
then u′(rα) = 0, with rα possibly infinite.

(ii) Let λ > d. If α > λ, then there exists a unique value r = r(α) ∈ Jα such that
u(r) = λ.

(iii) If rα = ∞, then lim
r→∞

u′(r) = 0.

Proof. (i) Clearly the limit in (3.5) exists and is non–negative, since u is decreasing and
positive in Jα by (3.4), in particular `α ∈ [0, γ) by (3.2).

Let first (f3) hold. By contradiction, suppose `α ∈ [b, γ). Then b ≤ `α < u(r) < α in
Jα, and this implies [rn−1Φ(ρ(r))]′ > 0 by (3.1) and (3.2), that is rn−1Φ(ρ(r)) is strictly
increasing on Jα.

If rα is finite and u(rα) = `α ≥ b > 0, then u′(rα) = 0 by (3.4), and in turn rn−1Φ(ρ(r))
tends to 0 as r → r−α . On the other hand, rn−1Φ(ρ(r)) is 0 at r = 0. This is impossible
since rn−1Φ(ρ(r)) is strictly increasing on Jα.

If rα = ∞, then Jα = R+ and E ∈ C1(R+) is non–increasing in R+ by Lemma 2.5.
Therefore by (2.22) also H(ρ(r)) admits finite limit at ∞, and in turn by (2.2) also ρ(r)
admits limit as r →∞. Consequently u′(r) → 0 as r →∞. Now, rewriting the equation in
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(3.1) in the equivalent form

[Φ(ρ(r))]′ +
n− 1

r
Φ(ρ(r))− f(u(r)) = 0, r ∈ Jα = R+,

we obtain that lim
r→∞

[Φ(ρ(r))]′ = f(`α) > 0, since `α ∈ [b, γ). This is impossible since

Φ(ρ(r)) > 0 on R+ and lim
r→∞

Φ(ρ(r)) = 0 by (Φ2).

Let now (f4) hold. If we assume by contradiction that `α > 0, then, omitting b, we can
repeat the above proof word by word and reach the desired conclusion.

If `α > 0 and rα < ∞, then lim
r→r−α

u′(r) = u′(rα) = 0 again by (3.4). If `α > 0 and rα = ∞,

then by Lemma 2.5 and (2.22), as shown above, lim
r→∞

u′(r) = 0. This case can occur only

when (f3) holds.
(ii) The claim follows easily, by definition of Jα, since u is strictly decreasing.
(iii) Let rα = ∞, then the claim follows word by word as in the proof of (i), since H(ρ(r))

approaches a finite limit as r →∞ by (2.22).
�

Lemma 3.3. Let u be a solution of (3.1) with maximal interval Jα and assume (3.2).
Then for any t0 ∈ Jα and ε > 0, there exists δ > 0 such that if v is a solution of (3.1) with
|u(0)− v(0)| < δ, then v = v(r) is defined on [0, t0] and

sup
[0,t0]

{
|u(r)− v(r)|+ |u′(r)− v′(r)|

}
< ε.

Proof. The proof of Lemma 2.3 of [9] can be repeated since it was used only the fact that
f ∈ Liploc(0, γ) together with (f1). �

Lemma 3.4. (Ni–Pucci–Serrin) Let u be a solution of (3.1). Set

Q(v) = pnF (v)− (n− p)vf(v), v ∈ R+,

and

P (r) = (n− p)rn−1u(r)u′(r)A(|u′(r)|) + prnE(r), 0 < r < rα.(3.6)

Then

P (r) ≥
∫ r

0
Q(u(s))sn−1ds.(3.7)

This follows at once by direct calculation from (2.5), (2.3) and (2.23). See the proof of
Lemma 2.3 of [9].

4. Preparatory existence results

To establish existence of semi–regular non–negative radial solutions of (2.1), (2.24) or of
(1.2), we follow the main ideas used in [5], [7], [18] and [9], and shall first prove existence
theorems for the corresponding initial value problem (3.1), under condition (3.2).

Using the same notation of the previous section, we introduce the set

I− = {α > d : rα < ∞, `α = 0, u′α(rα) < 0}.

Lemma 4.1. Let u be a semi–regular radial solution of (3.1), under the restriction (3.2),
in its maximal continuation interval Jα. If α /∈ I−, then

r <
Cu(r)[F + F (u(r))]

F (u(r))B−1(p′[F + F (u(r))])
for every r ∈ Jα,(4.1)

where p′ is the Hőlder conjugate of p,

C = (n− 1)p′, F = max
v∈[0,d]

F−(v),(4.2)
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B−1 is the inverse function of B given in (2.4), and F− = max{−F, 0}.

Proof. Assume by contradiction that there is r, with 0 < r < rα such that

r ≥ CU [F + F (U)]
F (U)B−1(p′[F + F (U)])

,(4.3)

where U = u(r). Put
M = sup

[r,rα)
ρ(r) = ρ(R1),

where R1 ∈ [r, rα) by the continuity of u′ on Jα, (3.4), Lemma 3.2 (i) and (iii), since α /∈ I−.
By (2.2), (2.22) and (2.25) at s0 = r and r = rα, we have

F (U) < E(r) = E(rα) + (n− 1)
∫ rα

r

B(ρ(s))
s

ds ≤ −(n− 1)
Φ(M)

r

∫ rα

r
u′(s)ds

=
(n− 1)Φ(M)U

r
,

by (2.29), (2.4), (3.4) and (Φ2). Hence

F (U) <
(n− 1)Φ(M)U

r
.(4.4)

Similarly, by (2.22) and (2.25) at s0 = R1 and r = rα, we get

H(M) = F (`α)− F (u(R1)) + (n− 1)
∫ rα

R1

B(ρ(s))
s

ds ≤ F − (n− 1)
Φ(M)

R1

∫ rα

R1

u′(s)ds

≤ F +
(n− 1)Φ(M)U

R1
,

since u(R1) ≤ U being R1 ≥ r, E(rα) = F (`α) ≤ 0 if (f3) holds and is zero if (f4) is satisfied,
since u′(rα) = 0 by Lemma 3.2 (i), by assumption α /∈ I−, and finally u(r)− `α ≤ U since
`α ≥ 0. Hence

H(M) ≤ F +
(n− 1)Φ(M)U

r
.(4.5)

By (4.2)–(4.4) and (2.4) it follows at once that

Φ(M) >
r

n− 1
F (U)

U
≥ Φ

(
n− 1

r

U

F (U)
p′[F + F (U)]

)
,

namely by (Φ2)
M

p′
>

n− 1
r

U

F (U)
[F + F (U)].(4.6)

Now from (4.5), (2.3), (4.6) and (4.4) we finally have

F ≥ H(M)− (n− 1)
Φ(M)

r
U ≥ M

p′
Φ(M)− (n− 1)

Φ(M)
r

U = Φ(M)
[
M

p′
− n− 1

r
U

]
>

r

n− 1
F (U)

U

n− 1
r

U

[
F + F (U)

F (U)
− 1

]
= F ,

which is the required contradiction. �

Theorem 4.2 (Existence). Let (f1) and either (f3) or (f4) hold. If γ1 = ∞, we also
assume that:

(Q) The function Q is locally bounded near v = 0 and there exist µ > d and λ ∈ (0, 1) such
that Q(v) ≥ 0 for all v ≥ µ and

lim sup
v→∞

Q(λ1v)[vp+1f(λ2v)]n/p = ∞ for every λ1, λ2 ∈ [λ, 1].

Then I− 6= ∅.
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Proof. We discuss separately the two cases γ < ∞ and γ = ∞.
Let γ < ∞. Problem (3.1) and (3.2) admits a unique classical solution u, which depends

continuously by α by Lemmas 3.1 and 3.3. Hence u(r, α) → γ as α → γ uniformly on every
bounded interval of R+

0 . Since α ∈ (d, γ), for α sufficiently close to γ, by Lemma 3.2 (ii),
there is a unique value tα ∈ Jα such that u(tα, α) = γ̃, where γ̃ = (γ + d)/2 ∈ (d, γ). We
claim that α 7→ tα is not bounded above as α → γ. For otherwise 0 < tα ≤ t < ∞ as α → γ,
for an appropriate constant t, and all the corresponding solutions u(r, α) would be ≤ γ̃ as
r ≥ t, which contradicts the fact that u(r, α) converges uniformly on bounded sets to γ as
α → γ.

Now, putting u(tα, α) = γ̃ in the right–hand side of (4.1), we find a finite number which
is independent of α. This is impossible by the previous argument.

Consequently there is α ∈ (d, γ) such that the corresponding solution u(r, α), with
u(tα, α) = γ̃, has the property that

tα >
Cγ̃[F + F (γ̃)]

F (γ̃)B−1(p′[F + F (γ̃)])
,

namely α ∈ I− by Lemma 4.1, or u is a crossing solution by the definition of I−, and the
proof is complete when γ < ∞.

Let now γ = ∞. Assume for contradiction that u(r, α) is a global solution for all α ∈
(d,∞), namely Jα = R+ for all α ∈ (d,∞).

We take µ and λ as stated in (Q), with α > µ, and, without loss of generality, we take λ
sufficiently close to 1 such that:

α >
µ

λ
and 0 <

α(1− λ)
rλ

=
u(0)− u(rλ)

rλ
≤ 1,(4.7)

where rλ is the unique point r such that u(rλ) = λα by Lemma 3.2 (ii). This is clearly
possible since by (2.16)

lim
r→0+

u(r)− u(0)
r

= u′(0) = 0 and lim
λ→1

rλ = 0.

Integrating (3.1) on [0, r], with r ∈ (0, rλ), we obtain

rn−1Φ(ρ(r)) =
∫ r

0
sn−1f(u(s))ds.

Hence, putting
f(λ2α) = max

[λα,α]
f(u) > 0, λ2 ∈ [λ, 1],

we have

rn−1Φ(ρ(r)) ≤ f(λ2α)
rn

n
.

Since Φ(∞) = ∞ by (Φ3), then by (Φ2)

ρ(r) ≤ Φ−1

(
f(λ2α)r

n

)
.

Integration from 0 to rλ yields

α(1− λ) ≤
∫ rλ

0
Φ−1

(
f(λ2α)r

n

)
dr ≤ rλΦ−1

(
f(λ2α)rλ

n

)
,

by (Φ2). Thus

f(λ2α)
n

≥ 1
rλ

Φ
(

α(1− λ)
rλ

)
=

1
rλ

Φ
([

α(1− λ)
rλ

]p/(p−1)[ rλ

α(1− λ)

]1/(p−1))
≥ 1

rλ

rλ

α(1− λ)
Φ

([
α(1− λ)

rλ

]p/(p−1))
,
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by (Φ3) and (4.7). This shows that

Φ−1

(
α(1− λ)f(λ2α)

n

)
≥

[
α(1− λ)

rλ

]p/(p−1)

,(4.8)

namely

rλ ≥
α(1− λ)[

Φ−1

(
α(1− λ)f(λ2α)

n

)](p−1)/p
.

Now, we take λ < 1 sufficiently close to 1 so that
α(1− λ)f(λ2α)

n
≤ 1.

Hence [α(1− λ)f(λ2α)
n

]1/(p−1)
Φ−1

(α(1− λ)f(λ2α)
n

)
≤ Φ−1(1),

since the function τ 7→ τ1/(p−1)Φ−1(τ), τ ∈ R+
0 , is non–decreasing by (Φ3). Therefore

Φ−1(1)
[ n

α(1− λ)f(λ2α)

]1/(p−1)
≥ Φ−1

(α(1− λ)f(λ2α)
n

)
≥

[α(1− λ)
rλ

]p/(p−1)
,

by (4.8), or

rλ ≥
(1− λ)(p+1)/p

[Φ−1(1)](p−1)/pn1/p
α(p+1)/p[f(λ2α)]1/p,

namely

rλ ≥ Cλα(p+1)/p[f(λ2α)]1/p, Cλ =
(1− λ)(p+1)/p

[Φ−1(1)](p−1)/pn1/p
.(4.9)

Let rµ be the unique value of r such that

u(rµ) = µ.(4.10)

Hence rµ > rλ, since u(rλ) = λα > µ = u(rµ) by (4.7), and u′ < 0 on Jα = R+. Further-
more, since α 6∈ I−, by (4.1)

rµ < Cµ :=
Cµ[F + F (µ)]

F (µ)B−1(p′[F + F (µ)])
,(4.11)

where C is given in (4.2) and B in (2.4).
Let

Qµ = inf
0<v≤µ

Q(v) > −∞(4.12)

by (Q). Moreover there is a suitable constant λ1 ∈ [λ, 1] such that

Q(λ1α) = min
λα≤v≤α

Q(v) ≥ 0(4.13)

by (Q) since λα > µ. Consequently, by construction,

Q(u(r)) ≥

 Q(λ1α), if 0 < r < rλ

0, if rλ ≤ r ≤ rµ

−|Qµ|, if r > rµ.
(4.14)

By Lemma 3.4, that is (3.6) and (3.7), with r > rµ,

prnE(r) ≥ P (r) ≥
( ∫ rλ

0
+

∫ rµ

rλ

+
∫ r

rµ

)
sn−1Q(u(s))ds.(4.15)

Hence, using (4.14), we get

prnE(r) ≥ Q(λ1α)
n

Cn
λ [αp+1f(λ2α)]n/p − |Qµ|rn

n
,
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by (4.9). By (2.22), (4.11) and the fact that F is positive and increasing on (d,∞), and so
on (d, µ],

pnH(ρ(r)) >

[
Cλ

Cµ + 1

]n

Q(λ1α)[αp+1f(λ2α)]n/p − |Qµ| − npF (µ),

for rµ < r < rµ + 1. By (Q) we can take α sufficiently large so that H(ρ(r)) ≥ H(µ), that
is ρ(r) ≥ µ by (2.2). Consequently

u(rµ + 1) = u(rµ) +
∫ rµ+1

rµ

u′(s)ds ≤ µ− µ = 0,

which contradicts the fact that u > 0 on Jα = R+, and completes the proof. �

We now recall the main growth condition, denoted here by (Q1), for existence in the
principal case γ = ∞, used in [7], [9] and [18]:

(Q1) The function Q is locally bounded near v = 0 and there exist µ > d and λ ∈ (0, 1) such
that Q(v) ≥ 0 for v ≥ µ and

lim sup
v→∞

Q(λ1v)
[

vp−1

f(λ2v)

]n/p

= ∞ for all λ1 and λ2 in [λ, 1].

Proposition 4.3. Let γ = ∞. Assume that (f1) holds and also that
(F1) lim inf

u→∞
f(u) = k0 > 0,

with k0 possibly infinity, is satisfied. Then

(Q1) =⇒ (Q).

Proof. By (F1) for u sufficiently large

f(u) > 0 and uf(λ2u) ≥ 1/λ for all λ2 ∈ [λ, 1].

Consequently by (Q1)

Q(λ1u)u(p+1)n/p[f(λ2u)]n/p ≥ Q(λ1u)
[

up−1

f(λ2u)

]n/p

,

and the implication follows at once. �

Theorem 4.2 generalizes Lemma 3.5 of [9], since in general (f1), (F1), (Q) and either
(f3) or (f4) do not imply the validity of (Q1), as shown by the following examples. For
brevity we define the functions f under consideration in the examples only for large u and
without further mention we assume that the functions f satisfy (f1) and either (f3) or
(f4), and the corresponding functions Q(v) = pnF (v) − (n − p)vf(v), v > 0, are locally
bounded near at v = 0. Finally, in the next examples, 1 < p < n and p∗ =

np

n− p
.

Examples. 1. Let

f(u) = up∗−1 +
1
u

, for u ≥ u0, with u0 > 0.

Clearly (F1) holds with k0 = ∞. Here

Q(u) = c1 + np log u, u ≥ u0,

where c1 is an appropriate constant. Hence for u ≥ µ and µ > d sufficiently large, certainly
Q(u) > 0. Now, as u →∞

Q(λ1u)
[

up−1

f(λ2u)

]n/p

= [c1 + np log (λ1u)]
un(p−1)/p[

(λ2u)p∗−1 +
1

λ2u

]n/p
−→ 0,
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so that clearly (Q1) fails, while

Q(λ1u)[up+1f(λ2u)]n/p = [c1 + np log (λ1u)]un(p+1)/p
[
(λ2u)p∗−1 +

1
λ2u

]n/p
−→∞,

namely (Q) holds.
2. Define

f(u) = up∗−1 ± 1
uq

for u ≥ u0, with q > 1,(4.16)

where u0 > 1 when the minus sign is considered and (f4) holds, since γ = ∞ in the
examples, while u0 > 0 in all the other cases. Again (F1) holds with k0 = ∞. Hence, for
c0 = n− p + np/(q − 1)= const.> 0 and u ≥ u0,

Q(u) =
∓c0

uq−1
+ c1,

where the appropriate constant c1 is now assumed to be positive.1 As u →∞

Q(λ1u)
[

up−1

f(λ2u)

]n/p

=
[ ∓c0

(λ1u)q−1
+ c1

] un(p−1)/p[
(λ2u)p∗−1 ± 1

(λ2u)q

]n/p
−→ 0,

that is (Q1) fails, while

Q(λ1u)[up+1f(λ2u)]n/p =
[ ∓c0

(λ1u)q−1
+ c1

]
un(p+1)/p

[
(λ2u)p∗−1 ± 1

(λ2u)q

]n/p
−→∞,

that is property (Q) holds.
3. Take u0 > 0 if (f3) holds and u0 ≥ 0 if (f4) is satisfied, then define

f(u) = up∗−1 + uq−1, 1 < q < p∗.

Again (F1) holds with k0 = ∞ and, for u ≥ u0,

Q(u) = c0u
q + c1, with c0 =

np

q
− (n− p) = const. > 0,

and c1 is an appropriate constant. As u →∞,

Q(λ1u)
[

up−1

f(λ2u)

]n/p

= [c0(λ1u)q + c1]
un(p−1)/p

[(λ2u)p∗−1 + (λ2u)q−1]n/p
−→ 0,

namely (Q1) fails, while

Q(λ1u)[up+1f(λ2u)]n/p = [c0(λ1u)q + c1]un(p+1)/p[(λ2u)p∗−1 + (λ2u)q−1]n/p −→∞,

that is (Q) holds.
4. Now let p = n and

f(u) = pup−1eup
for u ≥ u0,

with u0 > 0 if (f3) holds and with u0 ≥ 0 when (f4) is satisfied. Clearly (F1) is satisfied
with k0 = ∞ and Q(u) = p2

(
eup

+ c1

)
, where c1 is an appropriate constant. Hence, as

u →∞, for λ1 = λ2,

Q(λ1u)
up−1

f(λ2u)
=

p[e(λ1u)p
+ c1]

λp−1
2 e(λ2u)p

−→ pλ1−p
1 ,

1To have c1 > 0, it is enough to define f(u) = log u + 2 for u ∈ (0, 1], when in (4.16) the plus sign is
considered, u0 = 1 and (f3) holds; while f(u) = us + 1 for u ∈ (0, 1], s > −1, when in (4.16) the plus
sign is considered, u0 = 1 but now (f4) holds. Analogously, when in (4.16) the minus sign is taken, to get

c1 > 0, we can define f(u) = up∗−1 − u−s + c(1− u) for u ∈ (0, 1], with s ∈ (0, 1) and the positive constant

c > 2/(1 − s) + 2/(q − 1), when (f3) holds; while f(u) = up∗−1
0 − u−q

0 + 2q(u0 − u)/(q − 1) for u ∈ [0, u0],
u0 > 1, when (f4) holds.
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namely (Q1) fails, while for all λ1, λ2 ∈ [λ, 1], with λ ∈ (0, 1),

Q(λ1u)[up+1f(λ2u)] = λp−1
2 p3[e(λ1u)p

+ c1]u2pe(λ2u)p −→∞,

that is (Q) holds.

Proposition 4.4. If γ = ∞, and f satisfies (f1) and

(F2) lim
u→∞

uf(u) = k1 ≥ 0, with k1 finite,
then the reverse implication of Proposition 4.3 holds, namely

(Q) =⇒ (Q1).

Proof. Indeed, for u sufficiently large
Q(λ1u)un

[uf(λ2u)]n/p
≥ c0Q(λ1u)un[uf(λ2u)]n/p,

where c0 is a positive constant, and the implication follows at once. �

Clearly (F2) implies that f(u) → 0 as u →∞, a situation which is not so interesting in
applications and in any case the existence problem could be treated for such nonlinearities
using much simpler techniques.

In general (f1), (F2), (Q1) and either (f3) or (f4), do not imply (Q), as shown by the
following examples. As before, for brevity the functions f under consideration in the next
examples are defined only for large u and assumed to satisfy (f1) and either (f3) or (f4),
without further mention. Again the corresponding functions Q(v) = pnF (v)− (n−p)vf(v),
v > 0, are supposed to be locally bounded near at v = 0. Finally, in the next examples
1 < p ≤ n, with p∗ = ∞ if p = n and p∗ =

np

n− p
if 1 < p < n.

Examples. 5. Let

f(u) = uq−1 for u ≥ u0, u0 > 0, q ≤ −p.

Clearly (F2) holds with k1 = 0 and Q(u) = c1 − c2u
q for u ≥ u0, where the appropriate

constant c1 is now assumed to be positive2 and c2 = n− p− np/q =const.> 0. Hence

Q(λ1u)
[

up−1

f(λ2u)

]n/p

= λ2
n(1−q)/p [c1 − c2(λ1u)q]un(p−q)/p −→∞,

that is (Q1) holds, while

Q(λ1u)[up+1f(λ2u)]n/p = λ2
n(q−1)/p [c1 − c2(λ1u)q]un(p+q)/p −→ `,

where ` = c1λ2
−n(p+1)/p when q = −p and ` = 0 when q < −p, so that (Q) fails.

6. Indeed, if
f(u) = uq−1 for u large, with q > −p,

then (Q) and (Q1) are valid if and only if q < p∗.
7. Let

f(u) = e−u for u ≥ u0,

with u0 > 0 under (f3) and with u0 ≥ 0 under (f4). Condition (F2) is satisfied with k1 = 0,
and for u ≥ u0 Q(u) = c1 − [np + (n − p)u]e−u, where the appropriate constant c1 > 0 is
again assumed to be positive. 3

Q(λ1u)
[

up−1

f(λ2u)

]n/p

= {c1 − [np + (n− p)λ1u]e−λ1u}un(p−1)/penλ2u/p −→∞,

2To have c1 > 0, it is enough to define f(u) = log u + 1 for u ∈ (0, 1], when u0 = 1 and (f3) holds; while
f(u) = us for u ∈ (0, 1], s > −1, when u0 = 1 but now (f4) holds.

3To get c1 > 0, it is enough to define f(u) = log u + log 2 + e−1/2 for u ∈ (0, 1/2], when u0 = 1/2 and
(f3) holds; while it is enough to take u0 = 0 when (f4) holds.
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that is (Q1) holds, while

Q(λ1u)[up+1f(λ2u)]n/p = {c1 − [np + (n− p)λ1u]e−λ1u}un(p+1)/pe−nλ2u/p −→ 0,

namely (Q) fails.

Therefore Theorem 4.2 extends the result of Theorem 5.1 of [18] also to the nonlinearity
satisfying (Q).

8. Define
f(u) = ur−1 ± uq−1, 1 < q < r < p∗,

for u ≥ u0, where u0 > 0 when the plus sign is considered and (f3) holds, and u0 > 1 when
the minus sign is considered and (f4) is satisfied, while in the other cases u0 ≥ 0. Clearly
(F1) holds with k0 = ∞ and Q(u) = c1 + σru

r ± σqu
q for u ≥ u0, where c1 > 0 is an

appropriate constant and

σr =
pn

r
− (n− p) > 0 and σq =

pn

q
− (n− p) > 0.

Then (Q1) is satisfied, and so also the weaker condition (Q), since (F1) holds.
9. Let

f(u) = uq−1 log u for u large, with 0 ≤ q < p∗.

Then for u > 0 sufficiently large

Q(u) =

 uq
{

log u
[np

q
− (n− p)

]
− np

q2

}
+ c0, 0 < q < p∗,

np

2
log2 u− (n− p) log u + c1, q = 0,

Clearly Q(u) ≥ 0 for u ≥ µ and an appropriate µ > d, since here q < p∗, as requested in
the main assumptions. Moreover, after some calculation, one sees that both (Q) and (Q1)
hold.

Indeed, it is worth noting that the existence Theorem 4.2, as well as those in [7] and
[18] for the p–Laplacian case, and in [9] for general divergence equations, can be applied in
particular when

• f(u) = uq−1 for u large, −p < q < p∗;
• f(u) = uq−1 log u for u large, 0 ≤ q < p∗,

since both (Q) and (Q1) hold.

Now, assuming the further condition (Φ4), given in the Introduction, we obtain another
criteria, which extends recent results of [7] and [18], established for the p–Laplacian case,
and also Theorem 4.1 of [9].

Theorem 4.5. Suppose that (Φ4), (Q1), (f1) and either (f3) or (f4) hold. Then I− 6= ∅.

Proof. Obviously the only new case to be proved is when γ = ∞. Indeed, we can proceed
essentially as in the proof of Theorem 4.2. By (Q1) there is µ > d such that Q(u) ≥ 0
for u ≥ µ. Choose α > µ/λ, where λ is the constant specified in (Q1), and let uα be the
corresponding solution of (3.1), with maximal domain Jα = (0, rα) in the sense of (3.4).
We denote by rµ and rλ respectively the unique values of r in which uα reaches µ and λα,
by Lemma 3.2 (ii). Clearly rλ < rµ.

Hence, putting
f(λ2α) = max

[λα,α]
f(u) > 0, λ2 ∈ [λ, 1],

and integrating (3.1) on [0, r], for any r ∈ (0, rλ), we have

krn−1ρp−1(r) ≤ rn−1Φ(ρ(r)) =
∫ r

0
sn−1f(u(s))s ≤ f(λ2α)

n
rn,
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by (Φ4). Thus

ρ(r) ≤
[
f(λ2α)

kn

]1/(p−1)

r1/(p−1).

Integration from 0 to rλ yields

α(1− λ) ≤ p− 1
p

[
f(λ2α)

kn

]1/(p−1)

r
p/(p−1)
λ ,

and therefore

rλ ≥ Cλ

[
αp−1

f(λ2α)

]1/p

, where Cλ =

{
kn

[
(1− λ)p

p− 1

]p−1
}1/p

,(4.17)

which is the exact analogue of (4.9). Continuing the proof as that of Theorem 4.2, we
obtain (4.10)–(4.15). Now, by (4.15), (2.22) and (4.17),

pnH(ρ(r)) >

[
Cλ

Cµ + 1

]n

Q(λ1α)
[

αp−1

f(λ2α)

]n/p

− |Qµ| − npF (µ),

for rµ < r < rµ + 1, where Cµ, Qµ and Q(λ1α) are given in (4.11), (4.12) and (4.13),
respectively. Thus by (Q1) we can take α sufficiently large so that H(ρ(r)) ≥ H(µ) and
conclude the proof exactly as in Theorem 4.2. �

5. Main existence results

Here we turn to the main problems (2.1), (2.24) and (1.2) under the main conditions
(Φ1)–(Φ3).

Theorem 5.1. Assume (f1), (f3) and (Q). Then problem (2.1) admits a positive semi–
regular radial ground state if (2.34) holds, while a compactly supported semi–regular non–
negative non–trivial ground state if (2.34) fails. In this second case the ground state u is
also a solution of the free boundary problem (1.2).

Proof. Put
I+ = {α ≥ b : `α > 0}.

Following the proofs of Lemmas 3.2 and 3.3 of [9], word by word, we prove that I+ is not
empty and open. Similarly, using the proof of Lemma 3.6 of [9], we can also show that I− is
also open, and by the above Theorem 4.2 is not empty. Therefore there should be a number
α /∈ I+ t I−, with b < α < γ, since b ∈ I+ by Lemma 3.2 of [9], such that (3.1) admits a
positive solution uα, with uα(0) = α, in its maximal continuation open interval Jα = (0, rα).
Since α /∈ I+, then `α = 0, while since α /∈ I−, then either rα = ∞ or rα < ∞, and in both
cases u′α(rα) = 0 by Lemma 3.2 (i) and (iii). In the first case uα is a semi–regular positive
radial ground state of (2.1), and the latter uα is a semi–regular positive radial solution of
(1.2), with R = rα, or a compactly supported radial ground state of (2.1), accordingly to
Corollary 2.10 (i). �

Theorem 5.2. Assume (f1), (f4) and (Q). Then problem
div(A(|Du|)Du) + f(u) = 0 in Rn, n > 1,

u 6≡ 0 in Rn,
(5.1)

admits a semi–regular crossing radial solution u in its maximal continuation open interval
Jα = (0, rα), with u(0) = α ∈ (0, γ), u′(0) = 0, rα < ∞, u(rα) = 0 and u′(rα) < 0.

Proof. By Theorem 4.2 there is α ∈ I− and the conclusion follows at once. �

Theorem 5.3. Assume (Φ4), (f1), (f3) and (Q1). Then problem (2.1) admits a positive
semi–regular radial ground state if (2.35) holds, while a compactly supported semi–regular
non–negative non–trivial ground state if (2.35) fails. In this second case the ground state u
is also a solution of the free boundary problem (1.2).
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Proof. We proceed, word for word, as in the proof of Theorem 5.1, where now I− 6= ∅ by
Theorem 4.5 and by Corollary 2.10 (iii). �

Theorem 5.4. Assume (Φ4), (f1), (f4) and (Q1). Then problem (5.1) admits a semi–
regular crossing radial solution u in its maximal continuation open interval Jα = (0, rα),
with u(0) = α ∈ (0, γ), u′(0) = 0, rα < ∞, u(rα) = 0 and u′(rα) < 0.

Proof. This is an immediate consequence of Theorem 4.5. �
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